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Objectives: Continuous Performance Tests (CPTs) are widely utilized as
objective measures in the assessment of Attention-Deficit/Hyperactivity
Disorder (ADHD). The integration of sensor data in smartphones has become
increasingly common as a way of monitoring several behavioural indicators of
mental health. Machine learning has started being utilized in the field of ADHD to
improve diagnosis. This investigation explores (i) the feasibility of using
smartphone devices to administer a CPT for ADHD assessment and (ii) whether
data from built-in sensors in smartphone devices is useful for predicting
a diagnosis.

Methodology: The study uses data from a control group of neurotypical
individuals and an ADHD cohort of unmedicated patients. The dataset is
divided into a training and test set, and a machine learning model is developed
using the training set. The model is trained by dividing features into four groups,
Demographic, CPT, Face, and Motion, which are then sequentially added and
evaluated on their ability to predict ADHD.

Results: A total of 952 neurotypical individuals and 292 unmedicated ADHD
patients were part of the study. The best performing model combines all feature
groups by a sensitivity of 0.808, specificity of blue and area under the precision-
recall curve (PR-AUC) of 0.799, with a considerable performance increase due to
the phone sensor features addition. Results did not differ significantly by age
group (6—11 and 12-60 years old) and sex.

Conclusion: The study provides a robust machine-learning model that is based
on a large control group together with an ADHD cohort. The experiments
demonstrated that ADHD can be assessed with high accuracy using CPTs on
smartphones. Integrating face-tracking and motion sensor data with CPT
features further enhanced performance, indicating that data from a
smartphone device can surpass the accuracy of traditional computer-based
ADHD assessments.
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1 Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) is a neuro-
developmental disorder with symptoms of inattention,
hyperactivity and impulsivity greater than expected for their age
or developmental level (1). Assessment of ADHD is a complex
diagnosis process for several reasons (2), including:

* Time consuming. Early diagnosis makes it possible to
contemplate and implement suitable treatment strategies.
A survey on French children found that on average, the
time between the start of symptoms and ADHD diagnosis is
longer than 4 years (3).

* Subjective measures. ADHD diagnosis is influenced by the
perceptions of many different members of a child’s
community. A lack of clear understanding of ADHD and
the importance of its diagnosis and treatment still exists
among many members of the community including
parents, teachers, and healthcare providers (4). Objective
data should also contribute to the clinical diagnosis of
ADHD (5).

Overall, reliable testing that utilizes objective measures to assess
the diagnosis of ADHD is needed. The current investigation is part
of the development of a smartphone application (QbMobile) and
aims to evaluate the performance of a machine learning model, by
assessing (i) the feasibility of using smartphone devices to
administer Continuous Performance Tests (CPTs) for Attention-
Deficit/Hyperactivity Disorder (ADHD) assessment and (ii)
whether data from the built-in motion sensors can be useful in
making a diagnosis. The study will explore the impact of using a
large control group together with new features that can be extracted
from a smartphone device by using a machine learning model to
recognize symptom patterns and predict the diagnosis.

2 Background
2.1 CPT and ADHD

CPTs are widely utilized as objective measures in the diagnosis
of ADHD due to their ability to systematically evaluate attention
and impulsivity. Unlike subjective assessments, such as behavioral
rating scales and clinical interviews, CPTs provide quantifiable data
on an individual’s cognitive functioning. These tests are designed to
measure the individual’s attention and impulsivity during a
sustained period, two critical areas often impaired in individuals
with ADHD (6).

CPTs vary in their implementation, but a CPT involves
presenting a series of stimuli. The participant must perform an
action when a target stimulus appears and withhold the action for
non-target stimuli. Performance is evaluated by looking at key
measures such as:
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* Omission Errors: Failing to respond to a target stimulus,
indicating inattention.

* Commission Errors: Responding to a non-target stimulus,
reflecting impulsivity.

* Correct Responses: The number of accurate responses to
target stimuli.

* Response Time: Time taken to respond to target stimuli.

* Response Time Variability: Fluctuation in response times.

A systematic review of the utility of CPT among adults with
ADHD showed an elevated risk of bias and substantial
heterogeneity among the studies and while numerous studies
reported differing scores between adults with ADHD and
comparison groups, the findings were inconsistent (7). However,
when excluding studies with small sample size, the CPT
performance improves (8). Overall, it is agreed that CPT tests
cannot be a substitute for subjective behavioral interviews,
observations, and other clinical assessments, but they may serve
as a valuable supplementary tool in the diagnosis of ADHD for both
children and adults (9).

2.2 Face tracking and motion sensor-based
data in psychiatric disorders

The integration of sensor data in smartphones has become
more prevalent and the use of smartphones is an unobtrusive way of
monitoring several behavioral indicators of mental health (10).
Sensor-based data refers to quantitative information captured by
phones through their embedded sensors. Modern smartphones are
equipped with a variety of sensors, cameras with face tracking,
accelerometers, gyroscopes, magnetometers, GPS, and biometric
sensors like temperature.

Other objective measures are being used to complement CPTs
in ADHD assessment. QbTest combines a CPT with measures of
hyperactivity by performing face tracking using sensor data from an
infrared camera and a motion capture marker attached to the head
of the participant which has been shown to be effective in ADHD
assessment (11).

There are currently no studies associating smartphone motion
sensor data with ADHD, but recent studies reported that data
collected from smartphone motion sensors can be associated with
symptoms of schizophrenia, bipolar disorders, and depression.
However, despite these associations, their usability in clinical
settings for supporting therapeutic interventions has not yet been
fully assessed and requires more thorough scrutiny (12).

A correlation has been found between depression scales and
sensor data coming from GPS, accelerometer, gyroscope,
microphone, and light sensor (13). It has also been concluded
that sensor data can be associated with changes in depression, stress,
and subjective loneliness over time (10). Another study used GPS,
accelerometer, gyroscope, microphone, and phone calls to detect
early changes in the state of a bipolar disorder patient (14).
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2.3 Machine learning in ADHD

Machine learning algorithms use a range of statistical,
probabilistic, and optimization methods to learn and identify
valuable patterns within large, unstructured, and complex
datasets (15).

Machine learning is increasingly being used in ADHD to
improve diagnosis (16). By analyzing large datasets, machine
learning algorithms can identify patterns and markers that may
be indicative of ADHD symptoms, improving diagnostic accuracy
and early detection (17).

One application is to use a machine learning model to learn
correlations between ADHD diagnosis and answers from the
ADHD symptoms rating scales such as Conners’ Adult ADHD
Rating Scales (18, 19) and EarlyDetect (20).

Such models can also be applied to CPT tests like QbTest (21),
Test Battery for Attention Performance (TAP) (22) and MOXO-
CPT (23). Machine learning has also been used to link other kinds
of objective measures to ADHD symptoms such as pupil diameter
(24), event related potentials (ERPs) (25), serotonin transporters
and genotypes (26), eye tracking (27) and magnetic resonance
imaging (MRI) (28).

3 Methodology
3.1 Participants and procedure

A subset of data originated from two observational studies, a
normative study and a study with patients being assessed for ADHD
(performed in United States, Germany, the Netherlands, and
the United Kingdom), was used for analyses in the present
machine learning experiment. Participants between 6-60 years
were included.

An ADHD cohort of 292 unmedicated participants were included
and recruited through the research facility’s ADHD database. A pre-
screening process via an online questionnaire was utilized and
eligibility was confirmed by the research members at the
participating sites, prior to participants’ engagement in the study.
The neurotypical group consisted of 1244 individuals. The
neurotypical group was selected based on the absence of any
documented or suspected current or lifetime diagnosis of ADHD.
It excluded anyone who had a concurrent medical diagnosis that
could significantly affect test performance (i.e., brain injuries,
Parkinson’s disease, current epilepsy or active seizures,
amyotrophic lateral sclerosis (ALS), multiple sclerosis, dementias
(e.g., vascular dementia, Alzheimer’s disease), psychiatric illness, etc.

To evaluate model performance, the dataset was divided into
training and test sets, using an 80/20 split (29). Stratification was
applied based on ADHD diagnosis, age group (children: 6-11 years;
adults: 12-60 years), and sex to ensure balanced representation
across these categories in both subsets.
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Model selection was performed using a 5-fold cross-validation.
That means that the training dataset is divided into five equal parts,
or “folds”. The model is trained on four folds and tested on the
remaining one. This process is repeated five times, each time with a
different fold serving as the validation set. The same stratification
criteria—ADHD diagnosis, age group, and sex—used in the
training/test split were consistently applied during the 5-fold
cross-validation process. The stratification ensures that each fold
maintains a balanced representation of these categories, reducing
the risk of randomness introducing skewed distributions and
providing a more robust and reliable evaluation of the model’s
performance. The results are then averaged to provide an overall
performance metric. Training and testing the model on different
subsets of the data helps to minimize overfitting and provides a
more accurate estimate of how the model will perform on the test
set (30).

3.2 Measures

3.2.1 Demographic features

To account for variables outside the test setting that could
influence ADHD diagnosis, several demographic features were
incorporated as control measures. Sex was added to make up for
the fact that sex differences, although minor, have been observed in
ADHD prevalence (31). Similarly, age was added because the
expression of ADHD symptoms has been shown to vary with age
(32). Furthermore, the relative age effect, where younger children in
a class are more frequently diagnosed with ADHD compared to
their older peers (33, 34), because of this birth month was added as a
demographic feature. These measures aim to quantify the effect of
demographic factors in the data and subsequent model.

3.2.2 CPT features

A CPT test on a smartphone device was used for the study
where participants responded by tapping the screen. The stimuli
were shown 200 milliseconds in a two-second interval for 10
minutes. The test objective was different depending on the age
group, but the test duration was kept constant to ensure
comparability in sustained attention measures while minimizing
participant burden.

For the adult test, the presented stimuli are a blue circle, a blue
square, a red circle, and a red square. The phone screen needs to be
pressed when two identical stimuli are shown in a row. The
children’s test stimuli are a gray circle and a gray circle with a
cross in random order of appearance. The phone screen must be
pressed when the gray circle appears.

3.2.3 Face tracking features

Apple’s ARKit (35) was employed for real-time tracking of the
participant’s face position in 3 dimensions during the execution of
the CPT. The resulting time series data was subsequently processed
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to extract features that captured the participant’s activity level and
movement patterns throughout the test duration.

3.2.4 Motion sensor features

The smartphone’s integrated motion sensors were utilized to
monitor the participant’s movements while they held the device
during the CPT. The accelerometer captured linear acceleration
across three axes (x, y, and z), and the gyroscope measured
rotational motion in terms of pitch, roll, and yaw. The time series
data collected from each test was processed to generate a set of
features aimed at capturing the activity and movement patterns
observed during the test.

3.3 Model

The predictive model used was LightGBM (36) which is a form
of gradient boosting machine (37) where a sequence of decision
trees (38) where each subsequent tree attempts to correct the error
of the previous one.

3.4 Evaluation

The final model is evaluated on the test set. The primary
evaluation metric, also used as the optimization criterion for
model selection, is the area under the precision-recall curve (PR-
AUC). PR-AUC is widely applied in evaluating diagnostic test
accuracy (39), as it is especially informative for class-imbalanced
predictive tasks due to its sensitivity to changes in false positive
rates (40).

Alongside PR-AUGC, sensitivity and specificity were evaluated as
they are standard metrics for reporting accuracy in medical
classification tasks (41). Sensitivity measures the model’s ability to
correctly identify positive cases, while specificity assesses its ability
to correctly identify negative cases.

4 Results

Tables 1, 2 show the sizes of the neurotypical, ADHD cohorts
and their respective distribution in the train and test sets. The used
dataset had 1244 tests, and the 80/20% train-test split resulted in a
train set of 997 and a test set of 247 tests. In total, the sample had
292 ADHD and 952 neurotypical individuals. Regarding the age
and sex distribution, there were 1104 adults and 140 children, 718 of
them were female and 526 male.

TABLE 1 Participant cohorts.

Split ADHD (n) Neurotypical (n)  Total (N)
Train 229 768 ‘ 997
Test 63 184 ‘ 247
Total 292 952 ‘ 1244
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TABLE 2 Participants by age and sex groups.

Split Adult (n)  Child (n) Female (n) Male (n)
Train 891 106 572 425
Test 213 34 146 101
Total 1104 140 718 526

Table 3 contains the contribution of the feature groups to
ADHD prediction. It shows the results of the model evaluated on
the test dataset. To ensure robustness and reliability, the
performance is reported as the average and standard deviation
across 10 independent trainings of each model. The machine
learning model shows no inherent bias in the data associated with
the Demographic features, as evidenced by its poor performance
when using only these features. The model achieves a low PR-AUC
of 0.327, indicating a lack of class separation.

Table 4 reports the one sided t-test results where the null
hypothesis is that adding a new feature group does not
significantly increase the PR-AUC. In all three cases the null
hypothesis was rejected with a p-value< 0.001. In consequence,
the addition of CPT, Face and Motion feature groups did
significantly increase the PR-AUC of the resulting model.

The best-performing model combined all feature groups achieved
a PR-AUC of 0.799, sensitivity of 0.808 and specificity of 0.795.
Tables 5, 6 show the performance of the best-performing model split
by age and sex groups reporting mean, standard deviation and 95%
confidence interval computed via bootstrapping. These results
indicate good overall performance and robustness across
confidence intervals and demographic subgroups, though a slight
class imbalance is reflected in lower specificity for children.

TABLE 3 Incremental contribution of feature groups. Values are reported
as mean (standard deviation) over 10 independently trained models.

Features Sensitivity ~ Specificity PR-AUC

Demographic 0.935 (0.054) 0.190 (0.156) 0.327 (0.019)

Demographic + CPT 0.646 (0.243) 0.620 (0.199) 0.614 (0.034)

Demographic + CPT +

0.775 (0.091) 0.652 (0.137) 0.689 (0.026)

Face

Demographic + CPT +

0.808 (0.050) 0.795 (0.052) 0.799 (0.023)

Face + Motion

TABLE 4 Results of one-sided t-tests evaluating the significance of PR-
AUC improvements with the addition of new feature groups, presented
with corresponding t-statistics and p-values.

Features Adding CPT Adding face @Adding motion
t-statistic 23.246 ‘ 5.450 ‘ 10.205
p-value <0.001 ‘ <0.001 ‘ <0.001
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TABLE 5 Age and sex split of performance results.

Features

Sensitivity

Specificity

Adult Demographic + CPT + Face + Motion 0.752 (0.059) 0.810 (0.050) 0.731 (0.035)
Child Demographic + CPT + Face + Motion 0.987 (0.040) 0.658 (0.116) 0.957 (0.020)
Female Demographic + CPT + Face + Motion 0.867 (0.057) 0.773 (0.044) 0.800 (0.027)
Male Demographic + CPT + Face + Motion 0.730 (0.064) 0.827 (0.073) 0.800 (0.031)

Values are reported as mean (standard deviation) over 10 independently trained models.

5 Discussion

Our results supported the study’s hypothesis, validating the
capability of a machine learning algorithm to predict ADHD
diagnoses using a smartphone device. It confirmed (i) the feasibility
of performing CPT tests in a smartphone device and (ii) the positive
impact of sensor data on the performance of the tests. These findings
align with prior research emphasizing the utility of smartphone
technology in mental health diagnostics while offering a novel
contribution by integrating sensor data to improve predictive
accuracy (42).

The model does not appear to rely on demographic biases for
ADHD prediction, as demonstrated by its poor performance when
using only demographic features. This is a desired outcome, as it
indicates that additional feature groups provide ADHD-specific
information that improves classification.

As was observed, the model’s PR-AUC improves with the
addition of CPT features (Demographic + CPT) to the baseline
model (Demographic), suggesting that CPT data collected via a
smartphone device does provide valuable information for ADHD
assessment. However, sensitivity and specificity are lower than studies
using machine learning with comparable features on laptop-based
CPTs (22, 23, 43). This difference may stem from variations in data
collection methods or inherent distinctions in using a smartphone
device, such as the holding of the device or interacting through screen
taps rather than computer keypresses. The current hypothesis left for
future studies to evaluate is if performing a CPT task on a
smartphone is harder than in a computerized setting. This way, the
separation between the neurotypical and ADHD group could be less
distinct (i.e., more commission errors, omission errors, more
variation in the reaction time) and the machine learning algorithm
has a harder time classifying the cohorts.

The high standard deviation in sensitivity and specificity across
runs using the Demographic and CPT feature groups is attributable

TABLE 6 95% confidence interval of the model demographic + CPT +
face + motion for sensitivity, specificity, and PR-AUC.

Sensitivity Specificity
Adult [0.717, 0.788] [0.777, 0.840] [0.710, 0.752]
Child [0.960, 1.000] [0.589, 0.737] [0.944, 0.968]
Female [0.828, 0.903] (0.744, 0.799] [0.785, 0.818]
Male [0.693, 0.770] (0.782, 0.869] [0.780, 0.818]
Total [0.778, 0.837] [0.761, 0.826] [0.785, 0.814]
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to the model’s inability to effectively separate ADHD and
neurotypical samples. This results in inconsistent threshold-
dependent predictions that alternate between favoring the
minority or majority class. In contrast, the threshold-insensitive
PR-AUC score remains consistent with low variance, as it evaluates
performance across all possible thresholds, providing a more
reliable metric for models with weak discriminatory power.

Face tracking has previously been shown to be an effective way
of using sensor data to extend CPTs with a measure of hyperactivity
(11). This is further supported by the significant increase in
performance with the addition of the face features (Demographic
+ CPT + Face).

The motion sensor features are unique to handheld devices and
have not been explored previously. The results in this study
(Demographic + CPT + Face + Motion) show that data from these
sensors can add further information that is useful for ADHD
assessments. The addition of the motion feature group led to a
significant increase in PR-AUC, and the strong performance of the
full feature set (sensitivity: 0.808, specificity: 0.795, PR-AUC: 0.799)
highlights the potential of smartphones for ADHD assessment.

Age and sex differences in ADHD are well documented (31, 32,
44), and this study included both adult and child participants as well as
males and females (372 adults, 45 children). The model achieved high
PR-AUC across age groups, with 0.731 in adults and 0.957 in children,
indicating good ability to prioritize true cases despite class imbalance.
However, differences were observed in sensitivity and specificity. In
adults, performance was balanced (sensitivity 0.752, specificity 0.810),
while in children the model showed higher sensitivity (0.987) but lower
specificity (0.658). This suggests the model identifies true cases in
children effectively but at the cost of more false positives.

These patterns may reflect the small number of children in the
test set, which increases variability and can inflate metrics. They
may also result from using a single decision threshold across groups,
which could be addressed with group-specific thresholds or
recalibration. These findings highlight the importance of assessing
subgroup performance in imbalanced datasets. While high
sensitivity in children reduces the risk of missed cases, it also
increases the chance of unnecessary follow-ups. Further research
is needed to confirm these results in larger cohorts and to explore
age- or sex-specific model adjustments before clinical use.

Future studies aim to validate these results on more cohorts,
explore how this approach would work with comorbidities, and if it
can be used to measure treatment efficacy. Additionally, integrating
various clinical rating scales as features may offer a more
comprehensive understanding of patient status, potentially
improving model performance in assessing health outcomes.
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A key limitation of this study is the potential bias present in the
data, which may arise from factors such as sampling methods, or
inherent biases in the ADHD diagnosis that the model uses as a
ground truth. These biases could affect the model’s ability to
generalize to broader populations, and further steps should be
taken to mitigate these effects in future analyses.

The relatively small size of the ADHD test set may impact the
generalization of the findings. While the results provide valuable
insights, a larger test set would allow for more robust validation and
increase confidence in the model’s performance across diverse
populations. However, the implemented train/test stratification
mitigates the potential effect by ensuring both sets contain a
similar proportion of classes and sex and age distribution.

This study also did not examine ADHD sub-types, as sub-type
labels were not available in the dataset. Further research is needed to
evaluate whether smartphone-based assessments perform
consistently across ADHD sub-types.

It should be emphasized that this study does not present
QbMobile itself, but rather early findings from its development,
not a final, validated product. QbMobile is intended as a support
tool within the broader, multi-source clinical assessment of ADHD,
rather than as a standalone diagnostic test. Accordingly, these
findings should be seen as a contribution to the development of
complementary assessment tools, not as a replacement for
comprehensive clinical evaluation.

6 Conclusion

In conclusion, this study is part of the development of a
smartphone application (QbMobile) that aims to evaluate the
capability of a machine learning algorithm to predict ADHD
diagnosis using a smartphone device. We provide a robust
machine learning model that is based on a large control group
together with an ADHD cohort. The experiments proved that
ADHD can be assessed with a high PR-AUC of 0.799, sensitivity
of 0.808, and specificity of 0.795 by using a smartphone CPT. The
overall strong validation results and the significant performance
improvement observed with the addition of smartphone-specific
features suggest that smartphone applications have the potential to
offer advantages over current computerized ADHD diagnostic tests.
These findings highlight the potential of smartphone-based tools to
support ADHD assessment as part of a broader diagnostic process.
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