

OPEN ACCESS

EDITED AND REVIEWED BY
James Lloyd,
Stellenbosch University, South Africa

*CORRESPONDENCE
Marta Nunes da Silva
mansilva@ucp.pt

RECEIVED 20 October 2025 ACCEPTED 28 October 2025 PUBLISHED 20 November 2025

CITATION

Santos CS, Zarafshar M and Nunes da Silva M (2025) Editorial: Plant-based solutions for sustainable agriculture and environmental remediation.

Front. Plant Sci. 16:1729054.

doi: 10.3389/fpls.2025.1729054

COPYRIGHT

© 2025 Santos, Zarafshar and Nunes da Silva. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Plant-based solutions for sustainable agriculture and environmental remediation

Carla S. Santos¹, Mehrdad Zarafshar² and Marta Nunes da Silva^{1*}

¹Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal, ²Department of Forestry and Wood Technology, Faculty of Technology, Linnaeus University, Växjö, Sweden

KEYWORDS

nutrient cycling, mulching, grassland degradation, phytoremediation, deep learning - artificial intelligence, phytochemical profile, glyphosate, weed management

Editorial on the Research Topic

Plant-based solutions for sustainable agriculture and environmental remediation

The escalating global challenges of climate change, environmental degradation, and food insecurity call for urgent, transformative approaches to agriculture and ecosystem management. With the world population projected to exceed 9 billion by 2050, pressure on finite natural resources continues to intensify, exacerbating soil degradation, biodiversity loss, and pollution (Cobourn and Ignaciuk, 2025). To sustain long-term productivity and ecological function in forest plantations, Fan et al. emphasize the importance of age-specific nutrient management. Their findings reveal a shift from nitrogen limitation and high phosphorus resorption efficiency in young stands to phosphorus limitation and elevated nitrogen resorption efficiency in older stands (>100 years). Stable and high leaf C:N:P ratios indicate low nutrient use efficiency, while seed nutrient composition in mature stands, characterized by higher crude fat and protein, highlights the need for long-term strategies that prioritize nutrient cycling efficiency. In arid orchard systems, Li et al. demonstrate that mulching practices, particularly plastic film (FM) and straw mulching (SM), significantly enhance pear yield and fruit quality. Field treatments resulted in significantly higher fruit yield and quality traits, such as sugar/acid ratio and organic acid composition. Mulching further enhanced soil nutrient availability (including NH₄⁺-N, K, Ca, Fe, Mn, Cu, and Zn) and enriched rhizosphere microbial communities, including beneficial bacteria like Proteobacteria, Acidobacteria, Gemmatimonadetes, and Firmicutes, underscoring its role in promoting soil health and agroecosystem resilience.

However, assessing soil quality and ecosystem health remains challenging due to complex interactions among biophysical, socio-economic, and technological factors operating across scales (Bond et al., 2024). To address this, Zhang et al. introduce a geo-coding and abrupt analysis-based (GAAB) method to diagnose grassland degradation via the Living Status of Vegetation (LSV), a composite index integrating cover, height, biomass, and species diversity. Applied to subalpine meadows, GAAB revealed uneven degradation thresholds and asynchronous shifts in community structure and function, including a species transition from *Dactylis glomerata* in healthy meadows to *Potentilla lineata* in degraded zones, potentially enabling tailored restoration strategies based on degradation severity.

Santos et al. 10.3389/fpls.2025.1729054

Beyond their role as soil health indicators, plants are pivotal agents in soil restoration due to their adaptive capacity and biochemical versatility. For example, phytoremediation, using plants to extract, degrade, or immobilize pollutants, has shown efficacy in mitigating contaminants across soil and aquatic systems (Ranđelović et al., 2025; Sahoo et al., 2025). Advances in artificial intelligence, including deep learning and process modelling, can further enhance plant-based monitoring of environmental health, ecological restoration, and sustainable agriculture (Yeasmin et al., 2024; Wu et al., 2024; Dong et al., 2024). In this context, Guo et al. introduce Bio-DANN, an integrated framework that couples process based biogeochemical simulation with deep learning for dynamic pollutant monitoring and ecological restoration in agricultural waste systems. Bio-DANN mechanistically simulates plant mediated absorption, transformation, and degradation of contaminants, while ingesting environmental sensor streams (e.g., soil moisture and temperature) to train attention-based neural networks. By fusing phytoremediation processes with data driven inference, Bio-DANN delivers accurate predictions of pollutant concentrations and restoration trajectories, outperforming prior approaches in real time monitoring and multidimensional ecological assessment.

Concurrently, Nazari et al. highlight the value of integrating molecular and environmental data to guide sustainable cultivation and conservation. ITS-based phylogenetic analysis of Iranian Papaver species revealed complex evolutionary relationships and introgression, while phytochemical profiles, dominated by phenolics, flavonoids, and alkaloids, correlated more strongly with environmental variables (e.g., humidity, elevation) than genetic distance. Among the genotypes evaluated, P. hybridum exhibited the highest antioxidant activity, while P. macrostomum and P. dubium showed higher flavonoid and anthocyanin levels, underscoring their pharmaceutical potential. Valorizing locally adapted underutilized crops and crop wild relatives has proven effective in sustaining key ecosystem services and promoting more sustainable agrifood chains, in part because these species often require fewer chemical inputs (Silva et al., 2025). Their inclusion in diversified cropping systems can therefore help reduce pesticide dependency, a global concern associated with biodiversity loss, declining water quality, harm to non-target organisms, and the spread of resistant pest populations. Beyond pests, weeds remain a major challenge because they compete with crops for nutrients, water, and light, frequently driving additional fertilizer use to offset yield losses. Addressing weed competition, Li et al. investigated targeted mutations in the EPSPS gene, which encodes a key enzyme of the shikimate pathway, to enhance glyphosate resistance in Nicotiana tabacum, allowing for lower application frequency and dosage, and potentially reducing environmental contamination and herbicide runoff. In addition, transgenic lines showed improved oxidative stress resilience, which could support plant survival in degraded or polluted soils, thus contributing to agroecosystem stability.

Collectively, this Research Topic illustrates how plant-based solutions can deliver measurable gains in productivity, resilience, and environmental quality, particularly when deployed as integrated systems rather than isolated interventions. From nutrient cycling in ancient forest stands to microbial modulation in arid orchards, from phytochemical diversity in underutilized species to AI-enhanced pollutant monitoring, the evidence is clear: plant-based solutions thrive when embedded in systems thinking, supported by robust data, and aligned with ecological principles. Effective implementation will depend on participatory codesign of resilient landscapes with farmers, foresters, and local communities, in which biodiversity is valued, external inputs reduced, and ecosystem services quantified and incentivized. As such, the path forward demands not only innovation but integration, where transdisciplinary research converges to embed evidence-based insights into holistic, system-oriented decision-making frameworks.

Author contributions

CS: Formal Analysis, Funding acquisition, Validation, Writing – review & editing. MZ: Formal Analysis, Validation, Writing – review & editing. MNS: Conceptualization, Data curation, Writing – original draft.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative AI statement

The author(s) declare that Generative AI was used in the creation of this manuscript. Generative AI tools were used solely for language editing to refine grammar and improve clarity.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Santos et al. 10.3389/fpls.2025.1729054

References

Bond, A., Retief, F. P., Alberts, R. C., Roos, C., Cilliers, D., and Moolman, J. (2024). What would environmental impact assessment look like if we started from scratch today? Designing better EIA for developed neoliberal nations. *Impact Assess. Project Appraisal* 42, 410–422. doi: 10.1080/14615517.2024.2426117

Cobourn, K., and Ignaciuk, A. (2025). "Enabling agriculture's transformative capacity to respond to climate change in the long run," in OECD food, agriculture and fisheries papers, *no. 215* (OECD Publishing, Paris). doi: 10.17 87/7cef69bc-en

Dong, Z., Yao, L., Bao, Y., Zhang, J., Yao, F., Bai, L., et al. (2024). Prediction of soil organic carbon content in complex vegetation areas based on CNN-LSTM model. *Land* 13, 915. doi: 10.3390/land13070915

Ranđelović, D., Jakovljević, K., Zeremski, T., Pošćić, F., Baltrėnaitė-Gedienė, E., Noulas, C., et al. (2025). Phytoremediation potential of metallophytes in Europe: Progress, enhancement strategies, and biomass utilisation. *J. Environ. Manage.* 391, 126516. doi: 10.1016/j.jenvman.2025.126516

Sahoo, A., Chhotaray, S. P., Meher, I., Behera, S. P., Pal, A., Meena, M., et al. (2025). Phytoremediation for a sustainable future: Integrating plant based strategies in soil and wastewater remediation. *Bioresource Technol. Rep.* 31, 102266. doi: 10.1016/j.biteb.2025.102266

Silva, B. Q., da Silva, M. N., Smetana, S., and Vasconcelos, M. W. (2025). Comparative environmental and nutritional sustainability analysis of Kabuli and Desi Chickpea (Cicer arietinum L.) types at the farm and product level. *J. Cleaner Production* 145706. doi: 10.1016/j.jclepro.2025.145706

Wu, M., Qi, C., Derrible, S., Choi, Y., Fourie, A., and Ok, Y. S. (2024). Regional and global hotspots of arsenic contamination of topsoil identified by deep learning. *Commun. Earth Environ.* 5, 1–11. doi: 10.1038/s43247-023-01177-7

Yeasmin, S., Dipto, A. R., Zakir, A. B., Shovan, S. D., Suvo, M. A. H., Bhuiyan, M. A., et al. (2024). Nanopriming and AI for sustainable agriculture: boosting seed germination and seedling growth with engineered nanomaterials, and smart monitoring through deep learning. ACS Appl. Nano Materials 7, 8703–8715. doi: 10.1021/acsanm.4c00109