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Introduction

The emergence of novel genes represents a fundamental mechanism driving
evolutionary innovation and adaptive evolution in living organisms (Xia et al., 2025).
For decades, the prevailing paradigm in molecular evolution has held that new genes arise
primarily through duplication and divergence of existing genes, horizontal gene transfer, or
recombination events such as gene fusion and fission (Cao et al., 2024; Jiang et al., 2025; Xia
et al., 2025). However, rapid advances in high-throughput sequencing and multi-species
genomic data reveal that de novo genes (i.e. protein-coding genes arising from previously
noncoding DNA) are far more common than once believed, fundamentally challenging the
view that genetic novelty must originate solely from preexisting gene templates (Song et al.,
20225 Cao et al, 2024; Xia et al., 2025). Initially considered evolutionary rarities or
anomalies, de novo genes have now been identified across all domains of life, from
bacteria to plants and animals (Broeils et al., 2023; Cao et al., 2024; Peng and Zhao,
2024; Xia et al,, 2025). Plants, in particular, present an ideal system for studying de novo
gene origination due to their expansive genomes, abundant non-coding regions, and high
transposable element content, which collectively provide a rich substrate for the birth of
novel genes (Xia et al., 2025). Recent large-scale comparative genomic studies have revealed
that plant genomes harbor hundreds of lineage-specific genes lacking detectable homologs
in closely related species, many of which show clear evidence of de novo origination from
ancestral non-coding sequences (Song et al., 2022; Cao et al, 2024). The molecular
signatures of plant de novo genes reveal intriguing patterns: they typically encode shorter
proteins, lack recognizable conserved domains, and are enriched in intrinsically disordered
regions (Song et al., 2022; Cao et al,, 2024). While these features might appear suboptimal
from a traditional protein evolution perspective, they may actually facilitate rapid
functional exploration and adaptation to novel cellular contexts. Expression analyses
consistently show that plant de novo genes exhibit highly restricted spatiotemporal
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patterns, often being activated only during specific developmental
stages, in particular tissues, or in response to environmental stresses
—suggesting fine-tuned regulatory roles in adaptive responses
(Song et al., 2022; Cao et al,, 2024). Population genetic evidence
increasingly supports the functional importance of de novo genes
in plant adaptation (Cao et al., 2024; Zhao et al., 2024; Li et al,
2025). Several well-characterized examples demonstrate their
contributions to key biological processes: the rice OsDRI10 gene
confers pathogen resistance (Xiao et al, 2009), the Arabidopsis
AtQQS gene regulates carbon-nitrogen metabolism and enhances
disease resistance (Qi et al., 2019), Rosa SCREP regulates eugenol
biosynthesis (Li et al., 2025), and numerous other de novo genes
have been implicated in stress tolerance, reproductive success, and
developmental regulation (Zhao et al, 2024). These discoveries
underscore that de novo genes are not merely evolutionary noise but
can provide substantive adaptive benefits. Despite major advances
in de novo gene research, key challenges persist, including the need
for high-quality genome assemblies, complex phylogenetic analyses,
and multi-level functional validation for accurate identification, as
well as the difficulty of distinguishing true de novo origins from
rapid sequence divergence that obscures homology (Xia et al,
2025). Moreover, determining the functional significance of
putative de novo genes and understanding how they integrate into
existing gene regulatory networks represent ongoing scientific
frontiers. This opinion article examines current understanding of
de novo gene origination mechanisms in plants, evaluates
methodological advances and limitations, and discusses
implications for plant evolution and potential applications in
crop improvement.

The current understanding and
methodological advances in plant
de novo gene studies

Mechanisms of origination: genome
architecture and the role of transposable
elements

Plant genomes provide an exceptionally fertile ground for de
novo gene origination due to their unique architectural features.
Large-scale comparative genomic analyses across diverse plant
lineages reveal that extensive noncoding regions, comprising up
to 85% of some plant genomes, harbor abundant cryptic open
reading frames that can potentially evolve into functional genes
(Zhao et al,, 2024; Xia et al,, 2025). This vast noncoding landscape,
combined with frequent whole-genome duplications and
chromosomal rearrangements characteristic of plant evolution,
creates numerous opportunities for the emergence of novel
coding sequences (Zhao et al., 2024; Xia et al., 2025).
Transposable elements (TEs) play a particularly crucial role as
catalysts for de novo gene birth in plants (Jin et al., 2021b; Zhao
etal., 2024; Xia et al., 2025). Recent evidence demonstrates that TEs,
which constitute 45-85% of many plant genomes, actively facilitate
gene origination through multiple mechanisms (Jiang et al., 2022;
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Pulido and Casacuberta, 2023; Cao et al., 2025). First, TE insertions
can directly provide promoters, enhancers, and transcription factor
binding sites that activate transcription of nearby noncoding
sequences. Second, TEs mediate chromosomal rearrangements
that bring together previously separated noncoding fragments,
creating novel transcriptional units. Third, TE-induced epigenetic
modifications can establish new chromatin states conducive to gene
expression (Li et al., 2025; Xia et al., 2025). Analysis of rice, maize,
and Arabidopsis genomes reveals that approximately 30-40% of
recently originated de novo genes show clear associations with TE
activity, either through direct sequence contribution or regulatory
element donation (Xia et al., 2025). This TE-mediated mechanism
appears particularly active during periods of environmental stress
or genomic instability, potentially accelerating adaptive evolution
through rapid gene innovation.

Molecular features: small, unstable
proteins for rapid testing

Plant de novo genes exhibit distinctive molecular signatures that
facilitate rapid functional exploration. These genes typically encode
remarkably short proteins, often less than 100 amino acids, with high
intrinsic disorder content and lacking recognizable conserved domains
(Song et al., 2022; Cao et al, 2024; Xia et al, 2025). This structural
“permissiveness” appears advantageous rather than detrimental—the
abundance of disordered regions allows de novo proteins to escape
strict folding constraints that govern canonical proteins, enabling them
to act as flexible molecular probes capable of transient interactions and
regulatory fine-tuning (Patiou et al., 2025; Xia et al.,, 2025). Studies in
rice, Arabidopsis, and other plants consistently show that de novo
proteins have lower intrinsic structural disorder (ISD) values, reduced
GC content, and fewer secondary structure elements compared to
conserved genes (Song et al,, 2022; Cao et al., 2024; Peng and Zhao,
2024; Patiou et al,, 2025). These properties enable rapid evolutionary
testing of novel biochemical functions while minimizing the risk of
misfolding and aggregation, essentially providing plants with a low-cost
experimental platform for molecular innovation under selective
pressures (Xia et al., 2025).

Expression and selective fate: evidence
from population genomics and functional
screens

Population genomic data suggest that plant de novo genes exhibit
sharply restricted spatiotemporal expression, being chiefly induced
during reproductive development or in response to environmental
challenges like drought, pathogen exposure, and nutrient deficiency
(Cao et al, 2024; Jiang et al,, 2025; Xia et al., 2025). Large-scale
transcriptomic surveys demonstrate that while most de novo genes
display low expression levels compared to conserved genes, they
show significant tissue specificity, with enrichment in reproductive
tissues, suggesting roles as molecular fine-tuners of adaptive
responses (Jin et al., 2021a; Song et al., 2022; Cao et al.,, 2024).
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Selection-signature analyses (e.g., dN/dS ratios and population
frequency distributions) show that de novo genes follow diverse
evolutionary trajectories, with many genes (especially those
involved in stress response and reproduction) being subject to
positive or balancing selection (Kaessmann, 2010; Song et al., 2022;
Cao et al.,, 2024; Xia et al., 2025). In addition, population studies also
find that about 25%-30% of young genes become essential, such that
their silencing is lethal (Li et al., 2025). However, many de novo genes
are rapidly lost through genetic drift or negative selection, reflecting
an ongoing evolutionary “trial-and-error” process (Van Oss and
Carvunis, 2019; Xia et al, 2025). Functional validation through
knockout experiments and CRISPR screens confirms that some de
novo genes provide genuine adaptive advantages, such as the rice
OsDRI0 conferring pathogen resistance and Arabidopsis AfQQS
regulating metabolic networks (Xiao et al, 2009; Tanvir et al,
2022). Nevertheless, distinguishing truly functional de novo genes
from transcriptional noise remains challenging, requiring convergent
evidence from genomics, transcriptomics, proteomics, and
experimental validation.

Methodological innovations: comparative
genomics, multi-omics, and integrative
frameworks

Recent methodological advances have revolutionized plant de novo
gene identification and characterization. Progressive whole-genome
alignment tools like Cactus now enable high-confidence synteny-based
identification across divergent species, surpassing traditional BLAST-
based approaches (Li et al, 2025; Xia et al, 2025). Multi-omics
integration combining RNA-seq, Ribo-seq, proteomics, and
metabolomics provides convergent evidence for gene functionality,
addressing the challenge of distinguishing genuine de novo genes from
transcriptional noise (Jin et al., 2021a; Song et al, 2022; Cao et al,
2024). Advanced computational frameworks incorporating deep
learning (AlphaFold2) predict protein structures, revealing that some
de novo proteins can achieve well-folded conformations despite lacking
conserved domains (Li et al., 2025). Weighted gene co-expression
network analysis (WGCNA) demonstrates how de novo genes integrate
into existing regulatory networks (Jin et al,, 2021a; Cao et al., 2024).
Population genomics approaches using dN/dS ratios and selection
signatures reveal adaptive evolution patterns (Song et al, 2022; Cao
et al, 2024). These integrative pipelines, combining phylostratigraphy,
expression profiling, and functional validation through CRISPR/Cas9,
establish robust standards for de novo gene annotation and functional
characterization in plants (Song et al, 2022; Li et al, 2025; Xia
et al., 2025).

Challenges and hypotheses: strengths and
weaknesses

Despite these advances, several unresolved problems demand

attention. First, annotation errors and incomplete genome
assemblies (especially widespread in polyploid and repetitive plant
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genomes) affect the accuracy of gene age assignment and detection
sensitivity (Xia et al., 2025). Second, phylostratigraphic approaches
can overestimate de novo birth by failing to detect highly divergent
homologs, while excessive stringency risks false negatives (Van Oss
and Carvunis, 2019; Peng and Zhao, 2024). Third, not all detected
ORFs possess biological function; some may reflect pervasive
translation “noise,” and distinguishing functional de novo genes
from translation byproducts remains technically challenging (Peng
and Zhao, 2024; Xia et al., 2025). Misinterpretation is also a concern
—identifying a recently fixed gene does not alone imply strong
adaptive value, and function must still be established by knockout,
phenotyping, or pathway analysis. The standards for de novo gene
proof thus continue to shift toward convergence of evidence from
genomics, transcriptomics, proteomics, and experimental
approaches (Peng and Zhao, 2024).

The “proto-gene continuum” hypothesis, positing a spectrum from
spurious ORFs to fully-fledged new genes, finds support in plant
datasets: only a fraction of new sequences escape rapid loss, often
after acquiring beneficial regulatory context through TE activity or
environmental induction (Van Oss and Carvunis, 2019; Xia et al,
2025). Plant studies particularly demonstrate how the noncoding
genome acts as a reservoir for rapid trait innovation, especially under
strong selection or in adaptive radiations (Zhao et al., 2024; Xia et al,,
2025). Importantly, recent research reveals the potential role of
epigenetic state and regulatory plasticity in facilitating or
constraining de novo gene emergence—topics that are rapidly
gaining ground in the literature (Zhao et al, 2024; Li et al, 2025).
Nevertheless, the field would benefit from more careful functional
dissection, especially for genes found mostly in single accessions or
populations. Scientific caution and explicit reporting of uncertainty are
crucial to avoid over-attributing functions to recently emerged ORFs.

Discussion

Recent research has clarified the significant contribution of de novo
genes to plant evolution and adaptation, although substantial
challenges and open questions remain (Cao et al, 2024; Li et al,
2025). Plant genomes, rich in noncoding DNA and transposable
elements, are particularly conducive to the emergence of new genes
from previously noncoding regions (Tao et al, 2025). Transposable
elements (TEs) create new genes through two primary mechanisms.
First, they can generate genes from non-coding DNA by providing
regulatory elements, like promoters, that activate adjacent sequences, or
through the “exonization” of their own sequences. Second, they can
modify existing genes. This occurs when a TE’s own gene is
“molecularly domesticated” for a novel host function, as with the
RAGI gene (Agrawal et al,, 1998), or when TE insertion fuses host
genes to create a new chimeric gene. Evidence shows that plant de novo
genes often have highly specific expression and are rapidly induced by
stress or distinct developmental processes (Zhao et al., 2024; Toth et al,,
2025; Xia et al,, 2025), supporting the idea that they constitute a flexible,
fast-evolving toolkit that helps plants handle novel environmental
challenges. However, interpreting the functional impact of these
genes requires caution. While experimental and population genetic
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studies reveal that some de novo genes can provide adaptive
advantages, the majority of candidate de novo genes remain
uncharacterized or may even represent evolutionary transient
entities. Distinguishing between genuinely functional de novo genes
and those which are byproducts of pervasive translation remains an
ongoing difficulty. Functional validation through knockout or
overexpression studies is still available for only a minority of plant
de novo genes (Xia et al., 2025).

Methodologically, the field continues to face significant obstacles,
particularly in the annotation and validation of de novo gene
candidates. High rates of sequence divergence, polyploidy, and
limited genome annotation quality in many plant species can result
in both false positives and false negatives when identifying and age-
dating de novo genes (Xie et al., 2024; Xia et al., 2025). Recent advances
such as deep co-linearity analysis, integrated multi-omics, and large-
scale phylogenetic sampling all help to increase confidence, but robust
community standards are still needed for declaring bona fide de novo
genes (Xia et al, 2025). Despite these hurdles, ongoing research is
moving towards a more nuanced view of genome innovation, where
the de novo gene birth is not a rare accident, but a recurrent source of
biological novelty. As functional genomics tools advance, systematic
exploration of de novo gene roles in phenotypic traits, stress responses,
and crop improvement will become increasingly feasible. Ultimately,
integrating evolutionary, genomic, and ecological perspectives will be
essential to fully understand the frequency, impact, and practical utility
of de novo genes in plants. Future work should prioritize (1)
standardized, multi-tier evidence frameworks reporting the status
and confidence of candidate de novo genes, (2) integration of
ecological, population, and molecular genetics, and (3)
experimentally assessing the impact of de novo gene emergence on
plant fitness and adaptation. In this way, plant de novo gene science can
provide not only theoretical advances but also practical tools for
sustainable agriculture and biological understanding.
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