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Introduction: The soluble solids content (SSC), titratable acidity (TA), and pH are

key indicators for evaluating the quality of table grapes during storage.

Conventional detection methods are typically destructive and time-

consuming. To address this limitation, visible-near infrared (Vis-NIR)

spectroscopy was employed in this study to enable rapid and non-destructive

quality assessment of fresh table grapes throughout the storage period.

Methods: Seedless White table grape samples were analyzed within the 200–

1100 nm spectral range, and calibration models for key quality parameters (SSC,

TA, and pH) were established. Three machine learning algorithms, partial least

squares regression (PLSR), support vector machine (SVM), and extreme learning

machine (ELM), were employed to develop spectral prediction models based on

characteristic wavelengths selected using different feature extraction strategies,

including the successive projection algorithm (SPA), uninformative variable

elimination (UVE), and competitive adaptive reweighted sampling (CARS).

Results: The results demonstrate that the SNV-CARS-SVM models achieved

excellent performance in predicting SSC with a root mean square errors (RMSEP)

of 0.673, a coefficient of determination for the prediction data set (Rp) of 0.928

and an RPD of 3.311. Similarly, the SNV-SPA-SVM models exhibited excellent

predictive accuracy for TA, yielding an RMSEP of 0.553, an Rp of 0.873, and an

RPD of 2.662. Good performances were achieved with Rp of 0.758 and RMSEP of

0.113 with the SNV-CARS-PLSR model for pH.

Discussion: This study, for the first time, utilized Vis-NIR spectroscopy to achieve

the simultaneous and rapid determination of multiple quality attributes in table

grapes, providing a novel and efficient strategy for real-time and non-destructive

quality evaluation during storage. The proposed approach showed considerable

potential for rapid quality assessment and postharvest management of grapes.
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Future research will focus on expanding the diversity of grape cultivars and

investigating various storage conditions to improve the robustness and

transferability of the predictive model, thereby promoting the industrial

validation and practical application of Vis-NIR spectroscopy in fruit

quality monitoring.
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1 Introduction

Grape is an important economic crop with dual purposes

serving both fresh consumption and processing. It is rich in

glucose, fructose, organic acids, amino acids, and essential

minerals, which together contribute to its high nutritional value.

The flavonoids and anthocyanins in grape skins possess strong

antioxidant and anti-aging properties (Zeng et al., 2024; Ma et al.,

2024). According to data from the China Agricultural Yearbook, the

China vineyard area reached approximately 0.7 million hectares in

2020, encompassing grapes cultivated for fresh consumption,

winemaking, drying, and juice production (Li et al., 2021).

Meanwhile, China’s table grape export volume has reeched

around 375,000 tons in 2022, ranking third globally, which

demonstrating the vigorous development of the grape industry

(Liu et al., 2024).

Table grape quality is a crucial factor influencing consumer

preferences and market value. High-quality table grapes not only

exhibit superior sensory attributes but also possess enhanced

nutritional characteristics. In general, grape quality can be classified

into external and internal physicochemical attributes. The internal

quality parameters mainly include soluble solids content (SSC),

titratable acidity (TA), and pH (Wu et al., 2024). Soluble solids

content (SSC) reflects the sweetness and nutritional status of the

fruit, titratable acidity (TA) affects flavor balance, and pH is closely

related to storage stability and sensory perception. At present, the

internal quality of grapes is primarily evaluated through conventional

chemical analysis, including acid-base titration, refractometry, and

Fehling solution titration. Although these methods provide high

accuracy, they are destructive, labor-intensive, time-consuming, and

prone to human error, thereby reducing overall efficiency (Guo et al.,

2015; Ma et al., 2018; Pissard et al., 2021). Therefore, developing a

rapid, accurate, and non-destructive method for determining SSC, TA,

and pH in table grapes is crucial for quality assessment and

postharvest management.

With the rapid development of agricultural information

technologies, spectral analysis has become a powerful tool for

non-destructive fruit quality assessment due to its speed,

convenience, and reliability. Visible and near-infrared (Vis-NIR)

spectroscopy enables quantitative prediction of internal quality

parameters by analyzing the optical properties of fruit tissues
02
(Roberto et al., 2018; Ncama et al., 2018). For example, in studies

predicting grape quality, Dambergs et al. (2006) applied Vis-NIR

spectroscopy to determine anthocyanins, pH, and SSC in wine

grapes across multiple cultivars, vintages, and regions, developing

predictive models with robust performance. Similarly, Xiao et al.

(2018) employed Vis-NIR spectra to classify five ripening stages of

different grape varieties, achieving classification accuracies of 90%

and 100% for “Manicure Finger” and “Ugni Blanc,” respectively.

These findings highlight the feasibility of near-infrared

spectroscopy for grape quality assessment. The table grapes

undergo a storage period from harvest to sale, during which their

internal quality may change. However, most existing studies have

focused on predicting the multiple qualities of table grapes at

maturity (Xiao et al., 2018), while few studies on the detection of

multiple parameters in table grapes during storage remain limited.

In light of the aforementioned limitations, this study aims to

develop a rapid and non-destructive method for the simultaneous

determination of multiple quality parameters in table grapes during

storage using Vis-NIR spectroscopy. The specific objectives of this

research are: (1) to acquire Vis-NIR spectral data alongside

corresponding reference measurements of table grape quality

parameters during storage; (2) to identify the most effective data

preprocessing method for enhancing model performance through

comparative analysis; and (3) to optimize predictive models by

evaluating different modeling algorithms and wavelength selection

strategies. This study seeks to advance table grape quality

assessment from conventional destructive analyses toward

intelligent, non-destructive evaluation, thereby improving quality

control efficiency during table grape storage. The main steps of

evaluation of quality parameters in table grape samples by Vis-NIR

were schematically shown in Figure 1.
2 Materials and methods

2.1 Experiment materials

The experimental material used in this study consisted of

Seedless White table grapes (Vitis vinifera L.) harvested from the

Caoxinzhuang Experimental Farm (34°18′0″ N; 108°5′23.9″ E) of

Northwest A&F University in Yangling, Shaanxi Province. To
frontiersin.org

https://doi.org/10.3389/fpls.2025.1723949
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2025.1723949
prevent damage to the berries, individual grapes were carefully

excised from the clusters using pruning shears, leaving a short

section of the pedicel attached to minimize moisture loss. Uniform,

undamaged berries of similar size were selected and divided into

three groups. Grapes were stored for 15 days under three

temperature conditions: cold storage (2.7 °C), refrigeration (10.0 °

C), and room temperature (20.6 °C). For each measurement, nine

berries per group were used for spectral data acquisition, while

twenty berries were used to determine soluble solids content (SSC),

titratable acidity (TA), and pH. In total, 145 sets of SSC, TA, pH,

and spectral data were collected.
2.2 Vis-NIR spectroscopy detection
acquisition

The spectral data were collected using a ATP3030 spectrometer

system (Optosky Photonics Inc., Xiamen, China). The spectrometer

system includes a halogen lamp (HL-2000), a dark chamber, a

computer, and a spectrometer in the 200–1100 nm wavelength

range with a resolution of 0.5 nm. The diffuse reflection whiteboard

(WR-D97) and an optical fiber are also necessary for the

experiment. The overall composition of the experimental system

is shown in Figure 2. Data were acquired using Optosky Spectra

software (V3.1.25) with a 1 ms integration time. Black and white
Frontiers in Plant Science 03
reference measurements were performed and calibrated prior to

data acquisition. Due to significant noise at the spectral front, only

data within the 400–1100 nm range were retained, yielding 1508

variables per spectrum curve. Grape spectral data were collected

under illumination from a tungsten halogen lamp. For each grape

sample, spectra were acquired three times, and the mean value was

used as the final spectral data for analysis.
2.3 Laboratory reference measurement

The grape samples from each group were separated into skin,

flesh, and seeds. The flesh was pressed and filtered through four

layers of gauze to obtain grape juice, which was subsequently used

to determine the soluble solids content (SSC), pH, and titratable

acidity (TA). The SSC was measured using a digital handheld

refractometer (ATAGO PAL-1, Japan). Each measurement was

performed in triplicate, and the mean value was recorded for

analysis (Su et al., 2025). The pH of the grape juice was

determined using a calibrated pH meter. Prior to measurement,

the instrument was standardized with buffer solutions of known pH

values, and the electrode was subsequently immersed in the juice

sample. The pH value was recorded after stabilization. Each sample

was measured in triplicate, and the mean value was calculated for

analysis (Liu et al., 2024). The titratable acidity (TA) of each sample
FIGURE 1

Schematic diagram illustrating the workflow of data processing.
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was determined by potentiometric titration following the OIV

“Wine and Grape Juice Analysis Method,” using a Mettler

automatic potentiometric titrator. Prior to analysis, the titrator

was calibrated. A 2 mL aliquot of grape juice was transferred into

a beaker, to which 50 mL of distilled water was added. The electrode

and magnetic stirrer were immersed in the solution, and titration

was carried out with a standard sodium hydroxide solution. TA was

expressed as tartaric acid equivalents. Each sample was measured in

triplicate, with a maximum measurement error of 0.5 mL, and the

mean value was recorded. Blank determinations were performed

simultaneously, and the final TA values were corrected accordingly

(Xing et al., 2025; Zhou et al., 2024).
2.4 Spectral data pre-process method

The collected spectral data are affected by multiple factors,

including environmental conditions, instrument performance, and

random noise, which may introduce redundant or irrelevant

information and consequently reduce model stability and

accuracy. To mitigate these effects and improve the reliability of

subsequent analyses, preprocessing of the raw spectral data is

therefore essential. In this study, five preprocessing methods were

applied, including first derivative (FD), Savitzky-Golay

convolutional smoothing (S-G), standard normal variate (SNV),

and multivariate scatter correction (MSC). First derivative

processing calculates the first derivative of the spectral data to

enhance spectral features and minimize baseline shifts and offsets.

(Ferreira et al., 2018). This method is particularly effective for

complex spectral datasets, as it improves data accuracy and

reliability, although it may also amplify noise. The S-G smoothing

method, which is based on the least-squares polynomial fitting

principle, is widely used for spectral smoothing (De-Lima et al.,

2018). By fitting polynomials to local segments of the data, this

method smooths the spectral curve and suppresses random noise,

resulting in a more continuous and stable signal. The SNV
Frontiers in Plant Science 04
transformation corrects for systematic shifts and scaling variations

in spectral data, thereby standardizing the spectra and improving

their comparability (Caramês et al., 2019). The MSC method

effectively eliminates spectral distortions caused by variations in

scattering intensity, thereby enhancing the correlation between

spectral data and target attributes (Guo et al., 2011).
2.5 Feature band extraction method

The Vis-NIR spectroscopy produces a large volume of spectral

data; however, such high-dimensional datasets are not ideal for real-

time data acquisition and processing. Therefore, selecting a subset of

optimal wavelengths that effectively represent the full spectrum is

essential for reducing data dimensionality and improving the

computational efficiency of modeling. In this study, three

wavelength selection methods were employed. The successive

projection algorithm (SPA) is an effective multivariate calibration

method for variable selection, capable of identifying characteristic

spectral bands and reducing collinearity among variables (Lu et al.,

2019). The uninformative variable elimination (UVE) is a feature

wavelength selection method that uses partial least squares

regression coefficients to assess the importance of each wavelength.

The UVE method accounts for both noise and physicochemical

information during feature wavelength selection, thereby

minimizing the risk of choosing variables that are insensitive to

the target components (Zhang et al., 2020). The competitive adaptive

reweighted sampling (CARS) efficiently reduces the dimensionality

of the spectral data and identifies key variables to enhance model

predictive performance (Zhang et al., 2022).
2.6 Model calibration

In this study, three regression algorithms, partial least squares

regression (PLSR), support vector machine (SVM), and extreme
FIGURE 2

The Vis-NIR spectroscopy data acquisition system.
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learning machine (ELM), were applied and compared to develop

predictive models for the quality parameters of Seedless White grape

samples. The PLSR algorithm transforms raw spectral data into a set

of orthogonal and independent latent variables that preserve the

essential information of the original spectra. This approach

effectively addresses collinearity in spectral data, suppresses noise

interference, and allows simultaneous modeling of multiple

response variables (Su et al., 2019). In the PLSR model, cross-

validation was employed to determine the optimal number of latent

variables. The SVM algorithm, a nonlinear modeling technique

grounded in statistical learning theory, constructs an optimal

hyperplane in a high-dimensional feature space to perform

regression or classification. Its capability to handle nonlinear,

high-dimensional, and highly correlated data offers strong

generalization performance for complex spectral datasets (Yu

et al., 2023).In this study, the support vector machine (SVM)

employed the radial basis function (RBF) as its kernel, and the

hyperparameters c and g were optimized using a grid search

method. The ELM algorithm, a single-hidden-layer feedforward

neural network model, randomly generates input-to-hidden layer

weights and analytically determines output-layer weights, enabling

rapid learning and prediction. This approach achieves high

predictive accuracy while substantially improving computational

efficiency, making it particularly suitable for large-scale spectral

data analysis (Sun et al., 2023). By comparing these three

algorithms, the most suitable model for predicting grape quality

parameters was determined.
2.7 Evaluation of the indicators

To comprehensively assess a model’s predictive performance,

commonly used metrics include the correlation coefficient of the

calibration set (RC), the correlation coefficient of the prediction set

(RP), the root mean square error of calibration (RMSEC), the root

mean square error of prediction (RMSEP), and the ratio (RPD) of

the prediction set standard deviation to RMSEP (Kamruzzaman

et al., 2016; Xu et al., 2016; Zheng et al., 2019). For a spectral

prediction model to achieve high predictive accuracy, the evaluation
Frontiers in Plant Science 05
criteria typically include: (1) maximizing the correlation coefficients

of the calibration and prediction sets (RC and RP) while minimizing

the corresponding root mean square errors (RMSEC and RMSEP);

(2) ensuring that the correlation coefficients and root mean square

errors of the calibration and prediction sets are comparable, with RC
slightly exceeding RP and RMSEC slightly less than RMSEP; and (3)

attaining the highest ratio of performance to deviation (RPD) (Lu

et al., 2019; Khoshnoudi-Nia and Moosavi-Nasab, 2019).
3 Results and discussion

3.1 Statistics of measured reference values

Developing spectral prediction models with high accuracy and

reliability requires that the calibration and prediction datasets

satisfy specific distributional criteria for reference measurements.

The range of reference values in the calibration set should fully

cover that of the prediction set. Furthermore, the mean and

standard deviation of reference values in the calibration set

should be slightly higher than or comparable to those in the

prediction set (Su et al., 2025). In this study, 145 samples were

divided into calibration and prediction sets at a ratio of 3:1 using

the gradient concentration method to satisfy these requirements.

The results were shown in Table 1, where the calibration set

comprised 109 samples and the prediction set included 36

samples. The reference measurement ranges for SSC in the

calibration and prediction sets were 9.23-22.73% and 11.40-

22.07%, respectively; for TA in the calibration and prediction sets

were 3.87-9.79 g/L and 3.96-9.79 g/L; and for pH in the calibration

and prediction sets were 3.22-4.10 and 3.06-4.59, respectively.

These results indicated that the calibration set fully encompassed

the prediction set.
3.2 Spectral characterization of table grape

Figure 3 presents the original and preprocessed spectral curves

of seedless white grapes. The spectral profiles of samples stored for
TABLE 1 Reference measurement of seedless white grape.

Parameter Subsets Sample number Range Mean Standard deviation

SSC(%)

Calibration set 109 9.23-22.73 17.34 2.34

Prediction set 36 11.4-22.07 17.35 2.23

Total samples 145 9.23-22.73 17.35 2.30

TA(g/L)

Calibration set 109 3.87-9.79 5.91 1.44

Prediction set 36 3.96-9.72 5.93 1.47

Total samples 145 3.87-9.79 5.92 1.46

pH

Calibration set 109 3.06-4.59 3.82 0.20

Prediction set 36 3.22-4.10 3.82 0.19

Total samples 145 3.06-4.59 3.82 0.20
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different durations exhibit similar patterns without any obvious

abnormal peaks, indicating that the spectral data of all 145 grape

samples are consistent and free from significant anomalies.

Nevertheless, variations in spectral reflectance intensity were

observed, indicating the need for multivariate data analysis to

clarify the relationship between near-infrared spectra and texture

characteristics.Three prominent peaks were observed at 530–

630 nm, 720 nm, and 810 nm, accompanied by two valleys at
Frontiers in Plant Science 06
670 nm and 970 nm. The yellow-green skin color of Seedless White

grapes corresponds to the peak between 580 and 630 nm. The valley

at 670 nm lies within the chlorophyll absorption region and may

be associated with the absorption of carotenoids and chlorophyll.

The absorption at 810 nm may be attributed to temperature-

related optical path corrections, whereas the absorption at

970 nm corresponds to the stretching vibrations of carbohydrates

and O-H bonds in water (Lin et al., 2024).
FIGURE 3

Grapes spectral reflectance curves (A) Raw spectral curve of grapes (B) FD preprocess spectral curve of grapes (C) S-G preprocess spectral curve of
grapes (D) FD+S-G preprocess spectral curve of grapes (E) MSC preprocess spectral curve of grapes (F) SNV preprocess spectral curve of grapes.
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3.3 Prediction models using full spectral
range

In this study, five spectral preprocessing algorithms were

applied to establish quantitative relationships between the

reflectance spectral data matrix (X) and the reference variable (Y)

across the entire spectral range via partial least squares regression

(Xu et al., 2016). A linear regression model incorporating chemical
Frontiers in Plant Science 07
composition and full-spectrum information was developed to

predict the SSC, TA, and pH of seedless white grapes. As shown

in Table 2, the FD preprocess method decreased the Rp and RPD

values of the prediction model due to amplified spectral noise. In

contrast, S-G smoothing, MSC, and SNV preprocessing methods

yielded models with superior predictive performance compared

with the model based on the raw spectra. Among these models, the

model developed using SNV preprocessing achieved the highest
TABLE 2 Results of PLSR models based on different spectral pretreatments.

Parameter Pre-processing
Calibration set Prediction set

RC RMSEC RP RMSEP RPD

SSC

RAW 0.880 1.111 0.839 1.240 1.799

FD 0.884 1.098 0.772 1.514 1.473

S-G 0.939 0.806 0.859 1.149 1.940

FD+S-G 0.886 1.096 0.744 1.576 1.416

MSC 0.922 0.903 0.877 1.094 2.038

SNV 0.949 0.736 0.897 0.984 2.266

TA

RAW 0.870 0.709 0.835 0.810 1.820

FD 0.977 0.307 0.828 0.831 1.775

S-G 0.885 0.668 0.845 0.818 1.804

FD+S-G 0.970 0.347 0.828 0.854 1.727

MSC 0.864 0.722 0.836 0.806 1.830

SNV 0.877 0.690 0.868 0.739 1.997

pH

RAW 0.857 0.102 0.716 0.141 1.333

FD 0.807 0.121 0.469 0.201 0.931

S-G 0.722 0.138 0.693 0.140 1.337

FD+S-G 0.927 0.074 0.678 0.150 1.249

MSC 0.743 0.133 0.760 0.121 1.545

SNV 0.759 0.129 0.756 0.124 1.513
Bold represents the optimal model.
FIGURE 4

The effective variables of grape quality parameters selected by SPA method. The optimal subset of SSC, TA and pH contains 20, 20 and 20 variables
respectively, displayed as solid rectangles in (A–C).
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prediction accuracy. The correlation coefficients (Rc and Rp), root

mean square errors (RMSEC and RMSEP), and ratio of

performance to deviation (RPD) for the SSC prediction model

were 0.949, 0.897, 0.736, 0.984, and 2.266, respectively; for the TA

prediction model, they were 0.877, 0.868, 0.690, 0.739, and 1.997,

respectively; and for the pH prediction model, they were 0.759,

0.756, 0.129, 0.124, and 1.513, respectively. These findings indicated

that the PLSR model developed using the SNV-preprocessed matrix

provided the best predictive performance for determining the

quality parameters of Seedless White grapes. Therefore, the SNV

preprocessing methods could be effectively applied in subsequent

analyses to extract valuable information regarding grape

quality attributes.
Frontiers in Plant Science 08
3.4 Selection of effective wavelengths

When using the SPA method to screen feature wavelengths, the

maximum number of selected variables was set to 30. Figure 4

illustrated the feature wavelengths selected by the SPA for SSC, TA

and pH in grapes. The corresponding wavelengths associated with

SSC were 615, 261, 287, 780, 828, 979, 1108, 1114, 1133, 1135, 1138,

1140, 1142, 1144, 1150, 1165, 1196, 1331, and 1386 nm. The

wavelengths associated with TA were 3, 105, 965, 990, 1127, 1136,

1138, 1144, 1146, 1156, 1163, 1165, 1170, 1174, 1184, 1196, 1340,

1374, 1495, and 1505 nm. The wavelengths associated with pH were

12, 309, 716, 1103, 1109, 1113, 1117, 1127, 1131, 1135, 1139, 1149,

1156, 1170, 1181, 1191, 1206, 1393, 1490, and 1499 nm. Notably,
TABLE 3 Prediction of SSC, TA and pH based on different method in characteristic wavelengths.

Parameter Wavelength selection Number of wavelength Model
Calibration set Prediction set

RC RMSEC RP RMSEP RPD

SSC

SPA 20

PLSR 0.831 1.297 0.785 1.384 1.611

SVM 0.865 1.373 0.812 1.680 1.327

ELM 0.957 0.675 0.805 1.828 1.219

UVE 275

PLSR 0.880 1.107 0.838 1.228 1.816

SVM 0.900 1.047 0.840 1.427 1.562

ELM 0.958 0.668 0.787 2.379 0.937

CARS 57

PLSR 0.956 0.680 0.914 0.900 2.478

SVM 0.964 0.390 0.928 0.673 3.311

ELM 0.969 0.572 0.870 1.331 1.675

TA

SPA 20

PLSR 0.832 0.798 0.873 0.716 2.060

SVM 0.895 0.418 0.873 0.553 2.662

ELM 0.950 0.445 0.810 0.978 1.505

UVE 98

PLSR 0.872 0.704 0.867 0.745 1.979

SVM 0.982 0.083 0.710 1.122 1.314

ELM 0.934 0.511 0.808 1.132 1.300

CARS 27

PLSR 0.890 0.655 0.904 0.637 2.314

SVM 0.914 0.340 0.856 0.623 2.366

ELM 0.974 0.321 0.853 0.981 1.500

pH

SPA 20

PLSR 0.743 0.135 0.755 0.114 1.640

SVM 0.707 0.210 0.677 0.162 1.154

ELM 0.902 0.087 0.619 0.291 0.643

UVE 239

PLSR 0.758 0.132 0.746 0.115 1.626

SVM 0.812 0.144 0.561 0.147 1.272

ELM 0.930 0.073 0.656 0.187 1.000

CARS 25

PLSR 0.803 0.120 0.758 0.113 1.655

SVM 0.759 0.180 0.691 0.170 1.100

ELM 0.946 0.065 0.603 0.270 0.693
fro
Bold represents the optimal model.
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multiple variables within the 1000–1200 nm wavelength range were

consistently selected for all three quality parameters, suggesting that

this spectral region plays a critical role in constructing predictive

models for grape quality assessment (Yang et al., 2022).

Figure 5 shows the distribution of feature wavelengths selected

by the UVE method after SNV preprocessing. The horizontal axis

corresponds to the spectral and noise matrix, whereas the vertical

axis represents the stability t-value. Two parallel lines indicate the

threshold limits: variables with stability values between these lines

were excluded, whereas those exceeding the threshold were retained

as feature wavelengths. After removing irrelevant variables, the

number of feature variables associated with SSC, TA, and pH was

reduced to 275, 98, and 239, respectively. Notably, the UVE-selected

feature variables include wavelengths in the 1000–1200 nm range

and meanwhile span nearly the entire spectral range.

Figure 6 illustrates the selection of characteristic wavelengths

for grape quality parameters via the CARS algorithm. It depicts the

relationship among the number of sampling runs, the number of

selected wavelength variables, RMSECV values, and regression

coefficient trajectories (Cheng et al., 2020; Fan et al., 2021). As the

number of sampling runs increases, the efficiency of feature variable

selection improves substantially, progressing from coarse to fine

screening. The RMSECV value attains its minimum at the 48th

sampling run. During the 1st to 48th sampling runs, the RMSECV

value decreases, followed by an upward trend from the 49th to the

100th run, indicating that the CARS algorithm may have eliminated

some critical information related to SSC. Ultimately, the CARS

algorithm selected 57, 27, and 25 wavelengths for SSC, TA, and

pH, respectively.
3.5 Prediction models using effective
wavelengths

This study compares the performance of SVM, PLSR, and ELM

models to determine the most effective modeling approach. Based

on the prediction of quality parameters for seedless white grapes

(Table 2), PLSR and SVM models constructed with feature

wavelengths exhibited superior performance compared to the
Frontiers in Plant Science 09
ELM model. ELM is fundamentally a linear least squares solution,

rendering it susceptible to overfitting or oscillation when the input

data contain substantial noise or multicollinearity. Furthermore,

extreme learning machines exhibit limited generalization ability and

stability due to the random initialization of input weights and

hidden layer biases, as well as their sensitivity to noise and

redundant features (Tang et al., 2016; Huang et al., 2012). In

contrast, PLSR and SVM incorporate more sophisticated

parameter optimization and feature selection mechanisms,

resulting in greater modeling accuracy and robustness. In

addition, Wan et al. (2020) reported that the predictive

performance of nonlinear regression models generally exceeds

that of linear models, with SVM models often outperforming

PLSR models. Therefore, for the prediction of SSC and TA, the

SVM model achieved the highest predictive performance.

The selection of feature wavelengths by different algorithms

markedly influences model predictive performance (Table 3).

Specifically, the SNV-CARS-SVM model achieved the most

accurate prediction of SSC, with correlation coefficients (Rc and

Rp) of 0.964 and 0.928 for the calibration and prediction sets, and

root mean square errors (RMSEC and RMSEP) of 0.390 and 0.673,

respectively. The model’s RPD value reached 3.311. For TA

prediction, the SNV-SPA-SVM model performed optimally, with

Rc and Rp values of 0.895 and 0.893, RMSEC and RMSEP of 0.418

and 0.553, and an RPD value of 2.622. The SNV-CARS-PLSR model

exhibited the highest predictive performance for pH, with Rc and Rp

values of 0.803 and 0.758, RMSEC and RMSEP of 0.120 and 0.113,

and an RPD value of 1.655. The optimummodel of SSC, TA and pH

was displayed more intuitively by the scatter plots of Figure 7.

Among the three quality parameters, pH prediction was less

accurate than those of SSC and TA, primarily owing to differences

in chemical properties and spectral responses. SSC and TA are

closely associated with soluble sugars, organic acids, and other

constituents exhibiting distinct absorption characteristics in the

near-infrared region (e.g., vibrations and stretching of O-H, C-H,

and C=O groups), rendering their concentration changes readily

detectable in the spectra (Li et al., 2006). In contrast, pH reflects

hydrogen ion activity rather than the concentration of specific

chemical groups, yielding a more indirect and nonlinear
FIGURE 5

The effective variables of grape quality parameters selected by UVE method. The optimal subset of SSC, TA and pH contains 275, 98 and 239
variables respectively, displayed in (A–C).
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FIGURE 7

Correlation between measurement values and predicted values in the calibration set and prediction set (A) SSC (B) TA (C) pH.
FIGURE 6

The effective variables of grape quality parameters selected by CARS method. The optimal subset of SSC, TA and pH contains 57, 27 and 25 variables
respectively, displayed as solid rectangles in (A–C).
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relationship with spectral signals (Nicolaï et al., 2007). Furthermore,

pH is influenced by multiple factors, including the type of organic

acids, buffer systems, and ionic strength, which often exhibit weak

or overlapping near-infrared absorption features (Koashi et al.,

2003). Consequently, the spectral response of pH is weaker and

less distinct, limiting the predictive capability of models compared

with SSC and TA.

The table grape variety used in this study was Seedless White, a

typical white cultivar with a thin peel, tender flesh, and sweet flavor.

Accordingly, the developed prediction model primarily reflects

quality variations in white grapes under different storage

conditions. Its applicability to other cultivars, particularly red or

purple types (e.g., Kyoho and Beauty Finger), requires further

validation due to their higher anthocyanin and phenolic contents

and distinct metabolic behaviors during storage. Future research

will expand the sample set to include multiple varieties, color types,

and production regions, enabling a more robust and generalizable

predictive model.

While this study considered conditions representative of typical

postharvest handling, grapes in practice may experience more

complex environments, such as controlled-humidity or

controlled-atmosphere storage, or fluctuating temperature and

humidity. These factors can significantly affect physicochemical

properties, sensory attributes, and metabolic activity. Further

investigation into the influence of environmental factors,

including temperature, humidity, gas composition, and light

exposure, will support the development of a more comprehensive

and accurate model, providing a scientific basis for optimizing

storage management and preserving grape quality.
4 Conclusion

The soluble solids content (SSC), titratable acidity (TA), and pH

are critical indicators for assessing the quality of table grapes during

storage. This study aimed to develop a model for the rapid and non-

destructive detection of these parameters in table grapes during

storage using visible near infrared (Vis-NIR) spectroscopy.

Through comparative experiments involving different spectral

preprocessing techniques and feature wavelength selection

algorithms, the optimized model achieved fast and non-destructive

prediction of SSC, TA, and pH in Seedless White grapes,

demonstrating superior performance. This research provides a new

approach for rapid, non-destructive, and high-precision quality

assessment of table grapes during storage. The findings offer

practical significance for promoting the sustainable development of

the grape industry.
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