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Introduction: The soluble solids content (SSC), titratable acidity (TA), and pH are
key indicators for evaluating the quality of table grapes during storage.
Conventional detection methods are typically destructive and time-
consuming. To address this limitation, visible-near infrared (Vis-NIR)
spectroscopy was employed in this study to enable rapid and non-destructive
quality assessment of fresh table grapes throughout the storage period.
Methods: Seedless White table grape samples were analyzed within the 200-
1100 nm spectral range, and calibration models for key quality parameters (SSC,
TA, and pH) were established. Three machine learning algorithms, partial least
squares regression (PLSR), support vector machine (SVM), and extreme learning
machine (ELM), were employed to develop spectral prediction models based on
characteristic wavelengths selected using different feature extraction strategies,
including the successive projection algorithm (SPA), uninformative variable
elimination (UVE), and competitive adaptive reweighted sampling (CARS).
Results: The results demonstrate that the SNV-CARS-SVM models achieved
excellent performance in predicting SSC with a root mean square errors (RMSEP)
of 0.673, a coefficient of determination for the prediction data set (Rp) of 0.928
and an RPD of 3.311. Similarly, the SNV-SPA-SVM models exhibited excellent
predictive accuracy for TA, yielding an RMSEP of 0.553, an Rp of 0.873, and an
RPD of 2.662. Good performances were achieved with Rp of 0.758 and RMSEP of
0.113 with the SNV-CARS-PLSR model for pH.

Discussion: This study, for the first time, utilized Vis-NIR spectroscopy to achieve
the simultaneous and rapid determination of multiple quality attributes in table
grapes, providing a novel and efficient strategy for real-time and non-destructive
quality evaluation during storage. The proposed approach showed considerable
potential for rapid quality assessment and postharvest management of grapes.
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Future research will focus on expanding the diversity of grape cultivars and
investigating various storage conditions to improve the robustness and
transferability of the predictive model, thereby promoting the industrial
validation and practical application of Vis-NIR spectroscopy in fruit

quality monitoring.
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1 Introduction

Grape is an important economic crop with dual purposes
serving both fresh consumption and processing. It is rich in
glucose, fructose, organic acids, amino acids, and essential
minerals, which together contribute to its high nutritional value.
The flavonoids and anthocyanins in grape skins possess strong
antioxidant and anti-aging properties (Zeng et al., 2024; Ma et al,,
2024). According to data from the China Agricultural Yearbook, the
China vineyard area reached approximately 0.7 million hectares in
2020, encompassing grapes cultivated for fresh consumption,
winemaking, drying, and juice production (Li et al., 2021).
Meanwhile, China’s table grape export volume has reeched
around 375,000 tons in 2022, ranking third globally, which
demonstrating the vigorous development of the grape industry
(Liu et al., 2024).

Table grape quality is a crucial factor influencing consumer
preferences and market value. High-quality table grapes not only
exhibit superior sensory attributes but also possess enhanced
nutritional characteristics. In general, grape quality can be classified
into external and internal physicochemical attributes. The internal
quality parameters mainly include soluble solids content (SSC),
titratable acidity (TA), and pH (Wu et al, 2024). Soluble solids
content (SSC) reflects the sweetness and nutritional status of the
fruit, titratable acidity (TA) affects flavor balance, and pH is closely
related to storage stability and sensory perception. At present, the
internal quality of grapes is primarily evaluated through conventional
chemical analysis, including acid-base titration, refractometry, and
Fehling solution titration. Although these methods provide high
accuracy, they are destructive, labor-intensive, time-consuming, and
prone to human error, thereby reducing overall efficiency (Guo et al,,
2015; Ma et al,, 2018; Pissard et al., 2021). Therefore, developing a
rapid, accurate, and non-destructive method for determining SSC, TA,
and pH in table grapes is crucial for quality assessment and
postharvest management.

With the rapid development of agricultural information
technologies, spectral analysis has become a powerful tool for
non-destructive fruit quality assessment due to its speed,
convenience, and reliability. Visible and near-infrared (Vis-NIR)
spectroscopy enables quantitative prediction of internal quality
parameters by analyzing the optical properties of fruit tissues
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(Roberto et al., 2018; Ncama et al., 2018). For example, in studies
predicting grape quality, Dambergs et al. (2006) applied Vis-NIR
spectroscopy to determine anthocyanins, pH, and SSC in wine
grapes across multiple cultivars, vintages, and regions, developing
predictive models with robust performance. Similarly, Xiao et al.
(2018) employed Vis-NIR spectra to classify five ripening stages of
different grape varieties, achieving classification accuracies of 90%
and 100% for “Manicure Finger” and “Ugni Blanc,” respectively.
These findings highlight the feasibility of near-infrared
spectroscopy for grape quality assessment. The table grapes
undergo a storage period from harvest to sale, during which their
internal quality may change. However, most existing studies have
focused on predicting the multiple qualities of table grapes at
maturity (Xiao et al., 2018), while few studies on the detection of
multiple parameters in table grapes during storage remain limited.

In light of the aforementioned limitations, this study aims to
develop a rapid and non-destructive method for the simultaneous
determination of multiple quality parameters in table grapes during
storage using Vis-NIR spectroscopy. The specific objectives of this
research are: (1) to acquire Vis-NIR spectral data alongside
corresponding reference measurements of table grape quality
parameters during storage; (2) to identify the most effective data
preprocessing method for enhancing model performance through
comparative analysis; and (3) to optimize predictive models by
evaluating different modeling algorithms and wavelength selection
strategies. This study seeks to advance table grape quality
assessment from conventional destructive analyses toward
intelligent, non-destructive evaluation, thereby improving quality
control efficiency during table grape storage. The main steps of
evaluation of quality parameters in table grape samples by Vis-NIR
were schematically shown in Figure 1.

2 Materials and methods
2.1 Experiment materials

The experimental material used in this study consisted of
Seedless White table grapes (Vitis vinifera L.) harvested from the

Caoxinzhuang Experimental Farm (34°18'0” N; 108°5'23.9” E) of
Northwest A&F University in Yangling, Shaanxi Province. To
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FIGURE 1

Schematic diagram illustrating the workflow of data processing.

prevent damage to the berries, individual grapes were carefully
excised from the clusters using pruning shears, leaving a short
section of the pedicel attached to minimize moisture loss. Uniform,
undamaged berries of similar size were selected and divided into
three groups. Grapes were stored for 15 days under three
temperature conditions: cold storage (2.7 °C), refrigeration (10.0 °
C), and room temperature (20.6 °C). For each measurement, nine
berries per group were used for spectral data acquisition, while
twenty berries were used to determine soluble solids content (SSC),
titratable acidity (TA), and pH. In total, 145 sets of SSC, TA, pH,
and spectral data were collected.

2.2 Vis-NIR spectroscopy detection
acquisition

The spectral data were collected using a ATP3030 spectrometer
system (Optosky Photonics Inc., Xiamen, China). The spectrometer
system includes a halogen lamp (HL-2000), a dark chamber, a
computer, and a spectrometer in the 200-1100 nm wavelength
range with a resolution of 0.5 nm. The diffuse reflection whiteboard
(WR-D97) and an optical fiber are also necessary for the
experiment. The overall composition of the experimental system
is shown in Figure 2. Data were acquired using Optosky Spectra
software (V3.1.25) with a 1 ms integration time. Black and white
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reference measurements were performed and calibrated prior to
data acquisition. Due to significant noise at the spectral front, only
data within the 400-1100 nm range were retained, yielding 1508
variables per spectrum curve. Grape spectral data were collected
under illumination from a tungsten halogen lamp. For each grape
sample, spectra were acquired three times, and the mean value was
used as the final spectral data for analysis.

2.3 Laboratory reference measurement

The grape samples from each group were separated into skin,
flesh, and seeds. The flesh was pressed and filtered through four
layers of gauze to obtain grape juice, which was subsequently used
to determine the soluble solids content (SSC), pH, and titratable
acidity (TA). The SSC was measured using a digital handheld
refractometer (ATAGO PAL-1, Japan). Each measurement was
performed in triplicate, and the mean value was recorded for
analysis (Su et al, 2025). The pH of the grape juice was
determined using a calibrated pH meter. Prior to measurement,
the instrument was standardized with buffer solutions of known pH
values, and the electrode was subsequently immersed in the juice
sample. The pH value was recorded after stabilization. Each sample
was measured in triplicate, and the mean value was calculated for
analysis (Liu et al., 2024). The titratable acidity (TA) of each sample
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FIGURE 2
The Vis-NIR spectroscopy data acquisition system.

was determined by potentiometric titration following the OIV
“Wine and Grape Juice Analysis Method,” using a Mettler
automatic potentiometric titrator. Prior to analysis, the titrator
was calibrated. A 2 mL aliquot of grape juice was transferred into
a beaker, to which 50 mL of distilled water was added. The electrode
and magnetic stirrer were immersed in the solution, and titration
was carried out with a standard sodium hydroxide solution. TA was
expressed as tartaric acid equivalents. Each sample was measured in
triplicate, with a maximum measurement error of 0.5 mL, and the
mean value was recorded. Blank determinations were performed
simultaneously, and the final TA values were corrected accordingly
(Xing et al., 2025; Zhou et al., 2024).

2.4 Spectral data pre-process method

The collected spectral data are affected by multiple factors,
including environmental conditions, instrument performance, and
random noise, which may introduce redundant or irrelevant
information and consequently reduce model stability and
accuracy. To mitigate these effects and improve the reliability of
subsequent analyses, preprocessing of the raw spectral data is
therefore essential. In this study, five preprocessing methods were
applied, including first derivative (FD), Savitzky-Golay
convolutional smoothing (S-G), standard normal variate (SNV),
and multivariate scatter correction (MSC). First derivative
processing calculates the first derivative of the spectral data to
enhance spectral features and minimize baseline shifts and offsets.
(Ferreira et al., 2018). This method is particularly effective for
complex spectral datasets, as it improves data accuracy and
reliability, although it may also amplify noise. The S-G smoothing
method, which is based on the least-squares polynomial fitting
principle, is widely used for spectral smoothing (De-Lima et al,
2018). By fitting polynomials to local segments of the data, this
method smooths the spectral curve and suppresses random noise,
resulting in a more continuous and stable signal. The SNV
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transformation corrects for systematic shifts and scaling variations
in spectral data, thereby standardizing the spectra and improving
their comparability (Carames et al, 2019). The MSC method
effectively eliminates spectral distortions caused by variations in
scattering intensity, thereby enhancing the correlation between
spectral data and target attributes (Guo et al,, 2011).

2.5 Feature band extraction method

The Vis-NIR spectroscopy produces a large volume of spectral
data; however, such high-dimensional datasets are not ideal for real-
time data acquisition and processing. Therefore, selecting a subset of
optimal wavelengths that effectively represent the full spectrum is
essential for reducing data dimensionality and improving the
computational efficiency of modeling. In this study, three
wavelength selection methods were employed. The successive
projection algorithm (SPA) is an effective multivariate calibration
method for variable selection, capable of identifying characteristic
spectral bands and reducing collinearity among variables (Lu et al.,
2019). The uninformative variable elimination (UVE) is a feature
wavelength selection method that uses partial least squares
regression coefficients to assess the importance of each wavelength.
The UVE method accounts for both noise and physicochemical
information during feature wavelength selection, thereby
minimizing the risk of choosing variables that are insensitive to
the target components (Zhang et al., 2020). The competitive adaptive
reweighted sampling (CARS) efficiently reduces the dimensionality
of the spectral data and identifies key variables to enhance model
predictive performance (Zhang et al., 2022).

2.6 Model calibration

In this study, three regression algorithms, partial least squares
regression (PLSR), support vector machine (SVM), and extreme
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learning machine (ELM), were applied and compared to develop
predictive models for the quality parameters of Seedless White grape
samples. The PLSR algorithm transforms raw spectral data into a set
of orthogonal and independent latent variables that preserve the
essential information of the original spectra. This approach
effectively addresses collinearity in spectral data, suppresses noise
interference, and allows simultaneous modeling of multiple
response variables (Su et al, 2019). In the PLSR model, cross-
validation was employed to determine the optimal number of latent
variables. The SVM algorithm, a nonlinear modeling technique
grounded in statistical learning theory, constructs an optimal
hyperplane in a high-dimensional feature space to perform
regression or classification. Its capability to handle nonlinear,
high-dimensional, and highly correlated data offers strong
generalization performance for complex spectral datasets (Yu
et al., 2023).In this study, the support vector machine (SVM)
employed the radial basis function (RBF) as its kernel, and the
hyperparameters ¢ and g were optimized using a grid search
method. The ELM algorithm, a single-hidden-layer feedforward
neural network model, randomly generates input-to-hidden layer
weights and analytically determines output-layer weights, enabling
rapid learning and prediction. This approach achieves high
predictive accuracy while substantially improving computational
efficiency, making it particularly suitable for large-scale spectral
data analysis (Sun et al, 2023). By comparing these three
algorithms, the most suitable model for predicting grape quality
parameters was determined.

2.7 Evaluation of the indicators

To comprehensively assess a model’s predictive performance,
commonly used metrics include the correlation coefficient of the
calibration set (Rc), the correlation coefficient of the prediction set
(Rp), the root mean square error of calibration (RMSEC), the root
mean square error of prediction (RMSEP), and the ratio (RPD) of
the prediction set standard deviation to RMSEP (Kamruzzaman
et al, 2016; Xu et al, 2016; Zheng et al, 2019). For a spectral
prediction model to achieve high predictive accuracy, the evaluation

TABLE 1 Reference measurement of seedless white grape.

Parameter Subsets Sample number

Calibration set 109

SSC(%) Prediction set 36
Total samples 145

Calibration set 109

TA(g/L) Prediction set 36
Total samples 145

Calibration set 109

pH Prediction set 36
Total samples 145
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criteria typically include: (1) maximizing the correlation coefficients
of the calibration and prediction sets (Rc and Rp) while minimizing
the corresponding root mean square errors (RMSEC and RMSEP);
(2) ensuring that the correlation coefficients and root mean square
errors of the calibration and prediction sets are comparable, with R¢
slightly exceeding Rp and RMSEC slightly less than RMSEP; and (3)
attaining the highest ratio of performance to deviation (RPD) (Lu
et al., 2019; Khoshnoudi-Nia and Moosavi-Nasab, 2019).

3 Results and discussion
3.1 Statistics of measured reference values

Developing spectral prediction models with high accuracy and
reliability requires that the calibration and prediction datasets
satisfy specific distributional criteria for reference measurements.
The range of reference values in the calibration set should fully
cover that of the prediction set. Furthermore, the mean and
standard deviation of reference values in the calibration set
should be slightly higher than or comparable to those in the
prediction set (Su et al., 2025). In this study, 145 samples were
divided into calibration and prediction sets at a ratio of 3:1 using
the gradient concentration method to satisfy these requirements.
The results were shown in Table 1, where the calibration set
comprised 109 samples and the prediction set included 36
samples. The reference measurement ranges for SSC in the
calibration and prediction sets were 9.23-22.73% and 11.40-
22.07%, respectively; for TA in the calibration and prediction sets
were 3.87-9.79 g/L and 3.96-9.79 g/L; and for pH in the calibration
and prediction sets were 3.22-4.10 and 3.06-4.59, respectively.
These results indicated that the calibration set fully encompassed
the prediction set.

3.2 Spectral characterization of table grape

Figure 3 presents the original and preprocessed spectral curves
of seedless white grapes. The spectral profiles of samples stored for

Range Mean Standard deviation
9.23-22.73 17.34 234
11.4-22.07 17.35 223
9.23-22.73 17.35 2.30
3.87-9.79 5.91 144
3.96-9.72 5.93 147
3.87-9.79 5.92 1.46
3.06-4.59 3.82 0.20
3.22-4.10 3.82 0.19
3.06-4.59 3.82 020
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FIGURE 3
Grapes spectral reflectance curves (A) Raw spectral curve of grapes (B) FD preprocess spectral curve of grapes (C) S-G preprocess spectral curve of
grapes (D) FD+S-G preprocess spectral curve of grapes (E) MSC preprocess spectral curve of grapes (F) SNV preprocess spectral curve of grapes.

different durations exhibit similar patterns without any obvious
abnormal peaks, indicating that the spectral data of all 145 grape
samples are consistent and free from significant anomalies.
Nevertheless, variations in spectral reflectance intensity were
observed, indicating the need for multivariate data analysis to
clarify the relationship between near-infrared spectra and texture
characteristics. Three prominent peaks were observed at 530-
630 nm, 720 nm, and 810 nm, accompanied by two valleys at
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670 nm and 970 nm. The yellow-green skin color of Seedless White
grapes corresponds to the peak between 580 and 630 nm. The valley
at 670 nm lies within the chlorophyll absorption region and may
be associated with the absorption of carotenoids and chlorophyll.
The absorption at 810 nm may be attributed to temperature-
related optical path corrections, whereas the absorption at
970 nm corresponds to the stretching vibrations of carbohydrates
and O-H bonds in water (Lin et al., 2024).
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3.3 Prediction models using full spectral
range

In this study, five spectral preprocessing algorithms were
applied to establish quantitative relationships between the
reflectance spectral data matrix (X) and the reference variable (Y)
across the entire spectral range via partial least squares regression
(Xu et al,, 2016). A linear regression model incorporating chemical

TABLE 2 Results of PLSR models based on different spectral pretreatments.

Calibration set

10.3389/fpls.2025.1723949

composition and full-spectrum information was developed to
predict the SSC, TA, and pH of seedless white grapes. As shown
in Table 2, the FD preprocess method decreased the Rp and RPD
values of the prediction model due to amplified spectral noise. In
contrast, S-G smoothing, MSC, and SNV preprocessing methods
yielded models with superior predictive performance compared
with the model based on the raw spectra. Among these models, the
model developed using SNV preprocessing achieved the highest

Prediction set

Parameter Pre-processing
Rc RMSEC RMSEP

RAW 0.880 1111 0.839 1.240 1.799
FD 0.884 1.098 0.772 1.514 1.473
S-G 0.939 0.806 0.859 1.149 1.940

ssC
FD+S-G 0.886 1.096 0.744 1.576 1.416
MSC 0.922 0.903 0.877 1.094 2.038
SNV 0.949 0.736 0.897 0.984 2.266
RAW 0.870 0.709 0.835 0.810 1.820
FD 0.977 0307 0.828 0.831 1.775
S-G 0.885 0.668 0.845 0.818 1.804

TA
ED+$-G 0.970 0347 0.828 0.854 1.727
MSC 0.864 0.722 0.836 0.806 1.830
SNV 0.877 0.690 0.868 0.739 1.997
RAW 0.857 0.102 0.716 0.141 1.333
FD 0.807 0.121 0.469 0.201 0.931
S-G 0.722 0.138 0.693 0.140 1.337

pH
ED+$-G 0.927 0.074 0.678 0.150 1.249
MSC 0.743 0.133 0.760 0.121 1.545
SNV 0.759 0.129 0.756 0.124 1.513

Bold represents the optimal model.
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prediction accuracy. The correlation coefficients (Rc and Rp), root
mean square errors (RMSEC and RMSEP), and ratio of
performance to deviation (RPD) for the SSC prediction model
were 0.949, 0.897, 0.736, 0.984, and 2.266, respectively; for the TA
prediction model, they were 0.877, 0.868, 0.690, 0.739, and 1.997,
respectively; and for the pH prediction model, they were 0.759,
0.756, 0.129, 0.124, and 1.513, respectively. These findings indicated
that the PLSR model developed using the SNV-preprocessed matrix
provided the best predictive performance for determining the
quality parameters of Seedless White grapes. Therefore, the SNV
preprocessing methods could be effectively applied in subsequent
analyses to extract valuable information regarding grape
quality attributes.

10.3389/fpls.2025.1723949

3.4 Selection of effective wavelengths

When using the SPA method to screen feature wavelengths, the
maximum number of selected variables was set to 30. Figure 4
illustrated the feature wavelengths selected by the SPA for SSC, TA
and pH in grapes. The corresponding wavelengths associated with
SSC were 615, 261, 287, 780, 828, 979, 1108, 1114, 1133, 1135, 1138,
1140, 1142, 1144, 1150, 1165, 1196, 1331, and 1386 nm. The
wavelengths associated with TA were 3, 105, 965, 990, 1127, 1136,
1138, 1144, 1146, 1156, 1163, 1165, 1170, 1174, 1184, 1196, 1340,
1374, 1495, and 1505 nm. The wavelengths associated with pH were
12, 309, 716, 1103, 1109, 1113, 1117, 1127, 1131, 1135, 1139, 1149,
1156, 1170, 1181, 1191, 1206, 1393, 1490, and 1499 nm. Notably,

TABLE 3 Prediction of SSC, TA and pH based on different method in characteristic wavelengths.

Prediction set

Calibration set

Parameter Wavelength selection Number of wavelength Model
Rc RMSEC Rp RMSEP

PLSR 0.831 1.297 0.785 1.384 1611

SPA 20 SVM 0.865 1.373 0.812 1.680 1.327

ELM 0.957 0.675 0.805 1.828 1.219

PLSR 0.880 1.107 0.838 1.228 1.816

ssC UVE 275 SVM 0.900 1.047 0.840 1.427 1.562
ELM 0.958 0.668 0.787 2379 0.937

PLSR 0.956 0.680 0.914 0.900 2478

CARS 57 SVM 0.964 0.390 0.928 0.673 3.311

ELM 0.969 0.572 0.870 1.331 1.675

PLSR 0.832 0.798 0.873 0.716 2.060

SPA 20 SVM 0.895 0.418 0.873 0.553 2.662

ELM 0.950 0.445 0.810 0.978 1.505

PLSR 0.872 0.704 0.867 0.745 1.979

TA UVE 98 SVM 0.982 0.083 0.710 1122 1314
ELM 0.934 0511 0.808 1.132 1.300

PLSR 0.890 0.655 0.904 0.637 2314

CARS 27 SVM 0.914 0.340 0.856 0.623 2.366

ELM 0.974 0321 0.853 0.981 1.500

PLSR 0.743 0.135 0.755 0.114 1.640

SPA 20 SVM 0.707 0210 0.677 0.162 1.154

ELM 0.902 0.087 0.619 0.291 0.643

PLSR 0.758 0.132 0.746 0.115 1.626

pH UVE 239 SVM 0.812 0.144 0.561 0.147 1.272
ELM 0.930 0.073 0.656 0.187 1.000

PLSR 0.803 0.120 0.758 0.113 1.655

CARS 25 SVM 0.759 0.180 0.691 0.170 1.100

ELM 0.946 0.065 0.603 0.270 0.693

Bold represents the optimal model.
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multiple variables within the 1000-1200 nm wavelength range were
consistently selected for all three quality parameters, suggesting that
this spectral region plays a critical role in constructing predictive
models for grape quality assessment (Yang et al., 2022).

Figure 5 shows the distribution of feature wavelengths selected
by the UVE method after SNV preprocessing. The horizontal axis
corresponds to the spectral and noise matrix, whereas the vertical
axis represents the stability t-value. Two parallel lines indicate the
threshold limits: variables with stability values between these lines
were excluded, whereas those exceeding the threshold were retained
as feature wavelengths. After removing irrelevant variables, the
number of feature variables associated with SSC, TA, and pH was
reduced to 275, 98, and 239, respectively. Notably, the UVE-selected
feature variables include wavelengths in the 1000-1200 nm range
and meanwhile span nearly the entire spectral range.

Figure 6 illustrates the selection of characteristic wavelengths
for grape quality parameters via the CARS algorithm. It depicts the
relationship among the number of sampling runs, the number of
selected wavelength variables, RMSECV values, and regression
coefficient trajectories (Cheng et al., 2020; Fan et al., 2021). As the
number of sampling runs increases, the efficiency of feature variable
selection improves substantially, progressing from coarse to fine
screening. The RMSECV value attains its minimum at the 48th
sampling run. During the 1st to 48th sampling runs, the RMSECV
value decreases, followed by an upward trend from the 49th to the
100th run, indicating that the CARS algorithm may have eliminated
some critical information related to SSC. Ultimately, the CARS
algorithm selected 57, 27, and 25 wavelengths for SSC, TA, and
pH, respectively.

3.5 Prediction models using effective
wavelengths

This study compares the performance of SVM, PLSR, and ELM
models to determine the most effective modeling approach. Based
on the prediction of quality parameters for seedless white grapes
(Table 2), PLSR and SVM models constructed with feature
wavelengths exhibited superior performance compared to the

1 il

t_alue
v

Wil

l

10.3389/fpls.2025.1723949

ELM model. ELM is fundamentally a linear least squares solution,
rendering it susceptible to overfitting or oscillation when the input
data contain substantial noise or multicollinearity. Furthermore,
extreme learning machines exhibit limited generalization ability and
stability due to the random initialization of input weights and
hidden layer biases, as well as their sensitivity to noise and
redundant features (Tang et al, 2016; Huang et al, 2012). In
contrast, PLSR and SVM incorporate more sophisticated
parameter optimization and feature selection mechanisms,
resulting in greater modeling accuracy and robustness. In
addition, Wan et al. (2020) reported that the predictive
performance of nonlinear regression models generally exceeds
that of linear models, with SVM models often outperforming
PLSR models. Therefore, for the prediction of SSC and TA, the
SVM model achieved the highest predictive performance.

The selection of feature wavelengths by different algorithms
markedly influences model predictive performance (Table 3).
Specifically, the SNV-CARS-SVM model achieved the most
accurate prediction of SSC, with correlation coefficients (Rc and
Rp) of 0.964 and 0.928 for the calibration and prediction sets, and
root mean square errors (RMSEC and RMSEP) of 0.390 and 0.673,
respectively. The model’s RPD value reached 3.311. For TA
prediction, the SNV-SPA-SVM model performed optimally, with
Rc and Rp values of 0.895 and 0.893, RMSEC and RMSEP of 0.418
and 0.553, and an RPD value of 2.622. The SNV-CARS-PLSR model
exhibited the highest predictive performance for pH, with Rc and Rp
values of 0.803 and 0.758, RMSEC and RMSEP of 0.120 and 0.113,
and an RPD value of 1.655. The optimum model of SSC, TA and pH
was displayed more intuitively by the scatter plots of Figure 7.

Among the three quality parameters, pH prediction was less
accurate than those of SSC and TA, primarily owing to differences
in chemical properties and spectral responses. SSC and TA are
closely associated with soluble sugars, organic acids, and other
constituents exhibiting distinct absorption characteristics in the
near-infrared region (e.g., vibrations and stretching of O-H, C-H,
and C=0 groups), rendering their concentration changes readily
detectable in the spectra (Li et al., 2006). In contrast, pH reflects
hydrogen ion activity rather than the concentration of specific
chemical groups, yielding a more indirect and nonlinear
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relationship with spectral signals (Nicolai et al., 2007). Furthermore,
pH is influenced by multiple factors, including the type of organic
acids, buffer systems, and ionic strength, which often exhibit weak
or overlapping near-infrared absorption features (Koashi et al,
2003). Consequently, the spectral response of pH is weaker and
less distinct, limiting the predictive capability of models compared
with SSC and TA.

The table grape variety used in this study was Seedless White, a
typical white cultivar with a thin peel, tender flesh, and sweet flavor.
Accordingly, the developed prediction model primarily reflects
quality variations in white grapes under different storage
conditions. Its applicability to other cultivars, particularly red or
purple types (e.g., Kyoho and Beauty Finger), requires further
validation due to their higher anthocyanin and phenolic contents
and distinct metabolic behaviors during storage. Future research
will expand the sample set to include multiple varieties, color types,
and production regions, enabling a more robust and generalizable
predictive model.

While this study considered conditions representative of typical
postharvest handling, grapes in practice may experience more
complex environments, such as controlled-humidity or
controlled-atmosphere storage, or fluctuating temperature and
humidity. These factors can significantly affect physicochemical
properties, sensory attributes, and metabolic activity. Further
investigation into the influence of environmental factors,
including temperature, humidity, gas composition, and light
exposure, will support the development of a more comprehensive
and accurate model, providing a scientific basis for optimizing
storage management and preserving grape quality.

4 Conclusion

The soluble solids content (SSC), titratable acidity (TA), and pH
are critical indicators for assessing the quality of table grapes during
storage. This study aimed to develop a model for the rapid and non-
destructive detection of these parameters in table grapes during
storage using visible near infrared (Vis-NIR) spectroscopy.
Through comparative experiments involving different spectral
preprocessing techniques and feature wavelength selection
algorithms, the optimized model achieved fast and non-destructive
prediction of SSC, TA, and pH in Seedless White grapes,
demonstrating superior performance. This research provides a new
approach for rapid, non-destructive, and high-precision quality
assessment of table grapes during storage. The findings offer
practical significance for promoting the sustainable development of
the grape industry.
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