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Introduction: Accurate crop yield prediction is vital for ensuring global food security,
particularly amid growing environmental challenges such as climate change.
Although deep learning (DL) methods have shown potential in yield prediction,
they often demand large datasets and considerable computational resources.
Methods: To address these limitations, this study developed a machine learning
(ML) model to predict maize hybrid yields by integrating meteorological data with
breeder-level genetic information, specifically breeding values estimated using
the best linear unbiased prediction (BLUP) method. Four commonly used ML
algorithms—Random Forest (RF), XGBoost, Support Vector Regression (SVR), and
Gaussian Process Regression (GPR)—were evaluated and optimized through
hyperparameter tuning.

Results: Among these models, the RF algorithm achieved the best performance,
with a coefficient of determination (R?) of 0.64, a root mean square error (RMSE)
of 1010.59 kg/ha, a mean absolute error (MAE) of 743.89 kg/ha, a relative RMSE
(RRMSE) of 10.32%, and a mean absolute percentage error (MAPE) of 8.3%.
Discussion: These results demonstrate that the proposed RF-based model can
provide accurate yield predictions for specific maize cultivars under diverse
planting conditions. This predictive framework offers practical support for
farmers in selecting well-adapted hybrids and serves as a cost-effective,
efficient tool for breeders to identify high-yielding maize hybrids optimized for
particular environments. Consequently, the model promotes smarter breeding
strategies and more precise cultivation recommendations.
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1 Introduction

Food security is one of the most urgent global challenges today,
compounded by environmental degradation, water scarcity, and the
increasing threats posed by climate change (Sharma et al., 2022). As
the world’s population grows, the demand for agricultural
production rises. However, crop yields are highly sensitive to
fluctuations in climatic factors such as temperature, precipitation,
soil quality, and atmospheric humidity (Arora, 2019; Ortiz-Bobea
et al., 2021). These factors, which are subject to environmental
changes, complicate efforts to achieve stable crop yields and
threaten food supply stability in many regions (Razzaq et al,
2021; Munaweera et al, 2022). As such, the ability to accurately
predict crop yield is increasingly crucial for modern breeding
programs focused on developing high-yielding and climate-
resilient crop varieties (Hafeez et al., 2023).

Despite the growing body of research on crop yield prediction,
challenges remain in integrating diverse data sources. Most studies
have either focused exclusively on genomic data or meteorological
data, often without combining both to enhance predictive accuracy.
In particular, limited research has explored integrating breeding
values estimated through the best linear unbiased prediction
(BLUP) method with time-series meteorological data to predict
hybrid-specific yields. This gap in the literature presents an
opportunity for this study, which aims to combine these two data
types to develop a more accurate, interpretable, and adaptable yield
prediction model.

In recent years, the field of crop breeding has shifted from
Breeding 3.0 to Breeding 4.0, driven by the integration of advanced
technologies such as artificial intelligence (AI) and big data analytics
(Shen et al., 2022). Among Al applications in agriculture, machine
learning (ML) techniques have shown significant potential in
improving crop yield prediction models. Machine learning
algorithms, such as decision trees (Papageorgiou et al, 2011),
support vector machines (Sujay and Deka, 2014), and K-nearest
neighbors (Medar and Rajpurohit, 2014), have successfully
enhanced yield forecasting by incorporating both genotypic and
environmental data. More sophisticated approaches, including
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) (Sun et al., 2019), deep neural networks
(DNNs) (Khaki and Wang, 2019), and long short-term memory
networks (LSTMs) (Muruganantham et al, 2022), have further
improved predictive accuracy. Similar approaches have been used
in other crops like wheat, rice, and barley. For example, wheat yield
predictions have integrated genomic data with climate variables to
improve accuracy (Juliana et al., 2020), and similar approaches for
rice have combined weather data with genomic data to forecast
yields more reliably (Kumar et al., 2021). These studies highlight the
value of integrating breeding and environmental data to enhance
yield prediction models. However, a major challenge in adopting
machine learning techniques is the scarcity of large, high-quality
datasets required to train robust models. This issue is particularly
prominent in small- and medium-sized seed companies, which
often have limited trial sites and insufficient data for machine
learning model development (Tanwar et al, 2019; Sharma and
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Shivandu, 2024). Collaborative breeding initiatives that pool data
from multiple institutions have been proposed to address this
problem, but concerns over intellectual property and data privacy
pose significant barriers to effective collaboration (Newton et al.,
2020). These challenges highlight the need for innovative solutions
that enable collaboration without compromising sensitive data
(Bachmann et al., 2022).

Traditional crop growth models simulate plant development
under specific conditions but often fail to differentiate between
genotypes within the same crop species. Deep learning models like
CNNs and LSTMs offer high predictive power, but they require
large datasets and extensive computational resources. In contrast,
the machine learning algorithms used in this study are better suited
for moderate-sized datasets, offering improved interpretability—a
crucial feature for practical use in plant breeding (Niedbala, 2019).
This study presents an ML-based model to predict maize hybrid
yields using breeding genotype characteristics and meteorological
variables from trial locations. The model’s output will help in the
targeted evaluation of cultivars, allowing for better decision-making
in breeding programs.

The primary goal of this study is to develop a predictive model
for maize hybrid yields in specific regions using machine learning
techniques. This study focuses on three main objectives: (1) to
estimate the breeding values of different maize hybrids using the
Best Linear Unbiased Prediction (BLUP) method, which is crucial
for predicting hybrid yield; (2) to compare the performance of
different machine learning models in predicting maize yields,
identifying the most reliable approach; and (3) to support
practical decision-making by identifying the best regions for
planting specific genotypes and forecasting cultivar yields across
various regions. By integrating both breeding and environmental
data, this research bridges an important gap in crop yield prediction
and contributes to the development of more effective
breeding strategies.

2 Materials and methods

This study aims to predict maize yield using machine learning
techniques by incorporating various environmental and breeding
factors. The approach follows these steps:

1. Data Collection: The experiment relies on the input
breeding value of each hybrid and environmental data,
which include variables such as T2M (temperature), TMAX
(maximum temperature), TMIN (minimum temperature),
PRECTOT (total precipitation), WS2M (wind speed at 2
meters), RH2M (relative humidity), and others. These
predictors are linked to maize yield outcomes and serve
as the foundational data for model training.

2. Machine Learning Models: Four machine learning models
were trained and used for prediction: Random Forest (RF),
Extreme Gradient Boosting (XGBoost), Support Vector
Regression (SVR), and Gaussian Process Regression
(GPR). These models were selected for their ability to
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handle complex, non-linear relationships between
environmental inputs and maize yield. The models were
trained on historical data to learn the patterns of
yield prediction.

. Model Interpretability: To enhance interpretability, the
relative importance of the predictors was analyzed using
the trained models. This step helps in understanding which
environmental factors have the greatest influence on the
predicted maize yield. The importance of each predictor is
visualized in a bar chart, where variables like temperature
and precipitation stand out as key influences.

. Model Evaluation: The performance of each model was
evaluated using scatter plots that compare the predicted
yields against the actual yields. These plots help visualize
how well each model fits the data, with a focus on reducing
errors in prediction.

. Future Yield Prediction: The best-performing model was
then used to predict future maize yields for the next 30
years (2025-2054). These predictions are visualized as a
time series graph, providing a forecast of maize yield trends
over the coming decades, taking into account the
environmental variables and their predicted changes.
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2.1 Experimental materials and data
sources

This study was conducted in the major maize-producing area of
mainland China — the Huang-Huai-Hai (HHH) Plain (Figure 1).
This region encompasses Shandong, Henan, southern Hebei,
southern Shanxi, Guanzhong, and southern Shaanxi, as well as
northern Jiangsu and northern Anhui, representing approximately
31.86% of the total national maize cultivation area (Yue et al., 2022).

This study developed a model based on yield data from regional
trials of 64 locations and 57 maize hybrids in the HHH ecological
region of China, spanning from 2016 to 2019. The histogram
illustrating the yield frequency distribution across all trials is
presented in Figure 2. Field trials were coordinated by the Grain and
Oil Crop Research Institute of the Hebei Academy of Agriculture and
Forestry Sciences, which supplied both the yield and meteorological
data. Each experimental plot consisted of five rows, 6.7 meters long,
with a spacing of 0.6 meters between rows. The total plot area was 20.1
square meters (6.7 m x 3 m). Sowing took place from late May to early
June, with a planting density of 75,000 plants per hectare, and the
experimental design followed a randomized block pattern with three
replications. The crop was harvested between late September and early
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FIGURE 1
Map of the study area.
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FIGURE 2
Histogram of the yield frequency distribution from 2016 to 2019.

October. Throughout the growing season, agronomic practices were
carried out following local field management standards. The maize
yield prediction model was developed using meteorological data from
the 64 trial locations spread across various counties. This
meteorological dataset, which included 19 types of time-series
variables (Table 1), was obtained from weather observation stations
in these counties. The average meteorological values during the growth
period were calculated on the basis of the growth cycle of each hybrid
and used as input variables for the model.

2.2 Definition and calculation of breeding
value

The additive effect represents the genetic impact that can be
reliably transmitted to progeny, as described by quantitative genetics
theory. This effect is quantified through the breeding value, which
measures the cumulative impact of the alleles an individual possesses
(Miller et al., 2018). The breeding value reflects the overall average
contributions of all genes within an individual's genetic makeup
(Wang et al,, 2019). Generally, genotype x environment (G x E)
interactions are characterized by the combined effects of genotype (G),
location (L), and trial year (tY), as well as the interactions between
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genotype and location (G x L), genotype and year (G x tY), year and
location (tY x L), and genotype, location, and year (G x L x tY). These
interactions are often examined using a mixed linear model
framework (Yue et al., 2025), as shown in Equation 1.

Y = u+tYi+ L+ G + tYLy + tYGy + LG + tYLGy; +e - (1)

where Y denotes the observation of a specific hybrid during trial
year k at location j; i represents the overall mean; 1Y indicates the
effect associated with the kth trial year; L; signifies the effect of the jth
reflects the effect of the ith hybrid, which
corresponds to the breeding value of that genotype; tYLy; captures

trial location; G;

the interaction effect between trial year and location; tYGy; denotes
the interaction effect between trial year and genotype; LGj; represents
the interaction effect between trial location and genotype; tYLGyj
indicates the interaction effect among trial year, location, and
genotype; and e is the random error term. In the model, L; and tY}
are fixed effects and random effects, respectively (Fan et al., 2007).
The best linear unbiased prediction (BLUP) is a widely recognized
method for estimating the random effects within a mixed linear model.
Originally developed for animal breeding to evaluate breeding values,
this technique has since been extensively applied in plant breeding and
genotype evaluation (Piepho et al,, 2008). In this study, the breeding
values obtained for various maize hybrids were used to construct a
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TABLE 1 The environmental factors used in this research.

!
=
~+

Environmental factor

All sky insolation incident on a horizontal surface ASKSW MJ m-2 d-1
Downward thermal infrared (longwave) radiative flux ASKLW MJ m-2 d-1
Extraterrestrial radiation RTA MJ m-2 d-1
Wind speed at 2 m above the surface of the earth WS2M m s—1
Minimum air temperature at 2 above the surface of the earth Cd-1
TMIN

Average air temperature at 2 above the surface of the earth oCd-1
T2M

Maximum air temperature at 2 above the surface of the earth Cd-1
TMAX

Dew-point temperature at 2 m above the surface of the earth Cd-1

T2MDEW

Relative air humidity at 2 above the surface of the earth RH2M = %

Rainfall precipitation PRECTOT mm d -1
Temperature range TRANGE °Cd-1
Potential evapotranspiration ETP mm d-1
Deficit by precipitation PETP mmd-1
Vapor pressure deficit VPD kPad-1
Slope of saturation vapor pressure curve SPV kPa °C d-1
Effect of temperature on radiation-use efficiency FRUE from 0 to 1
Growing degree day GDD °C d-1
Actual duration of sunshine n h

Daylight hours N h

model for forecasting maize yields. Using multilocation trial data
collected from maize hybrids in the HHH region between 2016 and
2019, the breeding value for each hybrid was computed using the Imer
function from the Ime4 package in R software (Bates et al., 2015). The
breeding values for each maize hybrid were shown in the form of a
scatter plot (Figure 3).

2.3 Modelling methodology

2.3.1 Random forest model

The RF algorithm (Breiman, 2001) was used to model nonlinear
relationships between maize yield and meteorological features. The
number of trees (n_estimators = 100-1000), maximum depth
(max_depth = 3-20), and minimum samples per leaf
(min_samples_leaf = 1-5) were optimized via grid search
combined with 10-fold cross-validation. Furthermore, RF
provides reliable estimates of test errors with minimal
computational overhead during model training. A notable
advantage of the RF model is its ability to assess feature
importance, which identifies the most influential variables in the
dataset. In this study, feature importance was evaluated using the
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“%IncMSE” metric, which measures the change in model accuracy
(quantified by the mean squared error) when the values of a given
variable are randomly shuffled (Benos et al, 2021). Numerous
studies have demonstrated that RF generally outperforms other
machine learning techniques in agricultural research.

2.3.2 Extreme gradient boosting

XGBoost is a powerful machine learning algorithm based on
gradient boosting that sequentially builds models by adding new
trees to correct the errors of the existing ensemble (Niedbata, 2019).
Each new tree is trained to predict the residual errors of the
combined output from all previously constructed trees. The final
prediction is obtained by summing the outputs of all trees in the
model. To prevent overfitting and enhance performance, XGBoost
incorporates a regularization term. The algorithm minimizes a
specified loss function, such as the mean squared error (MSE) for
regression tasks, through gradient descent optimization. Given its
high predictive accuracy, scalability, and computational efficiency,
XGBoost is particularly well-suited for large-scale applications, such
as maize yield prediction.

2.3.3 Support vector regression

Support Vector Regression (SVR) is a regression extension of
the Support Vector Machine (SVM) designed for predicting
continuous outcomes (Speiser et al, 2019). SVR aims to
approximate the data within a specified margin of tolerance,
known as the epsilon (€\epsilon€) margin. The model minimizes
the error while ensuring that most data points are within this
margin. To make predictions, SVR maps the input features into a
higher-dimensional space using a kernel function, such as the radial
basis function (RBF) kernel, which enables the model to capture
complex, nonlinear relationships between the input features and the
target variable. The regularization parameter CCC controls the
trade-off between maximizing the margin and minimizing the
error. SVR is particularly effective for small to medium-sized
datasets and excels in modelling nonlinear patterns in the data.

2.3.4 Gaussian process regression

Gaussian Process Regression (GPR) is a probabilistic model for
regression tasks that provides both predictions and uncertainty
estimates. GPR models the target variable as a realization of a
multivariate Gaussian distribution, where each observed data point
is correlated with others on the basis of a covariance function
(kernel). This function determines the smoothness and scale of the
relationships between the input features and the target variable.
GPR computes the posterior distribution over the function space,
allowing the model to provide not only a prediction but also the
uncertainty associated with that prediction. The model's flexibility
in capturing complex nonlinear relationships makes it well-suited
for maize yield prediction, especially when the data are noisy or
when the underlying function is highly uncertain. The main
challenge of GPR is its computational complexity, as it requires
the inversion of a covariance matrix, which can become expensive
for large datasets (Zhang et al., 2020).
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The breeding values of the tested genotypes in the HHH area.

2.3.5 Metrics used to assess the models

In the process of model evaluation, the coefficient of
determination (R%), root mean square error (RMSE), the relative
root-mean-square error (RRMSE), mean absolute error (MAE), and
mean absolute percentage error (MAPE) were adopted as
evaluation metrics. R* is a statistical measure that represents the
proportion of the variance in the dependent variable that is
predictable from the independent variables. It is computed as the
ratio of the explained variance to the total variance. This metric is
defined in Equation 2. R? ranges from 0 to 1, where 1 indicates that
the model perfectly explains the variance of the dependent variable,
and 0 indicates that the model explains none of the variance. The
RMSE is the square root of the mean of the squared differences
between the observed values and the predicted values. It measures
the average magnitude of the prediction error and is defined in
Equation 3. The RMSE reflects how much error there is in the
predictions, with lower RMSE values indicating better predictive
accuracy. RRMSE is the RMSE normalized by the range or mean of
the observed values, allowing for easier comparison across different
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datasets or models and is defined in Equation 4. RRMSE provides a
relative measure of prediction error, making it easier to assess the
performance of models with different scales. MAE is the average of
the absolute differences between the observed values and the
predicted values. It provides a straightforward measure of how far
off predictions are, without considering the direction of the errors.
This metric is defined in Equation 5. The MAE gives a simple and
interpretable value that reflects the average magnitude of the errors,
with smaller values indicating better model performance. The
MAPE measures the mean absolute percentage errors between the
observed values and the predicted values. It expresses the prediction
error as a percentage, making it easier to understand the relative
error, and it is defined in Equation 6. The MAPE provides a
percentage-based error measure, with lower values indicating
better model accuracy.
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where n, y;, and y; represent the ith number of observations, ith
predicted value, and ith mean of the observed values, respectively.

Each machine learning model underwent hyperparameter
tuning using grid search and cross-validation. For the RF model,
parameters such as number of trees (n_estimators), maximum
depth (max depth), and minimum samples per leaf
(min_samples_leaf) were optimized.

2.4 Experimental environment and
statistical software

The computer information used in this research is as follows:
operating system: Microsoft Windows 10 Home (Version
10.0.19045); processor (CPU): Intel Core i5-1035G1 @ 1.00 GHz
(with a boost to 1190 MHz); BIOS: Insydel F.06, 2020/4/8; system
manufacturer: HP; System Model: HP Pavilion Laptop 15-cs3xxx;
and RAM: 8.00 GB. All the statistical analyses used in this study
were conducted using R version 4.3.1, with breeding values using
the Ime4 (v1.1-34) package and model predictions for RF, XGBoost,
SVR, and GPR in machine learning using the xgboost (v1.7.5.1),
el071 (v1.7-13), and kernlab (v0.9-32) packages, respectively.

3 Results

3.1 Evaluation of the four machine learning
models

The dataset was randomly divided into training (80%) and test
(20%) subsets, containing 1,676 and 420 samples, respectively. Each

10.3389/fpls.2025.1722068

model underwent hyperparameter optimization using the training
data, and the optimized model was subsequently validated on the
test dataset. Model performance was evaluated using the statistical
metrics R%, RMSE, RRMSE, MAE, and MAPE (Table 2). All four
models—Random Forest (RF), Extreme Gradient Boosting
(XGBoost), Support Vector Regression (SVR), and Gaussian
Process Regression (GPR)—demonstrated acceptable predictive
capability for maize yield, with R* values exceeding 0.5. The RF
model achieved the best overall performance. It obtained an R* of
0.79 and an RMSE of 812.4 kg ha™* on the training dataset, and
corresponding values of 0.64 and 1010.6 kg ha™* on the independent
test dataset. The R* value of 0.79 for the RF model was calculated
based on the comparison between the predicted and observed yields
within the training dataset itself, reflecting the in-sample fit of the
model. The moderate decline in performance (approximately 24%
increase in RMSE) between the training and test datasets is within
the expected range for machine learning models, indicating that the
RF model maintained strong generalization capability without
overfitting. According to Niedbata et al. (2019), models with
MAPE < 9% can be classified as highly accurate. The RF model
achieved R* = 0.64, RMSE = 1010.59 kg ha™', RRMSE = 10.32%,
MAE = 743.89 kg ha’, and MAPE = 8.25%, qualifying it as highly
accurate. Although XGBoost, SVR, and GPR performed slightly
worse, all models achieved R*> > 0.5, confirming their
predictive utility.

Figure 4 presents scatterplots comparing the observed and
predicted maize yields for the four models. The red line
represents the 1:1 reference line, where perfect predictions would
lie. The color of each point indicates the trial year (2016-2019), and
the point size reflects the number of observations per experimental
location. To maintain visual clarity, 95% confidence intervals are
not shown, but model uncertainty was quantitatively evaluated
using the statistical indicators in Table 2. The RF model exhibited
the closest alignment of points to the 1:1 line and the smallest
residual dispersion, confirming its superior predictive reliability and
stability across different environments.

3.2 Relative importance of predictors in
estimating maize yields

To explore which environmental factors have the greatest
impact on the model's regression prediction ability, we used MSE

TABLE 2 Exponential comparison metrics of the four forecasting models used in this study.

RMSE (kg/ha)

RF 0.64 1010.59
XGBoost 0.54 1141.99
SVR 0.53 1152.34
GPR 0.52 1157.43

Metrics
RRMSE (%) MAE (kg/ha) MAPE (%)
10.32 743.89 8.25
11.66 841.54 9.22
11.77 863.14 9.73
11.82 892.61 9.94

R, coefficient of determination; RMSE, root mean square error; RRMSE, relative root mean square error; MAE, mean absolute error; MAPE, mean the absolute percentage error; FR, random

forest; XGBoost, extreme gradient boosting; SVR, support vector regression; GPR, Gaussian process regression.
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FIGURE 4

Comparison between observed and predicted maize yields for the four machine learning models: (A) RF, (B) XGBoost, (C) SVR, and (D) GPR.

decrease to visualize the importance of these environmental factors
in this study. As shown in Figure 5, key predictors influencing maize
yields within the RF model can be identified through variable
importance analysis. These predictors are assessed using the
"percentage increase in the mean square error’ (MSE%) metric,
where a greater increase in MSE% signifies a more influential
variable. The findings revealed that breeding value stands out as
the most critical factor affecting maize yields. This breeding value
reflects the combined effect of genes, which significantly impacts
yield determination. Among the meteorological variables,
downwards longwave radiation flux (ASKLW), sunshine duration
(n), precipitation deficit (PETP), and potential evapotranspiration
(ETP) were identified as the most significant contributors to maize
yields, followed by and surface-level wind speed (WS2M). In

contrast, the temperature range (TRANGE) had the smallest
effect on yield predictions among all the variables.

Before delving into the specifics of the performance of our
machine learning models, it is important to understand the
variations in the predictive accuracy as the number of features in
the dataset increases. Figure 6 shows the variations in the
correlation coefficient (r) and mean absolute error (MAE) as the
feature set size changes, one feature at a time, according to
the ranking presented in Figure 4. The increases in r and
decreases in the MAE are not uniform; instead, a notable peak
occurs with the top five features: the breeding value, ASKLW, n,
PETP, and ETP. When the random forest (RF) model utilizes these
five features for forecasting maize yield, it achieves an explanatory
power of over 75% (with an MAE of approximately 800 kg ha™). In

Feature importance with random forest
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The relative importance of predictors in estimating yield based on the RF model.
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Variation in the Pearson’s correlation coefficient and mean absolute error (MAE).

contrast, the model’s predictive performance decreases to
approximately 50% (with an MAE exceeding 1000 kg ha™') if the
features n, PETP, and ETP are excluded.

3.3 Partial dependence profiles (PDPs) for
the random forest model

We explore the partial dependence profiles (PDPs) of various
features included in our random forest model. These plots provide
valuable insights into how each feature influences the model's
predictions, with other variables held constant. By analysing the
shape and trends of these curves, we can identify the most influential
variables and their relationships with the predicted yield. This
analysis helps to highlight key features that contribute significantly
to the model’s performance, and guide further feature engineering or
refinement of the model (Figure 7). According to the PDP results, an
increase in breeding value leads to a higher predicted yield for maize
hybrids. However, when the daily average temperature (T2M)
exceeds 24.5°C d7', the maximum temperature (TMAX) exceeds
31°C d'%, the minimum temperature (TMIN) exceeds 19°C d’!, and
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the dew point temperature (T2MDEW) exceeds 16°C, the yield
decreases. A relative humidity (RH) greater than 60%, downwards
thermal infrared (longwave) radiative flux (ASKLW) greater than 380
MJ MJ m* d°', all-sky insolation incident on a horizontal surface
(ASKSW) below 19 MJ m > d™', and growing degree days (GDD)
exceeding 14°C d™' have minimal impacts on yield. Conversely,
rainfall precipitation (PRECTOT) above 5 mm and a wind speed at
2 m above the surface of the earth (WS2M) above 2.25 m/s result in
yield reduction. As a short-day plant, maize has little variation in
yield when the daily photoperiod is shorter than 13.6 hours.
Extraterrestrial radiation (RTA) above 37 MJ m™> d™' also has a
negligible effect on yield variation. In contrast, vapor pressure deficit
(VPD) below 2.0 kPa d™' and saturation vapor pressure (SPV) below
0.19 kPad ™" both contribute to an increase in yield.

3.4 Maize production forecast between
2025 and 2054

Using the optimized RF model, maize yields from 2025 to 2054
were projected based on meteorological and genetic inputs derived
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from the 2016-2019 dataset (Figure 8). The forecast indicates
noticeable interannual variation throughout the 30-year period.
The highest predicted yield (11,508 kg ha™) occurs in 2041, whereas
the lowest yield (9,245 kg ha™) is expected in 2033. The production
decline in 2032-2033 corresponds to years with severe precipitation
deficit (PETP > 90 mm) and maximum temperatures above 32 °C,
implying intensified drought and heat stress during grain filling. In
contrast, the yield increase in 2041-2042 aligns with moderate solar
radiation (ASKSW =~ 21 MJ m* day ') and optimal growing degree
days (GDD = 12-14 °C day™'), which promote photosynthesis and
kernel development. These findings suggest that fluctuations in
future maize yield are primarily driven by temperature extremes
and moisture imbalance, emphasizing the need for adaptive
breeding and management strategies under changing

climatic conditions.
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4 Discussion

4.1 Comparative performance of machine
learning models

We prioritized algorithms with a strong track record on tabular
agro-environmental data—Random Forest (RF), XGBoost, Support
Vector Regression (SVR), and Gaussian Process Regression (GPR)
—because they balance accuracy, robustness, and interpretability in
breeding and management contexts. Across the held-out test set in
our study, RF delivered the highest accuracy (R* = 0.64; RMSE =
1010.6 kg ha™'; MAPE = 8.25%), outperforming XGBoost, SVR, and
GPR. To place this in context, our RF performance aligns well with
independent maize-yield studies that report mid-range explanatory
power (R*~0.50-0.70). For example, using city-level statistics and
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Predicted maize yield based on random forest from 2025 to 2054.

multi-source environmental data across China, Chen et al. (2021)
reported RF correlation R = 0.806 for maize, corresponding to R* =
0.65—essentially the same explanatory level as our test-set RF (R* =
0.64). Likewise, a county-scale satellite-meteorology EC-LUE
framework on the North China Plain reproduced 64% of the
variance in maize yield at county scale (R* = 0.64), and province-
stratified analyses in the same study showed R*> = 0.57 (Henan) to
0.58 (Shandong), i.e., within the same performance band as our
model (Hai et al., 2023). Together, these references indicate that
achieving R*> around 0.60 with region-scale, multi-environment
datasets is both realistic and competitive for operational yield
prediction. By identifying high-yield hybrids tailored to specific
environmental conditions, farmers can optimize their cultivation
strategies, increasing productivity and sustainability in maize
production (Cairns et al., 2012; Erenstein et al., 2022).
Additionally, the insights gained from the variable importance
analysis can guide breeders in prioritizing the most influential
traits, such as breeding value and specific meteorological
parameters, further refining the development of high-yielding
hybrids (Xu et al., 2020; Farooq et al., 2024).

Why did RF outperform XGBoost, SVR, and GPR here? First, RF
can capture heterogeneous, nonlinear interactions between breeding
value and weather covariates without heavy feature engineering, while
remaining relatively insensitive to hyperparameter misspecification.
Second, RF’s built-in out-of-bag/aggregation reduces variance and
mitigates overfitting on moderate-size, noisy multi-location trial data.
This is consistent with prior agronomic findings that tree-based
ensembles are reliable baselines for regional maize yield forecasting
under mixed genetic-environmental drivers (Jeong et al., 2016). From
a practical standpoint, our RF result (R* = 0.64) compares favorably
with these peer studies in the same R* band (=0.57-0.65) while
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additionally providing feature importance that breeders can act on
(e.g., breeding value and key hydro-radiative variables). In sum, within
the commonly observed 0.50-0.70 R* range for regional maize yield
prediction, our model sits near the upper end and offers
interpretable diagnostics useful for cultivar recommendation and

management planning.

4.2 Importance of predictors in maize yield
estimation

The variable importance analysis revealed that breeding value is
the most critical predictor of maize yield. This finding aligns with
the fundamental role of genetic traits in determining crop
performance (Crossa et al, 2010). Among the meteorological
factors, downwards longwave radiation flux (ASKLW), sunshine
duration (n), precipitation deficit (PETP), and potential
evapotranspiration (ETP) emerged as the most significant
contributors to yield prediction. These findings corroborate
previous studies emphasizing the importance of radiation and
water availability in crop development (Jones et al.,, 2003; Lobell
etal, 2014). Interestingly, temperature-related variables, such as the
temperature range (TRANGE), were found to have minimal
influence on yield predictions. This contrasts with previous
studies (Tao and Zhang, 2013) that identified temperature as a
major determinant of maize growth. The minimal impact observed
in this study may be due to the relatively narrow range of
temperature variability in the data or the genetic adaptation of
the hybrids used in the trials. Further investigations are needed to
assess the interactions between temperature and other

environmental variables in maize production.

11 frontiersin.org


https://doi.org/10.3389/fpls.2025.1722068
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wang et al.

The partial dependence plots (PDPs) provided valuable insights
into the relationships between the predictors and maize yield. The
results highlight the nonlinear nature of these relationships, with
thresholds for key variables such as temperature, precipitation, and
wind speed. For example, yield reductions were observed when the
maximum temperature (TMAX) exceeded 31°C, emphasizing the
detrimental effects of heat stress on maize productivity. Similar
patterns were observed for excessive precipitation and wind speed,
which is consistent with the findings of Liu and Basso (2020). On
the other hand, some predictors, such as relative humidity (RH)
greater than 60% and extraterrestrial radiation (RTA) above 37 MJ/
m?/d, had negligible effects on yield. These results suggest that not
all environmental variables have a linear or significant effect on
maize production. This highlights the importance of feature
selection and model interpretability in machine learning
applications for agriculture.

4.3 Future yield trends and implications

The RF model’s projections for 2025-2054 revealed
pronounced year-to-year fluctuations in maize yield, reflecting
climate variability and its influence on crop growth. A yield
reduction of approximately 15.4% occurred between 2032 (10,924
kg ha™) and 2033 (9,245 kg ha™), coinciding with increased
precipitation deficit (PETP > 90 mm) and elevated maximum
temperatures (> 32 °C)—conditions indicative of combined
drought and heat stress. Similarly, a 16.5% decline from 2041
(11,508 kg ha™) to 2042 (9,604 kg ha™) corresponds to similar
climatic extremes. Conversely, yield surges of 18-19% between
2033-2035 and 2039-2040 were linked to more favorable
radiation and temperature conditions, particularly ASKSW = 21
MJ m™? d™* and GDD between 12-14 °C d*.

These findings are consistent with previous global climate
change assessments (Rosenzweig et al., 2014), confirming that
maize productivity will likely experience both opportunities and
challenges under future climatic variability. Importantly, the
developed modeling framework—integrating genetic (breeding
value) and climatic data—provides a practical tool for regional
yield forecasting and adaptive management. The approach could be
extended to other major maize-producing regions such as the U.S.
Corn Belt, South America, and sub-Saharan Africa, or even to other
cereal crops (e.g., wheat, rice, sorghum) that share similar
physiological responses to environmental stressors. Such
transferability would facilitate broader applications of data-driven
decision support in global food systems.

4.4 Limitations of the study and future
research directions

With the rise of foundation models and pretrained architectures in

computer vision and natural language processing, it is indeed possible
to adapt such models for agricultural prediction tasks. However, most
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existing foundation models are designed for unstructured data and
have not been tailored to structured, tabular formats such as breeding
datasets. While transfer learning holds promise, its application to
BLUP and genotype-environment datasets remains limited and
requires careful domain-specific adaptation. Future work will
explore the integration of pretrained models or hybrid frameworks,
particularly when multi-modal data (e.g., imagery, environmental
sensors) are available. Such extensions may further enhance
prediction performance, especially in data-scarce regions.

While this study demonstrates the efficacy of machine learning
approaches in yield prediction, it is essential to acknowledge certain
limitations. The model's performance depends inherently depends on
the quality and comprehensiveness of the input data. Future research
should aim to incorporate a broader range of environmental variables,
including soil health metrics to enhance the model's predictive
capabilities. Additionally, integrating real-time data sources such as
satellite imagery and IoT sensors could facilitate more dynamic yield
predictions that account for immediate changes in environmental
conditions (Sumathi et al, 2022). Additionally, the study focused
solely on maize hybrids; thus, extending the research to other crop
species could provide a more comprehensive understanding of the
applicability of machine learning models in diverse agricultural
systems. Exploring the interactions between various crops and
environmental factors may yield valuable insights into crop rotation
strategies, further contributing to improved food security.

5 Conclusion

This study developed a machine learning-based framework for
predicting maize yields, with the random forest (RF) model (with an
R? value of 0.64) demonstrating superior performance compared
with Extreme Gradient Boosting (XGBoost), Gaussian Process
Regression (GPR), and Support Vector Regression (SVR). The
analysis highlighted the importance of breeding value, and key
meteorological variables were highlighted, providing actionable
insights for breeders and farmers. Partial dependence plots
revealed nonlinear relationships between the predictors and yield,
underscoring the complexity of maize production systems. The
predictive capabilities of the model were further validated through
future yield forecasting, highlighting the potential impact of
climatic variability on maize production. By facilitating the
selection of high-yield hybrids suited to specific environments,
the proposed approach offers a cost-effective and efficient solution
for intelligent breeding and precision agriculture. Future research
should focus on expanding the dataset to include more diverse
environmental conditions and hybrid types and should explore the
integration of remote sensing data to increase model performance.
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