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Introduction: Accurate crop yield prediction is vital for ensuring global food security,

particularly amid growing environmental challenges such as climate change.

Although deep learning (DL) methods have shown potential in yield prediction,

they often demand large datasets and considerable computational resources.

Methods: To address these limitations, this study developed a machine learning

(ML) model to predict maize hybrid yields by integrating meteorological data with

breeder-level genetic information, specifically breeding values estimated using

the best linear unbiased prediction (BLUP) method. Four commonly used ML

algorithms—Random Forest (RF), XGBoost, Support Vector Regression (SVR), and

Gaussian Process Regression (GPR)—were evaluated and optimized through

hyperparameter tuning.

Results: Among these models, the RF algorithm achieved the best performance,

with a coefficient of determination (R²) of 0.64, a root mean square error (RMSE)

of 1010.59 kg/ha, a mean absolute error (MAE) of 743.89 kg/ha, a relative RMSE

(RRMSE) of 10.32%, and a mean absolute percentage error (MAPE) of 8.3%.

Discussion: These results demonstrate that the proposed RF-based model can

provide accurate yield predictions for specific maize cultivars under diverse

planting conditions. This predictive framework offers practical support for

farmers in selecting well-adapted hybrids and serves as a cost-effective,

efficient tool for breeders to identify high-yielding maize hybrids optimized for

particular environments. Consequently, the model promotes smarter breeding

strategies and more precise cultivation recommendations.
KEYWORDS
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1 Introduction

Food security is one of the most urgent global challenges today,

compounded by environmental degradation, water scarcity, and the

increasing threats posed by climate change (Sharma et al., 2022). As

the world’s population grows, the demand for agricultural

production rises. However, crop yields are highly sensitive to

fluctuations in climatic factors such as temperature, precipitation,

soil quality, and atmospheric humidity (Arora, 2019; Ortiz-Bobea

et al., 2021). These factors, which are subject to environmental

changes, complicate efforts to achieve stable crop yields and

threaten food supply stability in many regions (Razzaq et al.,

2021; Munaweera et al., 2022). As such, the ability to accurately

predict crop yield is increasingly crucial for modern breeding

programs focused on developing high-yielding and climate-

resilient crop varieties (Hafeez et al., 2023).

Despite the growing body of research on crop yield prediction,

challenges remain in integrating diverse data sources. Most studies

have either focused exclusively on genomic data or meteorological

data, often without combining both to enhance predictive accuracy.

In particular, limited research has explored integrating breeding

values estimated through the best linear unbiased prediction

(BLUP) method with time-series meteorological data to predict

hybrid-specific yields. This gap in the literature presents an

opportunity for this study, which aims to combine these two data

types to develop a more accurate, interpretable, and adaptable yield

prediction model.

In recent years, the field of crop breeding has shifted from

Breeding 3.0 to Breeding 4.0, driven by the integration of advanced

technologies such as artificial intelligence (AI) and big data analytics

(Shen et al., 2022). Among AI applications in agriculture, machine

learning (ML) techniques have shown significant potential in

improving crop yield prediction models. Machine learning

algorithms, such as decision trees (Papageorgiou et al., 2011),

support vector machines (Sujay and Deka, 2014), and K-nearest

neighbors (Medar and Rajpurohit, 2014), have successfully

enhanced yield forecasting by incorporating both genotypic and

environmental data. More sophisticated approaches, including

convolutional neural networks (CNNs) and recurrent neural

networks (RNNs) (Sun et al., 2019), deep neural networks

(DNNs) (Khaki and Wang, 2019), and long short-term memory

networks (LSTMs) (Muruganantham et al., 2022), have further

improved predictive accuracy. Similar approaches have been used

in other crops like wheat, rice, and barley. For example, wheat yield

predictions have integrated genomic data with climate variables to

improve accuracy (Juliana et al., 2020), and similar approaches for

rice have combined weather data with genomic data to forecast

yields more reliably (Kumar et al., 2021). These studies highlight the

value of integrating breeding and environmental data to enhance

yield prediction models. However, a major challenge in adopting

machine learning techniques is the scarcity of large, high-quality

datasets required to train robust models. This issue is particularly

prominent in small- and medium-sized seed companies, which

often have limited trial sites and insufficient data for machine

learning model development (Tanwar et al., 2019; Sharma and
Frontiers in Plant Science 02
Shivandu, 2024). Collaborative breeding initiatives that pool data

from multiple institutions have been proposed to address this

problem, but concerns over intellectual property and data privacy

pose significant barriers to effective collaboration (Newton et al.,

2020). These challenges highlight the need for innovative solutions

that enable collaboration without compromising sensitive data

(Bachmann et al., 2022).

Traditional crop growth models simulate plant development

under specific conditions but often fail to differentiate between

genotypes within the same crop species. Deep learning models like

CNNs and LSTMs offer high predictive power, but they require

large datasets and extensive computational resources. In contrast,

the machine learning algorithms used in this study are better suited

for moderate-sized datasets, offering improved interpretability—a

crucial feature for practical use in plant breeding (Niedbała, 2019).

This study presents an ML-based model to predict maize hybrid

yields using breeding genotype characteristics and meteorological

variables from trial locations. The model’s output will help in the

targeted evaluation of cultivars, allowing for better decision-making

in breeding programs.

The primary goal of this study is to develop a predictive model

for maize hybrid yields in specific regions using machine learning

techniques. This study focuses on three main objectives: (1) to

estimate the breeding values of different maize hybrids using the

Best Linear Unbiased Prediction (BLUP) method, which is crucial

for predicting hybrid yield; (2) to compare the performance of

different machine learning models in predicting maize yields,

identifying the most reliable approach; and (3) to support

practical decision-making by identifying the best regions for

planting specific genotypes and forecasting cultivar yields across

various regions. By integrating both breeding and environmental

data, this research bridges an important gap in crop yield prediction

and contributes to the development of more effective

breeding strategies.
2 Materials and methods

This study aims to predict maize yield using machine learning

techniques by incorporating various environmental and breeding

factors. The approach follows these steps:
1. Data Collection: The experiment relies on the input

breeding value of each hybrid and environmental data,

which include variables such as T2M (temperature), TMAX

(maximum temperature), TMIN (minimum temperature),

PRECTOT (total precipitation), WS2M (wind speed at 2

meters), RH2M (relative humidity), and others. These

predictors are linked to maize yield outcomes and serve

as the foundational data for model training.

2. Machine Learning Models: Four machine learning models

were trained and used for prediction: Random Forest (RF),

Extreme Gradient Boosting (XGBoost), Support Vector

Regression (SVR), and Gaussian Process Regression

(GPR). These models were selected for their ability to
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Fron
handle complex, non-linear relationships between

environmental inputs and maize yield. The models were

trained on historical data to learn the patterns of

yield prediction.

3. Model Interpretability: To enhance interpretability, the

relative importance of the predictors was analyzed using

the trained models. This step helps in understanding which

environmental factors have the greatest influence on the

predicted maize yield. The importance of each predictor is

visualized in a bar chart, where variables like temperature

and precipitation stand out as key influences.

4. Model Evaluation: The performance of each model was

evaluated using scatter plots that compare the predicted

yields against the actual yields. These plots help visualize

how well each model fits the data, with a focus on reducing

errors in prediction.

5. Future Yield Prediction: The best-performing model was

then used to predict future maize yields for the next 30

years (2025–2054). These predictions are visualized as a

time series graph, providing a forecast of maize yield trends

over the coming decades, taking into account the

environmental variables and their predicted changes.
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2.1 Experimental materials and data
sources

This study was conducted in the major maize-producing area of

mainland China — the Huang-Huai-Hai (HHH) Plain (Figure 1).

This region encompasses Shandong, Henan, southern Hebei,

southern Shanxi, Guanzhong, and southern Shaanxi, as well as

northern Jiangsu and northern Anhui, representing approximately

31.86% of the total national maize cultivation area (Yue et al., 2022).

This study developed a model based on yield data from regional

trials of 64 locations and 57 maize hybrids in the HHH ecological

region of China, spanning from 2016 to 2019. The histogram

illustrating the yield frequency distribution across all trials is

presented in Figure 2. Field trials were coordinated by the Grain and

Oil Crop Research Institute of the Hebei Academy of Agriculture and

Forestry Sciences, which supplied both the yield and meteorological

data. Each experimental plot consisted of five rows, 6.7 meters long,

with a spacing of 0.6 meters between rows. The total plot area was 20.1

square meters (6.7 m × 3 m). Sowing took place from late May to early

June, with a planting density of 75,000 plants per hectare, and the

experimental design followed a randomized block pattern with three

replications. The crop was harvested between late September and early
FIGURE 1

Map of the study area.
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October. Throughout the growing season, agronomic practices were

carried out following local field management standards. The maize

yield prediction model was developed using meteorological data from

the 64 trial locations spread across various counties. This

meteorological dataset, which included 19 types of time-series

variables (Table 1), was obtained from weather observation stations

in these counties. The average meteorological values during the growth

period were calculated on the basis of the growth cycle of each hybrid

and used as input variables for the model.
2.2 Definition and calculation of breeding
value

The additive effect represents the genetic impact that can be

reliably transmitted to progeny, as described by quantitative genetics

theory. This effect is quantified through the breeding value, which

measures the cumulative impact of the alleles an individual possesses

(Müller et al., 2018). The breeding value reflects the overall average

contributions of all genes within an individual's genetic makeup

(Wang et al., 2019). Generally, genotype × environment (G × E)

interactions are characterized by the combined effects of genotype (G),

location (L), and trial year (tY), as well as the interactions between
Frontiers in Plant Science 04
genotype and location (G × L), genotype and year (G × tY), year and

location (tY × L), and genotype, location, and year (G × L × tY). These

interactions are often examined using a mixed linear model

framework (Yue et al., 2025), as shown in Equation 1.

Y = m + tYk + Lj + Gi + tYLkj + tYGki + LGji + tYLGkji + e (1)

where Y denotes the observation of a specific hybrid during trial

year k at location j; m represents the overall mean; tYk indicates the

effect associated with the kth trial year; Lj signifies the effect of the jth

trial location; Gi   reflects the effect of the ith hybrid, which

corresponds to the breeding value of that genotype; tYLkj  captures

the interaction effect between trial year and location;  tYGki denotes

the interaction effect between trial year and genotype; LGji represents

the interaction effect between trial location and genotype; tYLGkji

indicates the interaction effect among trial year, location, and

genotype; and e is the random error term. In the model, Lj and tYk

are fixed effects and random effects, respectively (Fan et al., 2007).

The best linear unbiased prediction (BLUP) is a widely recognized

method for estimating the random effects within amixed linear model.

Originally developed for animal breeding to evaluate breeding values,

this technique has since been extensively applied in plant breeding and

genotype evaluation (Piepho et al., 2008). In this study, the breeding

values obtained for various maize hybrids were used to construct a
FIGURE 2

Histogram of the yield frequency distribution from 2016 to 2019.
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model for forecasting maize yields. Using multilocation trial data

collected from maize hybrids in the HHH region between 2016 and

2019, the breeding value for each hybrid was computed using the lmer

function from the lme4 package in R software (Bates et al., 2015). The

breeding values for each maize hybrid were shown in the form of a

scatter plot (Figure 3).
2.3 Modelling methodology

2.3.1 Random forest model
The RF algorithm (Breiman, 2001) was used to model nonlinear

relationships between maize yield and meteorological features. The

number of trees (n_estimators = 100–1000), maximum depth

(max_depth = 3–20), and minimum samples per leaf

(min_samples_leaf = 1–5) were optimized via grid search

combined with 10-fold cross-validation. Furthermore, RF

provides reliable estimates of test errors with minimal

computational overhead during model training. A notable

advantage of the RF model is its ability to assess feature

importance, which identifies the most influential variables in the

dataset. In this study, feature importance was evaluated using the
Frontiers in Plant Science 05
“%IncMSE” metric, which measures the change in model accuracy

(quantified by the mean squared error) when the values of a given

variable are randomly shuffled (Benos et al., 2021). Numerous

studies have demonstrated that RF generally outperforms other

machine learning techniques in agricultural research.

2.3.2 Extreme gradient boosting
XGBoost is a powerful machine learning algorithm based on

gradient boosting that sequentially builds models by adding new

trees to correct the errors of the existing ensemble (Niedbała, 2019).

Each new tree is trained to predict the residual errors of the

combined output from all previously constructed trees. The final

prediction is obtained by summing the outputs of all trees in the

model. To prevent overfitting and enhance performance, XGBoost

incorporates a regularization term. The algorithm minimizes a

specified loss function, such as the mean squared error (MSE) for

regression tasks, through gradient descent optimization. Given its

high predictive accuracy, scalability, and computational efficiency,

XGBoost is particularly well-suited for large-scale applications, such

as maize yield prediction.

2.3.3 Support vector regression
Support Vector Regression (SVR) is a regression extension of

the Support Vector Machine (SVM) designed for predicting

continuous outcomes (Speiser et al., 2019). SVR aims to

approximate the data within a specified margin of tolerance,

known as the epsilon (∈\epsilon∈) margin. The model minimizes

the error while ensuring that most data points are within this

margin. To make predictions, SVR maps the input features into a

higher-dimensional space using a kernel function, such as the radial

basis function (RBF) kernel, which enables the model to capture

complex, nonlinear relationships between the input features and the

target variable. The regularization parameter CCC controls the

trade-off between maximizing the margin and minimizing the

error. SVR is particularly effective for small to medium-sized

datasets and excels in modelling nonlinear patterns in the data.

2.3.4 Gaussian process regression
Gaussian Process Regression (GPR) is a probabilistic model for

regression tasks that provides both predictions and uncertainty

estimates. GPR models the target variable as a realization of a

multivariate Gaussian distribution, where each observed data point

is correlated with others on the basis of a covariance function

(kernel). This function determines the smoothness and scale of the

relationships between the input features and the target variable.

GPR computes the posterior distribution over the function space,

allowing the model to provide not only a prediction but also the

uncertainty associated with that prediction. The model's flexibility

in capturing complex nonlinear relationships makes it well-suited

for maize yield prediction, especially when the data are noisy or

when the underlying function is highly uncertain. The main

challenge of GPR is its computational complexity, as it requires

the inversion of a covariance matrix, which can become expensive

for large datasets (Zhang et al., 2020).
TABLE 1 The environmental factors used in this research.

Environmental factor Unit

All sky insolation incident on a horizontal surface ASKSW MJ m−2 d−1

Downward thermal infrared (longwave) radiative flux ASKLW MJ m−2 d−1

Extraterrestrial radiation RTA MJ m−2 d−1

Wind speed at 2 m above the surface of the earth WS2M m s−1

Minimum air temperature at 2 above the surface of the earth
TMIN

°C d −1

Average air temperature at 2 above the surface of the earth
T2M

°C d −1

Maximum air temperature at 2 above the surface of the earth
TMAX

°C d −1

Dew-point temperature at 2 m above the surface of the earth
T2MDEW

°C d −1

Relative air humidity at 2 above the surface of the earth RH2M %

Rainfall precipitation PRECTOT mm d −1

Temperature range TRANGE °C d−1

Potential evapotranspiration ETP mm d−1

Deficit by precipitation PETP mm d−1

Vapor pressure deficit VPD kPa d−1

Slope of saturation vapor pressure curve SPV kPa °C d−1

Effect of temperature on radiation-use efficiency FRUE from 0 to 1

Growing degree day GDD °C d−1

Actual duration of sunshine n h

Daylight hours N h
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2.3.5 Metrics used to assess the models
In the process of model evaluation, the coefficient of

determination (R2), root mean square error (RMSE), the relative

root-mean-square error (RRMSE), mean absolute error (MAE), and

mean absolute percentage error (MAPE) were adopted as

evaluation metrics. R2 is a statistical measure that represents the

proportion of the variance in the dependent variable that is

predictable from the independent variables. It is computed as the

ratio of the explained variance to the total variance. This metric is

defined in Equation 2. R2 ranges from 0 to 1, where 1 indicates that

the model perfectly explains the variance of the dependent variable,

and 0 indicates that the model explains none of the variance. The

RMSE is the square root of the mean of the squared differences

between the observed values and the predicted values. It measures

the average magnitude of the prediction error and is defined in

Equation 3. The RMSE reflects how much error there is in the

predictions, with lower RMSE values indicating better predictive

accuracy. RRMSE is the RMSE normalized by the range or mean of

the observed values, allowing for easier comparison across different
Frontiers in Plant Science 06
datasets or models and is defined in Equation 4. RRMSE provides a

relative measure of prediction error, making it easier to assess the

performance of models with different scales. MAE is the average of

the absolute differences between the observed values and the

predicted values. It provides a straightforward measure of how far

off predictions are, without considering the direction of the errors.

This metric is defined in Equation 5. The MAE gives a simple and

interpretable value that reflects the average magnitude of the errors,

with smaller values indicating better model performance. The

MAPE measures the mean absolute percentage errors between the

observed values and the predicted values. It expresses the prediction

error as a percentage, making it easier to understand the relative

error, and it is defined in Equation 6. The MAPE provides a

percentage-based error measure, with lower values indicating

better model accuracy.

R2 = 1 −oi(yi − ŷ i)
2

oi(yi − �y)2
  (2)
FIGURE 3

The breeding values of the tested genotypes in the HHH area.
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
noi

(yi − ŷ i)
2

s
(3)

RRMSE =
RMSE
mean(y)

(4)

MAE =
1
noi

yi − ŷ ij j (5)

MAPE =
1
noi

yi � ŷ i

yi

����
����� 100% (6)

where n, yi, and ŷ i represent the ith number of observations, ith

predicted value, and ith mean of the observed values, respectively.

Each machine learning model underwent hyperparameter

tuning using grid search and cross-validation. For the RF model,

parameters such as number of trees (n_estimators), maximum

depth (max depth) , and minimum samples per leaf

(min_samples_leaf) were optimized.
2.4 Experimental environment and
statistical software

The computer information used in this research is as follows:

operating system: Microsoft Windows 10 Home (Version

10.0.19045); processor (CPU): Intel Core i5-1035G1 @ 1.00 GHz

(with a boost to 1190 MHz); BIOS: Insydel F.06, 2020/4/8; system

manufacturer: HP; System Model: HP Pavilion Laptop 15-cs3xxx;

and RAM: 8.00 GB. All the statistical analyses used in this study

were conducted using R version 4.3.1, with breeding values using

the lme4 (v1.1-34) package and model predictions for RF, XGBoost,

SVR, and GPR in machine learning using the xgboost (v1.7.5.1),

e1071 (v1.7-13), and kernlab (v0.9-32) packages, respectively.
3 Results

3.1 Evaluation of the four machine learning
models

The dataset was randomly divided into training (80%) and test

(20%) subsets, containing 1,676 and 420 samples, respectively. Each
Frontiers in Plant Science 07
model underwent hyperparameter optimization using the training

data, and the optimized model was subsequently validated on the

test dataset. Model performance was evaluated using the statistical

metrics R², RMSE, RRMSE, MAE, and MAPE (Table 2). All four

models—Random Forest (RF), Extreme Gradient Boosting

(XGBoost), Support Vector Regression (SVR), and Gaussian

Process Regression (GPR)—demonstrated acceptable predictive

capability for maize yield, with R² values exceeding 0.5. The RF

model achieved the best overall performance. It obtained an R² of

0.79 and an RMSE of 812.4 kg ha-¹ on the training dataset, and

corresponding values of 0.64 and 1010.6 kg ha-¹ on the independent

test dataset. The R² value of 0.79 for the RF model was calculated

based on the comparison between the predicted and observed yields

within the training dataset itself, reflecting the in-sample fit of the

model. The moderate decline in performance (approximately 24%

increase in RMSE) between the training and test datasets is within

the expected range for machine learning models, indicating that the

RF model maintained strong generalization capability without

overfitting. According to Niedbała et al. (2019), models with

MAPE < 9% can be classified as highly accurate. The RF model

achieved R² = 0.64, RMSE = 1010.59 kg ha-¹, RRMSE = 10.32%,

MAE = 743.89 kg ha-¹, and MAPE = 8.25%, qualifying it as highly

accurate. Although XGBoost, SVR, and GPR performed slightly

worse, all models achieved R² > 0.5, confirming their

predictive utility.

Figure 4 presents scatterplots comparing the observed and

predicted maize yields for the four models. The red line

represents the 1:1 reference line, where perfect predictions would

lie. The color of each point indicates the trial year (2016–2019), and

the point size reflects the number of observations per experimental

location. To maintain visual clarity, 95% confidence intervals are

not shown, but model uncertainty was quantitatively evaluated

using the statistical indicators in Table 2. The RF model exhibited

the closest alignment of points to the 1:1 line and the smallest

residual dispersion, confirming its superior predictive reliability and

stability across different environments.
3.2 Relative importance of predictors in
estimating maize yields

To explore which environmental factors have the greatest

impact on the model's regression prediction ability, we used MSE
TABLE 2 Exponential comparison metrics of the four forecasting models used in this study.

Models
Metrics

R2 RMSE (kg/ha) RRMSE (%) MAE (kg/ha) MAPE (%)

RF 0.64 1010.59 10.32 743.89 8.25

XGBoost 0.54 1141.99 11.66 841.54 9.22

SVR 0.53 1152.34 11.77 863.14 9.73

GPR 0.52 1157.43 11.82 892.61 9.94
R2, coefficient of determination; RMSE, root mean square error; RRMSE, relative root mean square error; MAE, mean absolute error; MAPE, mean the absolute percentage error; FR, random
forest; XGBoost, extreme gradient boosting; SVR, support vector regression; GPR, Gaussian process regression.
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decrease to visualize the importance of these environmental factors

in this study. As shown in Figure 5, key predictors influencing maize

yields within the RF model can be identified through variable

importance analysis. These predictors are assessed using the

"percentage increase in the mean square error" (MSE%) metric,

where a greater increase in MSE% signifies a more influential

variable. The findings revealed that breeding value stands out as

the most critical factor affecting maize yields. This breeding value

reflects the combined effect of genes, which significantly impacts

yield determination. Among the meteorological variables,

downwards longwave radiation flux (ASKLW), sunshine duration

(n), precipitation deficit (PETP), and potential evapotranspiration

(ETP) were identified as the most significant contributors to maize

yields, followed by and surface-level wind speed (WS2M). In
Frontiers in Plant Science 08
contrast, the temperature range (TRANGE) had the smallest

effect on yield predictions among all the variables.

Before delving into the specifics of the performance of our

machine learning models, it is important to understand the

variations in the predictive accuracy as the number of features in

the dataset increases. Figure 6 shows the variations in the

correlation coefficient (r) and mean absolute error (MAE) as the

feature set size changes, one feature at a time, according to

the ranking presented in Figure 4. The increases in r and

decreases in the MAE are not uniform; instead, a notable peak

occurs with the top five features: the breeding value, ASKLW, n,

PETP, and ETP. When the random forest (RF) model utilizes these

five features for forecasting maize yield, it achieves an explanatory

power of over 75% (with an MAE of approximately 800 kg ha−1). In
FIGURE 5

The relative importance of predictors in estimating yield based on the RF model.
FIGURE 4

Comparison between observed and predicted maize yields for the four machine learning models: (A) RF, (B) XGBoost, (C) SVR, and (D) GPR.
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contrast, the model’s predictive performance decreases to

approximately 50% (with an MAE exceeding 1000 kg ha−1) if the

features n, PETP, and ETP are excluded.
3.3 Partial dependence profiles (PDPs) for
the random forest model

We explore the partial dependence profiles (PDPs) of various

features included in our random forest model. These plots provide

valuable insights into how each feature influences the model's

predictions, with other variables held constant. By analysing the

shape and trends of these curves, we can identify the most influential

variables and their relationships with the predicted yield. This

analysis helps to highlight key features that contribute significantly

to the model’s performance, and guide further feature engineering or

refinement of the model (Figure 7). According to the PDP results, an

increase in breeding value leads to a higher predicted yield for maize

hybrids. However, when the daily average temperature (T2M)

exceeds 24.5°C d−1, the maximum temperature (TMAX) exceeds

31°C d-1, the minimum temperature (TMIN) exceeds 19°C d-1, and
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the dew point temperature (T2MDEW) exceeds 16°C, the yield

decreases. A relative humidity (RH) greater than 60%, downwards

thermal infrared (longwave) radiative flux (ASKLW) greater than 380

MJ MJ m−2 d−1, all-sky insolation incident on a horizontal surface

(ASKSW) below 19 MJ m−2 d−1, and growing degree days (GDD)

exceeding 14°C d−1 have minimal impacts on yield. Conversely,

rainfall precipitation (PRECTOT) above 5 mm and a wind speed at

2 m above the surface of the earth (WS2M) above 2.25 m/s result in

yield reduction. As a short-day plant, maize has little variation in

yield when the daily photoperiod is shorter than 13.6 hours.

Extraterrestrial radiation (RTA) above 37 MJ m−2 d−1 also has a

negligible effect on yield variation. In contrast, vapor pressure deficit

(VPD) below 2.0 kPa d−1 and saturation vapor pressure (SPV) below

0.19 kPa d−1 both contribute to an increase in yield.
3.4 Maize production forecast between
2025 and 2054

Using the optimized RF model, maize yields from 2025 to 2054

were projected based on meteorological and genetic inputs derived
FIGURE 6

Variation in the Pearson’s correlation coefficient and mean absolute error (MAE).
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from the 2016–2019 dataset (Figure 8). The forecast indicates

noticeable interannual variation throughout the 30-year period.

The highest predicted yield (11,508 kg ha-¹) occurs in 2041, whereas

the lowest yield (9,245 kg ha-¹) is expected in 2033. The production

decline in 2032–2033 corresponds to years with severe precipitation

deficit (PETP > 90 mm) and maximum temperatures above 32 °C,

implying intensified drought and heat stress during grain filling. In

contrast, the yield increase in 2041–2042 aligns with moderate solar

radiation (ASKSW ≈ 21 MJ m-² day-¹) and optimal growing degree

days (GDD ≈ 12–14 °C day-¹), which promote photosynthesis and

kernel development. These findings suggest that fluctuations in

future maize yield are primarily driven by temperature extremes

and moisture imbalance, emphasizing the need for adaptive

breeding and management strategies under changing

climatic conditions.
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4 Discussion

4.1 Comparative performance of machine
learning models

We prioritized algorithms with a strong track record on tabular

agro-environmental data—Random Forest (RF), XGBoost, Support

Vector Regression (SVR), and Gaussian Process Regression (GPR)

—because they balance accuracy, robustness, and interpretability in

breeding and management contexts. Across the held-out test set in

our study, RF delivered the highest accuracy (R² = 0.64; RMSE =

1010.6 kg ha-¹; MAPE = 8.25%), outperforming XGBoost, SVR, and

GPR. To place this in context, our RF performance aligns well with

independent maize-yield studies that report mid-range explanatory

power (R²≈0.50–0.70). For example, using city-level statistics and
FIGURE 7

Partial dependence profiles (PDPs) for 20 features of the RF model. Please refer to Table 1 for the meaning of abbreviations for the meteorological
factors.
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multi-source environmental data across China, Chen et al. (2021)

reported RF correlation R ≈ 0.806 for maize, corresponding to R² ≈

0.65—essentially the same explanatory level as our test-set RF (R² =

0.64). Likewise, a county-scale satellite–meteorology EC-LUE

framework on the North China Plain reproduced 64% of the

variance in maize yield at county scale (R² = 0.64), and province-

stratified analyses in the same study showed R² = 0.57 (Henan) to

0.58 (Shandong), i.e., within the same performance band as our

model (Hai et al., 2023). Together, these references indicate that

achieving R² around 0.60 with region-scale, multi-environment

datasets is both realistic and competitive for operational yield

prediction. By identifying high-yield hybrids tailored to specific

environmental conditions, farmers can optimize their cultivation

strategies, increasing productivity and sustainability in maize

production (Cairns et al., 2012; Erenstein et al., 2022).

Additionally, the insights gained from the variable importance

analysis can guide breeders in prioritizing the most influential

traits, such as breeding value and specific meteorological

parameters, further refining the development of high-yielding

hybrids (Xu et al., 2020; Farooq et al., 2024).

Why did RF outperform XGBoost, SVR, and GPR here? First, RF

can capture heterogeneous, nonlinear interactions between breeding

value and weather covariates without heavy feature engineering, while

remaining relatively insensitive to hyperparameter misspecification.

Second, RF’s built-in out-of-bag/aggregation reduces variance and

mitigates overfitting on moderate-size, noisy multi-location trial data.

This is consistent with prior agronomic findings that tree-based

ensembles are reliable baselines for regional maize yield forecasting

under mixed genetic–environmental drivers (Jeong et al., 2016). From

a practical standpoint, our RF result (R² = 0.64) compares favorably

with these peer studies in the same R² band (≈0.57–0.65) while
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additionally providing feature importance that breeders can act on

(e.g., breeding value and key hydro-radiative variables). In sum, within

the commonly observed 0.50–0.70 R² range for regional maize yield

prediction, our model sits near the upper end and offers

interpretable diagnostics useful for cultivar recommendation and

management planning.
4.2 Importance of predictors in maize yield
estimation

The variable importance analysis revealed that breeding value is

the most critical predictor of maize yield. This finding aligns with

the fundamental role of genetic traits in determining crop

performance (Crossa et al., 2010). Among the meteorological

factors, downwards longwave radiation flux (ASKLW), sunshine

duration (n), precipitation deficit (PETP), and potential

evapotranspiration (ETP) emerged as the most significant

contributors to yield prediction. These findings corroborate

previous studies emphasizing the importance of radiation and

water availability in crop development (Jones et al., 2003; Lobell

et al., 2014). Interestingly, temperature-related variables, such as the

temperature range (TRANGE), were found to have minimal

influence on yield predictions. This contrasts with previous

studies (Tao and Zhang, 2013) that identified temperature as a

major determinant of maize growth. The minimal impact observed

in this study may be due to the relatively narrow range of

temperature variability in the data or the genetic adaptation of

the hybrids used in the trials. Further investigations are needed to

assess the interactions between temperature and other

environmental variables in maize production.
FIGURE 8

Predicted maize yield based on random forest from 2025 to 2054.
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The partial dependence plots (PDPs) provided valuable insights

into the relationships between the predictors and maize yield. The

results highlight the nonlinear nature of these relationships, with

thresholds for key variables such as temperature, precipitation, and

wind speed. For example, yield reductions were observed when the

maximum temperature (TMAX) exceeded 31°C, emphasizing the

detrimental effects of heat stress on maize productivity. Similar

patterns were observed for excessive precipitation and wind speed,

which is consistent with the findings of Liu and Basso (2020). On

the other hand, some predictors, such as relative humidity (RH)

greater than 60% and extraterrestrial radiation (RTA) above 37 MJ/

m²/d, had negligible effects on yield. These results suggest that not

all environmental variables have a linear or significant effect on

maize production. This highlights the importance of feature

selection and model interpretability in machine learning

applications for agriculture.
4.3 Future yield trends and implications

The RF model’s projections for 2025–2054 revealed

pronounced year-to-year fluctuations in maize yield, reflecting

climate variability and its influence on crop growth. A yield

reduction of approximately 15.4% occurred between 2032 (10,924

kg ha-¹) and 2033 (9,245 kg ha-¹), coinciding with increased

precipitation deficit (PETP > 90 mm) and elevated maximum

temperatures (> 32 °C)—conditions indicative of combined

drought and heat stress. Similarly, a 16.5% decline from 2041

(11,508 kg ha-¹) to 2042 (9,604 kg ha-¹) corresponds to similar

climatic extremes. Conversely, yield surges of 18–19% between

2033–2035 and 2039–2040 were linked to more favorable

radiation and temperature conditions, particularly ASKSW ≈ 21

MJ m-² d-¹ and GDD between 12–14 °C d-¹.

These findings are consistent with previous global climate

change assessments (Rosenzweig et al., 2014), confirming that

maize productivity will likely experience both opportunities and

challenges under future climatic variability. Importantly, the

developed modeling framework—integrating genetic (breeding

value) and climatic data—provides a practical tool for regional

yield forecasting and adaptive management. The approach could be

extended to other major maize-producing regions such as the U.S.

Corn Belt, South America, and sub-Saharan Africa, or even to other

cereal crops (e.g., wheat, rice, sorghum) that share similar

physiological responses to environmental stressors. Such

transferability would facilitate broader applications of data-driven

decision support in global food systems.
4.4 Limitations of the study and future
research directions

With the rise of foundationmodels and pretrained architectures in

computer vision and natural language processing, it is indeed possible

to adapt such models for agricultural prediction tasks. However, most
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existing foundation models are designed for unstructured data and

have not been tailored to structured, tabular formats such as breeding

datasets. While transfer learning holds promise, its application to

BLUP and genotype-environment datasets remains limited and

requires careful domain-specific adaptation. Future work will

explore the integration of pretrained models or hybrid frameworks,

particularly when multi-modal data (e.g., imagery, environmental

sensors) are available. Such extensions may further enhance

prediction performance, especially in data-scarce regions.

While this study demonstrates the efficacy of machine learning

approaches in yield prediction, it is essential to acknowledge certain

limitations. The model's performance depends inherently depends on

the quality and comprehensiveness of the input data. Future research

should aim to incorporate a broader range of environmental variables,

including soil health metrics to enhance the model's predictive

capabilities. Additionally, integrating real-time data sources such as

satellite imagery and IoT sensors could facilitate more dynamic yield

predictions that account for immediate changes in environmental

conditions (Sumathi et al., 2022). Additionally, the study focused

solely on maize hybrids; thus, extending the research to other crop

species could provide a more comprehensive understanding of the

applicability of machine learning models in diverse agricultural

systems. Exploring the interactions between various crops and

environmental factors may yield valuable insights into crop rotation

strategies, further contributing to improved food security.
5 Conclusion

This study developed a machine learning-based framework for

predicting maize yields, with the random forest (RF) model (with an

R2 value of 0.64) demonstrating superior performance compared

with Extreme Gradient Boosting (XGBoost), Gaussian Process

Regression (GPR), and Support Vector Regression (SVR). The

analysis highlighted the importance of breeding value, and key

meteorological variables were highlighted, providing actionable

insights for breeders and farmers. Partial dependence plots

revealed nonlinear relationships between the predictors and yield,

underscoring the complexity of maize production systems. The

predictive capabilities of the model were further validated through

future yield forecasting, highlighting the potential impact of

climatic variability on maize production. By facilitating the

selection of high-yield hybrids suited to specific environments,

the proposed approach offers a cost-effective and efficient solution

for intelligent breeding and precision agriculture. Future research

should focus on expanding the dataset to include more diverse

environmental conditions and hybrid types and should explore the

integration of remote sensing data to increase model performance.
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