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School of Information Technology, Suzhou Institute of Trade and Commerce, Suzhou, China

Accurate prediction of plant gene expression is essential for elucidating the
regulatory mechanisms underlying plant development and stress adaptation.
Traditional experimental approaches such as microarrays and RNA sequencing
have provided valuable insights but remain limited in capturing the complexity
and diversity of genomic regulation. Recent advances in deep learning have
shown promise, yet existing models often struggle to generalize across species
and to efficiently model long-range dependencies within genomic sequences.
To address these challenges, we propose MTMixG-Net, a novel deep learning
framework that integrates Transformer and Mamba architectures with a gating
mechanism for enhanced gene expression prediction. MTMixG-Net consists of
three main modules: the mixture of Transformer and Mamba encoder
(MTMixEnc), the dual-path gating mechanism (DPGM), and the residual CNN
chain (ResCNNChn). The MTMixEnc combines the self-attention capacity of
Transformers with the state-space efficiency of Mamba to capture multi-scale
regulatory dependencies while maintaining low computational complexity. The
DPGM adaptively refines feature selection through dynamic gating, allowing the
model to focus on the most informative representations. Finally, the ResCNNChn
leverages a sequence of residual CNN blocks to extract high-level features and
further boost predictive accuracy. We validate MTMixG-Net on multiple plant
genomic datasets, demonstrating its superior accuracy and computational
efficiency compared to existing methods. Our results highlight the potential of
MTMixG-Net as a powerful tool for advancing plant genomics research and crop
improvement strategies.

plant gene expression, transcriptional regulation, Transformer, Mamba,
gate mechanism
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1 Introduction

Accurate identification and functional characterization of cis-
regulatory elements (CREs) are essential for advancing genetic
improvement in plants. By interacting with transcription factors
(TFs), CREs modulate gene expression and thereby influence
critical agronomic traits, including growth, stress tolerance, and
yield (Adamo et al., 2021; Rodriguez-Leal et al., 2017).
Understanding CRE functions facilitates the development of
precise molecular markers and informs targeted gene-editing
strategies, ultimately accelerating crop improvement.
Nevertheless, the intricate architecture of plant genomes,
especially the largely uncharacterized roles of non-coding regions,
presents major challenges for conventional approaches to
regulatory element discovery and annotation.

Traditionally, gene expression prediction has relied on
experimental techniques such as microarrays and RNA
sequencing (Bai et al, 2024; Kim et al., 2024; Deshpande et al,,
2023; Li et al., 2022b). However, these approaches are often
expensive, time-consuming, and limited in their ability to capture
the full complexity of gene regulation. Recent advances in machine
learning, particularly deep learning, offer powerful alternatives to
overcome these limitations (Zumkeller et al., 2025; Yan et al., 2025a;
Jin et al., 2025a; Zhou et al., 2025; Jin et al., 2025b). By leveraging
large-scale datasets, deep learning models can uncover hidden
regulatory patterns, thereby improving prediction accuracy and
enabling scalable analysis. For example, sequence-to-expression
models such as Basenji (Kelley et al, 2018) and its successors
have learned regulatory grammars directly from long DNA
sequences, allowing the prediction of cell-type-specific
transcriptional profiles from sequence data alone. These models
demonstrated that convolutional architectures can effectively
capture distal enhancer signals at scales of up to 100 kb.
Similarly, explainable convolutional neural networks (CNNs) have
decoded cis-regulatory elements involved in tomato fruit
development, enabling the prediction of tissue- and stage-specific
expression and highlighting the applicability of sequence-based
models to crop genomes (Herrera-Ubaldo, 2022). Barbadilla-
Martinez et al. (2025) further demonstrated that deep learning
can accurately predict gene expression directly from DNA
sequences, modeling regulatory grammars and revealing the
functional impact of non-coding variants. DeepMethyGene (Yan
et al., 2025b) achieved superior performance in expression
prediction by incorporating methylation features, especially in
genomic contexts where methylation sites are sparse or near
transcription start sites (TSS). DeepCBA (Wang et al., 2024)
combined CNNs, BiLSTMs, and self-attention mechanisms to
integrate DNA sequence and chromatin interaction data,
achieving state-of-the-art performance in maize expression
prediction. Similarly, the DeepTGI framework (Liu et al., 2024)
utilized autoencoders with self-attention to infer transcription
factor-gene interactions, enhancing regulatory interpretability.

Despite these advances, modeling long-range regulatory
interactions remains a significant challenge. To address this,
Honig et al. (2024) proposed the genetic sequence token
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alignment (GTA) approach, which aligns genomic features with
natural language tokens. This alignment enables symbolic reasoning
via pretrained language models, thereby improving the
interpretability of long-range dependencies. However, despite
progress in deep learning-based gene expression prediction and
transcriptional regulation analysis (Eapen, 2025; Su et al.,, 2025),
several challenges persist that limit the full potential of these models
in plant genomics. First, the interactions between genes and their
regulatory elements are highly complex and context-dependent.
Traditional models often fail to capture the nonlinear and dynamic
nature of these relationships, leading to inaccurate predictions
(Batbaatar and Ryu, 2025). The key difficulty lies in designing
models that can accurately represent these intricate dependencies
while considering environmental and external factors. Current deep
learning techniques still face significant challenges in modeling
these relationships in a biologically meaningful way (Li et al,
2022a). Second, CNNs are primarily designed to detect local
patterns through convolutional filters (Muller et al., 2019). While
effective at identifying motifs and sequence fragments, they struggle
to capture long-range dependencies between distal genes and
regulatory elements, which are crucial for accurate expression
prediction. Third, Transformer architectures (Vaswani et al.,
2017; Consens et al., 2023; Kwak et al., 2024) have shown strong
capabilities in modeling long-range dependencies within a single
sequence. However, their quadratic complexity and uniform
attention mechanism hinder their ability to efficiently capture
multi-scale hierarchical relationships inherent in genomic data
(Gong et al,, 2025). Gene regulation spans multiple biological
layers, including promoter-TF interactions, chromatin
architecture, and epigenetic modifications, many of which are not
adequately addressed by standard Transformer models.

To address these challenges, we propose MTMixG-Net, a novel
mixture of Transformer and Mamba networks with a dual-path
gating mechanism, specifically designed for plant gene expression
prediction. MTMixG-Net consists of three core modules: the
mixture of Transformer and Mamba encoder (MTMixEnc), the
dual-path gating mechanism (DPGM), and the Residual CNN
Chain (ResCNNChn). The MTMixEnc module integrates the self-
attention mechanism of Transformers with the hierarchical state-
space structure of Mamba, enabling the model to capture both long-
range dependencies and multi-scale regulatory relationships within
genomic sequences. The DPGM enhances feature selection by
dynamically gating and refining input representations, thereby
improving the model’s ability to focus on biologically relevant
signals. Finally, the ResCNNChn employs a sequence of residual
CNN blocks to extract high-level feature representations, further
boosting predictive performance while maintaining computational
efficiency. By combining these complementary components,
MTMixG-Net provides a unified framework capable of modeling
complex regulatory interactions in plant genomics, achieving both
superior accuracy and scalability in gene expression prediction. Our
key contributions are as follows:

* We present MTMixG-Net, a novel deep learning
framework that integrates Transformer and Mamba
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architectures with a dual-path gating mechanism,
specifically designed for plant gene expression prediction.

*  We design the MTMixEnc module to jointly capture long-
range dependencies and multi-scale genomic relationships,
overcoming limitations of conventional CNN- or
Transformer-based approaches.

*  We introduce the dual-path gating mechanism (DPGM),
which dynamically refines feature selection and enhances
the model’s focus on biologically relevant regulatory signals.

* We implement the residual CNN chain (ResCNNChn) to
extract high-level representations while maintaining
computational efficiency, thereby boosting
predictive performance.

* We validate MTMixG-Net on multiple plant genomic
datasets and demonstrate that it consistently outperforms
state-of-the-art baselines in both predictive accuracy
and efficiency.

2 Materials and methods

2.1 Materials

To evaluate the effectiveness of MTMixG-Net, we conduct
experiments on datasets from four diverse crop species.

Arabidopsis thaliana (A. tha). This dataset includes the
reference genome spanning all 5 chromosomes, an annotation file
with 27,655 genes, and corresponding transcription start sites (TSS)
and transcription termination sites (TTS), as well as leaf tissue
expression profiles.

Solanum lycopersicum (S. lyc). This dataset contains the
reference genome with 10 chromosomes, annotations for 34,658
genes, and leaf tissue expression data.

Sorghum bicolor (S. bic). This dataset provides the reference
genome with 12 chromosomes, annotations for 34,118 genes, and
leaf tissue expression data, including TSS and TTS information.

Zea mays (Z. may). This dataset includes the reference genome
with 10 chromosomes, annotations for 39,757 genes, and leaf tissue
expression data.

The reference genomes and gene annotations for all species are
obtained from the Ensembl Plants database "

Data Processing. Genomic regions are extracted from 1 kb
upstream to 0.5 kb downstream of each TSS and from 0.5 kb
upstream to 1 kb downstream of each TTS, which serve as the
model inputs. For transcriptomic data, short-read RNA-seq datasets
are downloaded from the NCBI Sequence Read Archive (NCBI-
SRA) (Wang et al., 2022) using fasterq-dump. Raw reads are
trimmed using Sickle and aligned to the reference cDNA
sequences with Kallisto. Gene expression quantification is
performed using the tximport package in R, producing
standardized counts expressed as transcripts per million (TPM),
following the pipeline described in DeepPlantCRE (Wu et al., 2025).

1 plants.ensembl.org
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Label Construction. For each species, genes are stratified into
three expression categories based on the distribution of
logMaxTPM values: low expression (logMaxTPM < 25%, labeled
as -1), medium expression (logMaxTPM between 25% and 75%,
labeled as 0), and high expression (logMaxTPM = 75%, labeled
as 1).

2.2 Methods

The overall architecture of MTMixG-Net is illustrated in
Figure 1. The framework is composed of three key modules: the
mixture of Transformer and Mamba encoder (MTMixEnc), the
dual-path gating mechanism (DPGM), and the residual CNN chain
(ResCNNChn). Given a genomic sequence as input, the MTMixEnc
module first integrates the self-attention mechanism of
Transformers with the hierarchical state-space structure of
Mamba, enabling the model to capture both long-range
dependencies and multi-scale regulatory relationships. The
resulting representations are then refined by the DPGM, which
applies a dynamic gating mechanism to selectively emphasize
biologically relevant features. Finally, the ResCNNChn module
employs a sequence of residual CNN blocks to extract high-level
representations from the refined signals, leading to accurate
predictions of gene expression.

2.3 Gene encoding

For each gene, the input sequence is constructed by extracting
regions flanking both the TSS and the TTS. Specifically, we include
1 kb upstream to 0.5 kb downstream of the TSS, and 0.5 kb
upstream to 1 kb downstream of the TTS. Each nucleotide (A, T,
C, G) is encoded as a one-hot vector:

x {01}, i=1,2,..,L

where L denotes the length of the input sequence. Accordingly,
the entire sequence is represented as a matrix X & R4,

2.4 Mixture of transformer and Mamba
encoder

Modeling plant gene expression from genomic sequences
requires capturing both long-range dependencies (e.g., distal
enhancers influencing gene activity) and hierarchical integrative
features (e.g., sequence motifs and cis-regulatory elements).
Conventional CNNs are effective at detecting local patterns but
fail to capture global interactions adequately. In contrast,
Transformer architectures leverage self-attention to model long-
range dependencies, yet they suffer from quadratic computational
complexity and are prone to overfitting in data-limited genomic
contexts. The recently proposed Mamba framework (Gu and Dao,
2023; Dao and Gu, 2024) addresses some of these limitations by
integrating state-space models (SSMs) with convolutional layers,
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enabling efficient hierarchical modeling and scalable processing of
long genomic sequences. However, Mamba alone may
underperform in capturing complex global dependencies
compared to attention-based mechanisms. To combine the
strengths of both, we propose the mixture of Transformer and
Mamba encoder (MTMixEnc), which integrates Transformer-based
multi-head self-attention with Mamba blocks. This hybrid
architecture enables the model to capture both fine-grained and
multi-scale regulatory patterns, while maintaining computational
efficiency and robustness in genomic applications.

Specifically, given an input sequence embedding X;, € RY,
where d = 4 denotes the embedding dimension, the MTMixEnc
encoder first applies a 1D convolutional layer with kernel size 1 to
extract low-level features X,,,,, € RYC, where C = 64 is the channel
size. The resulting feature map is then evenly split along the channel
dimension into two parts, each with size RLXC/Z, which is
subsequently forwarded to the parallel branches for
further processing:

2.4.1 Multi-head self-attention

The MHSA branch captures global dependencies across
genomic positions. The first half of the input, X; € REXC/2, s
projected into query (Q), key (K), and value (V) representations:

Q:XfWQ) K:XfWK, V:XfWV,

where Wg, Wy, Wy, € RY>*% are trainable projection
matrices and dy is the head dimension. The scaled dot-product
attention is defined as:

K
Attention(Q, K, V) = softmax <Q

T
V.
Vo
For h attention heads, the multi-head formulation is:

MHSA(X) = Concat(head,, ..., head;,) Wy,

with head; = Attention(Q;, K;, V;) and W, € R"*%*C/2 This
mechanism allows the model to weigh nucleotides across positions,
thereby capturing long-range regulatory dependency between
distant regulatory elements.

2.4.2 Hierarchical state-space modeling

The second half of the feature, X, € RLxC/ 2 is fed into the
Mamba branch. Before feature extraction, the feature X, is
normalized and linearly projected:

X, =Norm(X,), Z,=X.W, +b,

where W, € RC/Zth,bl € R%, and dy, is the hidden
dimension. A 1D convolutional layer is applied to capture local
dependencies such as short motifs near transcription start or
termination sites:

Z, = 6(Conv1D(Z,)),

where o is a non-linear activation function (e.g., ReLU).
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To capture global and hierarchical sequence dynamics, we apply
an SSM layer. Formally, an SSM can be written as:

h, = Ah,_y + Bx;, y, = Ch, + Dx,,

where h, € R* is the hidden state at time t, x, € R% is the
input, y, € R% is the output, and A, B, C, D are learned parameters.
In practice, this recurrence can be efficiently expressed as a state-
space convolution:

Y = (BX;) + (A+H),

where s denotes convolution.
In parallel, the normalized feature X; is linearly projected and
passed through a non-linear activation:

Z = O-(XS,WS + bs)a

where W, € R¢/>* p & R,

Finally, the outputs from the SSM and the parallel branch are
combined via element-wise multiplication, followed by a linear
mapping, to obtain the final Mamba representation:

M = (Y®Z3)WZ + bz,

where ® denotes element-wise multiplication, o(-) is a non-
linear activation, and M € RL*C/2 is the final output of the Mamba
branch. This design enables hierarchical representation learning of
motifs and regulatory patterns, complementing the global attention
captured by the Transformer branch.

2.4.3 The final outputs of MHSA and Mamba

After processing the input sequence through both the
Transformer and Mamba branches, their outputs are fused with
the convolutional features to integrate local motif information.
Specifically, the output of the MHSA branch is denoted as Hr,
and the output of the Mamba branch as Hy:

Hyp = X; @ MHSA(X), Hy =X, ® M,

where @ denotes element-wise addition.

This fusion strategy enables the model to jointly leverage (i)
global contextual information captured by the MHSA branch and
(ii) hierarchical sequence features extracted by the Mamba block,
while grounding both representations in the local motif patterns
encoded by the convolutional layer. Such integration enhances the
model’s ability to capture complex regulatory interactions in
genomic sequences.

2.5 Dual-path gating mechanism

Although the MTMixEnc captures long-range dependencies
and hierarchical structures, its outputs may still contain
redundant or noisy features that are not directly relevant to gene
expression prediction. To address this, we introduce the DPGM,
which selectively emphasizes biologically informative signals while
suppressing irrelevant activations. Unlike single-path gating,
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DPGM employs two parallel gating streams, allowing the model to
learn complementary feature filters and adaptively balance motif-
level and global contextual information.

Formally, given the outputs of MTMixEnc, Hy, Hy € RIXC/ 2
the gating masks are computed as:

Gy = o(Conv(Project(Hr))),
Gy = o(Conv(Project(Hyy))),

where Project(-) denotes a linear projection for dimensionality
reduction, Conv(-) is a 1D convolution, and o is a sigmoid function
producing gating values in [0,1].

The final gated outputs, Fy and F;, are obtained by element-
wise multiplication of the original features with their respective
gating masks:

Fp = Project(Hr) ® Gr,  Fy = Project(Hy) ® Gy -

This operation allows the model to retain important features
while suppressing less relevant ones.

Finally, the outputs from the two paths are combined to form the
final feature representation F that will be passed to the next module:

F=F; ®Fy,

where the addition operation allows the model to integrate
complementary information from both gating paths. By combining
dual gating paths, DPGM enhances the model’s ability to retain
biologically relevant signals and suppress redundant noise, thereby
improving predictive robustness.

2.6 Residual CNN chain

Although the MTMixEnc captures long-range dependencies
and hierarchical structures, the resulting feature space may still
lack fine-grained local patterns critical for distinguishing subtle
regulatory elements. Moreover, deep CNNs are prone to vanishing
gradients and performance degradation as depth increases. To
address these issues, we employ a ResCNNChn, where stacked
convolutional layers are stabilized with residual connections (He
et al., 2016). This design enables deeper networks, preserves
gradient flow, and facilitates the extraction of high-level local
regulatory representations.

Given the refined representation F € R/ from the DPGM,
ResCNNChn processes it through a sequence of residual CNN
blocks, optionally interleaved with max-pooling layers (Figure 1d):

H" = ResBlock,,(MaxPool
(... ResBlock,(MaxPool(ResBlock; (F))))),

where H” & RS is the final output of the ResCNNChn, 7 is
the number of residual blocks, and MaxPool(-) is an optional max-
pooling layer that reduces the sequence length while retaining
salient features.

Each residual CNN block ResBlock; consists of convolutional
layers with non-linear activations, residual connections, batch
normalization, and dropout:
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Z, = 0(ConvlD(H,;,)),

Z, = o(ConvlD(Z,)) + H;,,,
Z5 = BN(o(ConvlD(Z,))),
Z, = MaxPool(Z;),

H,,: = Dropout(Zy, p),

where H;, € RL»*Cn is the input feature map for each ResBlock;,
H,,; € Rbw*Cou is the output feature map, o'is a non-linear activation
function (e.g., ReLU), BN(:) is batch normalization, MaxPool(-) is max-
pooling, and Dropout(-) applies dropout to prevent overfitting. It is
noted that each residual CNN block outputs H,,, € R Cor, ready
to be passed to the next block in the chain.

Through this residual design, ResCNNChn preserves fine-
grained local patterns, stabilizes deeper architectures, and
enhances the overall representation power for modeling complex

regulatory signals.

2.7 Prediction head

The final feature maps are flattened and passed through a series
of fully connected layers with ReLU activations and dropout
regularization to produce the predictive logits Zjogs (Figure le).
The output layer then applies a sigmoid activation to generate class
probabilities for gene expression levels:

¥ = Sigmoid(Zjgirs),

where j € R® denotes the predicted probability distribution
over Cls discrete gene expression classes (e.g., low, medium, high).

2.8 Loss function

We employ binary cross-entropy (BCE) loss to supervise the
classification of gene expression levels (low, medium, high). In our
formulation, each class is represented as a one-hot vector, and BCE
is applied independently to each class dimension:

1 N Cis . R
Lycg = _NEE iclog(;o) + (1-y) log(1-7,.],

i=lc=1

where N is the number of samples, Cls = 3 is the number of
classes, y; . € 0, 1 is the ground-truth indicator for class ¢, and y; . is
the predicted probability. This formulation encourages the model to
assign high probability to the correct class while penalizing
incorrect predictions, thereby improving classification accuracy.

3 Experiments and results
3.1 Experimental settings
3.1.1 Evaluation metrics

To evaluate the predictive performance of our models, we
employ three widely used metrics: Accuracy, AUC-ROC, and F1-
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score. Accuracy measures the proportion of correctly predicted
samples out of the total, providing an overall assessment of model
performance. We use the AUC-ROC curve, where the horizontal
axis represents the false positive rate and the vertical axis represents
the true positive rate. The AUC indicates the model’s ability to
distinguish between the positive and negative classes. The F1-score
is the harmonic mean of precision and recall, balancing both
metrics to evaluate the model’s ability to correctly classify gene
expression levels while minimizing false positives and negatives.
These metrics are computed based on the counts of true positives
(TP), true negatives (TN), false positives (FP), and false negatives
(FN): TP refers to correctly identified positive samples, TN to
correctly identified negative samples, FP to negative samples
incorrectly classified as positive, and FN to positive samples
incorrectly classified as negative. The formulas for these metrics
are as follows:

TP+TN

ACCUracy = Fp iy rpreN

_ TP
Pre = 55,55

- _TP
Sen = o>

— PrexSen
Fl=2x Pre+Sen *

3.1.2 Implementation

All experiments are conducted on an NVIDIA 3090 GPU. For
training our model, MTMixG-Net, we use the Adam optimizer with
an initial learning rate of 10, The training is limited to a maximum
of 100 epochs, with each epoch consisting of forward propagation,
back-propagation, and parameter updates on the training data. To
mitigate overfitting, early stopping is employed, halting training if
the validation loss does not decrease for 10 consecutive epochs.
Additionally, the learning rate is dynamically adjusted: it is reduced
to 10% of its current value if no improvement in validation loss is
observed for 5 consecutive epochs. This dynamic adjustment helps
the model converge more effectively in the later stages of training.

To ensure robustness, we adopt k-fold cross-validation, with k
set equal to the number of chromosomes for each dataset. All
models are trained and evaluated under the same conditions, using
identical training, validation, and test splits to ensure a fair
comparison. Each experiment is repeated 5 times with different
random seeds to account for variability in training, and the average
results along with standard deviations are reported.

3.2 Comparison with state-of-the-art
models

To evaluate the performance of our proposed MTMixG-Net, we
compare it with three representative deep learning models:
DeepCRE (Peleke et al.,, 2024), PhytoExpr (Li et al., 2024), and
DeepPlantCRE (Wu et al., 2025) across four plant species datasets.
The DeepCRE employs CNNs to analyze genomic sequences,
predict gene expression levels, and identify cis-regulatory
elements. PhytoExpr extends CNN-based architectures by
integrating Transformer layers, aiming to capture long-range
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dependencies in genomic data and improve prediction accuracy
for mRNA abundance. DeepPlantCRE further enhances the
modeling of cis-regulatory elements by combining CNNs with
deeper sequence encoders, achieving competitive results on
multiple plant datasets. Since DeepPlantCRE provides publicly
available code, we reimplement it for our experiments; for the
other two methods, which lack open-source implementations, we
adopt the performance reported in (Wu et al., 2025).

The results are summarized in Table 1. For A. tha,
DeepPlantCRE achieves the second-best results across all three
metrics (Accuracy: 86.1%, AUC-ROC: 93.0%, Fl-score: 85.8%).
MTMixG-Net consistently outperforms all baselines, with the best
Accuracy (87.4%), AUC-ROC (93.7%), and F1-score (87.1%). In the
S. lyc dataset, DeepPlantCRE again deliveres strong results
(Accuracy: 84.3%, AUC-ROC: 90.0%, Fl-score: 77.9%), but
MTMixG-Net surpasses it with the highest Accuracy (85.4%),
AUC-ROC (91.0%), and Fl-score (78.5%). For S. bic,
DeepPlantCRE showes second-best performance (Accuracy:
80.7%, AUC-ROC: 86.2%, F1-score: 76.1%). MTMixG-Net clearly
outperformes the baselines with Accuracy of 81.8%, AUC-ROC of
87.1%, and Fl-score of 77.4%. On the Z. may dataset,
DeepPlantCRE again rankes second (Accuracy: 83.0%, AUC-
ROC: 90.0%, Fl-score: 81.2%), while MTMixG-Net achieves the
best results with Accuracy (84.1%), AUC-ROC (90.1%), and F1-
score (82.1%).

These results demonstrate that MTMixG-Net consistently
outperforms existing state-of-the-art models, effectively capturing
the complex regulatory patterns underlying gene expression in
plants. Moreover, the consistent improvements across species
with large and complex genomes highlight the robustness and
generalizability of MTMixG-Net in handling redundant
regulatory sequences.

3.3 Ablation study

To assess the contributions of each component in MTMixG-
Net, we conduct an ablation study by systematically adding key
modules and evaluating the impact on performance. We consider
three configurations: (1) ResCNNChn only (M,): A baseline using
only the residual CNN chain without MTMixEnc or DPGM. This
configuration evaluates the effectiveness of local motif extraction via
CNN blocks. (2) ResCNNChn + MTMixEnc(M;+M,): Incorporates
the MTMixEnc module together with ResCNNChn, excluding
DPGM. This setting tests the impact of combining self-attention
and state-space modeling for global and hierarchical feature
learning. For the MTMixEnc, we experiment with two variants:
(M3;) using only the Mamba branch, and (M,,) using only the
Transformer branch. (3) Full MTMixG-Net (M;+M,+M3): The
complete model including ResCNNChn (M;), MTMixEnc (M,),
and DPGM (Ms5).

The results (Table 2; Figure 2) show that even ResCNNChn
alone achieves competitive performance, with accuracies between
80.2% (S. bic) and 85.6% (A. tha), demonstrating the effectiveness of
residual CNN blocks in extracting local sequence patterns.
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TABLE 1 Performance comparison of all the models on four datasets. .

Datasets Metrics DeepCRE PhytoExpr DeepPlantCRE MTMixG-Net
Accuracy 85.4 + 2.0 783 + 1.5 86.1 + 3.0 87.4 2.1
A. tha AUC-ROC 925+ 18 86.3 0.9 93.0 + 1.7 93.7 + 1.1
Fl-score 85.0 1.9 76.6 + 2.4 85.8 + 2.8 87.1+23
Accuracy 82.6 +2.7 792 £ 3.0 843 +2.6 854 + 2.7
S. Iyc AUC-ROC 87.7 +24 85.2 + 3.1 90.0 + 2.3 91.0 + 2.1
Fl-score 747 + 4.5 713 55 77.9 +3.9 78.5 + 3.7
Accuracy 79.0 £ 1.9 75.7 24 80.7 + 1.6 81.8 + 2.2
S. bic AUC-ROC 844 +53 81.9 +2.3 862 + 4.8 87.1+53
Fl-score 735+ 6.9 715452 76.1 + 6.4 774+ 6.4
Accuracy 80.1 £3.9 779 £ 4.1 83.0 £4.5 84.1 £2.7
Z. may AUC-ROC 86.7 +5.1 852 + 4.0 90.0 + 4.1 90.1 + 3.6
Fl-score 78.0 £58 76.2 + 5.1 812 + 6.1 82.1 + 4.0

The best values are highlighted in bold. The second-best values are marked in red.

However, the lack of global modeling limits accuracy in species with Incorporating DPGM further refines the learned
complex regulatory architectures. representations. By suppressing redundant features and
Incorporating the MTMixEnc improves performance across  highlighting biologically relevant signals, DPGM provides
nearly all datasets. For example, in A. tha, accuracy improves  consistent improvements over A+C. For example, in S. lyc,
from 85.6% to 87.3%, and in S. bic, accuracy increases from  accuracy rises from 85.2% to 85.4%, while AUC-ROC increases
80.2% to 81.4%. The AUC-ROC also rises slightly (e.g., 86.0% —  from 90.5% to 91.0%. Similar enhancements are observed across
87.0% in S. bic). When combined individually with the M;, both M;  all datasets.
+M,; and M;+M,, outperform the CNN-only baseline across all The ablation results confirm that each module contributes
datasets, confirming that integrating either sequential modeling  meaningfully to overall performance. The residual CNN chain
mechanism enhances the representation of genomic  captures strong local patterns, the MTMixEnc enhances global
dependencies. Notably, M;+M,; (Mamba-based) achieves slightly ~ and hierarchical feature learning, and the DPGM further filters
higher Accuracy and AUC-ROC values than M;+M,, and amplifies informative signals. The full MTMixG-Net
(Transformer-based) in most species, indicating that self-attention ~ consistently achieves the best performance across datasets,
remains highly effective for capturing long-range dependencies.  validating the necessity of integrating all three components for
However, the performance gap between the two configurations is  accurate and generalizable plant gene expression prediction.
marginal (<0.5%), suggesting that Mamba provides a
computationally efficient alternative capable of modeling
hierarchical temporal features with comparable accuracy. These 3.4 Hyperparameter selection
gains highlight that combining Transformer’s ability to capture
long-range dependencies with Mamba’s hierarchical modeling Selecting appropriate hyperparameters is critical to ensure both
enhances representation learning beyond local CNN features. the stability and effectiveness of MTMixGNet. To systematically

TABLE 2 Ablation experiments on the four datasets.

A. tha S. lyc S. bic Z. may
Accuracy AUC-ROC  Accuracy AUC-ROC  Accuracy AUC-ROC  Accuracy AUC-ROC
M, 85.6 + 2.8 925 + 1.4 83.8 + 2.0 892+ 1.9 80.2 + 1.9 86.0 % 5.0 823 +3.2 89.1 +3.9
M, +May,y 859 +2.2 928+ 13 84.1+ 1.7 90.1 + 2.1 81.0 + 2.1 86.5 + 4.4 83.4 + 45 89.1+53
M+M,, 86.7 + 1.5 93.4+12 845 +3.3 904 +2.5 81.0 + 23 865 + 4.6 832+ 26 89.7 + 4.0
My +M,+ 873 + 2.5 937 + 14 852+ 1.9 90.5 + 2.0 814 + 1.9 87.0 +52 835 + 34 892 +3.9
M +M,+M; 87.4 + 2.1 937 + 1.1 854 +2.7 91.0 + 2.1 81.8 +22 87.1+53 84.1+27 90.1 + 3.6
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FIGURE 1

Framework architecture for gene expression prediction. (a) The input sequence, consisting of genomic data, is processed through a mixture of
Transformer and Mamba encoders. (b) The encoder integrates multi-headed self-attention (MHSA) and Mamba blocks to capture both long-range
dependencies and hierarchical patterns. (c) A dual-path gating mechanism selectively filters features to emphasize relevant information. (d) The
residual CNN chain processes the features through multiple residual CNN blocks to extract high-level representations. (e) The prediction head
generates the final gene expression predictions using fully connected layers and a binary cross-entropy loss function.

evaluate their influence, we vary the number of CNN layers, kernel
sizes, and learning rates, and assess performance using accuracy,
AUC-ROC, and Fl1-score (Figure 3).

We experiment with 3, 5, and 7 CNN layers. Performance peaks
at 5 layers, where accuracy and F1-score both achieve their highest
values. Using fewer layers (3) lead to underfitting, as the model lacks
sufficient representational depth. Increasing to 7 layers does not
improve performance and slightly reduced AUCROC, suggesting
potential overfitting and gradient instability. Therefore, 5 CNN
layers strike a balance between expressive power and generalization.

Kernel sizes of 5, 8, and 16 are compared. A kernel size of 8
provides the best trade-off, with the highest AUC-ROC and F1-
score. Smaller kernels (size 5) failes to capture wider motifs
effectively, while overly large kernels (size 16) dilutes local

(A) (B)

features and reduces precision. This result indicates that medium-
sized kernels are most effective for modeling cis-regulatory elements
in plant genomic data.

We test learning rates of 107>, 10~* and 107>, A learning rate of
10~* produces the most stable and optimal results, with the highest
accuracy and AUC-ROC. At 107°, the model converges slowly,
leading to suboptimal results within the given training epochs. In
contrast, 107> causes performance degradation, likely due to
unstable weight updates. Thus, 107* is selected as the optimal
learning rate for all experiments.

The different hyperparameter settings demonstrates that
MTMixG-Net is sensitive to architectural and optimization
choices. Specifically, moderate network depth (5 layers), medium
kernel sizes (8), and balanced learning rates (107 yield the most
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Performance visulizion of the ablation studies on the (A) arabidopsis thaliana, (B) solanum lycopersicum, (C) sorghum bicolor, and (D) zea mays

datasets.
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Hyperparameter sensitivity analysis of MTMixG-Net.

robust and generalizable performance across datasets. These
settings ensure the model captures both local motif structures and
long-range dependencies without overfitting, validating the
importance of careful hyperparameter tuning in genomic
prediction tasks.

3.5 Cross-species generalization

One of the key challenges in plant genomics is generalizing
across species with diverse genomic structures and regulatory
mechanisms. To assess the cross-species generalization capability
of MTMixG-Net, we conduct experiments where the model is
trained on one species and tested on others. The results are
summarized in the heatmaps shown in Figure 4.

MTMixG-Net generally performs well across species,
particularly when trained on zea mays and tested on other
species. Notably, the zea mays dataset, with 39,757 gene records,
is significantly larger than those of the other species, presenting
greater complexity. This larger dataset may cause the model to
overfit the more complex gene set, which could explain the observed
challenges when training on zea mays and testing on other species.
In contrast, smaller datasets from species like solanum
lycopersicum or arabidopsis thaliana may provide fewer but more
transferable regulatory signals, enabling easier generalization.
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However, MTMixG-Net performs the worst when trained or
tested on the sorghum bicolor dataset, particularly in terms of
accuracy, AUC-ROC, and Fl-score. This anomaly suggests
challenges in handling sorghum bicolor genomic data. We explain
this phenomenon from two perspectives. First, sorghum bicolor has
a relatively small dataset size (only 17,988 gene records), which may
limit the model’s ability to learn robust and generalizable features.
Second, sorghum bicolor’s genomic architecture may contain
unique regulatory elements or patterns that are not well-
represented in the training data from other species, leading to
poor performance when the model is applied to this species.

In summary, these results demonstrate that MTMixG-Net
exhibits strong cross-species generalization. The model’s ability to
maintain high accuracy, AUC-ROC, and F1-score in cross-species
settings indicates its capacity to capture conserved regulatory
patterns rather than overfitting to species-specific signals. This
adaptability makes MTMixG-Net a valuable tool for plant
genomics, especially for crops with limited annotated datasets.

4 Conclusion

In this study, we propose MTMixG-Net, a novel deep learning
framework for plant gene expression prediction that jointly
captures multi-scale and global regulatory patterns from genomic
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Cross-species generalization performance of MTMixG-Net on the four datasets. (A) Accuracy, (B) AUC-ROC, (C) F1-score.
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sequences. By integrating a mixture of Transformer and Mamba
encoder (MTMixEnc), a dual-path gating mechanism (DPGM), and
a residual CNN chain (ResCNNChn), the model effectively
overcomes the limitations of prior approaches that consider local
motifs and long-range dependencies in isolation. Extensive
experiments on four plant species datasets demonstrate that
MTMixG-Net consistently outperforms state-of-the-art baselines.
Ablation studies further validate the contribution of each module,
while cross-species experiments highlight the model’s robustness
and versatility, underscoring its ability to generalize across genomes
with diverse architectures. Overall, MTMixG-Net represents a
significant advancement in computational genomics, offering a
powerful tool for understanding and predicting gene expression
in plants. Its strong performance and generalizability make it a
promising approach for future applications in plant biology and
crop improvement. In future work, MTMixG-Net could be
extended to integrate transcriptomic, epigenetic, and
environmental data, facilitating its application in real-world crop
improvement and functional genomics. Translating such models
into practical breeding tools, however, will require overcoming
challenges related to data heterogeneity, interpretability, and the
need for large-scale, high-quality annotations across diverse
plant species.
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