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MTMixG-Net: mixture of
Transformer and Mamba
network with a dual-path gating
mechanism for plant gene
expression prediction
Fei Guo, Wenjuan Li, Aihong Lu, Rongzhen Feng and Wu Fang*

School of Information Technology, Suzhou Institute of Trade and Commerce, Suzhou, China
Accurate prediction of plant gene expression is essential for elucidating the

regulatory mechanisms underlying plant development and stress adaptation.

Traditional experimental approaches such as microarrays and RNA sequencing

have provided valuable insights but remain limited in capturing the complexity

and diversity of genomic regulation. Recent advances in deep learning have

shown promise, yet existing models often struggle to generalize across species

and to efficiently model long-range dependencies within genomic sequences.

To address these challenges, we propose MTMixG-Net, a novel deep learning

framework that integrates Transformer and Mamba architectures with a gating

mechanism for enhanced gene expression prediction. MTMixG-Net consists of

three main modules: the mixture of Transformer and Mamba encoder

(MTMixEnc), the dual-path gating mechanism (DPGM), and the residual CNN

chain (ResCNNChn). The MTMixEnc combines the self-attention capacity of

Transformers with the state-space efficiency of Mamba to capture multi-scale

regulatory dependencies while maintaining low computational complexity. The

DPGM adaptively refines feature selection through dynamic gating, allowing the

model to focus on themost informative representations. Finally, the ResCNNChn

leverages a sequence of residual CNN blocks to extract high-level features and

further boost predictive accuracy. We validate MTMixG-Net on multiple plant

genomic datasets, demonstrating its superior accuracy and computational

efficiency compared to existing methods. Our results highlight the potential of

MTMixG-Net as a powerful tool for advancing plant genomics research and crop

improvement strategies.
KEYWORDS

plant gene expression, transcriptional regulation, Transformer, Mamba,
gate mechanism
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1 Introduction

Accurate identification and functional characterization of cis-

regulatory elements (CREs) are essential for advancing genetic

improvement in plants. By interacting with transcription factors

(TFs), CREs modulate gene expression and thereby influence

critical agronomic traits, including growth, stress tolerance, and

yield (Adamo et al., 2021; Rodrı ́guez-Leal et al., 2017).

Understanding CRE functions facilitates the development of

precise molecular markers and informs targeted gene-editing

strategies , ult imately accelerating crop improvement.

Nevertheless, the intricate architecture of plant genomes,

especially the largely uncharacterized roles of non-coding regions,

presents major challenges for conventional approaches to

regulatory element discovery and annotation.

Traditionally, gene expression prediction has relied on

experimental techniques such as microarrays and RNA

sequencing (Bai et al., 2024; Kim et al., 2024; Deshpande et al.,

2023; Li et al., 2022b). However, these approaches are often

expensive, time-consuming, and limited in their ability to capture

the full complexity of gene regulation. Recent advances in machine

learning, particularly deep learning, offer powerful alternatives to

overcome these limitations (Zumkeller et al., 2025; Yan et al., 2025a;

Jin et al., 2025a; Zhou et al., 2025; Jin et al., 2025b). By leveraging

large-scale datasets, deep learning models can uncover hidden

regulatory patterns, thereby improving prediction accuracy and

enabling scalable analysis. For example, sequence-to-expression

models such as Basenji (Kelley et al., 2018) and its successors

have learned regulatory grammars directly from long DNA

sequences, allowing the prediction of cell-type-specific

transcriptional profiles from sequence data alone. These models

demonstrated that convolutional architectures can effectively

capture distal enhancer signals at scales of up to 100 kb.

Similarly, explainable convolutional neural networks (CNNs) have

decoded cis-regulatory elements involved in tomato fruit

development, enabling the prediction of tissue- and stage-specific

expression and highlighting the applicability of sequence-based

models to crop genomes (Herrera-Ubaldo, 2022). Barbadilla-

Martıńez et al. (2025) further demonstrated that deep learning

can accurately predict gene expression directly from DNA

sequences, modeling regulatory grammars and revealing the

functional impact of non-coding variants. DeepMethyGene (Yan

et al., 2025b) achieved superior performance in expression

prediction by incorporating methylation features, especially in

genomic contexts where methylation sites are sparse or near

transcription start sites (TSS). DeepCBA (Wang et al., 2024)

combined CNNs, BiLSTMs, and self-attention mechanisms to

integrate DNA sequence and chromatin interaction data,

achieving state-of-the-art performance in maize expression

prediction. Similarly, the DeepTGI framework (Liu et al., 2024)

utilized autoencoders with self-attention to infer transcription

factor-gene interactions, enhancing regulatory interpretability.

Despite these advances, modeling long-range regulatory

interactions remains a significant challenge. To address this,

Honig et al. (2024) proposed the genetic sequence token
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alignment (GTA) approach, which aligns genomic features with

natural language tokens. This alignment enables symbolic reasoning

via pretrained language models, thereby improving the

interpretability of long-range dependencies. However, despite

progress in deep learning-based gene expression prediction and

transcriptional regulation analysis (Eapen, 2025; Su et al., 2025),

several challenges persist that limit the full potential of these models

in plant genomics. First, the interactions between genes and their

regulatory elements are highly complex and context-dependent.

Traditional models often fail to capture the nonlinear and dynamic

nature of these relationships, leading to inaccurate predictions

(Batbaatar and Ryu, 2025). The key difficulty lies in designing

models that can accurately represent these intricate dependencies

while considering environmental and external factors. Current deep

learning techniques still face significant challenges in modeling

these relationships in a biologically meaningful way (Li et al.,

2022a). Second, CNNs are primarily designed to detect local

patterns through convolutional filters (Muller et al., 2019). While

effective at identifying motifs and sequence fragments, they struggle

to capture long-range dependencies between distal genes and

regulatory elements, which are crucial for accurate expression

prediction. Third, Transformer architectures (Vaswani et al.,

2017; Consens et al., 2023; Kwak et al., 2024) have shown strong

capabilities in modeling long-range dependencies within a single

sequence. However, their quadratic complexity and uniform

attention mechanism hinder their ability to efficiently capture

multi-scale hierarchical relationships inherent in genomic data

(Gong et al., 2025). Gene regulation spans multiple biological

layers, including promoter-TF interactions, chromatin

architecture, and epigenetic modifications, many of which are not

adequately addressed by standard Transformer models.

To address these challenges, we propose MTMixG-Net, a novel

mixture of Transformer and Mamba networks with a dual-path

gating mechanism, specifically designed for plant gene expression

prediction. MTMixG-Net consists of three core modules: the

mixture of Transformer and Mamba encoder (MTMixEnc), the

dual-path gating mechanism (DPGM), and the Residual CNN

Chain (ResCNNChn). The MTMixEnc module integrates the self-

attention mechanism of Transformers with the hierarchical state-

space structure of Mamba, enabling the model to capture both long-

range dependencies and multi-scale regulatory relationships within

genomic sequences. The DPGM enhances feature selection by

dynamically gating and refining input representations, thereby

improving the model’s ability to focus on biologically relevant

signals. Finally, the ResCNNChn employs a sequence of residual

CNN blocks to extract high-level feature representations, further

boosting predictive performance while maintaining computational

efficiency. By combining these complementary components,

MTMixG-Net provides a unified framework capable of modeling

complex regulatory interactions in plant genomics, achieving both

superior accuracy and scalability in gene expression prediction. Our

key contributions are as follows:
• We present MTMixG-Net, a novel deep learning

framework that integrates Transformer and Mamba
frontiersin.org
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architectures with a dual-path gating mechanism,

specifically designed for plant gene expression prediction.

• We design the MTMixEnc module to jointly capture long-

range dependencies and multi-scale genomic relationships,

overcoming limitations of conventional CNN- or

Transformer-based approaches.

• We introduce the dual-path gating mechanism (DPGM),

which dynamically refines feature selection and enhances

the model’s focus on biologically relevant regulatory signals.

• We implement the residual CNN chain (ResCNNChn) to

extract high-level representations while maintaining

c ompu t a t i o n a l e ffi c i e n c y , t h e r e b y b o o s t i n g

predictive performance.

• We validate MTMixG-Net on multiple plant genomic

datasets and demonstrate that it consistently outperforms

state-of-the-art baselines in both predictive accuracy

and efficiency.
2 Materials and methods

2.1 Materials

To evaluate the effectiveness of MTMixG-Net, we conduct

experiments on datasets from four diverse crop species.

Arabidopsis thaliana (A. tha). This dataset includes the

reference genome spanning all 5 chromosomes, an annotation file

with 27,655 genes, and corresponding transcription start sites (TSS)

and transcription termination sites (TTS), as well as leaf tissue

expression profiles.

Solanum lycopersicum (S. lyc). This dataset contains the

reference genome with 10 chromosomes, annotations for 34,658

genes, and leaf tissue expression data.

Sorghum bicolor (S. bic). This dataset provides the reference

genome with 12 chromosomes, annotations for 34,118 genes, and

leaf tissue expression data, including TSS and TTS information.

Zea mays (Z. may). This dataset includes the reference genome

with 10 chromosomes, annotations for 39,757 genes, and leaf tissue

expression data.

The reference genomes and gene annotations for all species are

obtained from the Ensembl Plants database
1.

Data Processing. Genomic regions are extracted from 1 kb

upstream to 0.5 kb downstream of each TSS and from 0.5 kb

upstream to 1 kb downstream of each TTS, which serve as the

model inputs. For transcriptomic data, short-read RNA-seq datasets

are downloaded from the NCBI Sequence Read Archive (NCBI-

SRA) (Wang et al., 2022) using fasterq-dump. Raw reads are

trimmed using Sickle and aligned to the reference cDNA

sequences with Kallisto. Gene expression quantification is

performed using the tximport package in R, producing

standardized counts expressed as transcripts per million (TPM),

following the pipeline described in DeepPlantCRE (Wu et al., 2025).
lants.ensembl.org
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Label Construction. For each species, genes are stratified into

three expression categories based on the distribution of

logMaxTPM values: low expression (logMaxTPM ≤ 25%, labeled

as -1), medium expression (logMaxTPM between 25% and 75%,

labeled as 0), and high expression (logMaxTPM ≥ 75%, labeled

as 1).
2.2 Methods

The overall architecture of MTMixG-Net is illustrated in

Figure 1. The framework is composed of three key modules: the

mixture of Transformer and Mamba encoder (MTMixEnc), the

dual-path gating mechanism (DPGM), and the residual CNN chain

(ResCNNChn). Given a genomic sequence as input, the MTMixEnc

module first integrates the self-attention mechanism of

Transformers with the hierarchical state-space structure of

Mamba, enabling the model to capture both long-range

dependencies and multi-scale regulatory relationships. The

resulting representations are then refined by the DPGM, which

applies a dynamic gating mechanism to selectively emphasize

biologically relevant features. Finally, the ResCNNChn module

employs a sequence of residual CNN blocks to extract high-level

representations from the refined signals, leading to accurate

predictions of gene expression.
2.3 Gene encoding

For each gene, the input sequence is constructed by extracting

regions flanking both the TSS and the TTS. Specifically, we include

1 kb upstream to 0.5 kb downstream of the TSS, and 0.5 kb

upstream to 1 kb downstream of the TTS. Each nucleotide (A, T,

C, G) is encoded as a one-hot vector:

xi ∈ 0, 1f g4, i = 1,   2,…, L

where L denotes the length of the input sequence. Accordingly,

the entire sequence is represented as a matrix X ∈ RL�4.
2.4 Mixture of transformer and Mamba
encoder

Modeling plant gene expression from genomic sequences

requires capturing both long-range dependencies (e.g., distal

enhancers influencing gene activity) and hierarchical integrative

features (e.g., sequence motifs and cis-regulatory elements).

Conventional CNNs are effective at detecting local patterns but

fail to capture global interactions adequately. In contrast,

Transformer architectures leverage self-attention to model long-

range dependencies, yet they suffer from quadratic computational

complexity and are prone to overfitting in data-limited genomic

contexts. The recently proposed Mamba framework (Gu and Dao,

2023; Dao and Gu, 2024) addresses some of these limitations by

integrating state-space models (SSMs) with convolutional layers,
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enabling efficient hierarchical modeling and scalable processing of

long genomic sequences. However, Mamba alone may

underperform in capturing complex global dependencies

compared to attention-based mechanisms. To combine the

strengths of both, we propose the mixture of Transformer and

Mamba encoder (MTMixEnc), which integrates Transformer-based

multi-head self-attention with Mamba blocks. This hybrid

architecture enables the model to capture both fine-grained and

multi-scale regulatory patterns, while maintaining computational

efficiency and robustness in genomic applications.

Specifically, given an input sequence embedding Xin ∈ RL�d ,

where d = 4 denotes the embedding dimension, the MTMixEnc

encoder first applies a 1D convolutional layer with kernel size 1 to

extract low-level features Xconv ∈ RL×C, where C = 64 is the channel

size. The resulting feature map is then evenly split along the channel

dimension into two parts, each with size RL�C=2, which is

subsequent ly forwarded to the paral le l branches for

further processing:

2.4.1 Multi-head self-attention
The MHSA branch captures global dependencies across

genomic positions. The first half of the input, Xf ∈ RL�C=2, is

projected into query (Q), key (K), and value (V) representations:

Q = XfWQ, K = XfWK , V = XfWV ,

where WQ,WK ,WV ∈ RC=2�dk are trainable projection

matrices and dk is the head dimension. The scaled dot-product

attention is defined as:

Attention(Q,K ,V) = softmax
QKTffiffiffiffiffi

dk
p

 !
V :

For h attention heads, the multi-head formulation is:

MHSA(X) = Concat(head1,…, headh)WO,

with headi = Attention(Qi,Ki,Vi) and WO ∈ Rh�dk�C=2. This

mechanism allows the model to weigh nucleotides across positions,

thereby capturing long-range regulatory dependency between

distant regulatory elements.

2.4.2 Hierarchical state-space modeling
The second half of the feature, Xs ∈ RL�C=2, is fed into the

Mamba branch. Before feature extraction, the feature Xs is

normalized and linearly projected:

X
0
s = Norm(Xs), Z0 = X

0
sW1 + b1,

where W1 ∈ RC=2�dh , b1 ∈ Rdh , and dh i s the hidden

dimension. A 1D convolutional layer is applied to capture local

dependencies such as short motifs near transcription start or

termination sites:

Z1 = s (Conv1D(Z0)),

where s is a non-linear activation function (e.g., ReLU).
Frontiers in Plant Science 04
To capture global and hierarchical sequence dynamics, we apply

an SSM layer. Formally, an SSM can be written as:

ht = Aht−1 + Bxt , yt = Cht + Dxt ,

where ht ∈ Rds is the hidden state at time t, xt ∈ Rdh is the

input, yt ∈ Rdh is the output, and A, B, C, D are learned parameters.

In practice, this recurrence can be efficiently expressed as a state-

space convolution:

Y = (B*Xs) + (A*H),

where ∗ denotes convolution.

In parallel, the normalized feature X0
s is linearly projected and

passed through a non-linear activation:

Zs = s (X0
sWs + bs),

where Ws ∈ RC=2�dh , bs ∈ Rdh .

Finally, the outputs from the SSM and the parallel branch are

combined via element-wise multiplication, followed by a linear

mapping, to obtain the final Mamba representation:

M = (Y ⊗Zs)W2 + b2,

where ⊗ denotes element-wise multiplication, s(·) is a non-

linear activation, andM ∈ RL�C=2 is the final output of the Mamba

branch. This design enables hierarchical representation learning of

motifs and regulatory patterns, complementing the global attention

captured by the Transformer branch.

2.4.3 The final outputs of MHSA and Mamba
After processing the input sequence through both the

Transformer and Mamba branches, their outputs are fused with

the convolutional features to integrate local motif information.

Specifically, the output of the MHSA branch is denoted as HT,

and the output of the Mamba branch as HM:

HT = Xf ⊕MHSA(X), HM = Xs ⊕M,

where ⊕ denotes element-wise addition.

This fusion strategy enables the model to jointly leverage (i)

global contextual information captured by the MHSA branch and

(ii) hierarchical sequence features extracted by the Mamba block,

while grounding both representations in the local motif patterns

encoded by the convolutional layer. Such integration enhances the

model’s ability to capture complex regulatory interactions in

genomic sequences.
2.5 Dual-path gating mechanism

Although the MTMixEnc captures long-range dependencies

and hierarchical structures, its outputs may still contain

redundant or noisy features that are not directly relevant to gene

expression prediction. To address this, we introduce the DPGM,

which selectively emphasizes biologically informative signals while

suppressing irrelevant activations. Unlike single-path gating,
frontiersin.org
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DPGM employs two parallel gating streams, allowing the model to

learn complementary feature filters and adaptively balance motif-

level and global contextual information.

Formally, given the outputs of MTMixEnc, HT,HM ∈ RL�C=2,

the gating masks are computed as:

GT = s (Conv(Project(HT))), 

GM = s (Conv(Project(HM))),

where Project(·) denotes a linear projection for dimensionality

reduction, Conv(·) is a 1D convolution, and s is a sigmoid function

producing gating values in [0,1].

The final gated outputs, FT and FM, are obtained by element-

wise multiplication of the original features with their respective

gating masks:

F0
T = Project(HT)⊗GT, F0

M = Project(HM)⊗GM :

This operation allows the model to retain important features

while suppressing less relevant ones.

Finally, the outputs from the two paths are combined to form the

final feature representation F that will be passed to the next module:

F = F0
T ⊕ F0

M,

where the addition operation allows the model to integrate

complementary information from both gating paths. By combining

dual gating paths, DPGM enhances the model’s ability to retain

biologically relevant signals and suppress redundant noise, thereby

improving predictive robustness.
2.6 Residual CNN chain

Although the MTMixEnc captures long-range dependencies

and hierarchical structures, the resulting feature space may still

lack fine-grained local patterns critical for distinguishing subtle

regulatory elements. Moreover, deep CNNs are prone to vanishing

gradients and performance degradation as depth increases. To

address these issues, we employ a ResCNNChn, where stacked

convolutional layers are stabilized with residual connections (He

et al., 2016). This design enables deeper networks, preserves

gradient flow, and facilitates the extraction of high-level local

regulatory representations.

Given the refined representation F ∈ RL�C=2 from the DPGM,

ResCNNChn processes it through a sequence of residual CNN

blocks, optionally interleaved with max-pooling layers (Figure 1d):

H00 = ResBlockn(MaxPool

(… ResBlock2(MaxPool(ResBlock1(F))))),

where H00 ∈ RL0�C0
is the final output of the ResCNNChn, n is

the number of residual blocks, and MaxPool(·) is an optional max-

pooling layer that reduces the sequence length while retaining

salient features.

Each residual CNN block ResBlocki consists of convolutional

layers with non-linear activations, residual connections, batch

normalization, and dropout:
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Z1 = s (Conv1D(Hin)),

Z2 = s (ConvlD(Z1)) + Hin,

Z3 = BN(s (Conv1D(Z2))),

Z4 = MaxPool(Z3),

Hout = Dropout(Z4, p),

where Hin ∈ RLin�Cin is the input feature map for each ResBlocki,

Hout ∈ RLout�Cout is the output featuremap, s is a non-linear activation

function (e.g., ReLU), BN(·) is batch normalization,MaxPool(·) is max-

pooling, and Dropout(·) applies dropout to prevent overfitting. It is

noted that each residual CNN block outputs Hout ∈ RLout�Cout , ready

to be passed to the next block in the chain.

Through this residual design, ResCNNChn preserves fine-

grained local patterns, stabilizes deeper architectures, and

enhances the overall representation power for modeling complex

regulatory signals.
2.7 Prediction head

The final feature maps are flattened and passed through a series

of fully connected layers with ReLU activations and dropout

regularization to produce the predictive logits Zlogits (Figure 1e).

The output layer then applies a sigmoid activation to generate class

probabilities for gene expression levels:

ŷ = Sigmoid(Zlogits),

where ŷ ∈ RCls denotes the predicted probability distribution

over Cls discrete gene expression classes (e.g., low, medium, high).
2.8 Loss function

We employ binary cross-entropy (BCE) loss to supervise the

classification of gene expression levels (low, medium, high). In our

formulation, each class is represented as a one-hot vector, and BCE

is applied independently to each class dimension:

LBCE = −
1
No

N

i=1
o
Cls

c=1
yi,c log(ŷ i,c) +   (1 − yi,c)   log(1 − ŷ i,c)
� �

,

where N is the number of samples, Cls = 3 is the number of

classes, yi,c ∈ 0, 1 is the ground-truth indicator for class c, and ŷ i,c is

the predicted probability. This formulation encourages the model to

assign high probability to the correct class while penalizing

incorrect predictions, thereby improving classification accuracy.
3 Experiments and results

3.1 Experimental settings

3.1.1 Evaluation metrics
To evaluate the predictive performance of our models, we

employ three widely used metrics: Accuracy, AUC-ROC, and F1-
frontiersin.org

https://doi.org/10.3389/fpls.2025.1718258
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2025.1718258
score. Accuracy measures the proportion of correctly predicted

samples out of the total, providing an overall assessment of model

performance. We use the AUC-ROC curve, where the horizontal

axis represents the false positive rate and the vertical axis represents

the true positive rate. The AUC indicates the model’s ability to

distinguish between the positive and negative classes. The F1-score

is the harmonic mean of precision and recall, balancing both

metrics to evaluate the model’s ability to correctly classify gene

expression levels while minimizing false positives and negatives.

These metrics are computed based on the counts of true positives

(TP), true negatives (TN), false positives (FP), and false negatives

(FN): TP refers to correctly identified positive samples, TN to

correctly identified negative samples, FP to negative samples

incorrectly classified as positive, and FN to positive samples

incorrectly classified as negative. The formulas for these metrics

are as follows:

Accuracy = TP+TN
TP+TN+FP+FN ,

Pre = TP
TP+FP ,

Sen = TP
TP+FN ,

F1 = 2� Pre�Sen
Pre+Sen :
3.1.2 Implementation
All experiments are conducted on an NVIDIA 3090 GPU. For

training our model, MTMixG-Net, we use the Adam optimizer with

an initial learning rate of 10−4. The training is limited to a maximum

of 100 epochs, with each epoch consisting of forward propagation,

back-propagation, and parameter updates on the training data. To

mitigate overfitting, early stopping is employed, halting training if

the validation loss does not decrease for 10 consecutive epochs.

Additionally, the learning rate is dynamically adjusted: it is reduced

to 10% of its current value if no improvement in validation loss is

observed for 5 consecutive epochs. This dynamic adjustment helps

the model converge more effectively in the later stages of training.

To ensure robustness, we adopt k-fold cross-validation, with k

set equal to the number of chromosomes for each dataset. All

models are trained and evaluated under the same conditions, using

identical training, validation, and test splits to ensure a fair

comparison. Each experiment is repeated 5 times with different

random seeds to account for variability in training, and the average

results along with standard deviations are reported.
3.2 Comparison with state-of-the-art
models

To evaluate the performance of our proposed MTMixG-Net, we

compare it with three representative deep learning models:

DeepCRE (Peleke et al., 2024), PhytoExpr (Li et al., 2024), and

DeepPlantCRE (Wu et al., 2025) across four plant species datasets.

The DeepCRE employs CNNs to analyze genomic sequences,

predict gene expression levels, and identify cis-regulatory

elements. PhytoExpr extends CNN-based architectures by

integrating Transformer layers, aiming to capture long-range
Frontiers in Plant Science 06
dependencies in genomic data and improve prediction accuracy

for mRNA abundance. DeepPlantCRE further enhances the

modeling of cis-regulatory elements by combining CNNs with

deeper sequence encoders, achieving competitive results on

multiple plant datasets. Since DeepPlantCRE provides publicly

available code, we reimplement it for our experiments; for the

other two methods, which lack open-source implementations, we

adopt the performance reported in (Wu et al., 2025).

The results are summarized in Table 1. For A. tha,

DeepPlantCRE achieves the second-best results across all three

metrics (Accuracy: 86.1%, AUC-ROC: 93.0%, F1-score: 85.8%).

MTMixG-Net consistently outperforms all baselines, with the best

Accuracy (87.4%), AUC-ROC (93.7%), and F1-score (87.1%). In the

S. lyc dataset, DeepPlantCRE again deliveres strong results

(Accuracy: 84.3%, AUC-ROC: 90.0%, F1-score: 77.9%), but

MTMixG-Net surpasses it with the highest Accuracy (85.4%),

AUC-ROC (91.0%), and F1-score (78.5%). For S. bic,

DeepPlantCRE showes second-best performance (Accuracy:

80.7%, AUC-ROC: 86.2%, F1-score: 76.1%). MTMixG-Net clearly

outperformes the baselines with Accuracy of 81.8%, AUC-ROC of

87.1%, and F1-score of 77.4%. On the Z. may dataset,

DeepPlantCRE again rankes second (Accuracy: 83.0%, AUC-

ROC: 90.0%, F1-score: 81.2%), while MTMixG-Net achieves the

best results with Accuracy (84.1%), AUC-ROC (90.1%), and F1-

score (82.1%).

These results demonstrate that MTMixG-Net consistently

outperforms existing state-of-the-art models, effectively capturing

the complex regulatory patterns underlying gene expression in

plants. Moreover, the consistent improvements across species

with large and complex genomes highlight the robustness and

generalizability of MTMixG-Net in handling redundant

regulatory sequences.
3.3 Ablation study

To assess the contributions of each component in MTMixG-

Net, we conduct an ablation study by systematically adding key

modules and evaluating the impact on performance. We consider

three configurations: (1) ResCNNChn only (M1): A baseline using

only the residual CNN chain without MTMixEnc or DPGM. This

configuration evaluates the effectiveness of local motif extraction via

CNN blocks. (2) ResCNNChn +MTMixEnc(M1+M2): Incorporates

the MTMixEnc module together with ResCNNChn, excluding

DPGM. This setting tests the impact of combining self-attention

and state-space modeling for global and hierarchical feature

learning. For the MTMixEnc, we experiment with two variants:

(M21) using only the Mamba branch, and (M22) using only the

Transformer branch. (3) Full MTMixG-Net (M1+M2+M3): The

complete model including ResCNNChn (M1), MTMixEnc (M2),

and DPGM (M3).

The results (Table 2; Figure 2) show that even ResCNNChn

alone achieves competitive performance, with accuracies between

80.2% (S. bic) and 85.6% (A. tha), demonstrating the effectiveness of

residual CNN blocks in extracting local sequence patterns.
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However, the lack of global modeling limits accuracy in species with

complex regulatory architectures.

Incorporating the MTMixEnc improves performance across

nearly all datasets. For example, in A. tha, accuracy improves

from 85.6% to 87.3%, and in S. bic, accuracy increases from

80.2% to 81.4%. The AUC-ROC also rises slightly (e.g., 86.0% →

87.0% in S. bic). When combined individually with theM1, bothM1

+M21 and M1+M22 outperform the CNN-only baseline across all

datasets, confirming that integrating either sequential modeling

mechanism enhances the representat ion of genomic

dependencies. Notably, M1+M21 (Mamba-based) achieves slightly

higher Accuracy and AUC-ROC values than M1+M22

(Transformer-based) in most species, indicating that self-attention

remains highly effective for capturing long-range dependencies.

However, the performance gap between the two configurations is

marginal (≤0.5%), suggesting that Mamba provides a

computationally efficient alternative capable of modeling

hierarchical temporal features with comparable accuracy. These

gains highlight that combining Transformer’s ability to capture

long-range dependencies with Mamba’s hierarchical modeling

enhances representation learning beyond local CNN features.
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Incorporat ing DPGM further refines the learned

representations. By suppressing redundant features and

highlighting biologically relevant signals, DPGM provides

consistent improvements over A+C. For example, in S. lyc,

accuracy rises from 85.2% to 85.4%, while AUC-ROC increases

from 90.5% to 91.0%. Similar enhancements are observed across

all datasets.

The ablation results confirm that each module contributes

meaningfully to overall performance. The residual CNN chain

captures strong local patterns, the MTMixEnc enhances global

and hierarchical feature learning, and the DPGM further filters

and amplifies informative signals. The full MTMixG-Net

consistently achieves the best performance across datasets,

validating the necessity of integrating all three components for

accurate and generalizable plant gene expression prediction.
3.4 Hyperparameter selection

Selecting appropriate hyperparameters is critical to ensure both

the stability and effectiveness of MTMixGNet. To systematically
TABLE 2 Ablation experiments on the four datasets.

Module
A. tha S. lyc S. bic Z. may

Accuracy AUC-ROC Accuracy AUC-ROC Accuracy AUC-ROC Accuracy AUC-ROC

M1 85.6 ± 2.8 92.5 ± 1.4 83.8 ± 2.0 89.2 ± 1.9 80.2 ± 1.9 86.0 ± 5.0 82.3 ± 3.2 89.1 ± 3.9

M1+M21 85.9 ± 2.2 92.8 ± 1.3 84.1 ± 1.7 90.1 ± 2.1 81.0 ± 2.1 86.5 ± 4.4 83.4 ± 4.5 89.1 ± 5.3

M1+M22 86.7 ± 1.5 93.4 ± 1.2 84.5 ± 3.3 90.4 ± 2.5 81.0 ± 2.3 86.5 ± 4.6 83.2 ± 2.6 89.7 ± 4.0

M1+M2+ 87.3 ± 2.5 93.7 ± 1.4 85.2 ± 1.9 90.5 ± 2.0 81.4 ± 1.9 87.0 ± 5.2 83.5 ± 3.4 89.2 ± 3.9

M1+M2+M3 87.4 ± 2.1 93.7 ± 1.1 85.4 ± 2.7 91.0 ± 2.1 81.8 ± 2.2 87.1 ± 5.3 84.1 ± 2.7 90.1 ± 3.6
TABLE 1 Performance comparison of all the models on four datasets. .

Datasets Metrics DeepCRE PhytoExpr DeepPlantCRE MTMixG-Net

A. tha

Accuracy 85.4 ± 2.0 78.3 ± 1.5 86.1 ± 3.0 87.4 ± 2.1

AUC-ROC 92.5 ± 1.8 86.3 ± 0.9 93.0 ± 1.7 93.7 ± 1.1

F1-score 85.0 ± 1.9 76.6 ± 2.4 85.8 ± 2.8 87.1 ± 2.3

S. lyc

Accuracy 82.6 ± 2.7 79.2 ± 3.0 84.3 ± 2.6 85.4 ± 2.7

AUC-ROC 87.7 ± 2.4 85.2 ± 3.1 90.0 ± 2.3 91.0 ± 2.1

F1-score 74.7 ± 4.5 71.3 ± 5.5 77.9 ± 3.9 78.5 ± 3.7

S. bic

Accuracy 79.0 ± 1.9 75.7 ± 2.4 80.7 ± 1.6 81.8 ± 2.2

AUC-ROC 84.4 ± 5.3 81.9 ± 2.3 86.2 ± 4.8 87.1 ± 5.3

F1-score 73.5 ± 6.9 71.5 ± 5.2 76.1 ± 6.4 77.4 ± 6.4

Z. may

Accuracy 80.1 ± 3.9 77.9 ± 4.1 83.0 ± 4.5 84.1 ± 2.7

AUC-ROC 86.7 ± 5.1 85.2 ± 4.0 90.0 ± 4.1 90.1 ± 3.6

F1-score 78.0 ± 5.8 76.2 ± 5.1 81.2 ± 6.1 82.1 ± 4.0
The best values are highlighted in bold. The second-best values are marked in red.
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evaluate their influence, we vary the number of CNN layers, kernel

sizes, and learning rates, and assess performance using accuracy,

AUC-ROC, and F1-score (Figure 3).

We experiment with 3, 5, and 7 CNN layers. Performance peaks

at 5 layers, where accuracy and F1-score both achieve their highest

values. Using fewer layers (3) lead to underfitting, as the model lacks

sufficient representational depth. Increasing to 7 layers does not

improve performance and slightly reduced AUCROC, suggesting

potential overfitting and gradient instability. Therefore, 5 CNN

layers strike a balance between expressive power and generalization.

Kernel sizes of 5, 8, and 16 are compared. A kernel size of 8

provides the best trade-off, with the highest AUC-ROC and F1-

score. Smaller kernels (size 5) failes to capture wider motifs

effectively, while overly large kernels (size 16) dilutes local
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features and reduces precision. This result indicates that medium-

sized kernels are most effective for modeling cis-regulatory elements

in plant genomic data.

We test learning rates of 10−5, 10−4, and 10−3. A learning rate of

10−4 produces the most stable and optimal results, with the highest

accuracy and AUC-ROC. At 10−5, the model converges slowly,

leading to suboptimal results within the given training epochs. In

contrast, 10−3 causes performance degradation, likely due to

unstable weight updates. Thus, 10−4 is selected as the optimal

learning rate for all experiments.

The different hyperparameter settings demonstrates that

MTMixG-Net is sensitive to architectural and optimization

choices. Specifically, moderate network depth (5 layers), medium

kernel sizes (8), and balanced learning rates (10−4) yield the most
FIGURE 2

Performance visulizion of the ablation studies on the (A) arabidopsis thaliana, (B) solanum lycopersicum, (C) sorghum bicolor, and (D) zea mays
datasets.
FIGURE 1

Framework architecture for gene expression prediction. (a) The input sequence, consisting of genomic data, is processed through a mixture of
Transformer and Mamba encoders. (b) The encoder integrates multi-headed self-attention (MHSA) and Mamba blocks to capture both long-range
dependencies and hierarchical patterns. (c) A dual-path gating mechanism selectively filters features to emphasize relevant information. (d) The
residual CNN chain processes the features through multiple residual CNN blocks to extract high-level representations. (e) The prediction head
generates the final gene expression predictions using fully connected layers and a binary cross-entropy loss function.
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robust and generalizable performance across datasets. These

settings ensure the model captures both local motif structures and

long-range dependencies without overfitting, validating the

importance of careful hyperparameter tuning in genomic

prediction tasks.
3.5 Cross-species generalization

One of the key challenges in plant genomics is generalizing

across species with diverse genomic structures and regulatory

mechanisms. To assess the cross-species generalization capability

of MTMixG-Net, we conduct experiments where the model is

trained on one species and tested on others. The results are

summarized in the heatmaps shown in Figure 4.

MTMixG-Net generally performs well across species,

particularly when trained on zea mays and tested on other

species. Notably, the zea mays dataset, with 39,757 gene records,

is significantly larger than those of the other species, presenting

greater complexity. This larger dataset may cause the model to

overfit the more complex gene set, which could explain the observed

challenges when training on zea mays and testing on other species.

In contrast, smaller datasets from species like solanum

lycopersicum or arabidopsis thaliana may provide fewer but more

transferable regulatory signals, enabling easier generalization.
Frontiers in Plant Science 09
However, MTMixG-Net performs the worst when trained or

tested on the sorghum bicolor dataset, particularly in terms of

accuracy, AUC-ROC, and F1-score. This anomaly suggests

challenges in handling sorghum bicolor genomic data. We explain

this phenomenon from two perspectives. First, sorghum bicolor has

a relatively small dataset size (only 17,988 gene records), which may

limit the model’s ability to learn robust and generalizable features.

Second, sorghum bicolor’s genomic architecture may contain

unique regulatory elements or patterns that are not well-

represented in the training data from other species, leading to

poor performance when the model is applied to this species.

In summary, these results demonstrate that MTMixG-Net

exhibits strong cross-species generalization. The model’s ability to

maintain high accuracy, AUC-ROC, and F1-score in cross-species

settings indicates its capacity to capture conserved regulatory

patterns rather than overfitting to species-specific signals. This

adaptability makes MTMixG-Net a valuable tool for plant

genomics, especially for crops with limited annotated datasets.
4 Conclusion

In this study, we propose MTMixG-Net, a novel deep learning

framework for plant gene expression prediction that jointly

captures multi-scale and global regulatory patterns from genomic
FIGURE 4

Cross-species generalization performance of MTMixG-Net on the four datasets. (A) Accuracy, (B) AUC-ROC, (C) F1-score.
FIGURE 3

Hyperparameter sensitivity analysis of MTMixG-Net.
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sequences. By integrating a mixture of Transformer and Mamba

encoder (MTMixEnc), a dual-path gating mechanism (DPGM), and

a residual CNN chain (ResCNNChn), the model effectively

overcomes the limitations of prior approaches that consider local

motifs and long-range dependencies in isolation. Extensive

experiments on four plant species datasets demonstrate that

MTMixG-Net consistently outperforms state-of-the-art baselines.

Ablation studies further validate the contribution of each module,

while cross-species experiments highlight the model’s robustness

and versatility, underscoring its ability to generalize across genomes

with diverse architectures. Overall, MTMixG-Net represents a

significant advancement in computational genomics, offering a

powerful tool for understanding and predicting gene expression

in plants. Its strong performance and generalizability make it a

promising approach for future applications in plant biology and

crop improvement. In future work, MTMixG-Net could be

extended to integrate transcriptomic, epigenetic , and

environmental data, facilitating its application in real-world crop

improvement and functional genomics. Translating such models

into practical breeding tools, however, will require overcoming

challenges related to data heterogeneity, interpretability, and the

need for large-scale, high-quality annotations across diverse

plant species.
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Deep learning the cis-regulatory code for gene expression in selected model plants. Nat.
Commun. 15, 3488. doi: 10.1038/s41467-024-47744-0
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