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diversity of soil bacteria and
fungi in poplar plantations

in Northeast China
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Tongbao Qu* and Xiyang Zhao™

*College of Forestry and Grassland, Jilin Agricultural University, Changchun, China, 2Key Laboratory of
Beibu Gulf Environment Change and Resources Use, Nanning Normal University, Nanning, China,
sXinmin City Machinery Forest Farm, Shenyang, China

Stand age is one of the most important indicators of plantation development
status after afforestation. Soil microbial community plays an essential role in
ecosystem functioning. Yet, the responses of soil microbial community
composition and diversity to stand development are inadequately understood.
Here, we examined changes in community composition and diversity of soil
bacteria and fungi in poplar plantations across stand ages and their relationships
with soil chemical and biochemical properties in Northeast China. We measured
soil chemical properties (organic carbon, total nitrogen, total phosphorus and
their stoichiometries), soil biochemical properties (microbial biomass, soil
enzyme activity and their stoichiometries), and composition and diversity of
soil bacterial and fungal communities in a chronosequence (1, 4, 7 and 9 years) of
poplar plantations. Furthermore, we analyzed microbial co-occurrence network
and the relationships of soil bacterial and fungal community diversity and
composition with soil chemical and biochemical properties. The Chaol index
of soil bacteria was lowest in the 9-year-old plantation, and Chaol index of soil
fungi was lowest in the 7-year-old plantation. Soil bacterial and fungal diversity
showed a significant relationship with soil microbial biomass. The most dominant
bacterial species were from Proteobacteria, Acidobacteriota, Actinobacteriota,
Firmicutes and Chloroflexi, and fungal species were from Ascomycota,
Basidiomycota and Mortierellomycota. The number of links and average
degree of bacterial communities decreased as stand age of poplar plantations
increased, while those of fungal communities increased. Soil bacterial and fungal
network parameters showed significant relationship with soil microbial biomass
ang microbial stoichiometry. Our results showed that the impact of stand age on
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soil microbial community diversity and composition is specific and stage-
dependent, rather than following a simple linear trend with increasing age, and
this may be due to the influence of stand age on stoichiometry of soil

microbial biomass.

KEYWORDS

microbial biomass stoichiometry, enzyme stoichiometry, bacterial community, fungal
community, microbial network analysis

1 Introduction

Afforestation is one of the most effective means to deal with
climate change. Several ecological restoration projects have been
initiated by the Chinese government since the 1980s, such as
converting croplands and marginal lands into forests, and Three-
north Shelterbelt Project, to prevent soil and water quality
degradation. Therefore, China has the largest afforested area in
the world with an estimated area of 80.03 x 10° ha, or 26.2% of
global forest plantation area (265 x 10° ha) (National Forestry and
Grassland Administration, 2020). Previous studies showed that soil
microbial processes are essential to the functioning of forest
ecosystems, such as nutrient cycling and soil C sequestration
(Tisdall, 1994; Pajares and Bohannan, 2016; Chen et al.,, 2013; Ni
et al., 2021). During plantation management, afforestation might
significantly affect the vegetation structure and soil nutrient
availability by affecting soil microbial processes (Li et al., 2023;
Shi et al, 2024). Consequently, understanding changes in soil
microbial community and function is essential for developing
management strategies designed to enhance the stability of
plantation forest ecosystems.

Stand age is one of the most important indicators of plantation
development status after afforestation, substantially affecting the
dynamics of soil chemical and biochemical properties, enzyme
activities, and microbial communities (Inagaki et al, 2004;
Trogisch et al.,, 2016; Wang et al, 2021a; Guo and Ren, 2014).
For instance, soil nutrient availability increased with increasing
stand age in Chinese fir plantations (Wu et al., 2020; Xia et al,
2021). In Pinus radiata plantations with stand ages ranging from 1
to 33 years, soil microbial biomass N in 5-year-old was the lowest
(Ross et al., 1995). Compared with 3-, 7- and 10-year-old
Eucalyptus plantations, the 13-year-old plantation was found to
have greater microbial biomass (Cao et al, 2010). During the
development of plantations, the diversity and composition of soil
microbial communities regulate most biogeochemical processes by
secreting extracellular enzymes (Li et al., 2015; Qiang et al., 2020),
thereby playing an essential role in influencing plant growth.
Therefore, it is necessary to investigate the changes in diversity
and composition of soil microbial communities during plantation
development (Morrién et al.,, 2017).
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In northern China, large-area poplar plantations have been
established for wood production, urban greening, desertification
control and carbon sequestration, due to their fast growth (Zhou
etal., 2013). Ecologically, poplar plantations may have the potential
to change the ecological environment because of their fast growth
and high biomass productivity (Han et al., 2022; Song et al., 2021).
However, the effects of stand ages of poplar plantations on the soil
quality in the northern China and specifically on soil microbial
community structure and function are poorly understood.
According to previous studies, soil microbial enzymes participate
in almost all soil biochemical processes and play an essential role in
nutrient cycling within ecosystems (Hill et al., 2012; Song et al.,
2012). Additionally, soil microbial biomass serves as a key indicator
of nutrient cycling and can sensitively reflect changes in soil quality
(Nannipieri et al., 1979; Moreira et al., 2011; Polyanskaya et al.,
2017). Soil microbial diversity is one of the main driving factors of
the soil biochemical cycle. Several studies found that afforestation
greatly affects the biological and biochemical properties of soil,
including soil microbial enzyme activities, microbial biomass and
microbial diversity (Li et al., 2023; Shi et al., 2024). Furthermore,
Co-occurrence network analyses, which reflect network complexity
and interactions among bacterial and fungal species in soil
microbial communities, have recently been applied in soil
microbial community studies (Chen et al., 2022; Wu et al., 2023).
Soil microbial network complexity is often influenced by multiple
factors, such as climate change and management strategies (Tu
et al,, 2020; Gong et al., 2024). Several studies have confirmed that
the soil physicochemical properties and disturbance levels are key
factors changing structure and network topology of microbial
communities (Nakayama et al., 2019; Zhu et al,, 2021; Xu et al,
2022). Although microbial network analysis has been widely
applied in multiple ecosystems, the understanding of how
complex microbial communities respond to stand age of
plantations is still inadequate.

Therefore, this study aims to investigate the responses of the soil
biological properties and specifically soil microbial community
structure and function to stand development (1, 4, 7 and 9 years) of
poplar (Populus cathayana x canadensis Xinlin 1°) plantations in
northern China. Soil microbial diversity and community composition
were determined by using amplicon high-throughput sequencing.
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Alpha diversity indices, including Chaol richness, Shannon diversity,
and Observed species, were calculated to assess microbial diversity
within samples. Additionally, soil physicochemical properties were
determined, and their relationships with soil microbial diversity,
community composition, co-occurrence network pattern, and
potential function were also examined. Based on the aforementioned
findings, we hypothesize that: (1) soil chemical and biochemical
properties and their stoichiometry were lower in the older poplar
plantation (9-year-old plantation) compared with that in younger
plantation (4-year-plantation or 1-year-old plantation); (2) the
diversity of soil bacteria and fungi will decrease with the increase in
stand ages of poplar plantation, and the complexity of the co-
occurrence network of bacterial and fungal communities gradually
increased with stand age; (3) the changes of soil bacterial and fungal
community diversity and composition mainly related to changes in
soil microbial biomass, enzyme activity and their stoichiometry rather
than soil chemical properties and chemical stoichiometry.

2 Materials and methods
2.1 Experiment design

The study site was located in Xinmin State Mechanical Forest
Farm (41°42'-42°17'N, 122°27'-123°20'E), Liaoning Province,
China. The study site has a temperate continental monsoon
climate with a mean annual temperature of 7.6 °C and
precipitation of 656.5 mm. The soils are sandy loam. A
chronosequence (1, 4, 7 and 9 years) of poplar (Populus
cathayana x canadansis Xinlin 1’) plantations were used in the
present study.

In August 2022, five plots of 15 m x 15 m were randomly
established in each stand age plantation, and the distance between
adjacent plots was larger than 15 m. Four soil samples from each
plot were randomly collected at 0-10 cm depth by using soil-corer
with an inner diameter of 4.5 cm according to the S-shape, and then
they were pooled together to give one composite sample. After
stones and coarse roots were removed, soil samples were sieved
(2 mm), and then divided into three sub-samples. One subsample
was used to measure soil organic carbon (SOC), total nitrogen (TN),
total phosphorus (TP) and pH after air dried. One subsample was
stored at liquid nitrogen for later measurements of microbial
community composition and diversity. Another subsample was
refrigerated at 4°C and used to analyze microbial biomass,
enzyme activity, NH," and NO;™ within two weeks.

2.2 Analysis of chemical and soil enzyme
activity

Soil pH was measured in water extracts of 1:2.5 (w/v) of air-
dried soil and deionized water. Soil NH,"-N and NO; N were
determined by the indophenol blue colorimetric method and
ultraviolet spectrophotometry, respectively (Kempers and Zweers,
1986). After sieved, the SOC and N concentrations of soil were
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measured using the K,Cr,0,-H,SO, wet oxidation method (Nelson
and Sommers, 1996). Total N concentration was determined with a
continuous-flow autoanalyzer (AutoAnalyzer III, Bran+Luebbe
GmbH, Germany) after soil samples were digested with H,SO,.
Total P concentration was measured with the sodium hydroxide
melting-molybdenum antimony colorimetric method. The C/N, C/
P and N/P ratios of soil were calculated from the values of SOC
concentration and total N and P concentrations. The MBC, MBN
and MBP were determined using a chloroform (CHCl;) based
fumigation-0.5 M K,SO, extraction method (Frey et al, 2004).
The activities of four extracellular enzymes participating in
the cycling of C (B-glucosidase, BG), N (N-acetyl-B-D-
glucosaminidase, NAG) and P (acid phosphomonoesterase, AP)
were measured following the microporous plate method (Bach
et al., 2013; German et al., 2012).

2.3 Microbial community analysis

The total DNA of the microbial communities in the soil samples
was extracted using a DNA extraction kit (E.Z.N.A ® Soil DNA Kit).
Three replicate PCR reactions were pooled in equal concentrations
based on the PCR product yields. The PCR products were verified
on a 2% agarose gel and subsequently purified using the extraction
kit (E.ZN.A © Soil DNA Kit). The purified DNA was generated
from a sequencing library on the Illumina HiSeq 2500 platform
(Illumina, San Diego, CA, USA). Amplification and barcoded
pyrosequencing of the 16S rRNA gene were conducted according
to a previously described instruction (Sengupta and Dick, 2017).
The V3-V4 region of the 16S rRNA genes was amplified using
the primers 515 F: GTGCCAGCMGCCGCGGTAA and 907(806)
R: CCGTCAATTCCTTTGAGTT. The fungal rDNA ITSI region
was amplified using PCR with the primers ITS1F (5'-
CTTGGTCATTTAGAGGAAGTAA-3"). The PCR products were
sequenced using an Illumina HiSeq platform following the standard
protocols. The library was constructed and sequenced on an
Illumina HiSeq platform as per the standard protocols.
Sequencing techniques and data analyses were also performed by
Guangdong Novogene Bioinformatics Technology Co., Ltd.
(Tianjin, China).

Data obtained from Illumina sequencing were handled by
separating primers and adapters from the reads, and a reading of
approximately 250 bp was obtained. Sequences with >97%
similarity were clustered into one operational taxonomic unit
(OTU) using the UPARSE algorithm (v. 7.0.1001 http://
drive5.com/usearch/manual/singletons.html). The o-diversity of
the bacterial community, including Shannon index and Chaol
index, was determined by OTUs using Quantitative Insights Into
Bacterial Ecology (QIIME, v. 1.7.0).

2.4 Data analysis

Differences in chemical and biochemical properties of soil
among stand ages were analyzed by one-way analysis of variance
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(ANOVA) according to Duncan’s test (P < 0.05) using the SPSS 22.0
software. For microbial diversity analysis, Shannon and Chaol
indices were used. Correlation heatmaps describing the
correlations between chemical and biochemical properties of soil,
soil microbial diversity and the dominant phyla, classes and genera
of soil bacteria and fungi (Origin 2023). Correlation coefficients
were calculated based on Pearson’s correlation coefficient method.
Non-metric multidimensional scaling (NMDS) was conducted and
visualized using the vegan package in R (version 4.5.1).

Response ratio (RR) was defined as the response of the soil
microbial community diversity and composition to control
plantation (1-year-old), and was calculated as follows (Sheng
et al., 2015):

_ Microbial index in treatment - (Microbial index in control)

RR
Microbial index in control

x 100 %

Network was used to explore co-occurrence patterns of
abundant and rare microbial taxa at the four stand ages using the
Molecular Ecological Network Analyses Pipeline (MENA, http://
ieg4.rccc.ou.edu/mena) (Zhou et al., 2010; Deng et al., 2012). The
similarity thresholds between 0.70 and 0.99 with 0.01 intervals were
obtained and applied to the Spearman rank correlation matrix, and
correlations above the specific threshold were used to compute the
microbial network eigenvalues. We calculated the network
topological characteristics, including average path length, nodes,
edges, positive links and negative links, which were then used to
describe the properties of individual nodes in the network and the
overall topology of different networks. Visualization of the co-
occurrence network was performed with the Gephi platform
(http://gephi.github.io). Redundancy analysis (RDA) was used to
determine the relative contributions of soil chemical and

rs
S
F 4
=
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biochemical properties in explaining the variance of soil microbial
community diversity and composition. The explanatory magnitude
and significance of each explanatory variable were analyzed by
hierarchical segmentation. The “Vegan” (Dixon, 2003) package in R
was used for RDA.

3 Results

The changes in soil microbial community and function are
essential for developing management strategies designed to enhance
the stability of plantation forest ecosystems. Yet, the responses of
soil microbial community composition and diversity to stand
development of poplar plantation in northern China are
inadequately understood. Therefore, the present study
investigated the responses of the soil microbial diversity,
community composition, co-occurrence network pattern, and
potential function to stand development (1, 4, 7 and 9 years) of
poplar plantations.

3.1 Soil chemical and biochemical
properties

Soil pH in the 9-year-old plantation was lower than those in the
1-, 4- and 7-year-old plantations (Figure 1A). There were no
significant differences in soil pH among 1-, 4- and 7-year-old
plantations. The SOC, N concentration and P concentration in
the 1-year-old plantation were higher than those in the 9-year-old
plantation (Figures 1B-D). There were no significant differences in
soil C/N ratio between 4- and 9-year-old plantations, and soil C/N
ratio was lower in the 7-year-old plantation than those in the other
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FIGURE 1

The chemical and biochemical properties of soil in different aged poplar plantations. NOs™-N, Nitrate nitrogen; NH,*-N, Ammonium nitrogen;

SOC, soil organic carbon; TN, Total nitrogen; TP, Total phosphorus; C/N ratio, ratio of SOC and TN; C/P ratio, ratio of SOC and TP; N/P ratio, ratio
of TN and TP; MBC, Microbial biomass carbon; MBN, Microbial biomass nitrogen; MBP, Microbial biomass phosphorus; mC/N ratio, ratio of MBC and
MBN; mC/P ratio, ratio of MBC and MBP; mN/P ratio, ratio of MBN and MBP; BG, B-glucosidase; NAG, N-acetyl-B-D-glucosaminidase; AP, acid
phosphomonoesterase; eC/N ratio, ratio of BG and NAG; eC/P ratio, ratio of BG and AP; eN/P ratio, ratio of NAG and AP. Different lowercase letters
represent significant differences among different stand ages at P < 0.05, respectively.
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stand ages (Figure 1E). Soil C/P and N/P ratios in the 4-year-old
plantation were higher than those in the other stand ages
(Figures 1E, G). Soil NO3 N concentration in the 7-year-old
plantation was higher than those in the other stand ages
(Figure 1H). In the 1-year-old plantation, soil NO3 N
concentration was lower than those in the other stand age
plantations. There were no significant differences in MBC, MBP,
mC/P ratio and mN/P ratio among 1-, 4- and 7-year-old plantations
(Figures 11, K, M, N). In the 1-year-old plantation, MBN was lower
and mC/N ratio was highest than those in the other stand age
plantations (Figures 1], L). Soil NH,"-N concentration in the 4-
year-old plantation was higher, and soil NH,"-N concentration in
the 9-year-old plantation was lower than those in the other stand
age plantations (Figure 10). There were no significant differences in
BG and NAG activities among 4-, 7- and 9-year-old plantations
(Figures 1P, Q). Soil AP activity was higher, and eC/P and eN/P
ratios were lower in the 1-year-old plantation than those in the
other stand age plantations (Figures 1E, F, R).

3.2 Soil bacterial and fungal diversity and
community composition

The one-way ANOVA test indicated that there were no
significant differences in Shannon index of soil bacteria and fungi
among four different aged poplar plantations (Table 1). The Chaol
index of soil bacteria in the 1-year-old plantation was higher than
those in the 9-year-old plantation. There were no significant
differences in Chaol index of soil bacteria among 1-, 4- and 7-
year-old plantations. The Chaol index of soil fungi in the 1-year-old
plantation was higher than those in the other three stand ages.
There were no significant differences in Chaol index of soil fungi
between 4-and 7-year-old plantations.

All of the 16S reads obtained from soils of 1-, 4-, 7-year-old
plantations were classified into 47 bacterial phyla, 124 classes and
726 genera (Figures 2A, 3A). Overall, the phylum Proteobacteria
dominated the bacterial communities, representing 27.02%, 25.01%,
23.82% and 30.13% in the 1-, 4-, 7- and 9-year-old plantations,
respectively. All of the ITS reads obtained from soils of 1-, 4-, 7-
year-old plantations were classified into 10 fungal phyla, 29 classes
and 244 genera (Figures 2B, 3B).

TABLE 1 Soil microbial diversity in different aged poplar plantations.

Bacteria
Stand age

(years)

Shannon :
species

Observed

10.3389/fpls.2025.1717501

3.3 Soil bacterial and fungal network
complexity

Distinct co-occurrence patterns were demonstrated for both
bacterial and fungal soil communities in different stand ages of
plantation (Figure 4). There were no significant differences in the
node number of the bacterial and fungal communities between
different stand ages of poplar plantation. In general, the link
numbers and average degree of the bacterial communities
decreased with the increase of stand age of poplar plantation, and
the link numbers and average degree of the fungal communities
increased with the increase of stand age of poplar plantation.

The node and link numbers were respectively greater in the
bacterial communities (229 and 4053) than those in the fungal
communities (33 and 45) (Figures 4A, B). The node degree and
clustering coefficient of the bacterial communities did not show
significant differences among 4 stand ages of poplar plantation
(Figures 4D, F). The node betweenness of the bacterial communities
in the 1-year-old plantation was higher than those in the other stand
ages of poplar plantation (Figure 4E). No significant differences in
the node betweenness of the bacterial communities were found
between 4- and 7-year-old plantations. The node betweenness of the
bacterial communities showed significant positive correlation with
soil NO; N concentration, MBN and mN/P ratio (Figure 4G). The
node degree and clustering coefficient of the fungal communities in
the 9-year-old plantation were higher than those in the other stand
age of plantation (Figures 4D, F). There were no significant
differences in the node degree, clustering coefficient and node
betweenness of the fungal communities between 4- and 7-year-
old plantations. The node degree, clustering coefficient and node
betweenness of the fungal communities had significant relationship
with soil N and P concentrations, MBC, MBP, mC/N ratio and mC/
P ratio (Figure 4G).

3.4 Effects of soil chemical and
biochemical properties on soil microbial
diversity and community

The Shannon and Chaol indexes of soil bacteria showed
significant positive correlations with soil pH, total N

Fungi

Observed

Shannon .
species

1 10.3 (0.1) * 22682 (137.4) * 2266.8 (137.7) * 5.8 (0.4) * 4292 (55.7) 4520 (42.6) *
4 102 (0.2) * 2252.8 (170.6) * 21513 (170.2) 53(0.4)* 339.9 (20.9) ° 338.8 (20.0) ©
7 10.1 (0.1) * 2204.2 (86.9) * 2202.3 (86.5) * 5.2 (0.5) 267.7 (11.4) © 290.1 (41.3) ©
9 9.9 (0.1) * 1906.5 (72.2) b 1905 (71.9) © 5.2(0.8)* 339.5 (34.6) b 320.6 (44.9) b

The data are shown as the means + SE (n = 4). Different lowercase letters represent significant differences among different stand ages at P < 0.05.
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and genera. *P < 0.05; **P < 0.01; ***P < 0.001.

concentration, MBC, mC/N ratio, mC/P ratio and eC/N ratio
(Table 2). The Shannon and Chaol indexes of soil bacteria
showed significant negative correlations with soil MBP. The

Chaol index of soil fungi showed significant negative correlations
with soil NO3;™N concentration, MBN, mC/N ratio and BG.
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Furthermore, according to the RDA results, soil bacterial diversity

showed significant relationship with soil microbial biomass,

microbial stoichiometry, enzyme activity and enzyme
stoichiometry (P < 0.001; Table 3). These four variables explained
1.49%, 10.28%, 5.73% and 7.08% of variance of bacterial diversity,
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The co-occurrence networks of soil bacterial (A) and fungal (B) communities; parameters characterizing the complexity of networks (C—E);
correlations between soil chemical and biochemical properties and network complexity of soil bacteria and fungi (F). NOs™-N, Nitrate nitrogen;
NH,*-N, Ammonium nitrogen; SOC, soil organic carbon; TN, Total nitrogen; TP, Total phosphorus; C/N ratio, ratio of SOC and TN; C/P ratio,

ratio of SOC and TP; N/P ratio, ratio of TN and TP; MBC, Microbial biomass carbon; MBN, Microbial biomass nitrogen; MBP, Microbial biomass
phosphorus; mC/N ratio, ratio of MBC and MBN; mC/P ratio, ratio of MBC and MBP; mN/P ratio, ratio of MBN and MBP; BG, B-glucosidase; NAG,
N-acetyl-B-D-glucosaminidase; AP, acid phosphomonoesterase; eC/N ratio, ratio of BG and NAG; eC/P ratio, ratio of BG and AP; eN/P ratio, ratioof
NAG and AP. Different lowercase letters above the bar plots indicate significant differences at P < 0.05. Significant levels in correlation analyses:

*P < 0.05; **P < 0.01; ***P < 0.001.

respectively. Therefore, the influence of microbial stoichiometry on
soil bacterial diversity was more important than soil microbial
biomass, enzyme activity and enzyme stoichiometry. Meanwhile,
soil fungal diversity showed significant relationship with soil
microbial biomass and enzyme activity (P < 0.05; Table 3). These
two variables explained 6.62% and 9.81% of variance of fungal
diversity, respectively.

Proteobacteria, Acidobacteriota, Firmicutes and Chloroflexi
showed significant correlations with eC/P and eN/P ratios
(Figure 2C). Actinobacteriota had positive correlations with soil pH,
soil NH,"-N concentration and N/P ratio. Gammaproteobacteria and
Alphaproteobacteria negatively related to soil pH and N/P ratio. RB41
positively related to soil NO; N concentration, P concentration and
AP activity, and negatively related to soil NH,"-N concentration and
C/N ratio. Lactobacillus showed positive relationship with soil pH, N

Frontiers in Plant Science

concentration, eC/P ratio and eN/P ratio. Ascomycota showed a
significant positive correlation with soil BG activity (Figure 2D).
Basidiomycota negatively related to soil NO; N concentration and
MBN, and positively related to C/N ratio. Mortierellomycota,
Mortierellomycetes and Mortierella negatively related to soil NH,"-
N concentration and SOC. Besides, according to the RDA results, soil
bacterial community composition showed significant relationship
with soil chemical properties, chemical stoichiometry, microbial
biomass and microbial stoichiometry (P < 0.001; Table 3). These
four variables explained 52.8%, 27.75%, 5.89% and 6.96% of variance
of bacterial community composition, respectively. Thus, the influence
of soil chemical properties and chemical stoichiometry on soil
bacterial community composition were more important than
microbial biomass and microbial stoichiometry. Meanwhile, soil
fungal community composition showed significant relationship
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TABLE 2 Correlations between soil microbial diversity and soil chemical and biochemical properties in the poplar plantations.

Chemical and  Bacteria Fungi
blochemlcal Observed Observed
properies Shannon . Shannon :
species species
pH 0.709** 0.780%* 0.780%* 0.167 0.078 0.328
NO;N -0.113 0.092 0.091 0274 -0.792%¢ -0.698**
NH,"-N 0.343 0.294 0.294 0.089 0.276 0.246
SOC 0.351 0.235 0.237 0.212 0.560* 0.544*
N 0.643** 0.665** 0.665** 0.371 0.354 0.629**
TP 0.291 0.354 0.354 0.205 0.264 0.453
C/N -0.256 -0.402 -0.401 -0.184 0.223 -0.038
C/p 0.138 0.032 0.033 0.042 0.170 0.084
N/P 0.435 0.384 0.384 0.186 0.082 0.174
MBC 0.687** 0.714** 0.714** 0.268 0.122 0.325
MBN -0.251 -0.102 -0.103 -0.135 -0773%* -0.655%*
MBP -0.637%* -0.667%* -0.667%* 0221 -0.332 -0.442
mC/N 0.677** 0.569* 0.570* 0.324 0.716** 0.772%*
mC/P 0.705** 0.722%* 0.722%* 0.297 0.308 0.451
mN/P 0.393 0.495 0.495 0.143 -0.169 -0.018
BG 0.292 0.308 0.308 -0.031 -0.526* -0.376
NAG -0.356 -0.332 0332 -0.089 -0.396 -0.466
AP 0.303 0.257 0.257 0.358 0.171 0.372
eC/N 0.522* 0.520* 0.519* 0.065 -0.098 0.071
eC/P 0.047 0.082 0.082 0274 -0.457 -0.491
eN/P -0.355 -0.317 0317 -0.206 -0.308 -0.444

NO;™-N, Nitrate nitrogen; NH4+-N, Ammonium nitrogen; SOC, soil organic carbon; TN, Total nitrogen; TP, Total phosphorus; C/N ratio, ratio of SOC and TN; C/P ratio, ratio of SOC and TP;
N/P ratio, ratio of TN and TP; MBC, Microbial biomass carbon; MBN, Microbial biomass nitrogen; MBP, Microbial biomass phosphorus; mC/N ratio, ratio of MBC and MBN; mC/P ratio, ratio
of MBC and MBP; mN/P ratio, ratio of MBN and MBP; BG, B-glucosidase; NAG, N-acetyl-B-D-glucosaminidase; AP, acid phosphomonoesterase; eC/N ratio, ratio of BG and NAG; eC/P ratio,

ratio of BG and AP; eN/P ratio, ratio of NAG and AP; *P < 0.05; **P < 0.01; ***P < 0.001.

with soil chemical stoichiometry and microbial stoichiometry. These
two variables explained 29.01% and 7.9% of variance of fungal
community composition, respectively.

Soil bacterial network parameters showed significant
relationship with soil microbial biomass, microbial stoichiometry,
enzyme activity and enzyme stoichiometry (P < 0.001; Table 3).
These four variables explained 21.05%, 25.16%, 10.75% and 6.06%
of variance of bacterial network parameters, respectively.
Meanwhile, soil fungal network parameters showed significant
relationship with soil microbial biomass, microbial stoichiometry,
enzyme activity and enzyme stoichiometry. These four variables
explained 21.05%, 25.16%, 10.75% and 6.07% of variance of fungal
network parameters, respectively. Therefore, the influence of soil
microbial biomass and microbial stoichiometry on soil bacterial and
fungal network parameters were more important than enzyme
activity and enzyme stoichiometry.
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3.5 Response ratio of soil microbial
community diversity and composition to
stand age

The mean soil microbial RR varied markedly, ranging from
-15.69% to -1.49% for soil bacterial diversity indexes, from -35.51%
to -7.32% for soil fungal diversity indexes (Figure 5). The response
ratio of node degree and node betweenness ranged from -1.35% to
9.23% for soil bacterial communities, and from -27.39% to 68.41%
for soil fungal communities. Generally, the mean RR values of
diversity indexes of bacterial and fungal communities were negative
following primary stand age to the other three stand ages of poplar
plantation. Additionally, compared to 1-year-old plantation, there
was more prevalence of negative effects of 7-year-old plantation,
and there was more prevalence of positive effects of 4- and 9-year-
old plantations on soil fungal community.
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TABLE 3 RDA results of effects of soil chemical and biochemical properties on soil microbial diversity and community. .

Chemical Chemical Microbial Microbial Enzyme Enzyme
Microbial diversity properties stoichiometry = biomass stoichiometry activity stoichiometry
and community
Exp (%) P Exp (%) P Exp (%) P Exp (%) P Exp (%) P Exp (%) P
Diversity 0.63 0431 | 025 0615 | 149 0014 1028 0.003 573 0.022  7.08 0.015
Bacteria Composition ~ 52.8 0.001  27.75 0.001 = 5.89 0.007 696 0.005 0387 0376 171 0.194
Network 1.80 0202 079 0363 | 21.05 0.001  25.16 0.001  10.75 0.007 606 0.013
Diversity 027 0633  0.10 0768 | 6.62 0.015 005 0868  9.81 0.003  0.02 0.965
Fungi Composition 232 0.118 | 29.01 0.001 = 2.06 0132 7.90 0.004 070 0505 | 0.28 0.768
Network 1.80 0170 | 0.79 0385 | 21.05 0.001  25.16 0.001  10.75 0.005 607 0.018

Diversity, the diversity index (Shannon index, Chaol index and observed species) of bacteria and fungi; Composition, the dominant phyla, classes and genera of bacteria and fungi; Network, the
network parameters (Node degree, Node betweenness and Clustering coefficient) of bacteria and fungi; Exp, Variance explained; Bold indicated P < 0.05.

4 Discussion

Globally, a few studies have highlighted the effects of stand age
on soil chemical and biochemical properties and their
stoichiometries. Previous studies found that SOC and MBC
increased successively from young to mature stands and then
declined for old stands (Wen et al., 2014; Xu et al, 2021). In a
study of Chinese cypress forest stands, Gong et al. (2022) found
lower active carbon and total nitrogen contents in overmature
stands because of the lower amount of litter fall and poor litter
quality. Similarly, the present study found that SOC, MBC and N
concentration in the 9-year-old plantation were significantly lower
than those in 1- and 4-year-old plantations. With stand
development, canopy expansion reached maximum, the litterfall,
and fine root production increase, resulting in more accumulation
of organic matter (Sharma et al., 2009; Luan et al., 2010; He et al,,
2021; Liu et al., 2022). However, in old stand age, fine root biomass
and litterfall decreased because of less requirement of nutrients (He
et al., 2021), which may result in lower SOC and MBC.
Furthermore, the present findings confirmed that the older poplar
plantation (9-year-old plantation) exhibited lower stoichiometry of
chemical properties, microbial biomass and enzyme activity (i.e., C/
P ratio, N/P ratio, mC/P ratio, mN/P ratio, eC/P ratio, eN/P ratio
except for C/N ratio and eC/N ratio; Figure 1) compared to the
young plantation (4-year-old plantation or 1-year-old plantation),
which was consistent with our first hypothesis. It indicated that
younger stands make favorable conditions for the growth of soil
microbes; however, in old stage, the decrease in litter quantity and
quality may reduce the growth of soil microbial community.
Differently, Zhao et al. (2024) suggested that the older walnut
orchards contained more C resources vs. N and P resources (as
indicated by the C/N and C/P values) compared to the younger
walnut orchards.

Our findings in the present study indicated that the diversity
and composition of both bacteria and fungi did not increase with
stand age, which is contrary to our second hypothesis. Compared
with other stand ages, the Chaol index and observed species of
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bacteria decreased in the 9-year-old plantation, and Chaol index
and observed species of fungi decreased in the 7-year-old plantation.
Moreover, compared to 1-year-old plantation, there was more
prevalence of negative effects of 4-, 7- and 9-year-old plantations
on soil microbial diversity (Figure 4). Thus, soil microbial diversity
decreased with increased stand ages of poplar plantation. This is
mainly due to factors such as the microbial biomass and enzyme
activity and their stoichiometry rather than chemical properties and
chemical stoichiometry, which is contrary to the findings of Wang
et al. (2021b) and Chen et al. (2016). For instance, the results of
present study showed that the soil C/N ratio of microbial biomass
and enzyme activity significantly related to soil Chaol index and
observed species of bacteria, and soil MBN and C/N ratio of
microbial biomass significantly related to soil Chaol index and
observed species of fungi. Additionally, the stoichiometry of
microbial biomass had greater influences on soil bacterial
diversity compared to soil microbial biomass, enzyme activity and
stoichiometry of enzyme activity according to the RDA results.
Differently, soil enzyme activity showed greater effects on fungal
diversity than the stoichiometry of microbial biomass.

In the present study, the most important bacterial species
were Proteobacteria, Acidobacteriota, Actinobacteriota, Firmicutes
and Chloroflexi. Proteobacteria always accounted for a larger
proportion in bacterial community, similar to the findings of
Bi et al. (2022). Five classes (Gammaproteobacteria,
Alphaproteobacteria, Vicinamibacteria, Actinobacteria and Bacilli)
of Proteobacteria were observed in the present study. Many
important taxa belong to Gammaproteobacteria, such as
Pseudomonadaceae, which is widely distributed in soil and plants
and have a strong ability to decompose organic matter and can use a
variety of organic matter as energy sources. The 9-year-old
plantation had the greater relative abundance of Proteobacteria,
Gammaproteobacteria and Pseudomonadaceae, which indicated
that the soil microbes were more active and had higher substrate
decomposition efficiency during this growth period. The fast-
growing, copiotrophic members of the phylum Proteobacteria are
capable of utilizing various C substrates (Fierer et al., 2007) and
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positively correlated with the soil organic C, N fractions, and
available nutrients (Qiu et al, 2021). Similarly, the relative
abundance of Proteobacteria showed significant relationship
with C/P ratio of microbial biomass and enzyme activity and N/P
ratio of enzyme activity in the present study. Meanwhile, the
relative abundance of Gammaproteobacteria showed significant
relationship with soil NO3;™-N concentration, NH,"-N
concentration and P concentration. Besides, chemical properties
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rather than chemical stoichiometry, soil microbial biomass and
enzyme activity showed significant effects on soil microbial
community composition. Therefore, the markedly increased
Proteobacteria abundance in the 9-year-old plantation compared
to the other stand ages of plantation may partially be ascribed to the
changed soil chemical properties.

The fungal community was mainly composed of Ascomycota,
Basidiomycota and Mortierellomycota, which was consistent with
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the previous studies (Kernaghan and Patriquin, 2011; Toju et al.,
2013). Bi et al. (2022) found that the proportion of fungal
community structure in the rhizosphere showed strong
heterogeneity among plantations with various forest ages, and the
reasons for fungal community changes may be caused by the plant
growth conditions, root changes, and root exudates. Moreover,
compared to 1-year-old plantation, there was more prevalence of
negative effects of 7-year-old plantation, and there was more
prevalence of positive effects of 4- and 9-year-old plantation on
soil fungal community (Figure 4). Thus, the composition of bacteria
and fungi varied with the different stand ages in the present study.
The impact of stand age on soil microbial community composition
is specific and stage-dependent, rather than following a simple
linear trend with increasing stand age. Compared with young
plantations, mature plantations have obviously different
requirements for nutrients which significantly related to the
structure of the microbial community (Bi et al, 2022). Thus,
changes of microbial community might be partly attributed to the
differences in nutrient requirements of different aged forests
(Goldfarb et al., 2011).

Co-occurrence network analysis is used to explain the microbial
community aggregation, which can clearly show the network
features and interrelationships among OTUs (Agler et al,, 2016;
Ma et al., 2016). The positive and negative correlation coefficients
between two OTUs in the co-occurrence network represent co-
aggregation and mutual exclusion, respectively (Faust and Raes,
2012). In the present study, there were no significant differences in
node degree and clustering coefficient of bacteria among different
stand ages of poplar plantation, while the node degree and
clustering coefficient of fungal communities in the 9-year-old
plantation were higher than those in the other stand ages. Thus,
the complexity of the co-occurrence network of bacteria was not
significantly changed with stand age, while the complexity of the co-
occurrence network of fungi gradually increased with stand age,
which is contrary to our second hypothesis. It indicated that the
effect of aggregation or repulsion of the fungi taxon increased as the
plantation became older, contrary to a previous study of Bi et al.
(2022). Additionally, the results of RDA showed that soil microbial
biomass and its stoichiometry had significant effects on the co-
occurrence network of fungi compared to soil chemical and
biochemical properties and enzyme activity, which is contrary to
our third hypothesis. The node degree and clustering coefficient
were significantly negatively related to soil MBC and C/N and C/P
ratios of microbial biomass. Thus, the increasing network
complexity of fungal community in the 9-year-old plantation
might be attributed to the decreased soil microbial biomass and
its stoichiometry compared to that in the other stand ages of
plantation. Furthermore, the present results suggested that soil
bacterial and fungal networks had diverse characteristics and
responses to different stand ages of poplar plantation, with stand
age having smaller effects on bacterial networks than on fungal
networks, contrary to previous studies (Liu et al., 2024). Therefore,
compared with fungal networks, bacterial networks are more stable
and less prone to change with stand age of poplar plantation.
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5 Conclusions

In general, our results suggest that the 9-year-old plantation
exhibited lower chemical properties, microbial biomass and
stoichiometry of chemical properties, microbial biomass and
enzyme activity compared to the younger plantation (4-year-old
plantation or 1-year-old plantation). Changes in the diversity and
compositions of both soil bacterial and fungal communities were
associated with stand ages of plantation. Compared to 1-year-old
plantation, there was more prevalence of negative effects of 4-, 7-
and 9-year-old plantations on soil microbial diversity. Thus, soil
microbial diversity in 4-, 7- and 9-year-old plantations was lower
than those in the 1-year-old plantation. This is mainly due to factors
such as the microbial biomass and enzyme activity and their
stoichiometry rather than chemical properties and chemical
stoichiometry. The most important bacterial species were
Proteobacteria, Acidobacteriota, Actinobacteriota, Firmicutes and
Chloroflexi, and the fungal community was mainly composed of
Ascomycota, Basidiomycota and Mortierellomycota. The changes in
bacterial community compositions might be partly attributed to soil
chemical properties and chemical stoichiometries rather than to soil
microbial biomass, enzyme activity and their stoichiometries, and
the changes in fungal community compositions might be partly
attributed to soil chemical stoichiometry rather than soil chemical
properties, microbial biomass, enzyme activity and their
stoichiometry. Moreover, the complexity of the co-occurrence
network of bacteria was not significantly changed with stand age,
while the complexity of the co-occurrence network of fungi
gradually increased with stand age. Thus, compared with fungal
networks, bacterial networks are more stable and less prone to
change with stand age of poplar plantation. Soil microbial biomass
and its stoichiometry showed the greater influences on the co-
occurrence network of bacteria and fungi compared to soil chemical
properties, enzyme activity and their stoichiometry. Taken together,
these results suggest that the results of present study found that the
impact of stand age on soil microbial community diversity and
composition is specific and stage-dependent, rather than following a
simple linear trend with increasing age, and this may be due to the
influence of stand age on stoichiometry of soil microbial biomass.
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