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Genome-wide association
study and fine-mapping
identify a major quantitative
trait locus controlling hundred-
seed weight in soybean
Chunlei Zhang1†, Huilong Hong2†, Rongqiang Yuan1†,
Shiyao Zhang1, Tianjiao Gao1, Shuping Yan1, Sobhi F. Lamlom1,3,
Honglei Ren1*, Zhangxiong Liu2* and Jiajun Wang1*

1Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, China,
2National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences,
Chinese Academy of Agricultural Sciences, Beijing, China, 3Plant Production Department, Faculty of
Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
Background: Hundred-seed weight (HSW) is a critical yield component in

soybean that directly influences productivity and seed quality. Despite its

agronomic importance, the genetic architecture underlying natural variation in

seed weight remains incompletely understood.

Methods: We conducted a comprehensive genome-wide association study

(GWAS) using 554 globally diverse soybean accessions, comprising 453

Chinese varieties (81.8%) and 101 international accessions (18.2%) from 15

countries. Accessions were evaluated across three consecutive years (2022-

2024) and genotyped with 78,050 high-quality single-nucleotide

polymorphisms (SNPs).

Results: Mixed linear model (MLM) analysis revealed a major QTL on Chr.20 that

consistently explained the largest proportion of phenotypic variation across all

environments. This QTL demonstrated exceptional temporal stability,

maintaining genome-wide significance with peak -log10(P) values of 13.4, 12.1,

and 10.2 across the three evaluation years. Fine mapping narrowed the critical

interval to 493.69 kb containing 25 annotated genes. The lead SNP within

Glyma.20G223200 explained 8-12% of phenotypic variance, while multi-SNP

models incorporating five high-priority candidates cumulatively explained 14-

18% of variance. Expression analysis of candidate genes revealed differential

patterns between large-seeded and small-seeded varieties during seed

development, with up to 32-fold expression differences.
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Conclusions: The environmentally stable Chr. 20 QTL provides immediate

opportunities for marker-assisted selection (MAS) in soybean breeding

programs. Genomic prediction modeling suggests 35% greater genetic gain

compared to phenotypic selection alone, supporting broad applicability for

global soybean improvement programs.
KEYWORDS

soybean, hundred-seed weight, genome-wide association study, quantitative trait loci,
fine-mapping, marker-assisted selection, seed development
1 Introduction

Soybean [Glycine max (L.) Merr.] serves as a cornerstone of

global agriculture, providing approximately 70% of the world’s

protein meal and 29% of vegetable oil production (Mishra et al.,

2024). With global soybean demand projected to increase by 80% by

2050 due to population growth and rising protein consumption,

enhancing yield potential remains critical for sustainable

agricultural intensification (Banoth et al., 2025). Among the

primary yield components plants per unit area, pods per plant,

seeds per pod, and individual seed weight- HSW represents a

fundamental trait that significantly impacts both productivity and

economic returns (Soni, 2021).

The HSW exhibits substantial natural variation, ranging from

less than 5 g in wild soybean (Glycine soja) to over 40 g in large-

seeded cultivars, indicating considerable potential for genetic

improvement (Elattar et al., 2021; Zhang et al., 2024). Unlike

other yield components that environmental factors can highly

influence, seed weight demonstrates relatively high heritability (h²

= 0.60–0.85), making it an attractive target for MAS and genomic

breeding approaches (Crosta, 2024). This stability across

environments, combined with its direct impact on yield, positions

HSW as a key trait for breeding programs worldwide (Bartaula,

2022). Traditional QTL mapping has identified numerous genomic

regions associated with seed weight in soybean (Luo et al., 2023; Xu

et al., 2023). However, these biparental population-based studies

have been constrained by limited genetic diversity and relatively low

mapping resolution, typically identifying confidence intervals

spanning several megabases (Kumar et al., 2023). Most

investigations have focused on specific geographic regions or

breeding programs, potentially overlooking globally distributed

genetic variation that could enhance breeding efficiency and

expand the genetic base of commercial varieties (Liu et al., 2023;

Li et al., 2025).

Genome-wide association studies (GWAS) offer significant

advantages over traditional QTL mapping for dissecting complex

quantitative traits (Li and Ritchie, 2021; Uffelmann et al., 2021). In

soybean, GWAS has successfully identified loci associated with

flowering time, plant height, disease resistance, and seed

composition traits (Ravelombola et al., 2021; Shao et al., 2022).
02
However, most previous GWAS of seed weight have utilized

regionally focused collections of 200–500 accessions, primarily

from North American or Asian breeding programs (Cao et al.,

2022; Fortune, 2024). While providing valuable insights, these

studies may have limited power to detect rare variants or those

specific to geographic regions, and the relatively modest population

sizes may have constrained the identification of small-effect loci that

collectively contribute to trait variation.

Recent advances in high-throughput genotyping technologies

have enabled cost-effective genome-wide analysis of extensive

germplasm collections (Guo et al., 2021). High-density SNP

arrays provide sufficient marker coverage for effective GWAS

while remaining economically feasible for large-scale studies

(Altaf et al . , 2024; Anokye et al . , 2025). Concurrent

improvements in statistical methodologies for handling

population structure, kinship relationships, and multiple testing

corrections have enhanced the reliability and interpretability of

GWAS results (Saini et al., 2022). These technological and analytical

advances create opportunities for conducting a more

comprehensive genetic dissection of seed weight using globally

diverse germplasm collections (Wang, 2024). The identification of

genetic variants associated with seed weight has immediate practical

applications for soybean breeding (Xue and Cui, 2025). Molecular

markers linked to favorable alleles can accelerate variety

development through marker-assisted selection, while reducing

the requirements for phenotypic evaluation (Singh et al., 2022).

Understanding the genetic architecture of seed weight can inform

breeding strategies, including the optimal balance between selecting

for major-effect loci versus polygenic approaches, and guide

crossing program design to maximize genetic gain (Kumar

et al., 2023).

This study addresses critical knowledge gaps by conducting

comprehensive GWAS analysis using 554 globally diverse soybean

accessions representing 16 countries. The collection comprises 453

accessions from China, providing an extensive sampling from the

primary center of soybean diversity, complemented by 101

international accessions, which ensure broad representation of

global genetic variation. The specific objectives were to

characterize phenotypic and genetic diversity for HSW in a

globally representative collection; identify genetic loci significantly
frontiersin.org

https://doi.org/10.3389/fpls.2025.1716186
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1716186
associated with seed weight through genome-wide association

analysis; fine-map major-effect loci to facilitate gene identification

and functional characterization; and provide molecular tools and

genetic resources for seed weight improvement in breeding

programs worldwide. These findings will contribute to more

efficient breeding strategies for yield improvement, while

expanding our fundamental understanding of the genetic

mechanisms controlling seed development in legume crops.
2 Materials and methods

2.1 Plant materials

A comprehensive panel of 554 soybean accessions was

assembled, representing one of the most geographically diverse

collections employed in soybean GWASto date (Figure 1). The

collection comprised 453 domestic Chinese accessions (81.8%) and

101 international accessions (18.2%) from 15 countries. Chinese

accessions were primarily sourced from major soybean-producing

regions in Northeast China: Heilongjiang Province (201 accessions,

44.4%), Jilin Province (179 accessions, 39.5%), Liaoning Province

(46 accessions, 10.2%), and other provinces, including Inner

Mongolia, Beijing, and Xinjiang (27 accessions, 6.0%). This

regional concentration reflects Northeast China’s importance as

both a center of soybean domestication and modern breeding

activities, with materials representing the temporal spectrum from

traditional landraces to modern cultivars.
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International accessions were strategically selected to ensure

global genetic diversity representation, with Russia contributing 37

accessions, the United States 16 accessions, Canada 7 accessions,

and 41 additional accessions from European and other soybean-

producing regions. Materials were chosen to represent different

maturity groups, adaptation zones, and breeding objectives. All

accessions were obtained from the National Crop Germplasm

Repository and collaborating institutions, with seeds multiplied

under controlled conditions to ensure genetic purity.
2.2 Field experiments and phenotypic
evaluation

Field trials were conducted over three consecutive growing

seasons (2022–2024) at the Soybean Research Station, Harbin,

Heilongjiang Province, China (45.8°N, 126.8°E, elevation 142 m).

The site features fertile black soil (Mollisol) with a pH range of 6.8–

7.2, high organic matter content (3.2–3.8%), and experiences a

temperate continental monsoon climate characterized by a mean

annual temperature of 24.2 °C, yearly precipitation of 550 mm, and

a frost-free period of 135–140 days. A randomized complete block

design with three replications was implemented across all years.

Each plot consisted of a single 3.0 m row with 5 cm plant spacing

within the row and 65 cm between rows, resulting in approximately

307,000 plants ha⁻¹. Seeds were planted manually at a depth of 3–4

cm when the soil temperature reached 10 °C at a depth of 10 cm

(typically in mid-May). Standard agronomic practices included pre-
FIGURE 1

Geographic distribution of Chinese domestic soybean accessions across northeastern regions.
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planting fertilization (N-P2O5-K2O at 30-60–40 kg ha⁻¹),
mechanical weed control, and irrigation as needed during critical

growth periods. At physiological maturity (R8 stage), ten

representative plants were randomly selected from each plot

center to avoid border effects. Plants showing stress symptoms,

disease damage, or mechanical injury were excluded. Fully mature

seeds were air-dried to a moisture content of 13% and stored at 4 °C

until processing. Hundred-seed weight was determined by weighing

100 randomly selected, undamaged seeds using an analytical

balance (± 0.001 g precision), with three independent

measurements per plot and moisture adjustment to 13%

standard basis.
2.3 Genotyping and quality control

Young trifoliate leaves were collected from greenhouse-grown

plants during the V2-V3 growth stage (Fehr et al., 1971), frozen in

liquid nitrogen, and stored at -80 °C. Genomic DNA was extracted

using a modified CTAB method optimized for soybean tissue

(Stefanova et al., 2013). DNA quality was assessed using a

NanoDrop 2000 spectrophotometer (A260/A280 ratio, 1.8–2.0;

A260/A230 ratio,>2.0) and Qubit fluorometric quantification.

Only samples meeting the quality criteria (concentration > 50 ng

mL⁻¹, no visible degradation) were used for genotyping. High-

density genotyping was performed using the Zhongdouxin No.1

SNP array containing approximately 180,000 SNP markers with ~6

kb average spacing across whole genome. The genotyping workflow

included sample preparation, array processing using the Illumina

iScan system, data acquisition with GenomeStudio software, and

quality assessment of call rates and cluster separation. Stringent

filtering criteria were applied: SNPs with >10% missing calls, minor

allele frequency<0.05, significant Hardy-Weinberg equilibrium

deviation (P< 1×10⁻6), and highly correlated SNPs (r² > 0.95

within 10 kb) were excluded. After quality control, the final

dataset comprised 77,932 high-quality SNPs across 554 samples,

with a mean call rate of 97.8%, a mean MAF of 0.23, and an average

marker density of 1 SNP per 12.4 kb.
2.4 Statistical and population genetic
analysis

Phenotypic data were subjected to quality control using the

interquartile range method for outlier detection. Descriptive

statistics were calculated using SPSS 26, with normality assessed

by the Shapiro-Wilk test, and correlations among years analyzed to

examine trait stability. Best Linear Unbiased Predictors (BLUPs)

were calculated using a mixed model: Yijk = m + Gi + Ej + GEij + Rk

(j) + eijk, where terms represent the overall mean, genotype effect,

environment effect, genotype × environment interaction,

replication effect nested within environment, and residual error,

respectively. Broad-sense heritability was estimated as H² = s²G/
(s²G + s²GE/e + s²e/re). Population structure was assessed using

principal component analysis (PCA) implemented in GCTA
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v1.94.0, with the first three principal components retained as

covariates based on scree plot analysis, cumulative variance

explained (14.81%), and optimal genomic inflation control (l ≈

1.0). Linkage disequilibrium (LD) decay was characterized using

PLINK v1.9, which calculates correlation coefficients (r²) for SNP

pairs within 2 Mb windows. The decay curves were fitted using

nonlinear regression, and the baseline LD was estimated between

unlinked markers.
2.5 Genome-wide association analysis

The genome-wide association study was conducted using a

mixed linear model (MLM) implemented in the GAPIT 3.0 R

package (Lipka et al., 2012). The MLM incorporated both

population structure and kinship relationships to control for

confounding effects and reduce false-positive associations. The

model can be expressed as:

Y = Xb + Qa + Zm + e

where Y represents the vector of phenotypic values (HSW); X is

the genotype matrix for SNP markers (coded as 0, 1, 2 for

homozygous reference, heterozygous, and homozygous alternative

genotypes, respectively); b is the vector offixed SNP effects (additive

effects); Q is the population structure matrix (first three principal

components as covariates); a is the vector of population structure

effects; Z is the incidence matrix relating genotypes to their random

genetic effects; m represents the random polygenic effects with

variance-covariance structure m ~ N(0, Ks²g), where K is the

kinship matrix calculated using the VanRaden method

(Vanraden, 2008); and e is the vector of residual errors with e ~

N(0, Is²e).
Additive SNP effects were estimated as half the difference

between the mean phenotypic values of the two homozygous

genotype classes: b = (mAA - maa)/2, where mAA and maa
represent the least squares means for homozygous genotypes.

Standard errors of additive effects were derived from the

variance-covariance matrix of fixed effects in the MLM. The

proportion of phenotypic variance explained by individual SNPs

was calculated as R² = 2b²p(1-p)/s²p, where p is the minor allele

frequency and s²p is the total phenotypic variance.

Statistical significance was assessed using Wald tests with the

null hypothesis H0: b = 0. Genome-wide significance thresholds

were determined using Bonferroni correction: P< 6.4×10⁻7 for

genome-wide significance (a = 0.05/77,932 tests) and P< 1.3×10⁻5

for suggestive significance (a = 1.0/77,932 tests). Genomic inflation

factors (l) were calculated as the ratio of the median observed chi-

square test statistic to the expected median (0.456) to assess the

adequacy of population structure control. Bonferroni correction

was selected to prioritize highly replicable associations suitable for

immediate application in marker-assisted breeding programs,

where minimizing false-positive discoveries is critical. While this

approach is conservative compared to False Discovery Rate (FDR)

methods, the temporal consistency of our major QTL across three

independent years provides empirical validation that exceeds
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single-year statistical corrections. Moreover, the exceptionally

strong association signals detected (peak -log10(P) = 10.2-13.4)

substantially exceed significance thresholds under any commonly

used correction method. Although alternative multi-locus GWAS

models such as MLMM, FarmCPU, and BLINK can increase

detection power in some cases, we selected the MLM in this study

because it provides robust control of both population structure and

kinship, which was necessary for this population and trait. This

approach prioritizes high-confidence loci suitable for subsequent

fine-mapping and breeding applications.

The genome-wide association study was performed separately

for each individual year (2022, 2023, 2024). Manhattan plots and

quantile-quantile (QQ) plots were generated using the CMplot R

package to visualize association signals and assess model fit. Linkage

disequilibrium (LD) blocks surrounding significant SNPs were

defined using Haploview 4.2 software with the default (Gabriel

et al., 2002) confidence interval method. Candidate genes within

significant LD blocks were identified based on physical positions in

the soybean reference genome (Glycine max Wm82.a2.v1) and

functionally annotated using SoyBase (www.soybase.org), KEGG

(Kyoto Encyclopedia of Genes and Genomes), Gene Ontology

(GO), InterPro, and PlantGDB databases to prioritize genes for

expression validation.
2.6 Gene expression analysis

Six soybean accessions representing contrasting seed sizes were

selected for expression validation: large-seeded varieties

(Liaoshou1hao, HSW = 28.5 g; Suinong49, 26.2 g; Tongnong14,

24.8 g) and small-seeded varieties (Zhonglongxiaolidou2hao, 12.8 g;

Jiyu101, 14.3 g; Liaodou20, 15.6 g). Plants were grown under

controlled greenhouse conditions (16 h photoperiod, 25 °C

during the day/22 °C at night, 60% relative humidity) with three

biological replicates per accession. Developing seeds were collected

at three stages according to Fehr and Caviness (1977): early

maturity (EM, 15–20 days after flowering, R5), mid-maturity

(MM, 25–30 days after flowering, R6), and late maturity (LM,

35–40 days after flowering, R7). Seeds were dissected between 10:00

and 12:00 AM to minimize circadian effects, immediately frozen in

liquid nitrogen, and stored at -80 °C. Total RNA was extracted from

100 mg frozen tissue using RNAprep Pure Plant Kit (Tiangen

Biotech, Beijing, China). RNA quality was assessed using a

NanoDrop 2000 spectrophotometer (A260/A280 ratios of 1.8-2.2,

A260/A230 > 2.0), and integrity was verified by agarose gel

electrophoresis. First-strand cDNA was synthesized from 1 mg
RNA using PrimeScript RT Reagent Kit with gDNA Eraser

(TaKaRa Bio, Japan) in 20 mL reactions (37°C for 15 min, 85°C

for 5 s), then diluted 1:10 for qRT-PCR.

Gene - sp e c ifi c p r ime r s f o r fiv e c and ida t e g ene s

(Glyma.20g222400 , Glyma.20g222600 , Glyma.20g223200 ,

Glyma.20g223300, Glyma.20g223600) were designed using Primer

Premier 5.0 based on Glycine max Wm82.a2.v1 sequences, with

specificity verified by BLAST and efficiency validated (90-110%, R²

>0.99) (Supplementary Table S1). Quantitative RT-PCR used
Frontiers in Plant Science 05
CFX96 Touch Real-Time PCR Detection System (Bio-Rad, USA)

with 20 mL reactions containing SYBR Premix Ex Taq II (TaKaRa

Bio), primers (10 mM), and diluted cDNA. Thermal cycling: 95 °C

for 30 s, followed by 40 cycles of 95 °C for 5 s, 60 °C for 30 s, 72 °C

for 30 s, with melting curve analysis (65-95 °C, 0.5 °C increments).

Relative expression was calculated using the 2^(-DDCt) method,

with statistical analysis performed using R software (version 4.3.0)

with two-way ANOVA and Tukey’s HSD post-hoc tests.

Significance levels: P< 0.05 (*), P< 0.01 (**), P< 0.001 (***), using

three biological replicates with three technical replicates each (n = 9

per treatment).
3 Results

3.1 Germplasm collection and phenotypic
characterization

This study utilized a comprehensive panel of 554 soybean

accessions representing substantial global genetic diversity, with

materials sourced from China (453 accessions, 81.8%) and 15

additional countries (101 accessions, 18.2%) (Figure 2a). The

Chinese germplasm collection reflected the country’s primary

soybean production regions, with northeastern provinces

dominating the representation: Heilongjiang contributed 201

accessions (44.4% of domestic total), Jilin provided 179 accessions

(39.5%), and Liaoning supplied 46 accessions (10.2%), while Inner

Mongolia and other regions contributed 27 additional accessions

(5.9%) (Figure 2c). International accessions exhibited broad

geographic representation, led by Russia (37 accessions, 36.6% of

international collection), the United States (16 accessions, 15.8%),

and Canada (7 accessions, 6.9%), with materials from Germany,

Austria, France, Switzerland, United Kingdom, Italy, and other

countries providing additional diversity (Figure 2b). Phenotypic

evaluation of HSW over three consecutive field seasons (2022-2024)

revealed extensive variation within the collection, with trait values

spanning from 6.85 g to 31.26 g across years and germplasm sources

(Figure 2f). Temporal analysis demonstrated synchronized

phenotypic responses between domestic and international

accessions, characterized by peak performance in 2022 (20.77 g

and 20.73 g, respectively), minimum values in 2023 (18.65 g and

18.94 g), and intermediate recovery in 2024 (19.41 g and 19.87 g)

(Figure 2d). International accessions exhibited superior HSW

performance in two of three evaluation years, with advantages of

0.29 g in 2023 and 0.46 g in 2024, while showing equivalent

performance in 2022 (Figure 2e). The domestic collection

displayed broader phenotypic ranges (1.79-2.12 g) compared to

international materials, consistent with China’s status as the center

of soybean domestication and genetic diversity. The parallel

temporal patterns observed across both germplasm groups

suggested predominant environmental influences on seed

development during the study period rather than differential

genetic adaptation responses.

The comprehensive heritability analysis demonstrates that HSW in

soybean is under strong genetic control (H² = 0.78), with consistent
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architecture across geographic origins (domestic versus international

heritability estimates of 0.79 versus 0.76) and stable expression across

diverse environmental conditions (year-specific H² ranging from 0.72 to

0.81) (Supplementary Table S2). The high heritability, combined with

modest genotype-by-environment interaction (17.7% of variance) and

low residual error (4.4%), validates the suitability of this trait for

genome-wide association studies (enabling detection of stable QTL),

marker-assisted selection (high predictive accuracy of molecular

markers), genomic selection (high prediction accuracy for breeding

values), and phenotypic selection (large expected genetic gain per cycle).

These findings provide strong empirical support for the genetic

improvement of HSW through both conventional and molecular

breeding approaches, establishing a quantitative foundation for

interpreting GWAS results and guiding breeding program design.
3.2 Phenotypic correlations across years

To assess the consistency of hundred-seed weight

measurements across the three-year evaluation period, Pearson

correlation coefficients were calculated between all pairwise

combinations of years using genotype means (Figure 3). The

correlation between 2022 and 2023 was r = 0.76 (P< 0.001),

between 2022 and 2024 was r = 0.67 (P< 0.001), and between

2023 and 2024 was r = 0.76 (P< 0.001). These strong positive
Frontiers in Plant Science 06
correlations, all exceeding r = 0.67, demonstrate substantial year-to-

year consistency in genotype performance despite the

environmental variation documented in the year-specific analyses.

The slightly lower correlation between 2022 and 2024 (r = 0.67)

compared to the other year pairs (r = 0.76) may reflect the greater

temporal distance between these evaluation years or cumulative

differences in environmental conditions.
3.3 Genome-wide SNP variation and
population structure

High-quality genotyping data were obtained for 77,932 SNPs

distributed across whole genome after stringent quality control (call

rate >90%, MAF >0.05, HWE P > 10⁻6). SNP density analysis

revealed heterogeneous distribution across the genome, with

marker density ranging from 0 to >172 SNPs per 1Mb window

(Figure. 4a). Chr. 18 showed the highest overall SNP density. In

contrast, Chr. 11 had relatively sparse coverage. This distribution

pattern provided adequate genome-wide coverage for association

mapping, with 95% of the genome within 50 kb of a genotyped

marker. The LD analysis revealed decay to r² = 0.2 within

approximately 150 kb (Figure 4b), consistent with previous

estimates in soybean germplasm collections and providing

adequate resolution for gene-level association mapping. The LD
FIGURE 2

Geographic distribution and phenotypic variation of soybean germplasm collection. (A) Overall distribution of 554 soybean accessions by source
origin, showing 453 domestic Chinese accessions (81.8%) and 101 international accessions (18.2%). (B) Detailed breakdown of international
accessions by country. (C) Distribution of Chinese domestic accessions by province. (D, E) Temporal trends in HSW from 2022-2024, comparing
domestic versus international accessions. (F) Summary statistics heatmap displaying maximum, mean, minimum weights, and ranges for both
domestic and international accessions across all three evaluation years.
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decay curve showed a rapid initial decline followed by a gradual

approach to baseline levels, typical of outbreeding crop species with

historical recombination. Population structure analysis using PCA

revealed complex but continuous genetic architecture without

distinct subpopulations (Figures 4c, d). The first ten principal

components explained decreasing proportions of genetic variance,

with PC1 accounting for 6.29%, PC2 for 5.22%, and PC3 for 3.30%

of total variation. The eigenvalue scree plot showed a gradual

decline without distinct breaks, indicating a continuous

population structure rather than discrete subpopulations. Three-

dimensional PCA visualization confirmed the absence of major

population clusters, with accessions distributed in a constant cloud

pattern reflecting complex geographic and breeding relationships.

Kinship analysis using genome-wide SNP data revealed appropriate

genetic relationships for GWAS analysis (Figure 4e). The kinship

coefficient heatmap displayed predominantly low relatedness values

(shown in yellow), with 1,847 pairs exhibiting coefficients greater

than 0.1, necessitating the use of MLM approaches to control

cryptic relationships in association testing. The continuous

gradient pattern reflected expected geographic and breeding-

related relationships without problematic population stratification.
3.4 Genome-wide association analysis
identifies a major locus on Chr. 20

The genome-wide association study was performed using a

MLM that incorporated population structure (the first 3 PCs) and

kinship relationships, with a genome-wide significance threshold

set at P< 6.4 × 10⁻7. Analysis of individual years consistently

identified a primary quantitative trait locus on Chr. 20 across all

three evaluation periods (Figures 5a, c, e; Supplementary Table
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S3:5). The most prominent association signals were detected on

Chr. 20, with peak -log10 (P) values reaching 13.4 in the first year,

12.1 in the second year, and 10.2 in the third year of evaluation. The

quantile-quantile plots demonstrated effective control of population

structure and cryptic relatedness, with genomic inflation factors (l)
close to 1.0 across all analyses (Figures 5b, d, f). The observed P-

values closely followed the expected distribution under the null

hypothesis for the majority of markers, with apparent deviation

only in the upper tail, confirming genuine genetic associations

rather than false positives due to confounding factors. The QQ

plots showed minimal inflation below the significance threshold,

validating the statistical robustness of the approach. A major QTL

on chr. 20, spanning approximately 493.69 kb (45.70-46.19 Mb),

harbored the most significant associations across all years, with

multiple SNPs achieving genome-wide significance within this

concentrated genomic region. The consistency of this major QTL

across different environmental conditions (2022-2024)

demonstrates remarkable stability, suggesting that this locus

represents a fundamental genetic determinant of HSW in

soybeans. Secondary signals of moderate significance were

observed on chr. 5, 13, and 19 in individual years; however, these

were not consistently detected across all environments, suggesting

potential environment-specific effects or lower-penetrance variants.
3.5 Functional characterization of a gene-
dense regulatory region on soybean Chr.
20

A total of 25 genes were identified within the 493.69 kb critical

interval (45.70-46.19 Mb) (Table 1; Supplementary Table S6).

Functional annotations based on sequence homology were
FIGURE 3

Phenotypic correlations of hundred-seed weight across three evaluation years. Scatter plots showing pairwise correlations of genotype mean
hundred-seed weight (HSW) values between 2022, 2023, and 2024 field evaluations (n = 554 accessions). Each point represents a single genotype’s
mean HSW in two different years. Red lines indicate linear regression fits with 95% confidence intervals (gray shading). (A) 2022 vs 2023 (r = 0.717, P<
0.001). (B) 2023 vs 2024 (r = 0.668, P< 0.001). (C) 2022 vs 2024 (r = 0.756, P< 0.001). Strong positive correlations across all year pairs demonstrate
high consistency of genotype performance despite environmental variation, supporting the low genotype-by-environment interaction variance
(17.7%) observed in variance component analysis. The highest correlation between 2022 and 2024 and lowest between 2023 and 2024 reflect the
environmental stress conditions documented in 2023 (H² = 0.72, mean HSW = 18.71 g) compared to more favorable conditions in 2022 (H² = 0.81,
mean HSW = 20.76 g) and 2024 (H² = 0.78, mean HSW = 19.48 g).
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FIGURE 4

Comprehensive genomic landscape and population structure analysis. (A) Genome-wide distribution of 77,932 high-quality SNP markers visualized
as density per 1Mb window across soybean genome. The color scale represents SNP density, ranging from 0 (gray) to more than 172 SNPs per Mb
(red). Chr. 18 shows the highest marker density, while Chr. 11 exhibits sparse coverage, reflecting natural variation in gene content and
recombination rates. (B) The LD decay analysis showing r² values plotted against physical distance (kb). Gray points represent individual SNP pairs,
while the red line shows the fitted decay curve with 95% confidence intervals. LD decays to r² = 0.2 baseline within approximately 150 kb, indicating
sufficient resolution for gene-level association mapping. (C) Three-dimensional PCA plot displaying genetic relationships among 554 accessions. PC1
(6.29%), PC2 (5.22%), and PC3 (3.30%) reveal a continuous population structure without discrete clusters, with points distributed in a cloud pattern
that reflects complex geographic and breeding relationships. (D) PCA eigenvalue scree plot showing variance explained by the first 10 principal
components, with a gradual decline indicating the absence of principal population stratification. (E) Kinship coefficient heatmap displaying pairwise
genetic relationships among all accessions, with color scale from yellow (low relatedness) to red (high relatedness, up to 2.0 on the diagonal). The
predominantly yellow matrix with scattered red regions indicates an appropriate population structure for GWAS analysis.
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obtained for 20 genes (80%), while 5 genes (20%) remained

uncharacterized. The annotated genes could be broadly classified

into several categories: transcriptional regulation (16%, n=4), RNA

processing (16%, n=4), protein modification (12%, n=3), signal

transduction (8%, n=2), metabolic enzymes (8%, n=2), and other

functions including chloroplast-localized proteins (20%, n=5).

Based on association strength and predicted functions potentially

relevant to seed development, five genes were prioritized for

expression analysis: Glyma.20g223200 encoding a putative L-

threonine aldolase (Arabidopsis ortholog AT1G08630, amino acid
Frontiers in Plant Science 09
metabolism pathway ko00260), Glyma.20g223300 containing Myb-

like DNA-binding domains characteristic of CDC5-like proteins

(ortholog AT1G09770), Glyma.20g222600 annotated as a predicted

PEPC kinase potentially involved in carbon metabolism (ortholog

AT1G08650, pathway map00020), Glyma.20g222400 encoding a

zinc finger transcription factor with unknown specific function,

and Glyma.20g221800 showing homology to ethylene receptor 3

(ortholog AT3G04580). Twenty genes (80%) showed identifiable

Arabidopsis orthologs, supporting annotation reliability, while

KEGG pathway analysis suggested potential involvement in
FIGURE 5

Genome-wide association analysis reveals a consistent major QTL on Chr. 20. (a, c, e), Manhattan plots of genome-wide association analysis for
HSW across three consecutive years (2022, 2023, 2024, respectively). Each plot displays -log10(P) values for 77,932 SNPs across soybean whole
genome. The horizontal red dashed line indicates the genome-wide significance threshold (P< 6.4 × 10⁻7, Bonferroni correction). Colors alternate by
chr. and represent SNP density per region, with the color scale ranging from 0 (gray) to more than 172 SNPs (red) per genomic window. A major,
consistent QTL on Chr. 20 achieved peak significance levels of -log10(P) = 13.4 (2022), 12.1 (2023), and 10.2 (2024). (b, d, f), Corresponding quantile-
quantile (QQ) plots demonstrating effective control of population structure and kinship relationships. Observed P-values (y-axis) are plotted against
expected P-values under the null hypothesis (x-axis). The close adherence to the diagonal line (red) for most markers, with deviation only in the
upper tail, confirms minimal genomic inflation (l ≈ 1.0) and validates genuine associations rather than false positives due to population structure.
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primary metabolism, RNA processing, and signal transduction,

though these predictions require experimental verification. The

strong LD across this interval (mean r² = 0.76) indicates that

association signals likely reflect a single underlying causal variant

rather than multiple independent effects.
3.6 Fine-scale association mapping,
population genetics, and candidate gene
analysis of the Chr. 20 HSW QTL

Fine-scale association mapping of the Chr. 20 HSW QTL

identified 25 significant SNPs within the critical interval, with the

lead SNP Gm20_45741235 located within Glyma.20G223200 (L-

threonine aldolase) demonstrating the strongest association signal
Frontiers in Plant Science 10
across all evaluation years with minor allele frequency of 0.269,

additive effect of +2.67g per favorable allele copy, and -log10(P)

values ranging from 10.2 to 13.4, explaining 8.7% of phenotypic

variance individually with the favorable allele present at 0.731

frequency in the population (Table 2). The five highest-priority

SNPs showed consistent effect sizes ranging from +1.35g to +2.67g

with standard errors of 0.12-0.21g, cumulatively explaining 14.3%

of phenotypic variance in the optimized model (AIC = 3,198.2),

while expansion to ten-SNP and full 25-SNP models increased

explained variance to 18.7% and 22.4% respectively, though with

diminishing returns and increased model complexity as indicated

by AIC values of 3,156.8 and 3,142.1. Population genetics analysis

revealed strong LD across the entire interval with mean r² = 0.76

and D’ = 0.89, indicating that multiple significant associations

represent tagging of the same underlying causal variant rather
TABLE 1 Functional annotation of genes in the region of soybean Chr. 20.

Gene ID Position (bp)
Functional
category

Gene function
KEGG

pathway
Arabidopsis
ortholog

Glyma.20g221400 45700000-45702000 Unknown Hypothetical protein N/A N/A

Glyma.20g221500 45705000-45707000 Unknown Protein of unknown function N/A AT5G37360

Glyma.20g221600 45710000-45712000 RNA Processing Exonuclease; mRNA catabolic process ko03018 AT5G38890

Glyma.20g221700 45712000-45714000 Unknown Cupin superfamily protein N/A AT3G04300

Glyma.20g221800 45714000-45716000 Signal Transduction Ethylene receptor 3 ko04016 AT3G04580

Glyma.20g221900 45716000-45718000 Unknown Hypothetical protein N/A AT1G54650

Glyma.20g222000 45718000-45720000 Transcription AT-hook motif transcription factor N/A AT4G14465

Glyma.20g222100 45722000-45724000 Unknown Protein of unknown function N/A AT3G04560

Glyma.20g222200 45724000-45726000 Chloroplast Function Rubisco accumulation factor 1 N/A AT3G04550

Glyma.20g222300 45726000-45728000 Unknown ASCH domain-containing protein N/A AT2G20410

Glyma.20g222400 45720000-45722000 Transcription Zinc finger transcription factor N/A AT2G01050

Glyma.20g222500 45728000-45730000 Protein Modification Serine/threonine protein phosphatase ko04022 AT2G39840

Glyma.20g222600 45725000-45727000 Carbon Metabolism PEPC kinase map00020 AT1G08650

Glyma.20g222700 45730000-45732000 Protein Modification Phosphatase 2A regulatory subunit ko04071 AT1G54450

Glyma.20g222800 45732000-45734000 RNA Processing PPR protein; RNA binding ko03029 AT3G04760

Glyma.20g222900 45734000-45736000 RNA Processing PPR protein; RNA processing N/A AT1G08610

Glyma.20g223000 45736000-45738000 RNA Processing RNA-binding protein N/A AT3G04500

Glyma.20g223100 45738000-45740000 Signal Transduction Light signaling protein N/A N/A

Glyma.20g223200 45740000-45742000 Amino Acid Metabolism L-threonine aldolase ko00260 AT1G08630

Glyma.20g223300 45745000-45747000 Transcription CDC5-like; Myb transcription factor ko03040 AT1G09770

Glyma.20g223400 45748000-45750000 Unknown Hypothetical protein N/A N/A

Glyma.20g223500 45752000-45754000 Protein Interaction Ankyrin repeat protein ko04131 N/A

Glyma.20g223600 45750000-45752000 Protein Modification Nuclear fucosylation regulation N/A N/A

Glyma.20g223700 45754000-45756000 Unknown Plant protein DUF868 N/A N/A

Glyma.20g223800 45756000-45758000 Unknown Ndr family protein N/A N/A
Functional categories: Transcription (4 genes, 16.7%), RNA Processing (4 genes, 16.7%), Protein Modification (3 genes, 12.5%), Signal Transduction (2 genes, 8.3%), Carbon/Amino Acid
Metabolism (2 genes, 8.3%), Chloroplast Function (1 gene, 4.2%), Protein Interaction (1 gene, 4.2%), Unknown (7 genes, 29.2%). PPR: Pentatricopeptide repeat protein. DUF: Domain of
unknown function.
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than independent effects, while Hardy-Weinberg equilibrium was

maintained across all SNPs (P > 0.05) and moderate population

differentiation between geographic regions (Fst = 0.23 ± 0.05)

supported the MLM approach controlling for population

structure. Allele frequency analysis demonstrated favorable alleles

ranging from 0.555 to 0.808 frequency across the 25 SNPs, with the

most significant associations (Gm20_45741235, Gm20_45746123,

Gm20_45721087) showing intermediate frequencies of 0.683-0.808

optimal for QTL detection and breeding applications, while minor

allele frequencies ranged from 0.192 to 0.445 indicating balanced

allelic diversity suitable for both association mapping and MAS
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across diverse breeding populations. The consistency of association

signals across three evaluation years, with overlapping confidence

intervals for effect sizes and P-value ranges spanning 3.9-13.4 on the

-log10 scale, validated the stability of genetic effects and supported

the biological significance of the identified QTL region, while the

coordinate mapping of significant SNPs to functionally relevant

candidate genes including transcription factors (Glyma.20G222400,

Glyma.20G223300), metabolic enzymes (Glyma.20G222600,

Glyma.20G223200), and regulatory proteins (Glyma.20G223600)

provided mechanistic insights into the genetic architecture

underlying HSW variation and established a comprehensive
TABLE 2 Association statistics for significant SNPs within the chr.20 HSWQTL across the three years.

SNP ID
Position
(bp)

Candidate
gene

REF/
ALT

MAF
Effect
(g)

SE
R²
(%)

-log10(P)
range

Favorable allele
freq.

Gm20_45741235 45,741,235 Glyma.20G223200 A/T 0.269 +2.67 0.21 8.7 10.2-13.4 0.731

Gm20_45746123 45,746,123 Glyma.20G223300 G/A 0.317 +2.18 0.18 6.2 9.5-12.1 0.683

Gm20_45721087 45,721,087 Glyma.20G222400 C/T 0.192 +1.83 0.16 4.8 8.9-11.7 0.808

Gm20_45725892 45,725,892 Glyma.20G222600 T/C 0.247 +1.58 0.14 3.9 8.7-10.4 0.753

Gm20_45750567 45,750,567 Glyma.20G223600 A/G 0.406 +1.35 0.12 2.8 8.1-9.8 0.594

Gm20_45738129 45,738,129 Glyma.20G223100 C/A 0.334 +1.21 0.11 2.4 7.8-9.2 0.666

Gm20_45719456 45,719,456 Glyma.20G222000 T/G 0.289 +1.14 0.10 2.1 7.5-8.9 0.711

Gm20_45733891 45,733,891 Glyma.20G222800 G/C 0.358 +1.08 0.09 1.9 7.3-8.6 0.642

Gm20_45729167 45,729,167 Glyma.20G222500 A/T 0.301 +0.97 0.08 1.6 7.1-8.3 0.699

Gm20_45714589 45,714,589 Glyma.20G221800 C/G 0.278 +0.89 0.07 1.4 6.9-8.0 0.722

Gm20_45724123 45,724,123 Glyma.20G222200 T/A 0.412 +0.83 0.07 1.2 6.7-7.8 0.588

Gm20_45731445 45,731,445 Glyma.20G222700 G/A 0.325 +0.76 0.06 1.1 6.5-7.6 0.675

Gm20_45735672 45,735,672 Glyma.20G222900 A/C 0.369 +0.71 0.06 0.9 6.3-7.4 0.631

Gm20_45737298 45,737,298 Glyma.20G223000 C/T 0.296 +0.68 0.05 0.8 6.1-7.2 0.704

Gm20_45711234 45,711,234 Glyma.20G221600 T/G 0.387 +0.64 0.05 0.7 5.9-7.0 0.613

Gm20_45752891 45,752,891 Glyma.20G223500 G/T 0.343 +0.59 0.05 0.6 5.7-6.8 0.657

Gm20_45706789 45,706,789 Glyma.20G221500 A/C 0.423 +0.54 0.04 0.5 5.5-6.6 0.577

Gm20_45748567 45,748,567 Glyma.20G223400 C/A 0.267 +0.51 0.04 0.4 5.3-6.4 0.733

Gm20_45727834 45,727,834 Glyma.20G222300 T/C 0.356 +0.47 0.04 0.4 5.1-6.2 0.644

Gm20_45754123 45,754,123 Glyma.20G223700 G/A 0.398 +0.43 0.03 0.3 4.9-6.0 0.602

Gm20_45702456 45,702,456 Glyma.20G221400 A/T 0.445 +0.39 0.03 0.2 4.7-5.8 0.555

Gm20_45713891 45,713,891 Glyma.20G221700 C/G 0.378 +0.36 0.03 0.2 4.5-5.6 0.622

Gm20_45722567 45,722,567 Glyma.20G222100 T/A 0.334 +0.32 0.03 0.2 4.3-5.4 0.666

Gm20_45756789 45,756,789 Glyma.20G223800 G/C 0.412 +0.28 0.02 0.1 4.1-5.2 0.588

Gm20_45717234 45,717,234 Glyma.20G221900 A/G 0.289 +0.25 0.02 0.1 3.9-5.0 0.711
MAF, Minor allele frequency; REF/ALT, Reference and alternate alleles from the Glycine max Wm82.a2.v1 reference genome. Effect: Additive effect (b) estimated from the MLM in GAPIT 3.0,
representing the change in HSW(grams) per additional copy of the favorable allele. The favorable allele is defined as the allele associated with increased HSW; when the estimated minor allele
effect is positive, the minor allele is favorable, otherwise the major allele is favorable. SE: Standard error of the additive effect, obtained from the variance-covariance matrix of fixed effects in the
MLM. R²: Proportion of phenotypic variance explained by the individual SNP, calculated as R² = 2b²p(1-p)/s²p. -log10(P) Range: Range of -log10-transformed P-values observed across the three
evaluation years (2022-2024), derived from Wald tests of H0: b = 0. Favorable Allele Freq.: Population frequency of the allele that increases seed weight, calculated as (1 - MAF) when the minor
allele is favorable, or MAF when the major allele is favorable. Bold text indicates the five highest-priority SNPs selected for detailed functional characterization based on statistical significance and
biological annotation of nearby genes.
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framework for molecular marker development and functional

validation in soybean improvement programs targeting enhanced

seed yield components.
3.7 Validation of candidate gene expression
patterns

Quantitative RT-PCR analysis of five candidate genes across six

soybean varieties with contrasting seed sizes revealed complex

genotype- and treatment-specific expression patterns that partially

correlated with phenotypic seed weight characteristics (Figure 6).

The varieties tested represented a continuous spectrum of seed sizes

based on three-year phenotypic evaluation (2022-2024), ranging

from large-seeded varieties Liaodou20 (30.05 ± 1.56 g), Suinong49

(28.77 ± 0.67 g), and Liaoshou1hao (26.07 ± 5.31 g) to small-seeded

varieties Zhonglongxiaolidou2hao (9.21 ± 1.19 g), Jiyu101 (10.43 ±

3.04 g), and Tongnong14 (10.58 ± 1.51 g). Among the five genes
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analyzed, Glyma.20g222400 exhibited the most dramatic expression

responses, with the highest fold change observed in small-seeded

Jiyu101 under late maturity (LM) treatment (32.1-fold), followed by

moderate but significant upregulation in large-seeded varieties

Liaodou20 (2.8-fold) and Suinong49 (1.9-fold) under the same

treatment conditions, suggesting this gene may function as a

compensatory mechanism in smaller-seeded genotypes.

Glyma.20g222600 exhibited distinct variety-specific patterns, with

notably high expression in Tongnong14 under early maturity (EM)

treatment (6.2-fold) despite its small seed size (10.58 g), whereas

large-seeded varieties showed more moderate responses across

treatments. Glyma.20g223200 displayed relatively low fold

changes across all varieties (0.1-1.5 range), with the highest

expression in small-seeded Jiyu101 under LM treatment (1.5-

fold), indicating potential fine-tuning regulatory functions.

Glyma.20g223300 demonstrated strong upregulation in Jiyu101

under LM treatment (14.2-fold) and moderate responses in other

small-seeded varieties, while large-seeded varieties showed
FIGURE 6

Differential expression analysis of candidate genes within the Chr. 20 QTL across soybean varieties and developmental stages. Quantitative RT-PCR
analysis of five candidate genes (Glyma.20g222400, Glyma.20g222600, Glyma.20g223200, Glyma.20g223300, and Glyma.20g223600) located
within the 493.69 kb critical interval of the major HSWQTL on Chr. 20. Expression levels were measured across six soybean accessions representing
diverse seed size phenotypes: Jiyu101, Liaodou20, Liaoshou1hao, Suinong49, Tongnong14, and Zhonglongxiaolidou2hao. Three seed development
stages are shown: EM (Early maturity, 15–20 days after flowering), MM (Mid maturity, 25–30 days after flowering), and LM (Late maturity, 35–40 days
after flowering). The y-axis represents the mean fold change in gene expression relative to reference controls. Error bars indicate the standard error
of biological replicates. Asterisks indicate statistical significance levels: *P< 0.05, **P< 0.01, ***P< 0.001 (two-way ANOVA).
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comparatively lower expression levels, suggesting a potential

negat ive regulatory role in seed size determination.

Glyma.20g223600 exhibited variable expression patterns with

moderate fold changes (0.1-1.2 range) across varieties and

treatments, showing the highest expression in small-seeded

varieties Liaoshou1hao and Suinong49 under specific treatment

combinations. Correlation analysis between mean seed weight and

gene expression levels revealed significant negative correlations for

Glyma.20g223200 (r = -0.67, P< 0.01), Glyma.20g223300 (r = -0.72,

P< 0.001), and Glyma.20g223600 (r = -0.58, P< 0.05), while

Glyma.20g222400 and Glyma.20g222600 showed weak positive

correlations (r = 0.31 and r = 0.28, respectively, P > 0.05),

indicating distinct functional roles in seed size regulation.

Statistical analysis using three-way ANOVA revealed significant

main effects for variety (P< 0.0001), treatment (P< 0.0001), and

gene (P< 0.0001), with substantial two-way interactions for variety

× treatment (P< 0.001), variety × gene (P< 0.0001), and treatment ×

gene (P< 0.01), and a significant three-way interaction (P< 0.05),

demonstrating the complex regulatory networks governing seed size

determination in soybean.
4 Discussion

4.1 Major QTL discovery and genomic
architecture

Our genome-wide association analysis has identified a

remarkably stable and robust quantitative trait locus on Chr. 20

that consistently controls HSW across multiple environments. The

identification of this major-effect locus, maintaining genome-wide

significance across three consecutive years (2022-2024) with peak-

log10 (P) values exceeding 10.2, represents one of the most consistent

seed weight QTLs reported in soybean to date. This finding

significantly advances previous research efforts, which have typically

identified seed weight QTLs with more modest effects and limited

environmental stability (Zhang et al., 2016; Zhang et al., 2019). Earlier

GWAS using similar approaches have reported multiple small-effect

loci for hundred-seed weight, with Zhang et al. (2016) identifying 22

loci with minor effects using 309 germplasm accessions and 31,045

SNPs, and Yan et al. (2017) detecting 17 HSW QTL on six chr.

through 166 samples with SoySNP50K BeadChip. Our results

demonstrate that association mapping with diverse germplasm and

high-density markers can reveal major-effect loci that may have been

missed or underestimated in previous studies due to limited

population sizes or marker density.

The temporal consistency observed in our study is particularly

noteworthy given the substantial environmental variation across

evaluation years, where mean HSW varied by more than 2 grams

between optimal (2022) and stress (2023) conditions. Previous

multi-environment studies of seed traits in soybean have typically

reported significant genotype-by-environment interactions that

complicate QTL detection and limit the practical utility of

identified markers (Assefa et al., 2019; Zhao et al., 2019). In

contrast, the Chr. 20 locus identified in our study maintained its
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significance and effect size across diverse environmental conditions,

suggesting fundamental biological importance in seed development

that transcends ecological fluctuations. The genomic architecture

revealed by our study suggests that HSW in soybean is primarily

governed by few large-effect loci rather than numerous small-effect

variants, contrasting with the highly polygenic nature typically

observed for seed weight in previous soybean studies. The

SoyBase database currently contains over 300 quantitative trait

loci for seed weight (Karikari et al., 2020), but most represent

minor-effect QTLs that collectively explain small proportions of

phenotypic variance. Our findings challenge this paradigm by

demonstrating that a single major locus can account for a

substantial portion of the genetic variation, which has important

implications for both breeding strategies and our understanding of

seed development biology.
4.2 Population genetics and diversity
implications

The continuous population structure revealed through principal

component analysis, without discrete subpopulations, contrasts

with some previous soybean population genetics studies that have

identified distinct genetic clusters corresponding to geographic

origins or maturity groups (Lam et al., 2010; Zhou et al., 2015).

Our findings suggest that extensive germplasm exchange and

breeding activities have created a more homogeneous genetic

background than previously reported, particularly among elite

breeding materials. This continuous structure is advantageous for

association mapping as it reduces the risk of spurious associations

due to population stratification while maintaining sufficient genetic

diversity for QTL detection (Abhijith et al., 2022; Desaint et al.,

2023; Altaf et al., 2024). The geographic distribution of our

collection, with 81.8% of accessions from China’s primary

soybean-producing regions, provides exceptional power for

detecting loci relevant to this major production area while

maintaining sufficient international representation for broader

applicability. Previous GWAS in soybean have often focused on

either specific geographic regions or relied heavily on North

American breeding materials, potentially limiting the discovery of

alleles important in other production environments (Shingote et al.,

2022; Zhou and Guo, 2024). Our globally diverse panel bridges this

gap by combining extensive sampling from the world’s largest

soybean-producing region with representative materials from

other major production areas. The consistently higher mean

HSW observed in international accessions during 2023 and 2024,

coupled with reduced phenotypic ranges compared to Chinese

domestic materials, suggests different breeding objectives and

selection pressures that align with previous observations about

regional breeding programs (Chakelie et al., 2024; Kumari et al.,

2025). Historical studies have noted that North American and other

international breeding programs have generally focused on larger-

seeded varieties for commodity markets, while Chinese breeding

has maintained greater diversity, including small-seeded types for

food applications. Our quantitative confirmation of these trends
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provides valuable insights into the global patterns of soybean

genetic improvement and their impact on seed size diversity.
4.3 Fine-mapping resolution and candidate
gene identification

The chr. 20 QTL identified in our study (45.70-46.19 Mb,

493.69 kb interval) overlaps with several previously reported seed

weight loci but achieves substantially improved mapping resolution

and validation across environments. A comprehensive review of the

SoyBase QTL database (Grant et al., 2010), and published literature

reveals at least 15 seed weight-related QTLs previously mapped to

chr.20, though most were identified through biparental linkage

populations with broad confidence intervals, and few have been

validated across multiple studies or environments. Previous linkage

mapping studies have identified several chr.20 seed weight QTLs

with megabase-scale resolution. Luo et al. detected qSW-20–1

spanning 38–52 Mb (14 Mb interval) in a recombinant inbred

line population, explaining 6.8% of phenotypic variance (Luo et al.,

2023). Xu et al. mapped qHSW20 to the 40–48 Mb region (8 Mb

interval) with 7.2% variance explained using an F2:3; population (Xu

et al., 2023). Kumar et al. identified a seed shape and weight QTL at

42–49 Mb (7 Mb interval) in a biparental cross (Kumar et al., 2023).

While these studies established the importance of chr. 20 for seed

weight determination, the broad confidence intervals (7–14 Mb)

encompassing hundreds of genes precluded identification of specific

candidates and limited immediate breeding applications. Previous

GWAS studies have provided evidence for seed weight associations

in this chromosomal region with improved resolution compared to

linkage mapping, though results have varied in consistency and

precision. Zhang et al. conducted GWAS using 309 germplasm

accessions and 31,045 SNPs, identifying 22 seed weight loci across

the genome but reporting only one minor-effect association on chr.

20 at 30.2-32.8 Mb (2.6 Mb interval, explaining 4.1% variance) a

region approximately 13–16 Mb distant from our QTL, suggesting a

distinct locus (Zhang et al., 2016). Yan et al. analyzed 166 soybean

accessions with the SoySNP50K BeadChip and detected 17 HSW

QTLs distributed across six chr. but did not report significant

associations on chr. 20, possibly due to limited statistical power

from the smaller population size or absence of favorable alleles in

their germplasm panel (Yan et al., 2017). More recent and larger-

scale GWAS studies have provided converging evidence for seed

weight associations overlapping our refined QTL region. Zhao et al.

analyzed 809 diverse accessions with 56,110 SNPs and detected a

broadly mapped association spanning 43.1-47.3 Mb (4.2 Mb

interval) that encompasses our 45.70-46.19 Mb region, explaining

5.9% of variance in a single environment (Zhao et al., 2019). Cao

et al. conducted GWAS using 1,024 soybean accessions and

identified a major QTL at 44.8-46.5 Mb (1.7 Mb interval, 6.8%

variance explained), showing partial overlap with our interval (Cao

et al., 2022). Most notably, Karikari et al. employed multiple GWAS

models (GLM,MLM, CMLM, SUPER, FarmCPU, and BLINK) with

809 accessions and identified a quantitative trait nucleotide (QTN)

at position 45,823,456 bp within Glyma.20G223400—remarkably,
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bp within Glyma.20G223200, providing strong independent

validation of this specific genomic region (Karikari et al., 2020).

Resolution improvement and validation advantages of our study

compared to previous research include several key advances. First, fine-

mapping precision: Our 493.69 kb confidence interval represents a 14-

28-fold improvement over traditional linkage mapping (7–14 Mb

intervals) and a 3.4-8.5-fold refinement compared to previous GWAS

studies (1.7-4.2Mb intervals), narrowing the region to just 25 candidate

genes compared to hundreds in broader intervals. Second, multi-

environment stability: Unlike most previous single-environment

studies, our QTL maintained genome-wide significance across three

consecutive years (2022-2024) with peak -log10(P) values of 13.4, 12.1,

and 10.2, demonstrating exceptional temporal stability. The consistency

across years characterized by different environmental stresses (mean

HSW: 20.77 g in 2022, 18.65 g in 2023, 19.41 g in 2024) provides

stronger evidence for biological importance than previous reports.

Third, larger effect size: Our lead SNP explained 8.7% of phenotypic

variance individually and up to 18.7% in multi-SNP models,

substantially higher than most previously reported chr.20 QTLs

(typically 4-7% variance explained), suggesting either stronger allelic

effects in our germplasm or improved statistical power from larger

sample size and higher marker density. Fourth, independent validation:

The proximity of our lead SNP (45,741,235 bp inGlyma.20G223200) to

the QTN identified by (Karikari et al., 2020) at 45,823,456 bp provides

compelling evidence that this ~80 kb region harbors the causal variant

(s) for seed weight variation, as two independent studies with different

germplasm panels, genotyping platforms, and statistical methods

converged on nearly identical positions.

Our results indicate that the chr.20 region at 45.70-46.19 Mb

represents a major, reproducible QTL for soybean seed weight that

has been independently detected across multiple studies,

populations (biparental crosses, diverse panels, breeding

populations), mapping approaches (linkage, GWAS with various

models), and geographic regions (China, North America, global

collections). Rather than identifying a completely novel locus, our

contribution is the substantial refinement of a known major QTL

region to a gene-dense interval of 25 candidates with sufficient

resolution for positional cloning, combined with rigorous multi-

environment validation demonstrating its stability and practical

utility for breeding applications. The convergence of evidence from

diverse germplasm sources including Chinese landraces, elite

breeding lines, North American cultivars, and international

accessions indicates this locus harbors broadly relevant genetic

variation with consistent effects across genetic backgrounds,

making it highly suitable for marker-assisted selection in

worldwide soybean improvement programs.
4.4 Breeding and applied implications

The identification of a major, stable QTL for HSW has immediate

applications for soybean breeding programs. The consistency of this

locus across environments suggests that MAS targeting this region

could be effective across diverse production systems. The lead SNP,
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Gm20_45741235, and closely linked markers provide immediate tools

for implementing genomic selection strategies, addressing a long-

standing limitation noted in previous QTL studies, where identified

markers often showed inconsistent effects across environments or

populations (Contreras-Soto et al., 2017). The pronounced

environmental effects observed across evaluation years (mean

reductions of more than 2 g in 2023) underscore the importance of

optimizing both genetic potential and environmental management to

maximize seed weight. The parallel temporal trends between domestic

and international accessions suggest common environmental stresses

affecting seed development, emphasizing the need for comprehensive

breeding strategies that address both genetic improvement and stress

tolerance. The availability of both large-seeded and small-seeded

materials within our germplasm collection provides breeding

programs with flexibility to develop varieties targeting different

market segments, from commodity production to specialty food

applications (Li et al., 2015).
5 Conclusion

This genome-wide association study using 554 globally diverse

soybean accessions identified a major, environmentally stable QTL on

Chr. 20 controlling hundred-seed weight. The QTL maintained

genome-wide significance across three consecutive years (2022-2024)

with peak -log10(P) values of 10.2-13.4, explaining 8-12% of phenotypic

variance—substantially higher than typical seed weight loci reported

previously. Fine-mapping narrowed the critical interval to 493.69 kb

containing 25 candidate genes, achieving approximately 10-fold

improved resolution compared to traditional linkage-based studies.

The lead SNP (Gm20_45741235) within Glyma.20G223200 provides

an immediately actionable molecular marker for breeding applications.

Expression analysis revealed up to 32-fold differential expression

between contrasting seed size varieties, indicating complex regulatory

networks controlling seed development. These findings provide

valuable genetic resources for addressing global food security

challenges through precision breeding approaches. The robust Chr.

20 QTL establishes a foundation for both continued basic research into

seed development mechanisms and immediate application in marker-

assisted breeding programs targeting enhanced soybean productivity

and seed quality.
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