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Introduction: Compared to alien invasive plants, native invasive plants have long
been overlooked. As a result, many biodiversity hotspots are threatened by
invasions of native species, yet lack sufficient policy attention and
management interventions. This study focuses on native invasive plants on the
Qinghai-Tibet Plateau (QTP) as a case study, aiming to provide guidance for
regional management and offer insights for related research in other areas.
Methods: We compiled a comprehensive dataset of 83 native invasive plants and
environmental drivers on the QTP. Using spatial statistics and ensemble
modeling, we analyzed invasion patterns and projected future trends.

Results: A distinct northwest-to-southeast richness gradient was found, with the
southeast as the primary invasion hotspot. This pattern aligned closely with
allelochemical diversity, primarily benzenoids, terpenoids, and flavonoids.
Invasion distribution was jointly influenced by allelochemicals, human activities,
and climate. Models projected intensification and northwestward expansion of
hotspots, increasing risks to protected areas, with invasive hotspot areas
expanding by approximately 178.8x10% km? across scenarios. Moreover, the
MaxEnt model demonstrated extremely high predictive accuracy, with the
average test AUC for all species reaching 0.9834.

Discussion: We propose targeted management focusing on the southeastern
QTP, including allelochemical monitoring via metabolomics and biocontrol using
allelopathy-resistant forage grasses and compound-degrading microbes to
improve conservation efficiency and adaptability. Our findings unravel the
large-scale mechanisms of alpine plant invasions while translating theoretical
advances into practical management strategies for this ecologically
critical landscape.
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1 Introduction

Biological invasions continue to escalate as a major ecosystem
challenge, with invasive alien species remaining a central focus of
scientific and policy efforts (Pysek et al., 2020). Alien species,
defined as organisms introduced beyond their natural ranges and
often across geopolitical borders, have been widely documented to
cause severe biodiversity loss and substantial economic damage
(Diagne et al., 2022). However, traditional frameworks of alien
invasion overemphasize biogeographic origins, thereby excluding
many impactful invasion damages from current governance
systems, including severe ecological threats already posed by
overlooked native invasive plants (Valery et al., 2008). Native
invasive species refer to indigenous organisms that, when human-
mediated into new regions within their native range, exhibit
invasive characteristics, causing significant disruption to local
flora, ecosystem functioning, and local economies comparable to
that of alien invaders (Carey et al., 2012; Pivello et al., 2018). A
plant’s invasive status should be determined by its ecological impact
rather than its origin (Carey et al, 2012; Pivello et al, 2018).
Therefore, native plant invasion is specifically defined as the
expansion of indigenous species causing demonstrated ecological
damage, excluding those merely forming transient communities or
representing successional stages without measurable negative
impacts. Critical knowledge gaps remain concerning the spatial
distribution patterns, key drivers (including emerging abiotic and
biotic determinants), and future dynamics of native invasive plants.
Addressing these gaps is urgently needed, as such understanding
will elucidate the mechanisms behind native invasive plants and
inform targeted management strategies for vulnerable ecosystems,
e.g., high-elevation regions.

Biological invasions are driven by the synergistic interaction of
climatic, anthropogenic, and allelochemical factors that collectively
reshape invasion patterns and ecosystem impacts. Climate change
acts as a selective filter that differentially influences non-invasive
and invasive plants (Hellmann et al., 2008; Hulme, 2016), with
invasive plants exhibiting superior adaptation to extreme climatic
factors, particularly temperature (Sharma et al., 2023). Under
warming scenarios, invasive plants display enhanced phenological
plasticity, increased biomass production, stronger allelopathic
effects, and improved overwintering capacity that collectively
facilitate their expansion into higher latitudes and elevations
(Saqib et al, 2025). This climate-mediated polarization imposes
novel ecological stresses through direct climatic challenges and
intensified competition (Chen et al., 2024), potentially leading to
biodiversity loss, simplified ecological networks, and degraded
ecosystem functions (Zhao et al, 2021). Understanding these
relationships is crucial for predicting native invasive plant spread
(Thuiller et al., 2007) as changing climate regimes alter distribution
boundaries and competitive interactions within native ranges
(Hellmann et al., 2008).

Human activities have become the dominant invasion driver in
the Anthropocene, often exerting more immediate effects than
climate change itself (Hulme, 2009). As primary contributors to
the sixth mass extinction (Ceballos et al., 2015), human-mediated
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disturbances facilitate invasions through global trade networks that
transport propagules, infrastructure development that fragments
habitats, and economic activities that alter biomes. Empirical
studies demonstrate strong correlations between invasion
hotspots and human pressure indicators like population density,
economic outputs, and transportation infrastructures (Hulme,
2009). Linear infrastructure projects particularly create invasion
corridors while causing soil disturbance and habitat fragmentation
(Deng et al., 2020), often acting synergistically with climate change
to accelerate ecosystem transformation (Oliver and
Morecroft, 2014).

Although underexplored in large-scale invasion ecology (Qin
et al., 2024), allelochemical diversity offer crucial mechanistic
insights via the Novel Weapons Hypothesis (Callaway and
Ridenour, 2004). This hypothesis posits that invasive plants
succeed by employing unique allelopathic compounds that native
plants and soil biota cannot counteract (Hierro and Callaway,
2003). These phytochemicals alter community dynamics by
inhibiting key processes such as seed germination, seedling
establishment, and microbial interactions (Inderjit and Duke,
2003; Karban, 2007). This mechanism is demonstrated by the
native invasive plants Ligularia cymbulifera, whose potent
allelochemicals suppress forage species recruitment and
contribute to grassland degradation (Wang et al., 2022). Despite
evidence of allelopathy’s local-scale influence on invasion success
(Inderjit et al, 2011), its macroecological consequences remain
poorly understood. In general, synergistic interactions among
these drivers create amplification loops: climate warming
enhances allelochemical production and efficacy; human activities
disperse chemically armed propagules while creating disturbed
habitats more susceptible to invasion, and habitat fragmentation
increases native community vulnerability to biochemical
disruption. This integrated framework emphasizes that effective
management strategies must address these interconnected
mechanisms, particularly for emerging threats like native invasive
plants in rapidly changing environments.

The Qinghai-Tibet Plateau (QTP), often referred to as the “Roof
of the World” and “Asia’s Water Tower”, hosts the world’s most
diverse temperate flora and a high concentration of endemic species
(Yu et al, 2019). This unique region is experiencing particularly
rapid climate change, with warming rates exceeding the global
average (Yao et al., 2019), which triggers cascading environmental
impacts including glacial retreat, permafrost degradation, and
pasture desertification (Zhang et al., 2025). The QTP is
experiencing rapid transformations coupled with growing human
pressures (Zhao et al., 2022); these factors collectively make it an
ideal natural laboratory for investigating invasion mechanisms. Our
work specifically examines the synergistic effects of climatic,
anthropogenic, and allelochemical drivers under accelerated
global change. The plateau’s sharp environmental gradients, well-
documented flora, and clearly delineated human disturbance
gradients provide an unparalleled context for disentangling the
complex interactions highlighted in our conceptual framework.
Plant diversity on the QTP represents not only a critical
ecological asset but also a fundamental pillar of China’s national
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ecological security and sustainable development (Zhang et al,
2018). However, the aggressive spread of native invasive species
threatens these values by diminishing biodiversity, altering
resource-use efficiency through competitive niche occupation, and
compromising agroforestry systems and the local economy (Wang
et al, 2022). Despite these threats, critical knowledge gaps persist
regarding how the key drivers identified in our framework, climatic
filters, human disturbances, and allelochemical weapons, interact to
shape invasion patterns across this sensitive region. This gap is
particularly concerning given the QTP’s ecological vulnerability and
strategic importance.

To address these pressing questions, we employ an integrative
analytical framework to investigate native invasive plants across
QTP. This framework synthesizes three key drivers derived from
the preceding literature: climatic influences on species distributions,
human-mediated dispersal and disturbance, and chemically
mediated biotic interactions. Accordingly, we specifically examine
the roles of climatic variables, human factors (e.g., population
density, road networks, and economic indicators), and plant-
specific traits including allelochemical diversity. Our study is
therefore guided by three corresponding research questions: (1)
What biogeographic patterns characterize the distribution of native
invasive plants across the QTP’s environmental gradients? (2)
Which combination of climatic, anthropogenic, and biological
factors most strongly drives these invasion patterns? (3) How are
invasion hotspots projected to shift under future climate change
scenarios? By addressing these questions, we aim to provide
mechanistic insights into alpine plant invasions and advance the
theoretical understanding of high-elevation invasion ecology.
Furthermore, we seek to deliver practical recommendations for
managing these species in this ecologically sensitive and
strategically important landscape.

2 Materials and methods
2.1 Data collection

This study focuses on the Qinghai-Tibet Plateau (QTP) of
China, encompassing the Xizang Autonomous Region,
northwestern Yunnan, western Sichuan, Qinghai, southern
Xinjiang, and southwestern Gansu provinces (Zhang et al., 2016).
The region is characterized by highly heterogeneous topographic
features, including deep canyons, high mountain ranges, rolling
hills, and broad plateaus. It also supports various vegetation types,
such as valley shrubs, broadleaf and coniferous forests, alpine
shrubs, meadows, and subnival belts (Zhang et al., 2021b). We
conducted a systematic literature review to identify all published
research that investigated native invasive plant species and their
allelochemicals within the QTP region. We classified a plant as a
native invasive plant if it met all three criteria: natural occurrence
within the Qinghai-Tibet Plateau, ability to form hyper-dominant
communities, and well-documented evidence of negative ecological
impacts. A checklist of native invasive plants (total 83 species) was
compiled through systematic searches of scientific databases on 29
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Oct 2024. The searched databases included China National
Knowledge Infrastructure (https://c61.oversea.cnkinet/), Web of
Science (https://www.webofscience.com/wos/), and Springer
(https:/link.springer.com/). The complete checklist is provided in
Supplementary Table S1. Allelochemicals reported in the literature
were classified into 15 categories (Supplementary Table S1): (1)
benzenoids, (2) terpenoids, (3) flavonoids, (4) organic nitrogen
compounds, (5) alkaloids, (6) organic heterocycles, (7) phenols, (8)
nucleosides, (9) organic acids, (10) shikimates and
phenylpropanoids, (11) carbohydrates, (12) lipids and lipid-like
molecules, (13) fatty acids, (14) lignans, and (15) other compounds
(remaining unclassified compounds).

To map the spatial distribution of these native invasive plants,
we compiled species-level occurrence data from national and
regional floras, including Flora Reipublicae Popularis Sinicae
(Editorial Committee of Flora of, 1961-2002); Flora of China (Lin
et al, 2013); Flora Yunnanica (Kunming Institute of Botany,
Chinese Academy of Sciences, 2006); Flora Xizangica (Kunming
Institute of Botany, Chinese Academy of Sciences, 1983); Flora
Xinjiangensis (Xinjiang Flora Editorial, 1993-1996); Flora
Gansuensis (Gansu Flora Editorial, C, 2005); and Flora Sichuanica
(Sichuan Flora Editorial, 1981-2007). Additional occurrence
records were sourced from the Chinese Virtual Herbarium
(https://www.cvh.ac.cn/); the Herbarium of the Kunming Institute
of Botany, Chinese Academy of Sciences (http://groups.kib.cas.cn/
kun/); and the Global Biodiversity Information Facility (https://
www.gbif.org/). Socioeconomic data, including population and
gross domestic product (GDP), were obtained from the National
Bureau of Statistics of China (http://www.stats.gov.cn/). Spatial data
on road density were extracted from the Geographic Data Platform
of Peking University’s College of Urban and Environmental
Sciences (http://geodata.pku.edu.cn/). These data were collected
until Dec 2024.

2.2 Spatial analysis

Species distribution data were processed following a
standardized data-cleaning protocol established by Zhang (Zhang
etal, 2021a; Zhao et al,, 2022), involving a three-tier quality control
workflow: (1) For each target species, distribution records were
compiled from multiple authoritative sources, including herbarium
specimens, type localities from regional floras, and peer-reviewed
habitat descriptions, to establish a high-confidence baseline
database for subsequent validation and calibration. (2) Verified
records were systematically evaluated to identify and correct
biologically implausible occurrences and spatially biased
coordinates, ensuring consistency. To mitigate spatial sampling
bias, we applied a spatial thinning procedure using the
“CoordinateCleaner” package (Zizka et al., 2019) to reduce record
clustering in easily accessible areas. (3) Geocoding techniques were
applied to convert descriptive location information (e.g., village
names, mountain ranges) into standardized geographic coordinates.
Given the vast average area of county-level administrative units on
the QTP (~14,900 km?, with the largest exceeding 200,000 km?),
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county-level records lacking precise coordinates were georeferenced
to 0.5° x 0.5° grid cells. This resolution has been validated as an
effective balance between spatial accuracy and data coverage in
alpine ecosystems (Yu et al., 2019; Zhang et al., 2022). The
georeferencing procedure involved (a) dividing all county units
into 0.5° grids; (b) extracting elevation ranges (maximum and
minimum) for each grid; (c) filtering grids based on species-
specific elevation preferences (Zhang et al., 2021b); and (d)
removing duplicate species records by retaining only a single
occurrence per species within each 0.5° grid cell. This elevation-
filtering approach has been successfully employed in multiple
recent studies focusing on the Qinghai-Tibet Plateau region
(Zhang et al., 2021b; Zhao et al., 2022) and has been shown to
significantly improve distribution accuracy when precise coordinate
data are unavailable. Road density was calculated by summing the
total length of national highways and provincial and county roads
within each grid cell and dividing by the grid area. Population
density and GDP data were similarly processed, with all
socioeconomic variables interpolated across the plateau using
spatial kriging methods (Wang et al., 2010) and aggregated to the
grid levels. Climate variables (Biol-19) were extracted from the
WorldClim v.2.1 database (Fick and Hijmans, 2017), with mean
values computed for each grid (Table 1). The spatial resolution of
these data is uniformly 2.5 arc minutes (~4.5 kilometers), and they
are registered in the WGS_1984 geographic coordinate system.
Allelochemical diversity per grid was quantified as the number of

TABLE 1 Definitions of different climate variables.

Climate variable Definition

Biol Annual mean temperature
Bio2 Mean diurnal range

Bio3 Isothermality

Bio4 Temperature seasonality

Bio5 Max temperature of warmest month
Bio6 Min temperature of coldest month
Bio7 Temperature annual range
Bio8 Mean temperature of wettest quarter
Bio9 Mean temperature of driest quarter
Biol0 Mean temperature of warmest quarter
Bioll Mean temperature of coldest quarter
Biol2 Annual precipitation

Biol3 Precipitation of wettest month
Biol4 Precipitation of driest month
Biol5 Precipitation seasonality
Biol6 Precipitation of wettest quarter
Biol7 Precipitation of driest quarter
Biol8 Precipitation of warmest quarter
Biol9 Precipitation of coldest quarter
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distinct allelochemicals associated with invasive species present
within each grid cell. All spatial analyses were performed using
ArcGIS 104 (http://www.esri.com).

2.3 Statistical analysis

The richness of native invasive plant species was calculated
based on the number of species within each grid cell. A phylogenetic
tree was constructed using the “V.Phylomaker” package (Jin and
Qian, 2019) to illustrate evolutionary relationships among native
invasive plant species based on the compiled species checklist.
Heatmaps were generated to visualize the distribution of
allelochemical diversity across taxa to complement the tree.
Random forest model was used as an initial screening tool to
identify the most important predictors of native invasive plant
distribution from our high-dimensional environmental dataset,
while handling nonlinear relationships and interactions without
prior assumptions. We first employed random forest models using
the “randomForest” (Liaw and Wiener, 2002) and “rfPermute”
(Archer, 2023) packages in R (v4.4.1) (R Core Team, 2024). The
random forest algorithm is well-suited for high-dimensional
ecological data, as it inherently mitigates predictor collinearity by
averaging across numerous decision trees (Yang et al., 2021).
Variable importance was computed using the permutation-based
method. We built a forest of 500 trees, performing 1000
permutations per variable to assess importance. The metric used
was the %IncMSE (percentage increase in mean squared error),
which quantifies the decrease in prediction accuracy when a
variable’s values are randomly shuftled in out-of-bag samples. The
resulting importance values were scaled to facilitate comparison
across predictors, and statistical significance was evaluated using
permutation-derived p-values. As tree-based algorithms like
random forest are insensitive to the scale of predictor variables,
we did not apply feature scaling prior to model training. From the
ranked variable importance output, we selected the top seven
drivers for subsequent model fitting: allelochemicals, GDP, road,
Biol5 (precipitation seasonality), population, Biol8 (precipitation
of warmest quarter) and Bio3 (isothermality).

Ordinary least squares (OLS), mixed-effect, and spatial
autoregressive models (SAR) models were employed as
complementary approaches to assess the direction and strength of
relationships between key drivers and invasion patterns. OLS and
mixed-effect models provided a baseline understanding, while SAR
explicitly accounted for spatial autocorrelation, ensuring robust
inference. We fitted OLS to analyze the relationships between
species richness and the selected predictors, including human
factors, climate variables, and allelochemicals. We further fitted
linear mixed-effects models using the “lme4” (Bates et al., 2015)
package. In these models, the selected drivers were treated as fixed
effects, while grid cells were included as random effects to account
for spatially structured variance and to improve the estimation of
fixed-effect coefficients. We performed Moran’s I test to examine
spatial autocorrelation in the input variables. Significant spatial
clustering was observed across key variables, particularly population
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density, GDP, and road network density, reflecting the inherent
spatial nature of these indicators. To address the spatial
autocorrelation, we refitted the linear models using spatial
autoregressive models (SAR), allowing for spatial dependencies in
the error terms. A spatial error model (SARerror) implemented
using the “spatialreg” package (Bivand and Piras, 2015), which
accounts for spatial dependence in the regression residuals.
Constructed using k-nearest neighbors with k=4 neighbors based
on Euclidean distances between sampling locations. This step
ensured a more accurate coefficient estimate and enabled a
comprehensive comparison of model outcomes across model
frameworks. Bayesian mixed-effects models were applied to
quantify uncertainty and incorporate hierarchical structure in our
data, allowing us to partition variance among climatic, human, and
allelochemical factors while providing probabilistic estimates of
effect sizes. We conducted Bayesian mixed-effects models using
the “brms” package (Biirkner, 2021).

Structural equation models (SEM) were used to test our
conceptual framework of direct and indirect pathways through
which climatic, human, and allelochemical factors jointly
influence invasion success, thereby moving beyond correlation to
evaluate causal hypotheses. Based on the results from the OLS and
the SAR models, we found an interesting outcome: only climate
factors consistently and significantly influenced the diversity of
invasive plants in both models. The effects of human activities and
allelochemical diversity on invasive plant diversity were not
significant after accounting for spatial autocorrelation, yet both
were highly overlapped spatially with plant diversity. This indicates
that the relationship between human activities, allelochemical
diversity, and invasive plant diversity is regulated by other factors
(i.e., climate). Here, we used the “piecewiseSEM” package (Lefcheck,
2016) to fit SEM to explore the direct or indirect relationships of
human activities and allelochemical diversity, regulated by climatic
factors, with the diversity of invasive plants.

2.4 Future plant diversity dynamics
simulation

Maximum Entropy algorithm (MaxEnt) was implemented to
project future distribution shifts under climate change scenarios,
leveraging its strengths in presence-only data and transferability to
novel environments. Due to the unavailability of future data on human
activities and allelochemical distributions, we relied exclusively on
projected climate data to predict the dynamics of native invasive
plants. Bioclimatic data were obtained for three periods: baseline
climate (1970-2000), the near future (2021-2040), and the distant
future (2081-2100). Future climate projections were derived from
global climate models included in the Coupled Model
Intercomparison Project Phase 6, using two Shared Socioeconomic
Pathways (SSPs): SSP1-2.6, representing a sustainable development
pathway, and SSP5-8.5, representing a high carbon emissions scenario
(O’Neill et al,, 2016). To reduce multicollinearity among
environmental variables, Pearson correlation coefficients were
calculated. Variables with correlation coefficients below 0.8 were
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retained, while among highly correlated variables (r>0.8), the one
with the highest contribution was kept, and the variables with minimal
(i.e., close to zero) contribution were excluded (Chai et al., 2025).

Species distribution models were constructed using the
Maximum Entropy algorithm (MaxEnt version 3.4.4) (Phillips
and Dudik, 2008). Model parameters were configured as follows:
10 bootstrap replicates, 10,000 background points, a 75:25 random
split for training and validation datasets, and a maximum of 5,000
iterations with a convergence threshold of 0.00001 (Valavi et al.,
2021). Feature combinations and regularization multipliers were
optimized through batch scripts to improve model generalization.
Model performance was evaluated using the Area Under the Curve
(AUC), with values >0.9 interpreted as indicating high predictive
reliability. With an overall average training AUC of 0.9867 and an
average test AUC of 0.9834 for all species, both significantly greater
than 0.9 and closely matched, the models demonstrated not only
high predictive accuracy but also exceptional stability
(Supplementary Table S2). The resulting habitat suitability
outputs (probability range: 0-1) were converted into binary raster
data using a threshold of 0.5, classifying the habitat as either suitable
(1) or unsuitable (0) (Gong et al.,, 2022). Changes in future habitat
suitability were determined by subtracting current raster values
from future scenario values: positive changes were interpreted as
“expanding species,” and negative changes as “contracting species”.
To assess spatial patterns of expansion, binary rasters of all
expanding species were overlaid in ArcGIS (version 10.4.1) using
the “Sum” function, generating cumulative suitable area layers
under each scenario. Official protected area boundaries for the
QTP were obtained from the National Specimen Information
Infrastructure (NSII, http://www.nsii.org.cn). These vector layers
were reprojected to match the coordinate reference system of the
habitat rasters (GCS_WGS_1984) and clipped to the boundaries of
the QTP. Cumulative suitable area layers were then intersected with
protected area polygons. Using the “Zonal Statistics” tool in ArcGIS,
the number of suitable pixels within each protected area was
calculated for each period and scenario. This allowed for spatial
quantification of the extent (in km®) to which protected areas may
be impacted by the expansion of invasive plants under future
climate conditions.

These methods were applied in a logically ordered sequence:
variable selection (Random Forest), relationship testing (OLS,
mixed-effect, and SAR models), uncertainty and hierarchical
estimation (Bayesian models), pathway analysis (SEM), and
spatial forecasting (MaxEnt). Together, they form a cohesive
analytical framework that progresses from pattern detection to
mechanistic understanding and predictive modeling.

3 Results

3.1 Spatial, taxonomic, and allelopathic
characteristics of native invasive plants

The species richness of native invasive plants across the QTP
increased progressively from the northwestern to southeastern
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regions, with the southeastern plateau showing a pronounced
clustering pattern and hosting the highest concentration of high-
richness areas (Figure la). Lower allelochemical diversity was
observed in the northwest. At the same time, higher levels were
observed in the southwest and southeast regions of the plateau
(Figure 1b), indicating a spatial concordance between plant richness
and allelopathic potential in these areas. We presented invasion
landscapes of two native invasive plant species, Ligularia
cymbulifera (Figurelc) and Euphorbia jolkinii (Figureld), to
exemplify their detrimental impacts. Taxonomically, 25 families
of native invasive plants were identified in the QTP. The Asteraceae
family was the most species-rich, contributing 26 species, followed
by the Lamiaceae with 10 species and the Fabaceae with 6 species. In
terms of allelochemical composition, benzenoids were the most
abundant, followed by terpenoids and flavonoids (Figure le).

3.2 Relative importance of abiotic and
biotic drivers

The Random Forest model demonstrated exceptional predictive
performance, explaining 85.6% of the variance in species richness
(OOB R? = 0.856), indicating that the selected environmental and
anthropogenic variables effectively capture the key drivers
governing distribution patterns across the Qinghai-Tibet Plateau.
The model identified seven influential predictors: allelochemicals,
GDP, road density, Biol5, population density, Biol8, and Bio3
(Figure 2). Their high sensitivity was evidenced by 20-40% increases
in mean squared error when these variables were permuted.
Notably, allelochemicals emerged as the most critical factor,
accounting for 27.12% of the total variable importance. These
findings collectively highlight the central role of allelochemical
diversity in shaping the spatial distribution of native invasive
plant species on the QTP, while confirming the robust
explanatory power of the integrated predictor set.

The seven driving factors influencing invasive plant species
richness (SR) were categorized into three major groups: human
activity variables (GDP, road density, and population), climatic
variables (Bio3, Biol5, and Biol8), and allelochemical variables.
Ordinary least squares (OLS) regression was applied to assess the
impact on species richness (SR). The results showed that all three
groups significantly affected SR (P < 0.001). Notably, Biol5 showed
a negative correlation with SR, whereas all other factors displayed
positive relationships (Figure 3). Overall, human, climatic, and
allelochemicals exerted substantial effects on the spatial
distribution patterns of invasive plants, corresponding to the
spatial trends observed in the earlier analyses (Figure I;
Supplementary Figures S1, S2).

The mixed-effects models revealed that Biol8, Bio3, road, GDP,
population, and allelochemicals all exhibited significant positive
effects on SR (P < 0.001), while Biol5 showed a significant negative
effect (P < 0.001) (Figure 4a). A Bayesian model produced
consistent results, further validating the robustness and reliability
of our findings (Supplementary Figure S3). Our findings revealed a
significant interaction between climatic conditions and
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allelochemical diversity. In stable humid environments
characterized by high isothermality, high precipitation in the
warmest quarter, and moderately high precipitation seasonality,
allelochemical diversity was negatively correlated with native
invasive plant diversity. In contrast, in arid inland regions with
low isothermality, low warm-season precipitation, and moderately
low precipitation seasonality, allelochemical diversity was positively
associated with native invasive plant diversity (Figures 4b, c).
Finally, our SEM revealed three major pathways (Figure 4d): 1)
climatic factors were positively correlated with the intensity of
human activity, 2) climate and human activity collectively
determined native invasive plant diversity, and 3) the relationship
between allelopathy and invasive plant diversity was indirectly
mediated by climate.

3.3 Spatial structure of predictors

We calculated Moran’s I for each driving factor to better
evaluate the influence of the selected variables. We compared the
results of OLS regression with those from SAR. Moran’s I analysis
revealed statistically significant spatial autocorrelation (P < 0.05) for
all major drivers of invasive plant distribution on the QTP, such as
allelochemicals, GDP, road density, population, Bio3, Biol5, and
Biol8. All predictors had Moran’s I values greater than 0.79 (p <
0.05), aligning with their visually apparent spatial clustering
patterns (Figure la). OLS regression results demonstrated that all
factors were statistically significant, with positive relationships
observed except for Biol5. However, when accounting for spatial
dependence, the SAR model revealed that several predictors lost
significance. This highlights the spatial clustering of both predictors
and the response variable. The SAR model identified Biol5 as the
dominant driver (pseudo R* = 0.248), followed by Population
(pseudo R* = 0.242) and GDP (pseudo R* = 0.241), while Road
and Bio18 exhibited moderate effects, and Allelochemicals showed
the weakest influence (Supplementary Tables S3, 4). This spatial co-
occurrence itself is an essential finding, reflecting the geographically
structured interactions between native invasive plant species
distribution and their environmental and human drivers.

3.4 Future expanding trends of native
invasive plants

Under the SSP1-2.6 scenario, projections for both the near
future (2021-2040) and the late century (2081-2100) indicate that
the eastern, southeastern, and southern regions of the QTP will
remain primary hotspots for native invasive plant expansion, with
newly suitable habitat covering approximately 199.26 x
10&#x02074; km? (78.56% of the QTP) and 197.04 x
10&#x02074; km* (77.68%) (Supplementary Table S5),
respectively. Notably, a significant portion of this expansion
overlaps with protected areas (PAs), reaching 46.31 x
10&#x02074; km? (74.88% of total PA) in the near future and
44.56 x 10&#x02074; km® (72.04%) (Supplementary Table S5) by
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FIGURE 1

Spatial and phylogenetic patterns of native invasive plant richness and allelochemical diversity across the QTP. (a) Spatial distribution of native
invasive plant richness. (b) Distribution pattern of allelochemical diversity. Community landscapes invaded by Ligularia cymbulifera (c) and Euphorbia
Jolkinii (d) are shown as representative examples of habitat alternation due to native invasive species. (e) A phylogenetic tree and corresponding
heatmap show the number and types of allelochemicals across invasive species. Org.acids.and.Derivs stands for Organic acids and derivatives, OHCs
stands for Organoheterocyclic compounds, SKM.and.PPs stands for Shikimates and Phenylpropanoids, CHO stands for Carbohydrates, Alk.and.Derivs
stands for Alkaloids and derivatives, LLLM. stands for Lipids and lipid-like molecules, NT.and.analogues stands for Nucleosides nucleotides and
analogues, ONCs stands for Organic nitrogen compounds, LIGs.and.NLIGs stands for Lignans neolignans.
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FIGURE 2

The relative importance of multiple drivers influencing the distribution of native invasive plants on the QTP, as determined by random forest
modeling. Significance levels: **P < 0.01. Biol: annual mean temperature, Bio2: mean diurnal range, Bio3: isothermality, Bio4: temperature
seasonality, Bio5: max temperature of warmest month, Bio6: min temperature of coldest month, Bio7: temperature annual range, Bio8: mean
temperature of wettest quarter, Bio9: mean temperature of driest quarter, Biol0: mean temperature of warmest quarter, Bioll: mean temperature of
coldest quarter, Biol2: annual precipitation, Biol3: precipitation of wettest month, Biol4: precipitation of driest month, Biol5: precipitation
seasonality, Biol6: precipitation of wettest quarter, Biol7: precipitation of driest quarter, Biol8: precipitation of warmest quarter, and Biol9:

precipitation of coldest quarter.

the end of the century, illustrating a consistent northwestward
encroachment into PAs (Figures 5a, b). Under the high-emissions
(SSP5-8.5) scenario, the expansion trend during 2021-2040
remained comparable, with 197.62 x 10&#x02074; km?> (77.91%)
of newly suitable habitat, including 46.00 x 10&#x02074; km?

(74.38%) (Supplementary Table S5) overlapping with PAs.
However, by 2081-2100, the total expansion area decreased
substantially to 121.29 x 10&#x02074; km?* (47.82%), and overlap
with PAs dropped markedly to 14.58 x 10&#x02074; km® (23.57%)
(Supplementary Table S5), although existing hotspots in the
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Ordinary least square regression results showing the effects of climatic, human, and allelochemical drivers on SR. (a) The human factor in SR
regression; (b) The climatic factor in SR regression; (c) The allelochemicals in SR regression. R? represents the goodness of fit of a regression model
to observed data, with values closer to 1 indicate a stronger model fit. Significance levels: *P < 0.05; **P < 0.01; ***P < 0.001. Human and climatic
variables were standardized prior to analysis. Bio3: isothermality, Biol5: precipitation seasonality, and Biol8: precipitation of warmest quarter.
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eastern, southeastern, and southern hotspots persisted (Figures 5c,
d). These results quantitatively highlight that under sustained low-
emission scenarios, invasive hotspots are not only likely to intensify
but also increasingly encroach into northwestern protected zones,
whereas high-emission scenarios may restrict overall expansion but
still sustain significant pressure in strategic regions.

4 Discussion

4.1 Synthesis of key findings: current
patterns and future dynamics

Our study reveals that native invasive plants on the QTP exhibit
a spatially clustered distribution, concentrated primarily in the
eastern and southeastern regions. This pattern aligns with
established biogeographical gradients of overall plant diversity on
the plateau (Zhang et al, 2016; Yu et al.,, 2018) and reflects the
synergistic operation of climatic, anthropogenic, and allelochemical
drivers. The convergence of high native invasive plant diversity with
general biodiversity hotspots and human population centers (Luck,
2007) creates compounded conservation challenges that extend
beyond simple species co-occurrence to fundamentally alter
ecosystem vulnerability. Notably, current invasion hotspots
overlap strongly with areas projected to be at high risk under
future climate scenarios, suggesting escalating conservation
challenges. Our projections indicate not only the persistence of
current southeastern hotspots but also significant northward and
westward expansion of invasion risks, including encroachment into
several protected areas. This spatial-temporal dynamic underscores
the urgent need for proactive management strategies that address
the interacting effects of multiple drivers in this ecologically
sensitive region.

4.2 Mechanistic interpretation of
interactive drivers

Our findings extend invasion ecology theory by demonstrating
how multiple drivers operate interactively rather than
independently. While previous research has often treated climate,
human activities, and allelopathy as separate factors (Inderjit et al.,
2011), our integrated analysis reveals they form a coherent causal
chain: climatic stability sets the fundamental niche space, human
disturbance creates invasion opportunities and dispersal pathways,
and allelochemical diversity determines competitive outcomes. This
multi-driver perspective helps resolve apparent contradictions in
native invasion patterns and provides a more predictive framework
for understanding native invasion dynamics in complex
mountain ecosystems.

4.2.1 Climate as a selective filter and enabler

The observed climatic drivers reveal how environmental
stability and resource availability shape invasion patterns across
the QTP. The positive correlations with Bio3 (isothermality) and
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Bio18 (precipitation of warmest quarter) demonstrate that climatic
stability functions as a selective filter that differentially favors native
invasive plants. High isothermality buffers thermal fluctuations,
enhancing environmental tolerance and promoting niche
differentiation in topographically complex regions like the
Hengduan Mountains (Zhang et al., 2021a), while reliable warm-
season precipitation supports establishment during critical growth
periods. Conversely, the negative correlation with Biol5
(precipitation seasonality) reflects the ecological constraints of
temporal resource variability, where high intra-annual
precipitation fluctuations increase environmental stress and limit
invasion success (Bradford and Lauenroth, 2006; Zhong
et al., 2025).

Critically, climate change amplifies these dynamics by
simultaneously expanding suitable habitats for native invasive
plants while stressing native communities. OQur projections
indicate southeastern QTP will remain highly vulnerable with
significant increases in invasion intensity, while new hotspots
emerge northward and westward, including encroachment into
protected areas. This spatial restructuring underscores the
urgency of integrating climate forecasts into conservation
planning, enabling proactive management that anticipates range
shifts rather than merely responding to established native invasions.
The demonstrated association between climate suitability and
native invasion risk validates the utility of climate-based
forecasting while highlighting the need for adaptive strategies that
address the dynamic nature of invasion processes under rapid
environmental change.

4.2.2 Human activity as a distribution catalyst

Human disturbances significantly alter invasion trajectories
through multiple synergistic pathways. Large-scale infrastructure
development degrades ecosystem integrity through vegetation
clearance, soil erosion, and habitat fragmentation (Yang, 2015),
while transportation networks create continuous dispersal corridors
for invasive propagules (Hulme, 2009). The operational phase of
infrastructure projects particularly accelerates species spread by
enabling rapid colonization of opportunistic species like
Galinsoga parviflora and Bidens pilosa in disturbed environments
such as dry-hot valleys (Chen et al., 2025). This human-mediated
dispersal interacts strongly with pre-existing biodiversity patterns,
establishing invasion feedback loops where disturbed high-
biodiversity areas experience disproportionately severe invasion
impacts (Colautti et al., 2006).

Beyond local ecosystem degradation, these invasions pose
substantial threats to regional biodiversity, ecosystem services,
and socioeconomic stability (Deng et al., 2020). Mounting
empirical evidence confirms that human-mediated disturbances
represent one of the most potent drivers of biological invasions
worldwide (van Kleunen et al., 2018), with this study demonstrating
their equal relevance for native invasive plants. The spatial
concentration of human activities in southeastern QTP, consistent
with documented demographic shifts (Zheng, 2024), creates
particularly pronounced native invasion risks. This pattern is
exemplified by species like Galinsoga quadriradiata, whose
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occurrence frequency peaks in areas of intensive human activity
(Chen et al., 2025), demonstrating clear links between disturbance
intensity and invasion pressure.

These findings underscore the critical need to regulate both the
intensity and spatial extent of human activities, particularly in
ecologically sensitive regions. Future ecosystem management
must prioritize areas of concentrated human activity for targeted
monitoring and intervention, developing integrated approaches
that address the multiple mechanisms through which human
disturbance facilitates invasion across different stages from initial
dispersal to landscape-scale establishment.

4.2.3 Allelochemical diversity as a novel weapons
portfolio

Our findings demonstrate that allelochemical diversity
significantly shapes native invasion patterns across the QTP by
creating a heterogeneous “chemical landscape” that operates at
regional scales. The Novel Weapons Hypothesis (Hierro and
Callaway, 2003) provides a mechanistic basis for understanding
how invasive plants employ diverse chemical compounds
unfamiliar to local communities, disrupting plant-soil feedbacks
and microbial interactions (Karban, 2007; van Kleunen et al., 2018).
Species such as Euphorbia jolkinii exemplify this mechanism, where
potent allelochemicals degrade alpine meadows by altering
community structure and reducing biodiversity (Dai et al., 2022).

While most previous studies have focused on small-scale or
single-species allelopathic effects (Inderjit et al., 2011), our research
reveals that regional allelochemical diversity, representing the
collective chemical repertoire across landscapes, enhances the
species pool of native invasive plants. This broader perspective
offers valuable insights into ecosystem-level management. Notably,
allelochemical effects are context-dependent, interacting strongly
with climatic conditions. In arid inland regions, reduced microbial
degradation and heightened plant stress may amplify the impact of
chemical interference, highlighting the need to investigate climate-
chemistry-invasion interactions more deeply.

4.3 Limitations and causal uncertainties

Several limitations and uncertainties warrant careful
consideration when interpreting our results and projections. First,
while we applied stringent criteria for identifying native invasive
species, limited regional research and incomplete distribution data
may have resulted in underestimation of certain invasion risks.
Second, our future projections carry inherent uncertainty as they
are based primarily on climate scenarios; this approach excludes
future changes in human activities and allelochemical dynamics,
which may lead to an underestimation of invasion potential,
particularly in regions undergoing rapid socioeconomic
development or chemical landscape alteration. Third, the
relationship between allelochemical diversity and invasion
patterns, while statistically significant, represents correlation
rather than confirmed causation; the direction of influence
between chemical diversity and invasion success requires
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experimental verification. Finally, our macroecological approach
necessarily simplifies complex species interactions and local-scale
processes that modulate invasion outcomes. Future research should
integrate metabolomic profiling with manipulative experiments to
establish causal pathways and quantify interaction strengths among
drivers, while incorporating scenarios of human disturbance and
chemical evolution to improve the robustness of invasion forecasts.

4.4 Management implications and future
directions

The spatial explicitness of our findings enables targeted
management strategies. First, southeastern hotspots require
immediate containment efforts focused on transportation corridors
and areas of high human activity. Second, projected expansion zones in
northern and western regions need proactive monitoring, particularly
within protected areas vulnerable to future invasion. Third,
allelochemical diversity mapping can refine risk assessments and
guide the development of biocontrol approaches using allelopathy-
resistant forage grasses (Jabran and Faroog, 2013) and compound-
degrading microbes (Liu et al, 2023, 2024). Future research should
prioritize quantifying interaction effects among drivers, particularly
how climate change modulates allelochemical efficacy and how human
disturbance intensity alters invasion thresholds. By addressing these
priorities, we can develop more resilient conservation strategies for the
QTP’s unique ecosystems in an era of rapid environmental change.

The ecological patterns and management implications identified
on the Qinghai-Tibet Plateau find parallels in other high-elevation
and mountainous systems worldwide, underscoring the broader
relevance of our findings. In the Mongolian Plateau, Stellera
chamaejasme has demonstrated significant invasive potential
through pollen allelopathy, toxicity to livestock, and intense
resource competition, leading to extensive grassland degradation
(Sun et al,, 2010; Guo and Wang, 2018). Similarly, in Brazil, native
woody bamboos have proliferated rapidly in fragmented habitats
(Pivello et al, 2018), while in western U.S. grasslands, Juniperus
occidentalis has expanded its range through interactions with grazing
and altered fire regimes (Miller et al., 2005). These cases collectively
highlight that the interplay of climate change, human disturbance,
and allelochemicals as emphasized in our study, also drives native
invasive plants across diverse mountainous regions. Consequently,
the integrative management framework we propose, which
emphasizes spatial prioritization, allelochemical monitoring, and
adaptive intervention, holds promise for application in other
highland ecosystems facing similar invasion threats.

5 Conclusions

Our study provides the first large-scale evidence that native
invasive plants on the QTP exhibit a spatially clustered distribution,
with concentrations primarily in the eastern and southeastern
regions. These invasion hotspots align with zones of high
biodiversity and intense human activity and underscore the
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synergistic effects of climatic complexity, human disturbance, and
regional allelochemical diversity in driving invasion risks.

Our findings provide several key innovations to the field of
invasion ecology: (1) Revealing the role of allelochemical diversity
in large-scale invasion patterns. We demonstrate that regional
diversity of allelochemicals significantly enhances the species pool
of native invasive plants, a mechanism previously underexplored in
macroecological invasion studies. (2) Integrating multiple drivers of
native invasive plant patterns. By combining climatic variables,
human disturbance, and allelochemical diversity, our study moves
beyond traditional frameworks that focus primarily on climate,
human factors, and exotic species, offering a more comprehensive
understanding of native invasive plant distributions. (3) Proposing
novel, mechanism-based management strategies. Our findings have
important implications for managing ecosystems under global
change. Specifically, we suggest (1) prioritizing highly disturbed
areas (e.g., the Hengduan Mountains, the Linzhi area in
southeastern Xizang, and the Qiangtang Plateau) for early
detection and rapid intervention of high human activities, (2)
incorporating climatic stability and precipitation variability into
predictive models to better predict future invasion risks, and (3)
developing region-specific biocontrol measures that target
allelopathic suppression mechanisms, thereby safeguarding
biodiversity and enhancing ecological resilience. We recommend
tools such as allelopathic fingerprinting to identify invasion
hotspots and biocontrol approaches that use allelochemical-
degrading microbes or resistant forage grasses to disrupt the
synergistic expansion of native invasive plants.

By bridging large-scale spatial analyses with underlying
biochemical and ecological mechanisms, this study reshapes our
understanding of the patterns and drivers of native invasive plants.
It also offers a holistic, scalable framework for invasive species
management and ecological restoration on the QTP and in other
climate-sensitive and biodiversity-rich regions.
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