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Introduction: Compared to alien invasive plants, native invasive plants have long

been overlooked. As a result, many biodiversity hotspots are threatened by

invasions of native species, yet lack sufficient policy attention and

management interventions. This study focuses on native invasive plants on the

Qinghai-Tibet Plateau (QTP) as a case study, aiming to provide guidance for

regional management and offer insights for related research in other areas.

Methods:We compiled a comprehensive dataset of 83 native invasive plants and

environmental drivers on the QTP. Using spatial statistics and ensemble

modeling, we analyzed invasion patterns and projected future trends.

Results: A distinct northwest-to-southeast richness gradient was found, with the

southeast as the primary invasion hotspot. This pattern aligned closely with

allelochemical diversity, primarily benzenoids, terpenoids, and flavonoids.

Invasion distribution was jointly influenced by allelochemicals, human activities,

and climate. Models projected intensification and northwestward expansion of

hotspots, increasing risks to protected areas, with invasive hotspot areas

expanding by approximately 178.8×104 km2 across scenarios. Moreover, the

MaxEnt model demonstrated extremely high predictive accuracy, with the

average test AUC for all species reaching 0.9834.

Discussion: We propose targeted management focusing on the southeastern

QTP, including allelochemical monitoring viametabolomics and biocontrol using

allelopathy-resistant forage grasses and compound-degrading microbes to

improve conservation efficiency and adaptability. Our findings unravel the

large-scale mechanisms of alpine plant invasions while translating theoretical

advances into practical management strategies for this ecologically

critical landscape.
KEYWORDS

native invasive plants, human activities, climate change, allelochemical diversity,
biological invasion
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1 Introduction

Biological invasions continue to escalate as a major ecosystem

challenge, with invasive alien species remaining a central focus of

scientific and policy efforts (Pysěk et al., 2020). Alien species,

defined as organisms introduced beyond their natural ranges and

often across geopolitical borders, have been widely documented to

cause severe biodiversity loss and substantial economic damage

(Diagne et al., 2022). However, traditional frameworks of alien

invasion overemphasize biogeographic origins, thereby excluding

many impactful invasion damages from current governance

systems, including severe ecological threats already posed by

overlooked native invasive plants (Valéry et al., 2008). Native

invasive species refer to indigenous organisms that, when human-

mediated into new regions within their native range, exhibit

invasive characteristics, causing significant disruption to local

flora, ecosystem functioning, and local economies comparable to

that of alien invaders (Carey et al., 2012; Pivello et al., 2018). A

plant’s invasive status should be determined by its ecological impact

rather than its origin (Carey et al., 2012; Pivello et al., 2018).

Therefore, native plant invasion is specifically defined as the

expansion of indigenous species causing demonstrated ecological

damage, excluding those merely forming transient communities or

representing successional stages without measurable negative

impacts. Critical knowledge gaps remain concerning the spatial

distribution patterns, key drivers (including emerging abiotic and

biotic determinants), and future dynamics of native invasive plants.

Addressing these gaps is urgently needed, as such understanding

will elucidate the mechanisms behind native invasive plants and

inform targeted management strategies for vulnerable ecosystems,

e.g., high-elevation regions.

Biological invasions are driven by the synergistic interaction of

climatic, anthropogenic, and allelochemical factors that collectively

reshape invasion patterns and ecosystem impacts. Climate change

acts as a selective filter that differentially influences non-invasive

and invasive plants (Hellmann et al., 2008; Hulme, 2016), with

invasive plants exhibiting superior adaptation to extreme climatic

factors, particularly temperature (Sharma et al., 2023). Under

warming scenarios, invasive plants display enhanced phenological

plasticity, increased biomass production, stronger allelopathic

effects, and improved overwintering capacity that collectively

facilitate their expansion into higher latitudes and elevations

(Saqib et al., 2025). This climate-mediated polarization imposes

novel ecological stresses through direct climatic challenges and

intensified competition (Chen et al., 2024), potentially leading to

biodiversity loss, simplified ecological networks, and degraded

ecosystem functions (Zhao et al., 2021). Understanding these

relationships is crucial for predicting native invasive plant spread

(Thuiller et al., 2007) as changing climate regimes alter distribution

boundaries and competitive interactions within native ranges

(Hellmann et al., 2008).

Human activities have become the dominant invasion driver in

the Anthropocene, often exerting more immediate effects than

climate change itself (Hulme, 2009). As primary contributors to

the sixth mass extinction (Ceballos et al., 2015), human-mediated
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disturbances facilitate invasions through global trade networks that

transport propagules, infrastructure development that fragments

habitats, and economic activities that alter biomes. Empirical

studies demonstrate strong correlations between invasion

hotspots and human pressure indicators like population density,

economic outputs, and transportation infrastructures (Hulme,

2009). Linear infrastructure projects particularly create invasion

corridors while causing soil disturbance and habitat fragmentation

(Deng et al., 2020), often acting synergistically with climate change

to acce lera te ecosys tem transformat ion (Ol iver and

Morecroft, 2014).

Although underexplored in large-scale invasion ecology (Qin

et al., 2024), allelochemical diversity offer crucial mechanistic

insights via the Novel Weapons Hypothesis (Callaway and

Ridenour, 2004). This hypothesis posits that invasive plants

succeed by employing unique allelopathic compounds that native

plants and soil biota cannot counteract (Hierro and Callaway,

2003). These phytochemicals alter community dynamics by

inhibiting key processes such as seed germination, seedling

establishment, and microbial interactions (Inderjit and Duke,

2003; Karban, 2007). This mechanism is demonstrated by the

native invasive plants Ligularia cymbulifera, whose potent

allelochemicals suppress forage species recruitment and

contribute to grassland degradation (Wang et al., 2022). Despite

evidence of allelopathy’s local-scale influence on invasion success

(Inderjit et al., 2011), its macroecological consequences remain

poorly understood. In general, synergistic interactions among

these drivers create amplification loops: climate warming

enhances allelochemical production and efficacy; human activities

disperse chemically armed propagules while creating disturbed

habitats more susceptible to invasion, and habitat fragmentation

increases native community vulnerability to biochemical

disruption. This integrated framework emphasizes that effective

management strategies must address these interconnected

mechanisms, particularly for emerging threats like native invasive

plants in rapidly changing environments.

The Qinghai-Tibet Plateau (QTP), often referred to as the “Roof

of the World” and “Asia’s Water Tower”, hosts the world’s most

diverse temperate flora and a high concentration of endemic species

(Yu et al., 2019). This unique region is experiencing particularly

rapid climate change, with warming rates exceeding the global

average (Yao et al., 2019), which triggers cascading environmental

impacts including glacial retreat, permafrost degradation, and

pasture desertification (Zhang et al., 2025). The QTP is

experiencing rapid transformations coupled with growing human

pressures (Zhao et al., 2022); these factors collectively make it an

ideal natural laboratory for investigating invasion mechanisms. Our

work specifically examines the synergistic effects of climatic,

anthropogenic, and allelochemical drivers under accelerated

global change. The plateau’s sharp environmental gradients, well-

documented flora, and clearly delineated human disturbance

gradients provide an unparalleled context for disentangling the

complex interactions highlighted in our conceptual framework.

Plant diversity on the QTP represents not only a critical

ecological asset but also a fundamental pillar of China’s national
frontiersin.org

https://doi.org/10.3389/fpls.2025.1715360
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xiong et al. 10.3389/fpls.2025.1715360
ecological security and sustainable development (Zhang et al.,

2018). However, the aggressive spread of native invasive species

threatens these values by diminishing biodiversity, altering

resource-use efficiency through competitive niche occupation, and

compromising agroforestry systems and the local economy (Wang

et al., 2022). Despite these threats, critical knowledge gaps persist

regarding how the key drivers identified in our framework, climatic

filters, human disturbances, and allelochemical weapons, interact to

shape invasion patterns across this sensitive region. This gap is

particularly concerning given the QTP’s ecological vulnerability and

strategic importance.

To address these pressing questions, we employ an integrative

analytical framework to investigate native invasive plants across

QTP. This framework synthesizes three key drivers derived from

the preceding literature: climatic influences on species distributions,

human-mediated dispersal and disturbance, and chemically

mediated biotic interactions. Accordingly, we specifically examine

the roles of climatic variables, human factors (e.g., population

density, road networks, and economic indicators), and plant-

specific traits including allelochemical diversity. Our study is

therefore guided by three corresponding research questions: (1)

What biogeographic patterns characterize the distribution of native

invasive plants across the QTP’s environmental gradients? (2)

Which combination of climatic, anthropogenic, and biological

factors most strongly drives these invasion patterns? (3) How are

invasion hotspots projected to shift under future climate change

scenarios? By addressing these questions, we aim to provide

mechanistic insights into alpine plant invasions and advance the

theoretical understanding of high-elevation invasion ecology.

Furthermore, we seek to deliver practical recommendations for

managing these species in this ecologically sensitive and

strategically important landscape.
2 Materials and methods

2.1 Data collection

This study focuses on the Qinghai-Tibet Plateau (QTP) of

China, encompassing the Xizang Autonomous Region,

northwestern Yunnan, western Sichuan, Qinghai, southern

Xinjiang, and southwestern Gansu provinces (Zhang et al., 2016).

The region is characterized by highly heterogeneous topographic

features, including deep canyons, high mountain ranges, rolling

hills, and broad plateaus. It also supports various vegetation types,

such as valley shrubs, broadleaf and coniferous forests, alpine

shrubs, meadows, and subnival belts (Zhang et al., 2021b). We

conducted a systematic literature review to identify all published

research that investigated native invasive plant species and their

allelochemicals within the QTP region. We classified a plant as a

native invasive plant if it met all three criteria: natural occurrence

within the Qinghai-Tibet Plateau, ability to form hyper-dominant

communities, and well-documented evidence of negative ecological

impacts. A checklist of native invasive plants (total 83 species) was

compiled through systematic searches of scientific databases on 29
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Oct 2024. The searched databases included China National

Knowledge Infrastructure (https://c61.oversea.cnki.net/), Web of

Science (https://www.webofscience.com/wos/), and Springer

(https://link.springer.com/). The complete checklist is provided in

Supplementary Table S1. Allelochemicals reported in the literature

were classified into 15 categories (Supplementary Table S1): (1)

benzenoids, (2) terpenoids, (3) flavonoids, (4) organic nitrogen

compounds, (5) alkaloids, (6) organic heterocycles, (7) phenols, (8)

nuc leos ides , (9) organic ac ids , (10) shik imates and

phenylpropanoids, (11) carbohydrates, (12) lipids and lipid-like

molecules, (13) fatty acids, (14) lignans, and (15) other compounds

(remaining unclassified compounds).

To map the spatial distribution of these native invasive plants,

we compiled species-level occurrence data from national and

regional floras, including Flora Reipublicae Popularis Sinicae

(Editorial Committee of Flora of, 1961–2002); Flora of China (Lin

et al., 2013); Flora Yunnanica (Kunming Institute of Botany,

Chinese Academy of Sciences, 2006); Flora Xizangica (Kunming

Institute of Botany, Chinese Academy of Sciences, 1983); Flora

Xinjiangensis (Xinjiang Flora Editorial, 1993–1996); Flora

Gansuensis (Gansu Flora Editorial, C, 2005); and Flora Sichuanica

(Sichuan Flora Editorial, 1981–2007). Additional occurrence

records were sourced from the Chinese Virtual Herbarium

(https://www.cvh.ac.cn/); the Herbarium of the Kunming Institute

of Botany, Chinese Academy of Sciences (http://groups.kib.cas.cn/

kun/); and the Global Biodiversity Information Facility (https://

www.gbif.org/). Socioeconomic data, including population and

gross domestic product (GDP), were obtained from the National

Bureau of Statistics of China (http://www.stats.gov.cn/). Spatial data

on road density were extracted from the Geographic Data Platform

of Peking University’s College of Urban and Environmental

Sciences (http://geodata.pku.edu.cn/). These data were collected

until Dec 2024.
2.2 Spatial analysis

Species distribution data were processed following a

standardized data-cleaning protocol established by Zhang (Zhang

et al., 2021a; Zhao et al., 2022), involving a three-tier quality control

workflow: (1) For each target species, distribution records were

compiled from multiple authoritative sources, including herbarium

specimens, type localities from regional floras, and peer-reviewed

habitat descriptions, to establish a high-confidence baseline

database for subsequent validation and calibration. (2) Verified

records were systematically evaluated to identify and correct

biologically implausible occurrences and spatially biased

coordinates, ensuring consistency. To mitigate spatial sampling

bias, we applied a spatial thinning procedure using the

“CoordinateCleaner” package (Zizka et al., 2019) to reduce record

clustering in easily accessible areas. (3) Geocoding techniques were

applied to convert descriptive location information (e.g., village

names, mountain ranges) into standardized geographic coordinates.

Given the vast average area of county-level administrative units on

the QTP (~14,900 km², with the largest exceeding 200,000 km²),
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county-level records lacking precise coordinates were georeferenced

to 0.5° × 0.5° grid cells. This resolution has been validated as an

effective balance between spatial accuracy and data coverage in

alpine ecosystems (Yu et al., 2019; Zhang et al., 2022). The

georeferencing procedure involved (a) dividing all county units

into 0.5° grids; (b) extracting elevation ranges (maximum and

minimum) for each grid; (c) filtering grids based on species-

specific elevation preferences (Zhang et al., 2021b); and (d)

removing duplicate species records by retaining only a single

occurrence per species within each 0.5° grid cell. This elevation-

filtering approach has been successfully employed in multiple

recent studies focusing on the Qinghai-Tibet Plateau region

(Zhang et al., 2021b; Zhao et al., 2022) and has been shown to

significantly improve distribution accuracy when precise coordinate

data are unavailable. Road density was calculated by summing the

total length of national highways and provincial and county roads

within each grid cell and dividing by the grid area. Population

density and GDP data were similarly processed, with all

socioeconomic variables interpolated across the plateau using

spatial kriging methods (Wang et al., 2010) and aggregated to the

grid levels. Climate variables (Bio1-19) were extracted from the

WorldClim v.2.1 database (Fick and Hijmans, 2017), with mean

values computed for each grid (Table 1). The spatial resolution of

these data is uniformly 2.5 arc minutes (~4.5 kilometers), and they

are registered in the WGS_1984 geographic coordinate system.

Allelochemical diversity per grid was quantified as the number of
Frontiers in Plant Science 04
distinct allelochemicals associated with invasive species present

within each grid cell. All spatial analyses were performed using

ArcGIS 10.4 (http://www.esri.com).
2.3 Statistical analysis

The richness of native invasive plant species was calculated

based on the number of species within each grid cell. A phylogenetic

tree was constructed using the “V.Phylomaker” package (Jin and

Qian, 2019) to illustrate evolutionary relationships among native

invasive plant species based on the compiled species checklist.

Heatmaps were generated to visualize the distribution of

allelochemical diversity across taxa to complement the tree.

Random forest model was used as an initial screening tool to

identify the most important predictors of native invasive plant

distribution from our high-dimensional environmental dataset,

while handling nonlinear relationships and interactions without

prior assumptions. We first employed random forest models using

the “randomForest” (Liaw and Wiener, 2002) and “rfPermute”

(Archer, 2023) packages in R (v4.4.1) (R Core Team, 2024). The

random forest algorithm is well-suited for high-dimensional

ecological data, as it inherently mitigates predictor collinearity by

averaging across numerous decision trees (Yang et al., 2021).

Variable importance was computed using the permutation-based

method. We built a forest of 500 trees, performing 1000

permutations per variable to assess importance. The metric used

was the %IncMSE (percentage increase in mean squared error),

which quantifies the decrease in prediction accuracy when a

variable’s values are randomly shuffled in out-of-bag samples. The

resulting importance values were scaled to facilitate comparison

across predictors, and statistical significance was evaluated using

permutation-derived p-values. As tree-based algorithms like

random forest are insensitive to the scale of predictor variables,

we did not apply feature scaling prior to model training. From the

ranked variable importance output, we selected the top seven

drivers for subsequent model fitting: allelochemicals, GDP, road,

Bio15 (precipitation seasonality), population, Bio18 (precipitation

of warmest quarter) and Bio3 (isothermality).

Ordinary least squares (OLS), mixed-effect, and spatial

autoregressive models (SAR) models were employed as

complementary approaches to assess the direction and strength of

relationships between key drivers and invasion patterns. OLS and

mixed-effect models provided a baseline understanding, while SAR

explicitly accounted for spatial autocorrelation, ensuring robust

inference. We fitted OLS to analyze the relationships between

species richness and the selected predictors, including human

factors, climate variables, and allelochemicals. We further fitted

linear mixed-effects models using the “lme4” (Bates et al., 2015)

package. In these models, the selected drivers were treated as fixed

effects, while grid cells were included as random effects to account

for spatially structured variance and to improve the estimation of

fixed-effect coefficients. We performed Moran’s I test to examine

spatial autocorrelation in the input variables. Significant spatial

clustering was observed across key variables, particularly population
TABLE 1 Definitions of different climate variables.

Climate variable Definition

Bio1 Annual mean temperature

Bio2 Mean diurnal range

Bio3 Isothermality

Bio4 Temperature seasonality

Bio5 Max temperature of warmest month

Bio6 Min temperature of coldest month

Bio7 Temperature annual range

Bio8 Mean temperature of wettest quarter

Bio9 Mean temperature of driest quarter

Bio10 Mean temperature of warmest quarter

Bio11 Mean temperature of coldest quarter

Bio12 Annual precipitation

Bio13 Precipitation of wettest month

Bio14 Precipitation of driest month

Bio15 Precipitation seasonality

Bio16 Precipitation of wettest quarter

Bio17 Precipitation of driest quarter

Bio18 Precipitation of warmest quarter

Bio19 Precipitation of coldest quarter
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density, GDP, and road network density, reflecting the inherent

spatial nature of these indicators. To address the spatial

autocorrelation, we refitted the linear models using spatial

autoregressive models (SAR), allowing for spatial dependencies in

the error terms. A spatial error model (SARerror) implemented

using the “spatialreg” package (Bivand and Piras, 2015), which

accounts for spatial dependence in the regression residuals.

Constructed using k-nearest neighbors with k=4 neighbors based

on Euclidean distances between sampling locations. This step

ensured a more accurate coefficient estimate and enabled a

comprehensive comparison of model outcomes across model

frameworks. Bayesian mixed-effects models were applied to

quantify uncertainty and incorporate hierarchical structure in our

data, allowing us to partition variance among climatic, human, and

allelochemical factors while providing probabilistic estimates of

effect sizes. We conducted Bayesian mixed-effects models using

the “brms” package (Bürkner, 2021).

Structural equation models (SEM) were used to test our

conceptual framework of direct and indirect pathways through

which climatic, human, and allelochemical factors jointly

influence invasion success, thereby moving beyond correlation to

evaluate causal hypotheses. Based on the results from the OLS and

the SAR models, we found an interesting outcome: only climate

factors consistently and significantly influenced the diversity of

invasive plants in both models. The effects of human activities and

allelochemical diversity on invasive plant diversity were not

significant after accounting for spatial autocorrelation, yet both

were highly overlapped spatially with plant diversity. This indicates

that the relationship between human activities, allelochemical

diversity, and invasive plant diversity is regulated by other factors

(i.e., climate). Here, we used the “piecewiseSEM” package (Lefcheck,

2016) to fit SEM to explore the direct or indirect relationships of

human activities and allelochemical diversity, regulated by climatic

factors, with the diversity of invasive plants.
2.4 Future plant diversity dynamics
simulation

Maximum Entropy algorithm (MaxEnt) was implemented to

project future distribution shifts under climate change scenarios,

leveraging its strengths in presence-only data and transferability to

novel environments. Due to the unavailability of future data on human

activities and allelochemical distributions, we relied exclusively on

projected climate data to predict the dynamics of native invasive

plants. Bioclimatic data were obtained for three periods: baseline

climate (1970–2000), the near future (2021–2040), and the distant

future (2081–2100). Future climate projections were derived from

global climate models included in the Coupled Model

Intercomparison Project Phase 6, using two Shared Socioeconomic

Pathways (SSPs): SSP1-2.6, representing a sustainable development

pathway, and SSP5-8.5, representing a high carbon emissions scenario

(O’Neill et al., 2016). To reduce multicollinearity among

environmental variables, Pearson correlation coefficients were

calculated. Variables with correlation coefficients below 0.8 were
Frontiers in Plant Science 05
retained, while among highly correlated variables (r>0.8), the one

with the highest contribution was kept, and the variables withminimal

(i.e., close to zero) contribution were excluded (Chai et al., 2025).

Species distribution models were constructed using the

Maximum Entropy algorithm (MaxEnt version 3.4.4) (Phillips

and Dudıḱ, 2008). Model parameters were configured as follows:

10 bootstrap replicates, 10,000 background points, a 75:25 random

split for training and validation datasets, and a maximum of 5,000

iterations with a convergence threshold of 0.00001 (Valavi et al.,

2021). Feature combinations and regularization multipliers were

optimized through batch scripts to improve model generalization.

Model performance was evaluated using the Area Under the Curve

(AUC), with values >0.9 interpreted as indicating high predictive

reliability. With an overall average training AUC of 0.9867 and an

average test AUC of 0.9834 for all species, both significantly greater

than 0.9 and closely matched, the models demonstrated not only

high predictive accuracy but also exceptional stability

(Supplementary Table S2). The resulting habitat suitability

outputs (probability range: 0–1) were converted into binary raster

data using a threshold of 0.5, classifying the habitat as either suitable

(1) or unsuitable (0) (Gong et al., 2022). Changes in future habitat

suitability were determined by subtracting current raster values

from future scenario values: positive changes were interpreted as

“expanding species,” and negative changes as “contracting species”.

To assess spatial patterns of expansion, binary rasters of all

expanding species were overlaid in ArcGIS (version 10.4.1) using

the “Sum” function, generating cumulative suitable area layers

under each scenario. Official protected area boundaries for the

QTP were obtained from the National Specimen Information

Infrastructure (NSII, http://www.nsii.org.cn). These vector layers

were reprojected to match the coordinate reference system of the

habitat rasters (GCS_WGS_1984) and clipped to the boundaries of

the QTP. Cumulative suitable area layers were then intersected with

protected area polygons. Using the “Zonal Statistics” tool in ArcGIS,

the number of suitable pixels within each protected area was

calculated for each period and scenario. This allowed for spatial

quantification of the extent (in km²) to which protected areas may

be impacted by the expansion of invasive plants under future

climate conditions.

These methods were applied in a logically ordered sequence:

variable selection (Random Forest), relationship testing (OLS,

mixed-effect, and SAR models), uncertainty and hierarchical

estimation (Bayesian models), pathway analysis (SEM), and

spatial forecasting (MaxEnt). Together, they form a cohesive

analytical framework that progresses from pattern detection to

mechanistic understanding and predictive modeling.
3 Results

3.1 Spatial, taxonomic, and allelopathic
characteristics of native invasive plants

The species richness of native invasive plants across the QTP

increased progressively from the northwestern to southeastern
frontiersin.org
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regions, with the southeastern plateau showing a pronounced

clustering pattern and hosting the highest concentration of high-

richness areas (Figure 1a). Lower allelochemical diversity was

observed in the northwest. At the same time, higher levels were

observed in the southwest and southeast regions of the plateau

(Figure 1b), indicating a spatial concordance between plant richness

and allelopathic potential in these areas. We presented invasion

landscapes of two native invasive plant species, Ligularia

cymbulifera (Figure1c) and Euphorbia jolkinii (Figure1d), to

exemplify their detrimental impacts. Taxonomically, 25 families

of native invasive plants were identified in the QTP. The Asteraceae

family was the most species-rich, contributing 26 species, followed

by the Lamiaceae with 10 species and the Fabaceae with 6 species. In

terms of allelochemical composition, benzenoids were the most

abundant, followed by terpenoids and flavonoids (Figure 1e).
3.2 Relative importance of abiotic and
biotic drivers

The Random Forest model demonstrated exceptional predictive

performance, explaining 85.6% of the variance in species richness

(OOB R2 = 0.856), indicating that the selected environmental and

anthropogenic variables effectively capture the key drivers

governing distribution patterns across the Qinghai-Tibet Plateau.

The model identified seven influential predictors: allelochemicals,

GDP, road density, Bio15, population density, Bio18, and Bio3

(Figure 2). Their high sensitivity was evidenced by 20-40% increases

in mean squared error when these variables were permuted.

Notably, allelochemicals emerged as the most critical factor,

accounting for 27.12% of the total variable importance. These

findings collectively highlight the central role of allelochemical

diversity in shaping the spatial distribution of native invasive

plant species on the QTP, while confirming the robust

explanatory power of the integrated predictor set.

The seven driving factors influencing invasive plant species

richness (SR) were categorized into three major groups: human

activity variables (GDP, road density, and population), climatic

variables (Bio3, Bio15, and Bio18), and allelochemical variables.

Ordinary least squares (OLS) regression was applied to assess the

impact on species richness (SR). The results showed that all three

groups significantly affected SR (P < 0.001). Notably, Bio15 showed

a negative correlation with SR, whereas all other factors displayed

positive relationships (Figure 3). Overall, human, climatic, and

allelochemicals exerted substantial effects on the spatial

distribution patterns of invasive plants, corresponding to the

spatial trends observed in the earlier analyses (Figure 1;

Supplementary Figures S1, S2).

The mixed-effects models revealed that Bio18, Bio3, road, GDP,

population, and allelochemicals all exhibited significant positive

effects on SR (P < 0.001), while Bio15 showed a significant negative

effect (P < 0.001) (Figure 4a). A Bayesian model produced

consistent results, further validating the robustness and reliability

of our findings (Supplementary Figure S3). Our findings revealed a

significant interaction between climatic conditions and
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allelochemical diversity. In stable humid environments

characterized by high isothermality, high precipitation in the

warmest quarter, and moderately high precipitation seasonality,

allelochemical diversity was negatively correlated with native

invasive plant diversity. In contrast, in arid inland regions with

low isothermality, low warm-season precipitation, and moderately

low precipitation seasonality, allelochemical diversity was positively

associated with native invasive plant diversity (Figures 4b, c).

Finally, our SEM revealed three major pathways (Figure 4d): 1)

climatic factors were positively correlated with the intensity of

human activity, 2) climate and human activity collectively

determined native invasive plant diversity, and 3) the relationship

between allelopathy and invasive plant diversity was indirectly

mediated by climate.
3.3 Spatial structure of predictors

We calculated Moran’s I for each driving factor to better

evaluate the influence of the selected variables. We compared the

results of OLS regression with those from SAR. Moran’s I analysis

revealed statistically significant spatial autocorrelation (P < 0.05) for

all major drivers of invasive plant distribution on the QTP, such as

allelochemicals, GDP, road density, population, Bio3, Bio15, and

Bio18. All predictors had Moran’s I values greater than 0.79 (p <

0.05), aligning with their visually apparent spatial clustering

patterns (Figure 1a). OLS regression results demonstrated that all

factors were statistically significant, with positive relationships

observed except for Bio15. However, when accounting for spatial

dependence, the SAR model revealed that several predictors lost

significance. This highlights the spatial clustering of both predictors

and the response variable. The SAR model identified Bio15 as the

dominant driver (pseudo R² = 0.248), followed by Population

(pseudo R² = 0.242) and GDP (pseudo R² = 0.241), while Road

and Bio18 exhibited moderate effects, and Allelochemicals showed

the weakest influence (Supplementary Tables S3, 4). This spatial co-

occurrence itself is an essential finding, reflecting the geographically

structured interactions between native invasive plant species

distribution and their environmental and human drivers.
3.4 Future expanding trends of native
invasive plants

Under the SSP1-2.6 scenario, projections for both the near

future (2021-2040) and the late century (2081-2100) indicate that

the eastern, southeastern, and southern regions of the QTP will

remain primary hotspots for native invasive plant expansion, with

newly suitable habitat covering approximately 199.26 ×

10&#x02074; km² (78.56% of the QTP) and 197.04 ×

10&#x02074; km² (77.68%) (Supplementary Table S5),

respectively. Notably, a significant portion of this expansion

overlaps with protected areas (PAs), reaching 46.31 ×

10&#x02074; km² (74.88% of total PA) in the near future and

44.56 × 10&#x02074; km² (72.04%) (Supplementary Table S5) by
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FIGURE 1

Spatial and phylogenetic patterns of native invasive plant richness and allelochemical diversity across the QTP. (a) Spatial distribution of native
invasive plant richness. (b) Distribution pattern of allelochemical diversity. Community landscapes invaded by Ligularia cymbulifera (c) and Euphorbia
jolkinii (d) are shown as representative examples of habitat alternation due to native invasive species. (e) A phylogenetic tree and corresponding
heatmap show the number and types of allelochemicals across invasive species. Org.acids.and.Derivs stands for Organic acids and derivatives, OHCs
stands for Organoheterocyclic compounds, SKM.and.PPs stands for Shikimates and Phenylpropanoids, CHO stands for Carbohydrates, Alk.and.Derivs
stands for Alkaloids and derivatives, LLLM. stands for Lipids and lipid-like molecules, NT.and.analogues stands for Nucleosides nucleotides and
analogues, ONCs stands for Organic nitrogen compounds, LIGs.and.NLIGs stands for Lignans neolignans.
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the end of the century, illustrating a consistent northwestward

encroachment into PAs (Figures 5a, b). Under the high-emissions

(SSP5-8.5) scenario, the expansion trend during 2021–2040

remained comparable, with 197.62 × 10&#x02074; km² (77.91%)

of newly suitable habitat, including 46.00 × 10&#x02074; km²
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(74.38%) (Supplementary Table S5) overlapping with PAs.

However, by 2081-2100, the total expansion area decreased

substantially to 121.29 × 10&#x02074; km² (47.82%), and overlap

with PAs dropped markedly to 14.58 × 10&#x02074; km² (23.57%)

(Supplementary Table S5), although existing hotspots in the
FIGURE 3

Ordinary least square regression results showing the effects of climatic, human, and allelochemical drivers on SR. (a) The human factor in SR
regression; (b) The climatic factor in SR regression; (c) The allelochemicals in SR regression. R² represents the goodness of fit of a regression model
to observed data, with values closer to 1 indicate a stronger model fit. Significance levels: *P < 0.05; **P < 0.01; ***P < 0.001. Human and climatic
variables were standardized prior to analysis. Bio3: isothermality, Bio15: precipitation seasonality, and Bio18: precipitation of warmest quarter.
FIGURE 2

The relative importance of multiple drivers influencing the distribution of native invasive plants on the QTP, as determined by random forest
modeling. Significance levels: **P < 0.01. Bio1: annual mean temperature, Bio2: mean diurnal range, Bio3: isothermality, Bio4: temperature
seasonality, Bio5: max temperature of warmest month, Bio6: min temperature of coldest month, Bio7: temperature annual range, Bio8: mean
temperature of wettest quarter, Bio9: mean temperature of driest quarter, Bio10: mean temperature of warmest quarter, Bio11: mean temperature of
coldest quarter, Bio12: annual precipitation, Bio13: precipitation of wettest month, Bio14: precipitation of driest month, Bio15: precipitation
seasonality, Bio16: precipitation of wettest quarter, Bio17: precipitation of driest quarter, Bio18: precipitation of warmest quarter, and Bio19:
precipitation of coldest quarter.
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FIGURE 5

Projected expansion of native invasive plant species under future climate scenarios. (a) Projections for 2021–2040 under the SSP1-2.6 scenario. (b)
Projections for 2081–2100 under the SSP1-2.6 scenario. (c) Projections for 2021–2040 under the SSP5-8.5 scenario. (d) Projections for 2081–2100
under the SSP5-8.5 scenario.
FIGURE 4

Results of mixed-effects model, interactions, and structural equation model (SEM). (a) Standardized effect sizes of different drivers on species
richness. (b) Loading of climatic variables (Bio3, Bio15, and Bio18) on the first PCA axis. (c) Interaction between climate (the first PCA axis of bio3,
bio15, and bio18) and allelochemical diversity on SR. (d) SEM of three key drivers on species richness. Significance levels: ***P < 0.001. Bio3:
isothermality, Bio15: precipitation seasonality, Bio18: precipitation of warmest quarter.
Frontiers in Plant Science frontiersin.org09

https://doi.org/10.3389/fpls.2025.1715360
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xiong et al. 10.3389/fpls.2025.1715360
eastern, southeastern, and southern hotspots persisted (Figures 5c,

d). These results quantitatively highlight that under sustained low-

emission scenarios, invasive hotspots are not only likely to intensify

but also increasingly encroach into northwestern protected zones,

whereas high-emission scenarios may restrict overall expansion but

still sustain significant pressure in strategic regions.
4 Discussion

4.1 Synthesis of key findings: current
patterns and future dynamics

Our study reveals that native invasive plants on the QTP exhibit

a spatially clustered distribution, concentrated primarily in the

eastern and southeastern regions. This pattern aligns with

established biogeographical gradients of overall plant diversity on

the plateau (Zhang et al., 2016; Yu et al., 2018) and reflects the

synergistic operation of climatic, anthropogenic, and allelochemical

drivers. The convergence of high native invasive plant diversity with

general biodiversity hotspots and human population centers (Luck,

2007) creates compounded conservation challenges that extend

beyond simple species co-occurrence to fundamentally alter

ecosystem vulnerability. Notably, current invasion hotspots

overlap strongly with areas projected to be at high risk under

future climate scenarios, suggesting escalating conservation

challenges. Our projections indicate not only the persistence of

current southeastern hotspots but also significant northward and

westward expansion of invasion risks, including encroachment into

several protected areas. This spatial-temporal dynamic underscores

the urgent need for proactive management strategies that address

the interacting effects of multiple drivers in this ecologically

sensitive region.
4.2 Mechanistic interpretation of
interactive drivers

Our findings extend invasion ecology theory by demonstrating

how multiple drivers operate interactively rather than

independently. While previous research has often treated climate,

human activities, and allelopathy as separate factors (Inderjit et al.,

2011), our integrated analysis reveals they form a coherent causal

chain: climatic stability sets the fundamental niche space, human

disturbance creates invasion opportunities and dispersal pathways,

and allelochemical diversity determines competitive outcomes. This

multi-driver perspective helps resolve apparent contradictions in

native invasion patterns and provides a more predictive framework

for understanding native invasion dynamics in complex

mountain ecosystems.

4.2.1 Climate as a selective filter and enabler
The observed climatic drivers reveal how environmental

stability and resource availability shape invasion patterns across

the QTP. The positive correlations with Bio3 (isothermality) and
Frontiers in Plant Science 10
Bio18 (precipitation of warmest quarter) demonstrate that climatic

stability functions as a selective filter that differentially favors native

invasive plants. High isothermality buffers thermal fluctuations,

enhancing environmental tolerance and promoting niche

differentiation in topographically complex regions like the

Hengduan Mountains (Zhang et al., 2021a), while reliable warm-

season precipitation supports establishment during critical growth

periods. Conversely, the negative correlation with Bio15

(precipitation seasonality) reflects the ecological constraints of

temporal resource variability, where high intra-annual

precipitation fluctuations increase environmental stress and limit

invasion success (Bradford and Lauenroth, 2006; Zhong

et al., 2025).

Critically, climate change amplifies these dynamics by

simultaneously expanding suitable habitats for native invasive

plants while stressing native communities. Our projections

indicate southeastern QTP will remain highly vulnerable with

significant increases in invasion intensity, while new hotspots

emerge northward and westward, including encroachment into

protected areas. This spatial restructuring underscores the

urgency of integrating climate forecasts into conservation

planning, enabling proactive management that anticipates range

shifts rather than merely responding to established native invasions.

The demonstrated association between climate suitability and

native invasion risk validates the utility of climate-based

forecasting while highlighting the need for adaptive strategies that

address the dynamic nature of invasion processes under rapid

environmental change.

4.2.2 Human activity as a distribution catalyst
Human disturbances significantly alter invasion trajectories

through multiple synergistic pathways. Large-scale infrastructure

development degrades ecosystem integrity through vegetation

clearance, soil erosion, and habitat fragmentation (Yang, 2015),

while transportation networks create continuous dispersal corridors

for invasive propagules (Hulme, 2009). The operational phase of

infrastructure projects particularly accelerates species spread by

enabling rapid colonization of opportunistic species like

Galinsoga parviflora and Bidens pilosa in disturbed environments

such as dry-hot valleys (Chen et al., 2025). This human-mediated

dispersal interacts strongly with pre-existing biodiversity patterns,

establishing invasion feedback loops where disturbed high-

biodiversity areas experience disproportionately severe invasion

impacts (Colautti et al., 2006).

Beyond local ecosystem degradation, these invasions pose

substantial threats to regional biodiversity, ecosystem services,

and socioeconomic stability (Deng et al., 2020). Mounting

empirical evidence confirms that human-mediated disturbances

represent one of the most potent drivers of biological invasions

worldwide (van Kleunen et al., 2018), with this study demonstrating

their equal relevance for native invasive plants. The spatial

concentration of human activities in southeastern QTP, consistent

with documented demographic shifts (Zheng, 2024), creates

particularly pronounced native invasion risks. This pattern is

exemplified by species like Galinsoga quadriradiata, whose
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occurrence frequency peaks in areas of intensive human activity

(Chen et al., 2025), demonstrating clear links between disturbance

intensity and invasion pressure.

These findings underscore the critical need to regulate both the

intensity and spatial extent of human activities, particularly in

ecologically sensitive regions. Future ecosystem management

must prioritize areas of concentrated human activity for targeted

monitoring and intervention, developing integrated approaches

that address the multiple mechanisms through which human

disturbance facilitates invasion across different stages from initial

dispersal to landscape-scale establishment.

4.2.3 Allelochemical diversity as a novel weapons
portfolio

Our findings demonstrate that allelochemical diversity

significantly shapes native invasion patterns across the QTP by

creating a heterogeneous “chemical landscape” that operates at

regional scales. The Novel Weapons Hypothesis (Hierro and

Callaway, 2003) provides a mechanistic basis for understanding

how invasive plants employ diverse chemical compounds

unfamiliar to local communities, disrupting plant-soil feedbacks

and microbial interactions (Karban, 2007; van Kleunen et al., 2018).

Species such as Euphorbia jolkinii exemplify this mechanism, where

potent allelochemicals degrade alpine meadows by altering

community structure and reducing biodiversity (Dai et al., 2022).

While most previous studies have focused on small-scale or

single-species allelopathic effects (Inderjit et al., 2011), our research

reveals that regional allelochemical diversity, representing the

collective chemical repertoire across landscapes, enhances the

species pool of native invasive plants. This broader perspective

offers valuable insights into ecosystem-level management. Notably,

allelochemical effects are context-dependent, interacting strongly

with climatic conditions. In arid inland regions, reduced microbial

degradation and heightened plant stress may amplify the impact of

chemical interference, highlighting the need to investigate climate-

chemistry-invasion interactions more deeply.
4.3 Limitations and causal uncertainties

Several limitations and uncertainties warrant careful

consideration when interpreting our results and projections. First,

while we applied stringent criteria for identifying native invasive

species, limited regional research and incomplete distribution data

may have resulted in underestimation of certain invasion risks.

Second, our future projections carry inherent uncertainty as they

are based primarily on climate scenarios; this approach excludes

future changes in human activities and allelochemical dynamics,

which may lead to an underestimation of invasion potential,

particularly in regions undergoing rapid socioeconomic

development or chemical landscape alteration. Third, the

relationship between allelochemical diversity and invasion

patterns, while statistically significant, represents correlation

rather than confirmed causation; the direction of influence

between chemical diversity and invasion success requires
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experimental verification. Finally, our macroecological approach

necessarily simplifies complex species interactions and local-scale

processes that modulate invasion outcomes. Future research should

integrate metabolomic profiling with manipulative experiments to

establish causal pathways and quantify interaction strengths among

drivers, while incorporating scenarios of human disturbance and

chemical evolution to improve the robustness of invasion forecasts.
4.4 Management implications and future
directions

The spatial explicitness of our findings enables targeted

management strategies. First, southeastern hotspots require

immediate containment efforts focused on transportation corridors

and areas of high human activity. Second, projected expansion zones in

northern and western regions need proactive monitoring, particularly

within protected areas vulnerable to future invasion. Third,

allelochemical diversity mapping can refine risk assessments and

guide the development of biocontrol approaches using allelopathy-

resistant forage grasses (Jabran and Farooq, 2013) and compound-

degrading microbes (Liu et al., 2023, 2024). Future research should

prioritize quantifying interaction effects among drivers, particularly

how climate change modulates allelochemical efficacy and how human

disturbance intensity alters invasion thresholds. By addressing these

priorities, we can develop more resilient conservation strategies for the

QTP’s unique ecosystems in an era of rapid environmental change.

The ecological patterns and management implications identified

on the Qinghai–Tibet Plateau find parallels in other high-elevation

and mountainous systems worldwide, underscoring the broader

relevance of our findings. In the Mongolian Plateau, Stellera

chamaejasme has demonstrated significant invasive potential

through pollen allelopathy, toxicity to livestock, and intense

resource competition, leading to extensive grassland degradation

(Sun et al., 2010; Guo and Wang, 2018). Similarly, in Brazil, native

woody bamboos have proliferated rapidly in fragmented habitats

(Pivello et al., 2018), while in western U.S. grasslands, Juniperus

occidentalis has expanded its range through interactions with grazing

and altered fire regimes (Miller et al., 2005). These cases collectively

highlight that the interplay of climate change, human disturbance,

and allelochemicals as emphasized in our study, also drives native

invasive plants across diverse mountainous regions. Consequently,

the integrative management framework we propose, which

emphasizes spatial prioritization, allelochemical monitoring, and

adaptive intervention, holds promise for application in other

highland ecosystems facing similar invasion threats.
5 Conclusions

Our study provides the first large-scale evidence that native

invasive plants on the QTP exhibit a spatially clustered distribution,

with concentrations primarily in the eastern and southeastern

regions. These invasion hotspots align with zones of high

biodiversity and intense human activity and underscore the
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synergistic effects of climatic complexity, human disturbance, and

regional allelochemical diversity in driving invasion risks.

Our findings provide several key innovations to the field of

invasion ecology: (1) Revealing the role of allelochemical diversity

in large-scale invasion patterns. We demonstrate that regional

diversity of allelochemicals significantly enhances the species pool

of native invasive plants, a mechanism previously underexplored in

macroecological invasion studies. (2) Integrating multiple drivers of

native invasive plant patterns. By combining climatic variables,

human disturbance, and allelochemical diversity, our study moves

beyond traditional frameworks that focus primarily on climate,

human factors, and exotic species, offering a more comprehensive

understanding of native invasive plant distributions. (3) Proposing

novel, mechanism-based management strategies. Our findings have

important implications for managing ecosystems under global

change. Specifically, we suggest (1) prioritizing highly disturbed

areas (e.g., the Hengduan Mountains, the Linzhi area in

southeastern Xizang, and the Qiangtang Plateau) for early

detection and rapid intervention of high human activities, (2)

incorporating climatic stability and precipitation variability into

predictive models to better predict future invasion risks, and (3)

developing region-specific biocontrol measures that target

allelopathic suppression mechanisms, thereby safeguarding

biodiversity and enhancing ecological resilience. We recommend

tools such as allelopathic fingerprinting to identify invasion

hotspots and biocontrol approaches that use allelochemical-

degrading microbes or resistant forage grasses to disrupt the

synergistic expansion of native invasive plants.

By bridging large-scale spatial analyses with underlying

biochemical and ecological mechanisms, this study reshapes our

understanding of the patterns and drivers of native invasive plants.

It also offers a holistic, scalable framework for invasive species

management and ecological restoration on the QTP and in other

climate-sensitive and biodiversity-rich regions.
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