

OPEN ACCESS

EDITED BY Yinghui Li, University of Haifa, Israel

REVIEWED BY Ruizhen Yang, Sichuan Agricultural University, China Lian Wu, Hainan University, China

RECEIVED 28 September 2025 ACCEPTED 03 November 2025 PUBLISHED 19 November 2025

CITATION

Si Z, Guo J, Ji Z, Men F and Wang W (2025) Comparative analysis of the GATA transcription factors in seven *Ipomoea* species. *Front. Plant Sci.* 16:1714791. doi: 10.3389/fpls.2025.1714791

COPYRIGHT

© 2025 Si, Guo, Ji, Men and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Comparative analysis of the GATA transcription factors in seven *Ipomoea* species

Zengzhi Si*, Jiuting Guo, Zhixin Ji, Fengrui Men and Weicao Wang

Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China

The GATA transcription factors regulate plant growth, development, and stress responses, but our knowledge of their functions in sweetpotato and related Ipomoea species remains limited. Through analytical methods of bioinformatics, this study identified 410 GATA genes across seven sequenced Ipomoea species: sweetpotato (158), I. trifida (54), I. triloba (62), I. nil (39), I. purpurea (32), I. cairica (32), and I. aquatica (33). Phylogenetic analysis revealed that these GATA genes clustered into four distinct subfamilies (I-IV). Chromosomal mapping showed an uneven distribution pattern, with complete absence of GATA genes on certain chromosomes in each species. Duplication analysis indicated differential expansion mechanisms: tandem duplications primarily drove GATA gene expansion in I. triloba, I. trifida, and I. nil, whereas segmental duplications were predominant in sweetpotato and I. cairica. Promoter analysis identified multiple stress-responsive cis-regulatory elements, including ABRE, ARE, CGTCA-motif, GC-motif, LTR, MBS, TCA-element, TC-rich repeats, and TGACG-motif. Expression profiling under various stresses (salt, drought, Ceratocystis fimbriata and Ditylenchus destructor) detected 29-60 differentially expressed GATA genes (DEGs). Three representative DEGs (IbGATA33, IbGATA38, and IbGATA126) were validated by qRT-PCR, with results corroborating the transcriptome data. This study may contribute to further understanding of the evolution and function of GATA genes among the Ipomoea species, including sweetpotato.

KEYWORDS

Ipomoea species, *GATA* genes, phylogenetic analysis, chromosome location, duplication analysis, cis-regulatory elements, expression patterns, stresses response

1 Introduction

Plants undergo intricate biological processes throughout their life cycle, including seed germination, vegetative growth, reproductive development, and responses to stresses. These processes are precisely regulated by multi-layered molecular networks, in which transcription factors serve as central regulators of gene expression by specifically binding to promoter regions of target genes, thereby activating or suppressing downstream functional gene expression (Todeschini et al., 2014). Among transcriptional regulators, GATA-family

transcription factors have been increasingly recognized as crucial molecular players that orchestrate diverse physiological processes in plants, including but not limited to growth regulation, developmental programming, and sophisticated stress adaptation responses (Schwechheimer et al., 2022).

GATA transcription factors are widely distributed across eukaryotes, including animals, plants, and fungi, and play pivotal roles in critical physiological processes (Zhao et al., 2023). In 1988, Evans et al. first identified GATA factor in chicken erythrocytes, demonstrating its role in hematopoiesis through regulation of globin gene expression (Evans et al., 1988). Subsequently, the first plant *GATA* gene *NTL1*, involved in nitrogen metabolism, was cloned from tobacco (Daniel-Vedele and Caboche, 1993). Thereafter, extensive research has revealed the crucial involvement of GATA transcription factors in modulating plant growth, development, and abiotic stress tolerance mechanisms.

In Arabidopsis thaliana, GATA2 transcription factor orchestrates photomorphogenesis and serves as a critical component in light signaling pathways (Luo et al., 2010); ectopic overexpression of AtGNC or AtCGA1 significantly enhances chloroplast biogenesis in both hypocotyl cortex and root pericycle cells of Arabidopsis (Zhang et al., 2020). In rice, NECK LEAF 1, a GATA type transcription factor, modulates organogenesis by regulating the expression of multiple regulatory genes during reproductive development (Wang et al., 2009); OsGATA12 overexpression restricts leaf and tiller development, thereby affecting yield-related characteristics (Lu et al., 2017); and OsGATA7 coordinates brassinosteroid-mediated architectural modifications that influence both grain morphology and yield parameters (Zhang et al., 2018). In wheat, functional characterization reveals that TaGATA1 positively regulates wheat resistance to Rhizoctonia cerealis, as evidenced by enhanced disease tolerance in overexpression lines and increased susceptibility in silenced plants (Wei et al., 2023). Additionally, heterologous expression of soybean GmGATA58 in Arabidopsis enhances leaf chlorophyll accumulation while simultaneously inhibiting plant growth and reducing yield (Zhang et al., 2020); transgenic overexpression of SIGATA17 in tomato enhances drought tolerance through modulation of phenylpropanoid biosynthesis pathway activity (Zhao et al., 2021b); IbGATA24 overexpression in sweetpotato plants establishes a molecular module with COP9-5a to coordinately enhance abiotic stress tolerance against both water deficit and high salinity conditions (Zhu et al., 2022).

GATA transcription factors derive their nomenclature from their conserved ability to recognize and bind the canonical (T/A) GATA(A/G) consensus sequence within promoter regions of target genes (Omichinski et al., 1993). These transcription factors contain a characteristic type-IV zinc finger domain featuring the conserved CX₂CX₁₇₋₂₀CX₂C motif, with an adjacent basic region that mediates DNA binding (Reyes et al., 2004). A conserved GATA-type zinc finger domain containing 17–18 residues in the binding loop is characteristic of animal and fungal GATA transcription factors, whereas plant GATA factors typically exhibit an extended loop of 17–20 residues (Reyes et al., 2004; Park et al., 2006; Gupta

et al., 2017). Systematic analysis of conserved structural motifs and phylogenetic relationships divides plant GATA transcription factors into four evolutionarily distinct classes (Reyes et al., 2004).

Given the importance of the GATA transcription factors in plants, they have been characterized across diverse plant lineages, including 29 in Arabidopsis (Reyes et al., 2004), 28 in rice (Reyes et al., 2004), 79 in wheat (Feng et al., 2022), 88 in tetraploid potato (Zhang et al., 2024), 38 in poplar (Zhao et al., 2023), 24 in melon (Zheng et al., 2024b), 24 in onion (Bose et al., 2025), and so on. As discussed above, the number of GATA genes varied greatly in the genomes of different species. Additionally, cross-species comparative genomics approaches have been conducted, for instance, in five Solanaceae species (Lycium barbarum, Solanum lycopersicum, Capsicum annuum, Solanum tuberosum, and Solanum melongena) (Zhang et al., 2023), in seven Orchidaceae species (Phalaenopsis equestris, Cymbidium goeringii, C. ensifolium, Dendrobium catenatum, D. chrysotoxum, D. nobile, and Gastrodia elata) (Zheng et al., 2024c), and in seven Populus species (P. tremuloides, P. tremula, P. tremula x alba, P. pruinosa, P. euphratica, P. trichocarpa and P. deltoides) (Kim et al., 2021b). These investigations systematically characterize GATA gene functions across phylogenetically diverse species, establishing both fundamental evolutionary insights and practical genetic reservoirs for plant enhancement programs targeting yield improvement and environmental stress adaptation.

Ipomoea, the most species-rich genus in the Convolvulaceae family, comprises approximately 600–700 species with a cosmopolitan distribution (Austin et al., 2015). This taxon holds significant economic value across agricultural, pastoral, and industrial sectors (Liu, 2011). Taking sweetpotato as an example, as the seventh most important crop worldwide, it serves as both an indispensable food and feed crop and a primary industrial raw material for energy production (Liu, 2011; 2017). Despite the importance of GATA transcription factors and Ipomoea species, comparative analyses of these factors across Ipomoea species remain limited.

This study conducted a genome-wide comparative analysis of the GATA gene family in seven Ipomoea species. A total of 158, 54, 62, 39, 32, 32 and 33 GATA genes were identified from sweetpotato (I. batatas), I. trifida, I. triloba, I. nil, I. purpurea, I. cairica and I. aquatica, respectively. An extensive characterization of the GATA gene family was performed, including analyses of gene structure, conserved protein motifs, phylogenetic relationships, chromosomal localization, gene duplication events, syntenic relationships, and evolutionary selection pressure (Ka/Ks ratios). Subsequently, tissuespecific and stress-responsive RNA-seq datasets were employed to analyze the expression patterns of these genes. The results revealed that 98 differentially expressed genes (DEGs) in sweetpotato, and three of them were subsequently validated through quantitative reverse-transcription PCR (qRT-PCR). This study provides fundamental genomic insights into Ipomoea GATA gene functions, establishing a crucial knowledge base for sequential investigations of their biological roles while facilitating molecular breeding applications in sweetpotato improvement programs.

2 Results

2.1 Identification of the GATA genes in the seven *Ipomoea* species

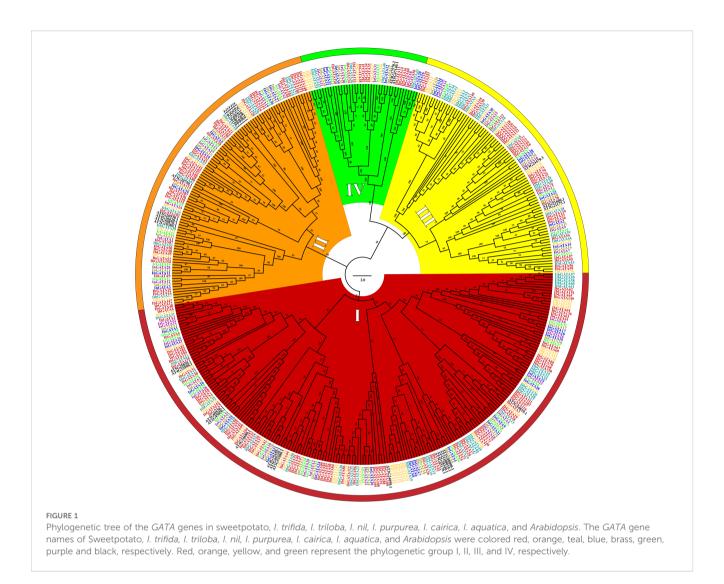
Genome-wide analysis identified 410 GATA genes across seven Ipomoea species: 158 in sweetpotato (IbGATA1-158), 54 in I. trifida (ItfGATA1-54), 62 in I. triloba (ItbGATA1-62), 39 in I. nil (InGATA1-39), 32 each in I. purpurea (IpGATA1-32) and I. cairica (IcGATA1-32), and 33 in I. aquatica (IaGATA1-33), representing 0.09%, 0.12%, 0.13%, 0.09%, 0.10%, 0.08%, and 0.06% of their respective genomes (Supplementary File 1: Supplementary Table S1). Comparative analysis revealed that the average protein length was 301.26 amino acids (range: 95-992 aa), with I. cairica showing the longest average (341.44 aa; range: 143-851 aa), followed by I. purpurea (336.06 aa; 151-930 aa), I. aquatica (327.79 aa; 148-543 aa), I. trifida (310.89 aa; 133-540 aa), I. triloba (302.35 aa; 95-540 aa), I. nil (290.97 aa; 139-535 aa), and sweetpotato (279.36 aa; 134-992 aa). Exon analysis showed an average of 4.16 exons per gene (range: 1-21), with I. cairica again having the highest average (4.62), followed by I. purpurea (4.56), I. triloba (4.53), I. nil (4.41), I. trifida (4.22), I. aquatica (4.09), and sweetpotato (3.77) (Supplementary File 1: Supplementary Table S1). The physicochemical characterization of Ipomoea GATA transcription factors revealed an average molecular weight of 32,968.81 Da (range: 10,952.43-107,174.11 Da), with isoelectric points averaging 7.60 (range: 4.67-10.80) and hydropathicity values averaging -0.64 (range: -1.20 to -0.24). Subcellular localization predictions indicated predominant nuclear localization (329 proteins, 80.24%), with minority distributions in chloroplasts (64, 15.60%), cytoplasm (9, 2.20%), and mitochondria (4, 0.98%). Singular instances were predicted for cytoplasmplasm, endoplasmic reticulum, extracellular space, and peroxisomes (Supplementary File 1: Supplementary Table S1).

2.2 Phylogenetic analysis of the *Ipomoea GATA* genes

To elucidate the phylogenetic relationships of *GATA* genes in *Ipomoea* species, we constructed a phylogenetic tree using aligned protein sequences from 408 *Ipomoea GATA* genes (after excluding two problematic sweetpotato genes, *IbGATA10* and *IbGATA19*) and 29 *Arabidopsis thaliana* reference genes (Figure 1). The 437 analyzed genes clustered into four distinct groups (I-IV), with group I being predominant (208 genes, 47.60%), followed by group II (101, 23.11%), group III (88, 20.14%), and group IV (40, 9.15%). Species-specific distribution patterns revealed consistent grouping tendencies: sweetpotato (156 genes) showed 48.08% in group I, 25.64% in II, 18.59% in III, and 7.69% in IV; *I. trifida* (54 genes) distributed as 50.00%, 16.67%, 24.07%, and 9.26%; *I. triloba* (62 genes) as 46.77%, 17.74%, 27.42%, and 8.06%; *I. nil* (39 genes) as 46.15%, 17.95%, 20.51%, and 15.38%; while *I. purpurea*, *I. cairica*

(each 32 genes), and *I. aquatica* (33 genes) exhibited similar distributions ranging 45.45-46.88% in group I, 24.24-25.00% in II, 18.18-18.75% in III, and 7.69-12.12% in IV.

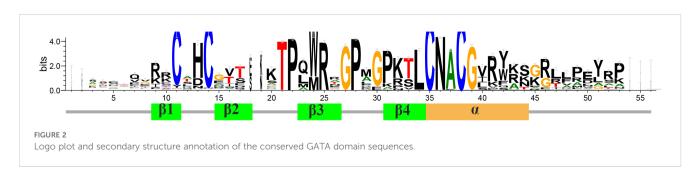
2.3 Conserved motifs and structures of the *Ipomoea GATA* genes

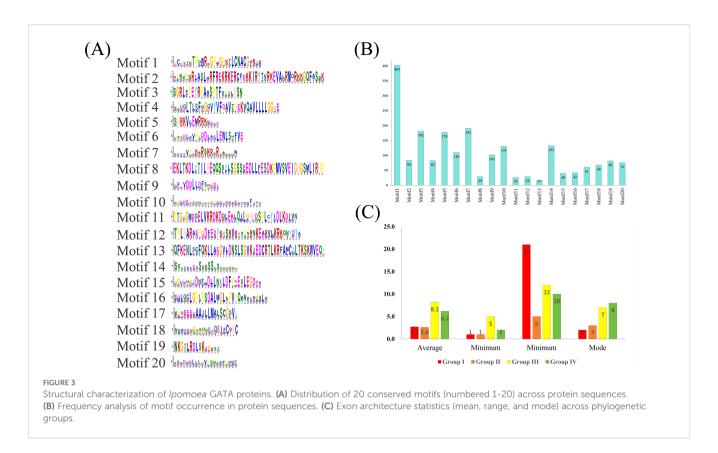

To characterize GATA proteins in *Ipomoea* species, we analyzed their conserved domain sequences, revealing a type IV zinc finger motif (C- X_2 -C- $X_{18/20}$ -C- X_2 -C) similar to other plants (Supplementary File 2: Supplementary Figure S1). Group I, II, and IV proteins share a C- X_2 -C- X_{18} -C- X_2 -C pattern, while class III uniquely possesses a C- X_2 -C- X_2 -C variant (Supplementary File 2: Supplementary Figure S1). Beyond conserved cysteines, this domain exhibits multiple conserved residues potentially involved in *cis*-element recognition, along with group-specific amino acid variations that may reflect functional divergence (Figure 2). Structural analysis confirmed the conserved architecture of four β sheets and one α helix in *Ipomoea* GATA domains, consistent with *Arabidopsis* findings (Figure 2).

2.4 Structural and motif analysis of *GATA* genes in *Ipomoea* species

In Ipomoea GATA proteins, 20 distinct motifs were identified, with motif-1 (GATA domain) being the most prevalent (403 proteins, 98.77%) and conserved (Figure 3; Supplementary File 3: Supplementary Figure S2). Subsequent motifs showed decreasing frequencies: motif 7 (46.81%), motif 3 (44.61%), motif 5 (43.63%), motif 14 (32.60%), and motif 10 (32.11%). Phylogenetically related groups shared conserved motif patterns (Supplementary File 3: Supplementary Figure S2). Most GATA genes contained multiple exons (minimum one intron), with Groups I and II averaging 2.7 and 2.6 exons respectively. Group I predominantly contained 2exon genes (43.81%), while Group II favored 3-exon configurations (45.41%). In contrast, Groups III and IV exhibited substantially higher exon counts (averaging 8.2 and 6.2 respectively), with 7-exon (42.35%) and 8-exon (50.00%) architectures being most common in each group (Figure 3; Supplementary File 1: Supplementary Table S1). Motif annotation revealed that most motifs lacked significant functional annotation, with three notable exceptions: motif 1 was identified as the GATA domain, motif 2 as the CCT motif, and motif 4 as the TIFY domain (Supplementary File 4: Supplementary Table S2).

2.5 Chromosomal location analysis of the *Ipomoea GATA* genes


All *Ipomoea GATA* genes were successfully mapped across the chromosomes of seven *Ipomoea* species, with the exception of 24 *IbGATAs* and 3 *IaGATAs* located in unassembled scaffolds



(Figure 4). The chromosomal distribution of these genes showed significant variation. In sweet potato (*Ipomoea batatas*), for example, chromosomes IbChr12b, IbChr12a, IbChr4a, IbChr2c, IbChr12c, IbChr12d, and IbChr14f contained 6, 5, 4, 4, 4, 4, and 4 *IbGATAs* respectively. In contrast, no *IbGATAs* were detected on multiple chromosomes including IbChr3a, IbChr3b, IbChr5b, IbChr8b, IbChr15b, IbChr6c, IbChr15d, and several chromosomes from the e and f series (IbChr1e to IbChr15f, excluding those already mentioned). This uneven distribution pattern was similarly observed in other *Ipomoea* species (Figure 4).

2.6 Duplication pattern analysis of the *Ipomoea GATA* genes

To investigate the evolutionary patterns of *Ipomoea GATA* genes, we analyzed gene duplication events using MCScanX software (Figure 4; Supplementary File 5: Supplementary Table S3). The analysis revealed tandem duplications in three species: 21 gene pairs in *I. triloba*, 15 in *I. trifida*, and 4 in *I. nil*, with no tandem duplications detected in other *Ipomoea* species. Segmentally duplicated *GATA* genes were found only in sweetpotato (4 pairs)

and *I. cairica* (1 pair). Phylogenetic classification showed these duplicated genes distributed across four groups: 21 pairs (2 segmental, 19 tandem) in group I, 4 pairs (1 segmental, 3 tandem) in group II, 16 pairs (1 segmental, 15 tandem) in group III, and 4 pairs (1 segmental, 3 tandem) in group IV (Figure 4; Supplementary File 5: Supplementary Table S3).

2.7 Syntenic analysis of *GATA* genes in the genomes of the seven *Ipomoea* species

To determine the evolutionary mechanism of Ipomoea GATA genes, comparative synteny maps of the seven Ipomoea species were constructed (Figure 5). A total of 321 Ipomoea GATA genes (124 IbGATAs, 35 ItfGATAs, 37 ItbGATAs, 32 InGATAs, 31 IpGATAs, 32 IcGATAs, and 30 IaGATAs) that formed 2104 ortholog pairs were detected in the seven *Ipomoea* species (Figure 5; Supplementary File 6: Supplementary Table S4). Of these ortholog pairs, sweetpotato and I. cairica harbored the most ortholog GATA gene pairs (226 pairs), followed by sweetpotato and I. aquatica (214 pairs), sweetpotato and I. purpurea (196 pairs), sweetpotato and I. trifida (190 pairs), sweetpotato and I. triloba (185 pairs), sweetpotato and I. nil (169 pairs), I. trifida and I. cairica (128 pairs), and the others (50-66 pairs). The ortholog GATA genes were distributed in all of the subfamilies (group I-IV) (Supplementary File 6: Supplementary Table S4). In most cases (1759 of 2104, 83.60%), the two of ortholog GATA genes were from the same subfamily (Supplementary File 6: Supplementary Table S4).

A total of 199 *GATA* genes (79 from sweet potato, 20 from *I. trifida*, 20 from *I. triloba*, 20 from *I. nil*, 20 from *I. purpurea*, 20 from *I. cairica*, and 20 from *I. aquatica*) were identified as orthologous gene pairs among *Ipomoea* species (Figure 6; Supplementary File 7: Supplementary Table S5). Among these, 84 genes (42.21%) belonged to phylogenetic group I, 59 (29.65%) to group II, 48 (24.12%) to group III, and 8 (4.02%) to group IV (Supplementary File 7: Supplementary Table S5). Of the 79 sweet potato *GATA* genes, 17 originated from sub-genome A, 11 from B, 16 from C, 14 from D, 10 from E, and 11 from F (Figure 6; Supplementary File 7: Supplementary Table S5).

2.8 Ka/Ks analysis of duplicated and syntenic *Ipomoea GATA* genes

To detect whether duplicate and syntenic *GATA* genes were under positive selection, Ka/Ks analysis was performed (Supplementary File 8: Supplementary Table S6). A total of 2149 gene pairs (5 segmental duplicated pairs, 40 segmental duplicated pairs, and 2104 collinear gene pairs) were analyzed, with Ka/Ks ratios successfully calculated for 1804 (83.94%) of them (Supplementary File 8: Supplementary Table S6). All duplicated and syntenic *GATA* genes, except for one tandem duplicated gene pair from *I. trifida* (*ItfGATA20-ItfGATA21*, Ka/Ks = 1.01), showed Ka/Ks ratios below one, suggesting that most had undergone purifying selection.

2.9 Stress-related regulatory elements analysis in promoter regions of the *Ipomoea GATA* genes

The 1,500 bp upstream regulatory regions of all *Ipomoea GATA* genes were used to explore stress-related regulatory elements. Various elements were detected. In this present investigation, ABRE, ARE, CGTCA-motif, GC-motif, LTR, MBS, TCA-element, TC-rich repeats, TGACG-motif were calculated (Supplementary File 9: Supplementary Figure S3). A total of 3552 elements in 398 *Ipomoea GATA* genes' promoter regions were detected (Supplementary File 10: Supplementary Table S7). Of them, the largest one was ABRE (#819), followed by ARE (#758), TGACG-motif (#461), CGTCA-motif (#461), MBS (#341), TCA-element (#250), LTR (#216), GC-motif (#111), and TC-rich repeats (#105). The average investigated *cis*-element number of the *Ipomoea GATA* is 8.87 (Table 1). When compared the average investigated *cis*-element number of the phylogenetic group, group II was the largest

(10.00), followed by group I (8.85), III (8.52), and IV (7.08). The average ABRE, CGTCA-motif, GC-motif, MBS, and TGACG-motif in the group II *Ipomoea GATA* genes' promoter region were relatively larger than that in other groups (Table 1).

2.10 Expression patterns of the *GATA* genes in the sweetpotato

To explore *GATA* genes related to stress response, four transcriptome datasets covering abiotic stresses (salt and drought treatments) and biotic stresses (*Ceratocystis fimbriata* and *Ditylenchus destructor* infections) were analyzed (Figure 7). In the salt stress analysis, 29 *GATA* differentially expressed genes (DEGs) were identified and classified into two subclasses (A-1 and A-2) based on expression patterns (Figure 7A). Subclass A-1 (12 *IbGATAs*) showed predominant upregulation in controls but downregulation under salt stress, whereas subclass A-2 (17

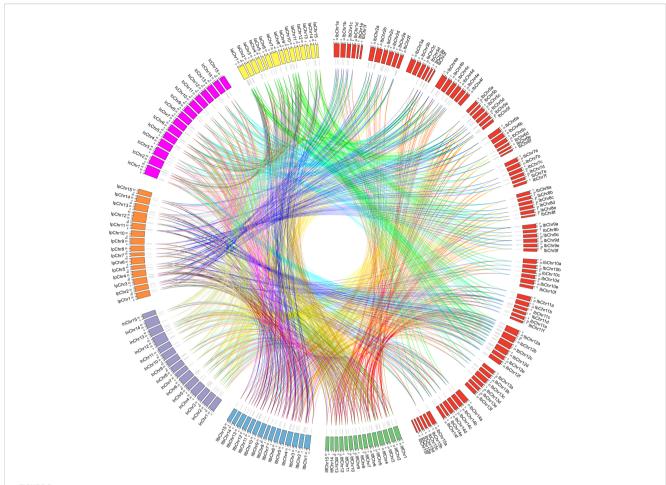
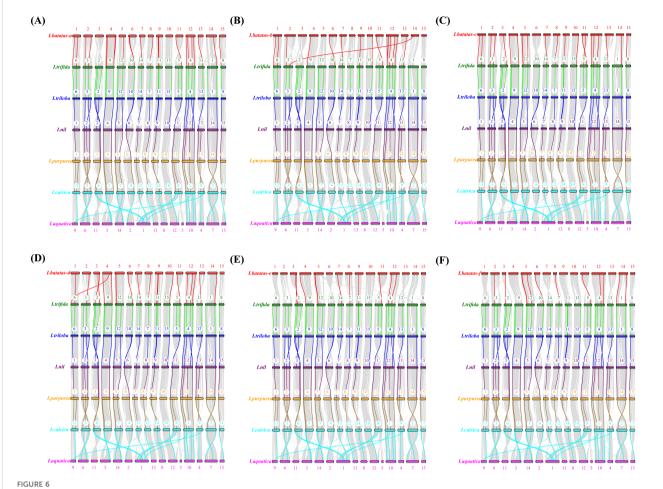
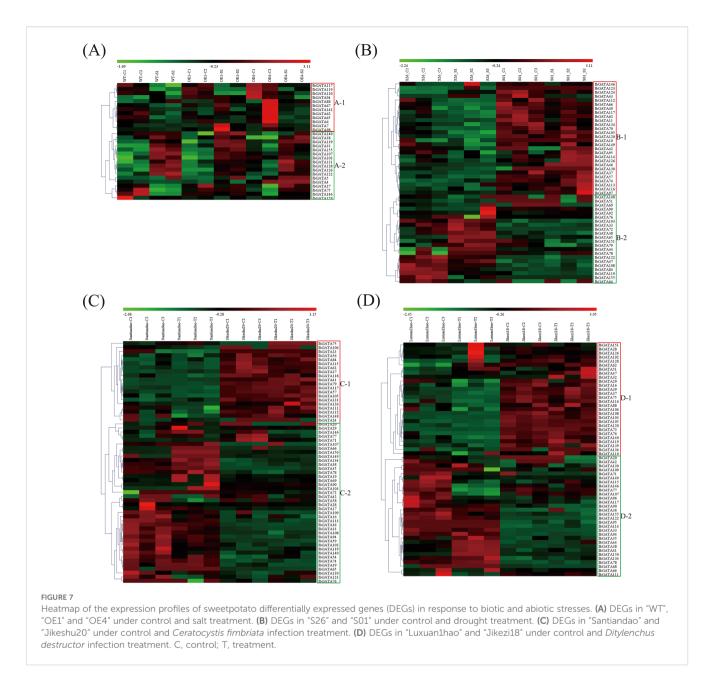



FIGURE 5
Syntenic analyses of *GATA* genes in the genomes of *Ipomoea* species. Chromosomal distribution in the seven *Ipomoea* species. The outer circle represents the haploid chromosomes of sweet potato (*I. batatas*) (red), *I. trifida* (green), *I. triloba* (cornflower blue), *I. nil* (medium purple), *I. purpurea* (orange), *I. cairica* (magenta) and *I. aquatica* (yellow), respectively. The second circle (black) represents the matches of *GATA* genes with the genome of the *Ipomoea* species. Colorful lines show the collinear *GATA* gene pairs in the whole genome of the *Ipomoea* species.

IbGATAs) exhibited the opposite trend (Figure 7A). The drought stress analysis revealed 50 GATA DEGs, divided into subclasses B-1 (28 IbGATAs) and B-2 (22 IbGATAs). Subclass B-1 genes were downregulated in both control and stressed conditions of droughtsensitive genotype S26, but upregulated in drought-resistant genotype S01. Conversely, subclass B-2 genes displayed inverse expression patterns (Figure 7B). For Ceratocystis fimbriata infection, 60 GATA DEGs were grouped into subclasses C-1 (20 IbGATAs) and C-2 (40 IbGATAs). Subclass C-1 was downregulated in susceptible genotype Santiandao but upregulated in resistant Jikeshu20, with subclass C-2 showing reciprocal regulation (Figure 7C). The Ditylenchus destructor infection analysis detected 58 GATA DEGs, categorized into subclasses D-1 (28 IbGATAs) and D-2 (30 IbGATAs). Similar differential expression patterns were observed between susceptible Luxuan1hao and resistant Jikezi18 genotypes (Figure 7D). Cross-analysis identified 8 consistently detected DEGs (IbGATA117/119/126/146/33/37/38/62) across all datasets.

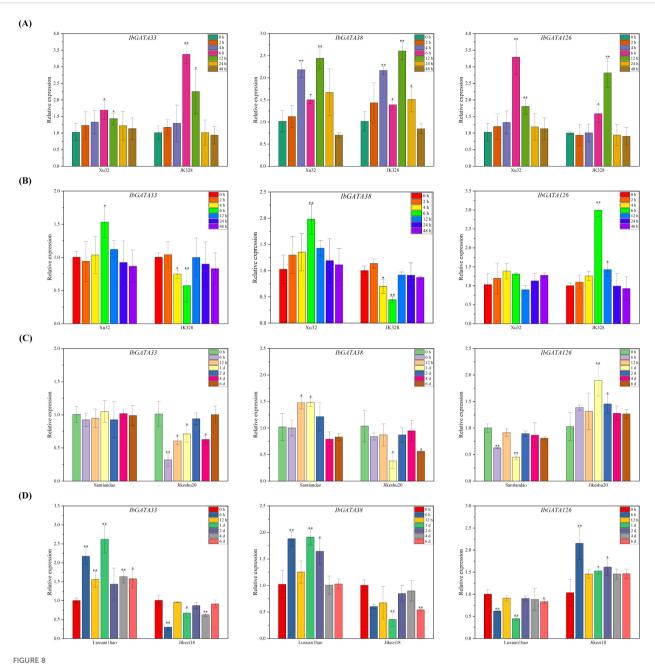
2.11 Expression analysis of sweetpotato *GATA* genes by quantitative reversetranscription polymerase chain reaction


Based on transcriptome results, *IbGATA33*, *IbGATA38*, and *IbGATA126* were selected for further analysis using qRT-PCR (Figure 8). Compared with the control condition (0 h), the transcripts of *IbGATA33*, *IbGATA38*, and *IbGATA126* in Xushu32 were all upregulated after salt treatments, reaching peaks at 6 h (1.69-fold), 12 h (2.44-fold), and 6 h (3.29-fold), respectively; the transcripts of *IbGATA126*, *IbGATA33*, and *IbGATA38* in JK328 were all upregulated after salt treatments, reaching peaks at 6 h (3.38-fold), 12 h (2.61-fold), and 12 h (2.81-fold), respectively (Figure 8A). Compared with the control condition (0 h), the transcripts of *IbGATA33* and *IbGATA38* in Xushu32 were upregulated after drought treatments, peaking at 6 h (1.53-fold) and 6 h (1.98-fold), respectively, while no significant change was observed in *IbGATA126* transcripts; the transcripts of *IbGATA33*

Schematic representation of syntenic genes among sweet potato (*l. batatas*), *l. trifida*, *l. triloba*, *l. nil*, *l. purpurea*, *l. cairica* and *l. aquatica*. (A–F) Schematic representation of syntenic genes among (A–F) sub-genome of sweetpotato, *l. trifida*, *l. triloba*, *l. nil*, *l. purpurea*, *l. cairica* and *l. aquatica*, respectively. The chromosomes of the seven *Ipomoea* species were reordered through collinearity for observation. The chromosomes of sweetpotato, *l. trifida*, *l. triloba*, and *l. nil* were colored with red, green, blue, purple, orange, cyan, and pink, respectively. Gray lines connect matched gene pairs, with *GATA* gene pairs highlighted in red, green, blue, purple, orange, and cyan, respectively.

TABLE 1 The average cis-elements number in each phylogenetic group genes.

Phylogenetic group	I	II	Ш	IV	Overall
ABRE	2.21	2.55	1.78	0.86	2.07
ARE	1.62	2.02	2.35	2.05	1.90
CGTCA-motif	1.15	1.34	0.98	1.16	1.16
GC-motif	0.31	0.30	0.27	0.14	0.28
LTR	0.58	0.44	0.60	0.49	0.55
MBS	0.86	1.06	0.78	0.57	0.86
TCA-element	0.69	0.67	0.63	0.27	0.63
TC-rich repeats	0.28	0.28	0.16	0.38	0.27
TGACG-motif	1.15	1.34	0.98	1.16	1.16
Overall	8.85	10.00	8.52	7.08	8.87



and *IbGATA38* in JK328 were downregulated after drought treatments, reaching lowest levels at 6 h (0.57-fold) and 6 h (0.44-fold), respectively, while *IbGATA126* transcripts were upregulated, peaking at 6 h (2.99-fold) (Figure 8B). Compared with the control condition (0 h), *IbGATA38* transcripts in Santiandao were upregulated after *Ceratocystis fimbriata* infection, peaking at 1 d (1.49-fold), while *IbGATA126* transcripts were downregulated, reaching the lowest level at 1 d (0.44-fold), with no significant change in *IbGATA33* transcripts. In Jikeshu20, *IbGATA33* and *IbGATA38* transcripts were downregulated after *Ceratocystis fimbriata* infection, reaching lowest levels at 6 h (0.32-fold) and 1 d (0.38-fold), respectively, while *IbGATA126* transcripts were upregulated, peaking at 1 d (1.90-fold) (Figure 8C). Compared with the control condition (0 h), *IbGATA33* and *IbGATA38* transcripts in Luxuan1hao were upregulated after *Ditylenchus destructor*

infection, peaking at 1 d (2.62-fold and 1.91-fold, respectively), while *IbGATA126* transcripts were downregulated, reaching the lowest level at 1 d (0.45-fold). In Jikezi18, *IbGATA33* and *IbGATA38* transcripts were downregulated after *Ditylenchus destructor* infection, reaching lowest levels at 6 h (0.30-fold) and 1 d (0.36-fold), respectively, while *IbGATA126* transcripts were upregulated, peaking at 6 h (2.15-fold) (Figure 8D).

3 Discussion

Plant GATA transcription factors are key regulatory proteins governing growth, development, and environmental adaptation (Schwechheimer et al., 2022). Consequently, this gene family has garnered increasing research interest and undergone

Expression analysis of *IbGATA33*, *IbGATA38*, and *IbGATA126* in sweetpotato cultivars or lines. (A) Relative expression levels in leaves after different times of salt (86 mM NaCl) treatments. (B) Relative expression levels in leaves after different times of drought (30% PEG 6000) treatments. (C) Relative expression levels after different times of *Ceratocystis fimbriata* infection. (D) Relative expression levels in storage roots after *Ditylenchus destructor* infection. Denoted the significance of expression levels compared with control were as *<0.05, **<0.01. h, hours; d, day(s).

comprehensive characterization across diverse plant species, including *Arabidopsis* (Reyes et al., 2004), rice (*Oryza sativa*) (Reyes et al., 2004), wheat (*Triticum aestivum*) (Feng et al., 2022), potato (*Solanum tuberosum*) (Zhang et al., 2024), poplar (*Populus* spp.) (Zhao et al., 2023), melon (*Cucumis melo*) (Zheng et al., 2024b), onion (*Allium cepa*) (Bose et al., 2025), Solanaceae species (Zhang et al., 2023), Orchidaceae species (Zheng et al., 2024c), and *Populus* species (Kim et al., 2021b). The genus *Ipomoea* comprises 600–700 species, many of which have significant medicinal or ornamental value (Nimmakayala et al., 2011). However, the

GATA gene family remains poorly characterized in *Ipomoea* species.

In the present study, we identified a total of 410 *GATA* genes across seven *Ipomoea* species. Analysis revealed variations in *GATA* gene family members among the studied species: sweet potato (*I. batatas*) contained 158 genes (0.09%), *I. trifida* 54 (0.12%), *I. triloba* 62 (0.13%), *I. nil* 39 (0.09%), *I. purpurea* 32 (0.10%), *I. cairica* 32 (0.08%), and *I. aquatica* 33 (0.06%). The corresponding genome sizes were 2,907.4 Mb (*I. batatas*), 373.4 Mb (*I. trifida*), 443.3 Mb (*I. triloba*), 750.0 Mb (*I. nil*), 602.0 Mb (*I. purpurea*), 733.0 Mb (*I. triloba*), 733.0 Mb (*I. nil*), 602.0 Mb (*I. purpurea*), 733.0 Mb (*I. triloba*), 750.0 Mb (*I. nil*), 602.0 Mb (*I. purpurea*), 733.0 Mb (*I. triloba*), 750.0 Mb (*I. nil*), 602.0 Mb (*I. purpurea*), 733.0 Mb (*I. triloba*), 750.0 Mb (*I. nil*), 602.0 Mb (*I. purpurea*), 733.0 Mb (*I. triloba*), 750.0 Mb (*I. nil*), 602.0 Mb (*I. purpurea*), 733.0 Mb (*I. triloba*), 750.0 Mb (*I. nil*), 602.0 Mb (*I. purpurea*), 733.0 Mb (*I. triloba*), 750.0 Mb (*I. nil*), 602.0 Mb (*I. purpurea*), 733.0 Mb (*I. triloba*), 750.0 Mb (*I. nil*), 602.0 Mb (*I. purpurea*), 733.0 Mb (*I. triloba*), 750.0 Mb (*I. nil*), 602.0 Mb (*I. purpurea*), 733.0 Mb (*I. triloba*), 750.0 Mb (*I. nil*), 602.0 Mb (*I. purpurea*), 733.0 Mb (*I. triloba*), 750.0 Mb (*I. nil*), 602.0 Mb (*I. nil*)

cairica), and 511.5 Mb (*I. aquatica*). These findings suggest that *GATA* gene quantity is independent of genome size, a phenomenon previously observed in closely related species including Solanaceae (Zhang et al., 2023), Orchidaceae (Zheng et al., 2024c), and *Populus* (Kim et al., 2021b).

The phylogenetic analysis of *GATA* genes in seven *Ipomoea* species and *Arabidopsis* revealed four independent groups (I to IV) (Figure 1), consistent with findings in other plant species (Manzoor et al., 2021; Shi et al., 2022; Zhang et al., 2023). Compared to other plant species, the proportion of *GATA* genes in each phylogenetic group was distinct when using *Arabidopsis GATA* genes as a reference. For instance, in Rosaceae species, Group IV was the largest and Group I was the smallest (Manzoor et al., 2021); in longan and apple, Group II was the largest and Group I was the smallest (Zheng et al., 2024a); in *Populus* species and wheat, the distribution was similar to *Ipomoea* species, with Group I being the largest and Group IV the smallest (Kim et al., 2021b; Feng et al., 2022; Zhao et al., 2023). These results revealed that the ancestral *GATA* gene phylogenetic groups have undergone different expansion patterns across plant species (Lespinet et al., 2002).

The conserved GATA domain in *Ipomoea* comprises four β-sheets and one α-helix, featuring a type IV zinc finger motif (C-X2-C-X18/20-C-X₂-C) (Supplementary File 2: Supplementary Figure S1, Figure 2). Group I, II, and IV proteins share a C-X₂-C-X₁₈-C-X₂-C pattern, while class III uniquely possesses a C-X2-C-X20-C-X2-C variant (Supplementary File 2: Supplementary Figure S1). These findings align with conserved structural features observed in other plant species, including Arabidopsis (Reyes et al., 2004; Bi et al., 2005; Kim et al., 2021a), poplar (Zhao et al., 2023), wheat (Feng et al., 2022), and rice (Gupta et al., 2017). Through motif analysis and annotation of Ipomoea GATA proteins, 20 conserved motifs were identified (Figure 3; Supplementary File 4: Supplementary Table S2). Among these, only three motifs were annotated as GATA, CCT, and TIFY, respectively. Notably, motif 1 corresponds to the GATA domain, while the remaining motifs exhibit class-specific distribution patterns, suggesting potential functional diversification within this protein family. Consistent with findings in other plant species, CCT motifs are exclusively present in Group III, whereas TIFY motifs are restricted to Groups III and IV (Figure 3; Supplementary File 4: Supplementary Table S2). While the precise function of the CCT motif remains unclear, proteins containing this motif have been implicated in photoperiod sensing and circadian rhythm integration (Schwechheimer et al., 2022). In contrast, the TIFY motif is welldocumented to participate in biological clock regulation and hormone signaling pathways (Peng et al., 2021).

Gene duplication events, including segmental and tandem duplications, play essential roles in gene family expansion and distribution in plants (Cannon et al., 2004; Kong et al., 2007; Jiang et al., 2013). Segmental duplications typically occur through polyploidy followed by chromosomal rearrangements, while tandem duplications arise within the same or neighboring intergenic regions (Jiang et al., 2013). In this study, the distribution of *Ipomoea GATA* genes was found to be uneven across chromosomes (Figure 4). Tandem duplications were detected only in *I. triloba*, *I. trifida*, and *I. nil*, while segmentally

duplicated *GATA* genes were observed in sweetpotato and *I. cairica* (Figure 4; Supplementary File 5: Supplementary Table S3). These results suggest that *Ipomoea GATA* genes may have experienced distinct duplication mechanisms compared to other plant lineages (Kong et al., 2007).

This study identified 199 *GATA* orthologous genes across seven *Ipomoea* species, including 79 from sweet potato and 20 each from *I. trifida*, *I. triloba*, *I. nil*, *I. purpurea*, *I. cairica*, and *I. aquatica*. Synteny analysis of *GATA* genes in the seven *Ipomoea* species revealed strong collinearity despite chromosomal rearrangements and gene duplication events following divergence from their common ancestor (Yan et al., 2022). To elucidate the evolutionary dynamics of duplicated and syntenic *GATA* gene pairs, we conducted Ka/Ks analysis. The results demonstrated that nearly all *GATA* gene pairs exhibited a Ka/Ks ratio below 1, indicating predominant purifying (negative) selection during genome duplication and speciation events (Gaut and Doebley, 1997).

Regulatory elements are specific DNA sequences within the same DNA molecule that possess transcriptional regulation functions. Analyzing these elements can enhance our fundamental understanding of gene regulation (Baxter et al., 2012; Hernandez-Garcia and Finer, 2014). As anticipated, the promoters of the *Ipomoea GATA* genes contained numerous *cis*-regulatory elements involved in biotic and abiotic stress responses. These included ABRE, ARE, CGTCA-motif, GC-motif, LTR, MBS, TCA-element, TC-rich repeats, and TGACG-motif (Supplementary File 9: Supplementary Figure S3, Supplementary File 10: Supplementary Table S7). The abundance of these stress-related regulatory elements likely explains why a large proportion of *GATA* genes showed stress-responsive expression patterns in our analysis.

Research has reported that GATA genes participate in both plant developmental processes (Wang et al., 2009; Luo et al., 2010; Lu et al., 2017; Zhang et al., 2018, 2020) and stress response mechanisms (Zhao et al., 2021b; Zhu et al., 2022; Wei et al., 2023). In this study, we examined GATA gene expression patterns through analysis of RNA-seq data. Differential expression profiles were observed, with Ipomoea GATA genes showing distinct stressresponsive expression patterns (Figure 7). For stress response analysis, we selected four RNA-seq datasets comprising two abiotic (salt, drought) and two biotic (Ceratocystis fimbriata, Ditylenchus destructor) stress conditions. This analysis identified 29, 50, 60, and 58 differentially expressed GATA genes (DEGs) respectively (Figure 7). Subsequent qRT-PCR validation of three selected genes (IbGATA33, IbGATA38, IbGATA126) confirmed the RNA-seq expression patterns (Figure 8). The qRT-PCR validation revealed differential expression patterns of IbGATA33/38/126 genes. Under salt stress, all three genes were upregulated in both Xushu32 and JK328 cultivars, peaking at 6 h or 12 h (1.69- to 3.38-fold increase). During drought treatment, IbGATA33/38 were upregulated in Xushu32 but downregulated in JK328, whereas IbGATA126 exhibited opposite expression trends between the two cultivars. In pathogen responses: C. fimbriata infection induced upregulation of IbGATA38 (1.49-fold) and downregulation of IbGATA126 (0.44-fold) in Santiandao; D. destructor infection

caused upregulation of *IbGATA33/38* (1.91- to 2.62-fold) and downregulation of *IbGATA126* (0.45-fold) in Luxuan1hao, while Jikezi18 displayed divergent trends. Based on these results, it is possible to predict that *IbGATA33*, *IbGATA38*, and *IbGATA126* play important roles in abiotic and biotic stress responses, and their functions should be investigated in the near future.

4 Conclusions

We analyzed GATA genes in seven Ipomoea species (I. batatas:158, I. trifida:54, I. triloba:62, I. nil:39, I. purpurea:32, I. cairica:32, I. aquatica:33), classifying them into four clades (I-IV). Conserved motifs, gene structures, and chromosomal distributions were characterized, revealing tandem and segmental duplications drove family expansion. Among 199 orthologs, syntenic pairs showed Ka/Ks<1, indicating purifying selection. Stress treatments identified 29-60 differentially expressed GATA genes (salt/drought/ pathogens). qRT-PCR validated three DEGs (IbGATA33, IbGATA38, IbGATA126), confirming transcriptome data. These results provide a comprehensive genomic analysis of the GATA transcription factor family across seven Ipomoea species, offering valuable insights into gene characteristics, phylogenetic relationships, chromosomal locations, duplication events, cisregulatory elements, expression patterns, and stress responses. This analysis may facilitate the elucidation of evolutionary relationships, molecular mechanisms, and functional roles of GATA genes in Ipomoea species.

5 Methods

5.1 Data resources

Genomic data for seven *Ipomoea* species were obtained from public databases: sweetpotato genome (version 1) from Plant GARDEN (Yoon et al., 2022), *I. trifida* (v3) and *I. triloba* (v3) from GenBank BioProject PRJNA428214 and PRJNA428241 respectively (Wu et al., 2018), *I. nil* (v1.2) from GenBank BioProject BDFN01000001-BDFN01003416 (Hoshino et al., 2016), *I. purpurea* (v1) from CoGe platform (Zhao et al., 2021a), *I. cairica* (v1) from AGIS database (Jiang et al., 2022), and *I. aquatica* (v1) from BIGD (PRJCA002216) (Hao et al., 2021). *Arabidopsis* GATA protein sequences were acquired from TAIR (Reyes et al., 2004).

5.2 Identification of *GATA* genes in seven *Ipomoea* species

The identification of GATA domains was conducted through a dual-algorithm strategy. Initial screening was performed using HMMER 3.1b2 with default parameters to detect the conserved GATA domain (Pfam: PF00320) in all protein sequences. In parallel, BLASTP 2.2.28+ searches were executed using an

extended GATA domain sequence as query (E-value cutoff: 1×10^{-10}). Candidate sequences from both HMMsearch and BLASTP analyses were merged, and redundancy was eliminated through sequence identity clustering. Final validation involved HMMscan verification of putative GATA proteins against the Pfam-A database with a strict E-value threshold of 0.0001.

5.3 Molecular weight, isoelectric point and subcellular localization analysis of *Ipomoea* GATA proteins

The ExPASy proteomics server (http://www.expasy.ch/tools/pi_tool.html) was utilized to calculate key physicochemical parameters of GATA proteins, specifically molecular weight (MW) and isoelectric point (pI) (Artimo et al., 2012). For subcellular localization prediction of *Ipomoea* proteins, we employed WoLF PSORT (https://wolfpsort.hgc.jp/), a dedicated bioinformatics platform for protein localization analysis (Horton et al., 2007).

5.4 Sequence alignment and phylogenetic analysis of GATA proteins

To reconstruct the phylogenetic relationships among identified GATA proteins, initial multiple sequence alignment of complete protein sequences was executed using Clustal Omega (v1.2.4) (Sievers et al., 2011; Sievers and Higgins, 2018). The alignment output served as input for maximum likelihood analysis performed with IQ-TREE (v2.1.3) (Minh et al., 2020), incorporating model selection via ModelFinder (v2.0) (Kalyaanamoorthy et al., 2017) that determined the VT+F+R4 model as most appropriate. Tree topology robustness was evaluated through SH-aLRT and UFBoot2 analyses (1,000 replicates). Final tree visualization and annotation were accomplished using FigTree (v1.4.3) to optimize clarity.

5.5 Identification of conserved motifs of the *GATA* genes

To examine the structural motif diversity among the identified *GATA* genes, their protein sequences underwent thorough motif analysis via the web-based platform MEME SUITE (v5.5.3), available at https://meme-suite.org/meme/ (Bailey et al., 2009). The analysis was designed to detect a maximum of 20 unique motifs, with site distribution set to "any" (permitting motif occurrence at any sequence position). Default values were retained for all other parameters to maintain methodological consistency and alignment with conventional approaches. *Ipomoea* GATA protein conserved domains were aligned and graphically represented using Clustal Omega (v1.2.4) (Sievers et al., 2011; Sievers and Higgins, 2018). Further sequence conservation analysis and GATA domain secondary structure

visualization were performed through WebLogo (v3.7.9) (Crooks et al., 2004).

5.6 Protein motif compositions and gene structures of *Ipomoea GATA* genes

Based on the motif analysis data obtained from MEME SUITE (v5.5.3) (with the minimum width of 6, maximum width of 20, the maximum number of motifs designed to identify 20 motifs and iterative cycles set to default), phylogenetic relationships, and genome annotation files (gff3), the identified *Ipomoea GATA* genes were analyzed using TBtools-II (v2.131) to determine their protein motif distributions and gene structures, with subsequent graphical representation (Chen et al., 2023).

5.7 Chromosome distribution and duplication pattern analysis of the *GATA* genes

Chromosomal localization of *GATA* genes across all seven *Ipomoea* species was executed using MapChart (v2.30) (Voorrips, 2002). To detect putative gene duplication events, genome-wide collinearity assessments were carried out with MCScanX (Wang et al., 2012). This process included intra-species protein sequence comparisons via BLASTP (v2.2.28+) under a strict E-value threshold (1e-10). Synteny relationships were graphically rendered using CIRCOS (v0.66) to produce detailed genomic maps (Krzywinski et al., 2009).

5.8 Syntenic analysis *GATA* genes in the seven *Ipomoea* genomes

We conducted comparative synteny analysis of the seven *Ipomoea* species with MCScan (Python version) under default parameters (Tang et al., 2024). High-confidence 1:1 syntenic blocks (gene pairs) were identified through gene model alignments generated by LAST (v1257) and stringent filtering. The JCVI package (Tang et al., 2015) was employed to visualize syntenic relationships as dot plots.

5.9 Ka/Ks analysis of duplicated and syntenic *GATA* genes

The evolutionary selection pressures on GATA transcription factors were evaluated by determining the nonsynonymous (Ka) to synonymous (Ks) substitution rate ratio ($\omega = \text{Ka/Ks}$) for duplicated and syntenic gene pairs in seven *Ipomoea* species, employing TBtools (v1.108) (Chen et al., 2020).

5.10 Promoter analysis of *GATA* genes in the seven *Ipomoea* species

To detect potential *cis*-elements in the *Ipomoea GATA* genes, their 1,500-bp promoter sequences were analyzed using PLANTCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed 18 March 2023) (Lescot et al., 2002).

5.11 Expression profile of sweetpotato *GATA* genes

To analyze the expression patterns of sweet potato GATA genes, four transcriptome datasets—covering both abiotic and biotic stresses—were utilized. Two abiotic stress datasets (salt: PRJNA811431; drought: PRJNA999504) were sourced from NCBI, while two unpublished in-house datasets investigated resistance to C. fimbriata and D. destructor across four cultivars/lines: the susceptible "Santiandao" and resistant "Jikeshu20" for C. fimbriata, and the susceptible "Luxuan1hao" and resistant "Jikezi18" for D. destructor. Differentially expressed genes (DEGs) were defined by |log2FC| > 1 and $FDR \le 5\%$, with mean log2FC values computed for each. Expression distributions were visualized via an FPKM-based heat map generated in MeV software (Howe et al., 2011).

5.12 RNA isolation and qRT-PCR analysis

Two groups of sweet potato cultivars underwent distinct stress treatments. For biotic stress assessment, the susceptible cultivar Santiandao and resistant line Jikeshu20 were infected with C. fimbriata (Muramoto et al., 2012), whereas the susceptible Luxuan1hao and resistant Jikezi18 were inoculated with D. destructor (Gao et al., 2011). Samples were harvested at seven post-inoculation intervals (0, 6, 12 hours; 1, 2, 4, 6 days), with uninoculated roots as controls. For abiotic stress, pre-cultured cuttings (25 cm, from 6-week-old field plants) of susceptible Xu32 and resistant JK328 were treated in Hoagland solution for three days before exposure to salt (86 mM NaCl vs 0 mM), or drought (30% PEG6000 vs 0%) (Hoagland and Arnon, 1950). Abiotic samples were collected at seven time points (0-48 hours). Total RNA was isolated via RNAprep Pure Plant Kit (Tiangen Biotech) and reverse-transcribed using Quantscript RT Kit (Tiangen Biotech). The stably expressed β -actin gene (Genbank AY905538) normalized DEG expression. All experiments included triplicate biological replicates per time point, with gene expression analyzed by the $2^{-\Delta\Delta Ct}$ method (Schmittgen and Livak, 2008), and performed statistical analysis with one-way ANOVA. qRT-PCR followed published protocols, employing Primer-BLAST-designed primers (Supplementary File 11: Supplementary Table S8) (Ye et al., 2012; Zhai et al., 2016).

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

Author contributions

ZS: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. JG: Data curation, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing. ZJ: Conceptualization, Funding acquisition, Project administration, Resources, Supervision, Writing – original draft, Writing – review & editing. FM: Formal analysis, Investigation, Methodology, Software, Writing – original draft, Writing – review & editing. WW: Formal analysis, Software, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the research and/or publication of this article. This work was funded by "Department of Science and Technology of Hebei Province, grant number 19226335D" and "Science Research Foundation of Hebei Normal University of Science and Technology, grant number 2021JK01".

Acknowledgments

We would like to thank all the editors and reviewers for their efforts and their valuable comments.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., De Castro, E., et al. (2012). ExPASy: SIB bioinformatics resource portal. *Nucleic Acids Res.* 40, W597–W603. doi: 10.1093/nar/gks400

Austin, D. F., Staples, G. W., and Simão-Bianchini, R. (2015). A synopsis of *Ipomoea* (Convolvulaceae) in the Americas: Further corrections, changes, and additions. *Taxon* 64, 625–633. doi: 10.12705/643.14

Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., et al. (2009). MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Res.* 37, W202–W208. doi: 10.1093/nar/gkp335

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2025.1714791/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Multiple sequence alignment of conserved GATA domains in *Ipomoea* species. Identical or similar amino acid residues at each position are highlighted with distinct colors. The sequences are arranged according to their phylogenetic clustering patterns.

SUPPLEMENTARY FIGURE 2

Integrated analysis of *Ipomoea GATA* genes. **(A)** Maximum Likelihood phylogenetic tree of *Ipomoea* GATA proteins, classified into four evolutionarily distinct subfamilies (I-IV). **(B)** Distribution of 20 conserved protein motifs identified by MEME suite, with color-coded annotation. Protein length scale provided. **(C)** Gene structure organization with exons (orange boxes), untranslated region (green boxes) and introns (black lines), scaled by the bottom ruler.

SUPPLEMENTARY FIGURE 3

Cis-acting elements prediction in the Ipomoea GATA gene promoters. (A) Phylogenetic tree. (B) Cis-regulatory elements distribution. The 1500 bp upstream promoter regions of the Ipomoea GATA genes were subjected to cis-element analysis using PlantCARE software.

Baxter, L., Jironkin, A., Hickman, R., Moore, J., Barrington, C., Krusche, P., et al. (2012). Conserved noncoding sequences highlight shared components of regulatory networks in dicotyledonous plants. *Plant Cell* 24, 3949–3965. doi: 10.1105/tpc.112.103010

Bi, Y. M., Zhang, Y., Signorelli, T., Zhao, R., Zhu, T., and Rothstein, S. (2005). Genetic analysis of *Arabidopsis* GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. *Plant J.* 44, 680–692. doi: 10.1111/j.1365-313X.2005.02568.x

Bose, C., Das, P. K., Roylawar, P., Rupawate, P., Khandagale, K., Nanda, S., et al. (2025). Identification and analysis of the GATA gene family in onion ($Allium\ cepa\ L.$) in

response to chromium and salt stress. BMC Genomics 26, 1–15. doi: 10.1186/s12864-025-11251-3

Cannon, S. B., Mitra, A., Baumgarten, A., Young, N. D., and May, G. (2004). The roles of segmental and tandem gene duplication in the evolution of large gene families in *Arabidopsis thaliana*. *BMC Plant Biol.* 4, 10. doi: 10.1186/1471-2229-4-10

Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., et al. (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. *Mol. Plant* 13, 1194–1202. doi: 10.1016/j.molp.2020.06.009

Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., et al. (2023). TBtools-II: A "one for all, all for one"bioinformatics platform for biological big-data mining. *Mol. Plant* 16, 1733–1742. doi: 10.1016/j.molp.2023.09.010

Crooks, G. E., Hon, G., Chandonia, J.-M., and Brenner, S. E. (2004). WebLogo: a sequence logo generator. *Genome Res.* 14, 1188–1190. doi: 10.1101/gr.849004

Daniel-Vedele, F., and Caboche, M. (1993). A tobacco cDNA clone encoding a GATA-1 zinc finger protein homologous to regulators of nitrogen metabolism in fungi. *Mol. Gen. Genet.* 240, 365–373. doi: 10.1007/BF00280388

Evans, T., Reitman, M., and Felsenfeld, G. (1988). An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. *Proc. Natl. Acad. Sci. United States America* 85, 5976–5980. doi: 10.1073/pnas.85.16.5976

Feng, X., Yu, Q., Zeng, J., He, X., and Liu, W. (2022). Genome-wide identification and characterization of *GATA* family genes in wheat. *BMC Plant Biol.* 22, 372. doi: 10.1186/s12870-022-03733-3

Gao, S., Yu, B., Yuan, L., Zhai, H., He, S., and Liu, Q. (2011). Production of transgenic sweetpotato plants resistant to stem nematodes using *oryzacystatin-I* gene. *Scientia Hortic*. 128, 408–414. doi: 10.1016/j.scienta.2011.02.015

Gaut, B. S., and Doebley, J. F. (1997). DNA sequence evidence for the segmental allotetraploid origin of maize. *Proc. Natl. Acad. Sci. United States America* 94, 6809–6814. doi: 10.1073/pnas.94.13.6809

Gupta, P., Nutan, K. K., Singla-Pareek, S. L., and Pareek, A. (2017). Abiotic stresses cause differential regulation of alternative splice forms of GATA transcription factor in rice. *Front. Plant Sci.* 8, 1944. doi: 10.3389/fpls.2017.01944

Hao, Y., Bao, W., Li, G., Gagoshidze, Z., Shu, H., Yang, Z., et al. (2021). The chromosome-based genome provides insights into the evolution in water spinach. *Scientia Hortic.* 289, 110501. doi: 10.1016/j.scienta.2021.110501

Hernandez-Garcia, C. M., and Finer, J. (2014). Identification and validation of promoters and *cis*-acting regulatory elements. *Plant Sci.* 217, 109–119. doi: 10.1016/j.plantsci.2013.12.007

Hoagland, D. R., and Arnon, D. I. (1938). The water-culture method for growing plants without soil. *Calif. Agric. Exp. stn. Circ.*

Horton, P., Park, K.-J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C., et al. (2007). WoLF PSORT: protein localization predictor. *Nucleic Acids Res.* 35, W585–W587. doi: 10.1093/nar/gkm259

Hoshino, A., Jayakumar, V., Nitasaka, E., Toyoda, A., Noguchi, H., Itoh, T., et al. (2016). Genome sequence and analysis of the Japanese morning glory *Ipomoea nil. Nat. Commun.* 7, 13295. doi: 10.1038/ncomms13295

Howe, E. A., Sinha, R., Schlauch, D., and Quackenbush, J. (2011). RNA-seq analysis in MeV. $\it Bioinformatics~27, 3209-3210.$ doi: 10.1093/bioinformatics/btr490

Jiang, S.-Y., González, J. M., and Ramachandran, S. (2013). Comparative genomic and transcriptomic analysis of tandemly and segmentally duplicated genes in rice. *PloS One* 8, e63551. doi: 10.1371/journal.pone.0063551

Jiang, F., Wang, S., Wang, H., Wang, A., Xu, D., Liu, H., et al. (2022). A chromosome-level reference genome of a Convolvulaceae species *Ipomoea cairica*. *G3* 12, jkac187. doi: 10.1093/g3journal/jkac187

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* 14, 587–589. doi: 10.1038/nmeth.4285

Kim, M., Xi, H., and Park, J. (2021a). Genome-wide comparative analyses of GATA transcription factors among 19 *Arabidopsis* ecotype genomes: Intraspecific characteristics of GATA transcription factors. *PloS One* 16, e0252181. doi: 10.1371/journal.pone.0252181

Kim, M., Xi, H., Park, S., Yun, Y., and Park, J. (2021b). Genome-wide comparative analyses of GATA transcription factors among seven *Populus* genomes. *Sci. Rep.* 11, 16578. doi: 10.1038/s41598-021-95940-5

Kong, H., Landherr, L. L., Frohlich, M. W., Leebens-Mack, J., Ma, H., and Depamphilis, C. W. (2007). Patterns of gene duplication in the plant *SKP1* gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. *Plant J.* 50, 873–885. doi: 10.1111/j.1365-313X.2007.03097.x

Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., et al. (2009). Circos: an information aesthetic for comparative genomics. *Genome Res.* 19, 1639–1645. doi: 10.1101/gr.092759.109

Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van De Peer, Y., et al. (2002). PlantCARE, a database of plant *cis*-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. *Nucleic Acids Res.* 30, 325–327. doi: 10.1093/nar/30.1.325

Lespinet, O., Wolf, Y. I., Koonin, E. V., and Aravind, L. (2002). The role of lineage-specific gene family expansion in the evolution of eukaryotes. *Genome Res.* 12, 1048–1059. doi: 10.1101/gr.174302

Liu, Q. (2011). Sweet potato omics and biotechnology in China. *Plant Omics* 4, 295–301

Liu, Q. (2017). Improvement for agronomically important traits by gene engineering in sweetpotato. *Breed. Sci.* 67, 15–26. doi: 10.1270/jsbbs.16126

Lu, G., Casaretto, J. A., Ying, S., Mahmood, K., Liu, F., Bi, Y.-M., et al. (2017). Overexpression of *OsGATA12* regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting. *Plant Mol. Biol.* 94, 215–227. doi: 10.1007/s11103-017-0604-x

Luo, X.-M., Lin, W.-H., Zhu, S., Zhu, J.-Y., Sun, Y., Fan, X.-Y., et al. (2010). Integration of light-and brassinosteroid-signaling pathways by a GATA transcription factor in *Arabidopsis. Dev. Cell* 19, 872–883. doi: 10.1016/j.devcel.2010.10.023

Manzoor, M. A., Sabir, I. A., Shah, I. H., Wang, H., Yu, Z., Rasool, F., et al. (2021). Comprehensive comparative analysis of the GATA transcription factors in four Rosaceae species and phytohormonal response in Chinese pear (*Pyrus bretschneideri*) fruit. *Int. J. Mol. Sci.* 22, 12492. doi: 10.3390/ijms222212492

Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., et al. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. *Mol. Biol. Evol.* 37, 1530–1534. doi: 10.1093/molbev/msaa015

Muramoto, N., Tanaka, T., Shimamura, T., Mitsukawa, N., Hori, E., Koda, K., et al. (2012). Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by *Ceratocystis fimbriata* in leaves and storage roots. *Plant Cell Rep.* 31, 987–997. doi: 10.1007/s00299-011-1217-5

Nimmakayala, P., Vajja, G., and Reddy, U. K. (2011). "Ipomoea," in Wild Crop Relatives: Genomic and Breeding Resources, ed. C. Kole (Berlin: Springer), 123–132.

Omichinski, J. G., Clore, G. M., Schaad, O., Felsenfeld, G., Trainor, C., Appella, E., et al. (1993). NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. *Science* 261, 438–446. doi: 10.1126/science.8332909

Park, J., Kim, H., Kim, S., Kong, S., Park, J., Kim, S., et al. (2006). A comparative genome-wide analysis of GATA transcription factors in fungi. *Genomics Inf.* 4, 147–160.

Peng, W., Li, W., Song, N., Tang, Z., Liu, J., Wang, Y., et al. (2021). Genome-wide characterization, evolution, and expression profile analysis of GATA transcription factors in *Brachypodium distachyon*. *Int. J. Mol. Sci.* 22, 2026. doi: 10.3390/ijms22042026

Reyes, J. C., Muro-Pastor, M. I., and Florencio, F. J. (2004). The GATA family of transcription factors in *Arabidopsis* and rice. *Plant Physiol.* 134, 1718–1732. doi: 10.1104/pp.103.037788

Schmittgen, T. D., and Livak, K. (2008). Analyzing real-time PCR data by the comparative CT method. *Nat. Protoc.* 3, 1101–1108. doi: 10.1038/nprot.2008.73

Schwechheimer, C., Schröder, P. M., and Blaby-Haas, C. E. (2022). Plant GATA factors: their biology, phylogeny, and phylogenomics. *Annu. Rev. Plant Biol.* 73, 123–148. doi: 10.1146/annurev-arplant-072221-092913

Shi, M., Huang, Q., Wang, Y., Wang, C., Zhu, R., Zhang, S., et al. (2022). Genome-wide survey of the *GATA* gene family in camptothecin-producing plant *Ophiorrhiza pumila*. *BMC Genomics* 23, 256. doi: 10.1186/s12864-022-08484-x

Sievers, F., and Higgins, D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences. *Protein Sci.* 27, 135–145. doi: 10.1002/pro.3290

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst. Biol.* 7, 539. doi: 10.1038/msb.2011.75

Tang, H., Krishnakumar, V., Zeng, X., Xu, Z., Taranto, A., Lomas, J. S., et al. (2024). JCVI: A versatile toolkit for comparative genomics analysis. *Imeta.* 3 (4), e211. doi: 10.1002/imt2.211

Todeschini, A.-L., Georges, A., and Veitia, R. A. (2014). Transcription factors: specific DNA binding and specific gene regulation. *Trends Genet.* 30, 211–219. doi: 10.1016/j.tig.2014.04.002

Voorrips, R. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. *J. heredity* 93, 77–78. doi: 10.1093/jhered/93.1.77

Wang, Y., Tang, H., Debarry, J. D., Tan, X., Li, J., Wang, X., et al. (2012). MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. *Nucleic Acids Res.* 40, e49–e49. doi: 10.1093/nar/gkr1293

Wang, L., Yin, H., Qian, Q., Yang, J., Huang, C., Hu, X., et al. (2009). NECK LEAF 1, a GATA type transcription factor, modulates organogenesis by regulating the expression of multiple regulatory genes during reproductive development in rice. *Cell Res.* 19, 598–611. doi: 10.1038/cr.2009.36

Wei, X., Li, Y., Zhu, X., Liu, X., Ye, X., Zhou, M., et al. (2023). The GATA transcription factor TaGATA1 recruits demethylase TaELF6-A1 and enhances seed dormancy in wheat by directly regulating TaABI5. *J. Integr. Plant Biol.* 65, 1262–1276. doi: 10.1111/jipb.13437

Wu, S., Lau, K. H., Cao, Q., Hamilton, J. P., Sun, H., Zhou, C., et al. (2018). Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. *Nat. Commun.* 9, 4580. doi: 10.1038/s41467-018-06983-8

Yan, M., Nie, H., Wang, Y., Wang, X., Jarret, R., Zhao, J., et al. (2022). Exploring and exploiting genetics and genomics for sweetpotato improvement: Status and perspectives. *Plant Commun.* 3, 100332. doi: 10.1016/j.xplc.2022.100332

- Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., and Madden, T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. *BMC Bioinf*. 13, 1–11. doi: 10.1186/1471-2105-13-S6-S1
- Yoon, U.-H., Cao, Q., Shirasawa, K., Zhai, H., Lee, T.-H., Tanaka, M., et al. (2022). Haploid-resolved and chromosome-scale genome assembly in hexa-autoploid sweetpotato (*Ipomoea batatas* (L.) Lam). *bioRxiv*. doi: 10.1101/2022.12.25.521700
- Zhai, H., Wang, F., Si, Z., Huo, J., Xing, L., An, Y., et al. (2016). A *myo*-inositol-1-phosphate synthase gene, *IbMIPSI*, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. *Plant Biotechnol. J.* 14, 592–602. doi: 10.1111/pbi.12402
- Zhang, X., Fan, R., Yu, Z., Du, X., Yang, X., Wang, H., et al. (2024). Genome-wide identification of GATA transcription factors in tetraploid potato and expression analysis in differently colored potato flesh. *Front. Plant Sci.* 15, 1330559. doi: 10.3389/fpls.2024.1330559
- Zhang, C., Huang, Y., Xiao, Z., Yang, H., Hao, Q., Yuan, S., et al. (2020). A GATA transcription factor from soybean (*Glycine max*) regulates chlorophyll biosynthesis and suppresses growth in the transgenic *Arabidopsis thaliana*. *Plants* 9, 1036. doi: 10.3390/plants9081036
- Zhang, F., Wu, Y., Shi, X., Wang, X., and Yin, Y. (2023). Comparative analysis of the GATA transcription factors in five solanaceae species and their responses to salt stress in wolfberry (*Lycium barbarum L.*). *Genes* 14, 1943. doi: 10.3390/genes14101943

- Zhang, Y. J., Zhang, Y., Zhang, L. L., Huang, H. Y., Yang, B. J., Luan, S., et al. (2018). OsGATA7 modulates brassinosteroids-mediated growth regulation and influences architecture and grain shape. Plant Biotechnol. J. 16, 1261. doi: 10.1111/pbi.12887
- Zhao, F., Liu, H., Qiao, Q., Wang, Y., Zhang, D., Wang, S., et al. (2021a). Complete genome sequence of a novel varicosavirus infecting tall morning glory (*Ipomoea purpurea*). Arch. Virol. 166, 3225–3228. doi: 10.1007/s00705-021-05240-6
- Zhao, K., Nan, S., Li, Y., Yu, C., Zhou, L., Hu, J., et al. (2023). Comprehensive analysis and characterization of the *GATA* gene family, with emphasis on the GATA6 transcription factor in poplar. *Int. J. Mol. Sci.* 24, 14118. doi: 10.3390/ijms241814118
- Zhao, T., Wu, T., Pei, T., Wang, Z., Yang, H., Jiang, J., et al. (2021b). Overexpression of *SIGATA17* promotes drought tolerance in transgenic tomato plants by enhancing activation of the phenylpropanoid biosynthetic pathway. *Front. Plant Sci.* 12, 634888. doi: 10.3389/fpls.2021.634888
- Zheng, Q., Huang, Y., He, X., Zhang, M.-M., and Liu, Z.-J. (2024c). Genome-wide identification and expression pattern analysis of *GATA* gene family in orchidaceae. *Genes* 15, 915. doi: 10.3390/genes15070915
- Zheng, K., Lu, J., He, X., Lan, S., Zhai, T., Cao, S., et al. (2024a). Genome-Wide identification and expression analysis of *GATA* family genes in *Dimocarpus longan* Lour. *Int. J. Mol. Sci.* 25, 731. doi: 10.3390/ijms25020731
- Zheng, L., Tang, L., and Li, J. (2024b). Genome-wide identification of the *GATA* gene family in melon (*Cucumis melo*) and analysis of their expression characteristics under biotic and abiotic stresses. *Front. Plant Sci.* 15, 1462924. doi: 10.3389/fpls.2024.1462924
- Zhu, H., Zhai, H., He, S., Zhang, H., Gao, S., and Liu, Q. (2022). A novel sweetpotato GATA transcription factor, IbGATA24, interacting with IbCOP9-5a positively regulates drought and salt tolerance. *Environ. Exp. Bot.* 194, 104735. doi: 10.1016/j.envexpbot.2021.104735