& frontiers | Frontiers in

@ Check for updates

OPEN ACCESS

Bowei Chen,
Jishou University, China

Chaoqun Xu,

Chinese Academy of Medical Sciences and
Peking Union Medical College, China
Furong Zhong,

Chengdu University of Technology, China

Ye Wang
ywang@itcmhi.ac.cn

Hui Li
HLi202201@126.com

26 September 2025
02 November 2025

04 November 2025

26 November 2025

CaoY,RenY, Wang Y and Li H (2025)
Transcriptome and metabolome analyses
revealed the main profiles contributing the
mild aroma characteristics of Artemisia
stolonifera.

Front. Plant Sci. 16:1713657.

doi: 10.3389/fpls.2025.1713657

© 2025 Cao, Ren, Wang and Li. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Plant Science

Original Research
26 November 2025
10.3389/fpls.2025.1713657

Transcriptome and metabolome
analyses revealed the main
profiles contributing the mild
aroma characteristics of
Artemisia stolonifera

Ye Cao'? Yan Ren'?, Ye Wang"®* and Hui Li***

tJiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Institute of
Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences,
Nanchang, China, 2Jiangxi Institute of Traditional Chinese Medicine Health Industry, Nanchang, China,
SInstitute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China

Artemisia stolonifera, identified as an original source of mugwort leaf during the
fourth national medicinal resource investigation in China, remains considerably
understudied compared to the well-characterized Artemisia argyi, despite its
distinctive mild aroma and potential therapeutic value. The lack of systematic
comparative analyses on their active compounds and underlying biosynthetic
mechanisms has limited the application and development of A. stolonifera. To
address this gap, we conducted integrated metabolomic and transcriptomic
analyses of leaves from both species. Using GC-MS for targeted profiling of
volatile organic compounds and UPLC-ESI (-Q TRA)-MS/MS for flavonoids and
lignin pathway intermediates, we identified 1,728 differentially accumulated
metabolites (DAMs). Transcriptome sequencing generated 37.61 Gb of clean data,
revealing 18,000 differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes
and Genomes analysis demonstrated significant divergence in terpenoid and
flavonoid biosynthesis pathways between the two species. A. stolonifera exhibited
accumulation sesquiterpenoids, consistent with the concerted upregulation of
mevalonate pathway genes (e.g., AACT1-4, HMGRI1-3) and sesquiterpene
synthases (BASI1, LUP2, CAMS1, XF1). Conversely, A. argyi exhibited enrichment of
monoterpenoids and flavonoids, associated with elevated expression of
methylerythritol phosphate pathway genes (DXS2, DXR1-5), monoterpenoid
biosynthesis genes (SDR2-4, TPS14), and flavonoid biosynthesis genes (e.g., CHSI-
2, CHI, F3H1-3). This study elucidates the divergence of genetic and metabolic basis
governing bioactive compound biosynthesis between these species, revealing that
the characteristically mild aroma of A. stolonifera results from its lower volatile oil
content and reduced levels of intense monoterpenoids. These insights provide a
critical foundation for evaluating the medicinal value and supporting the safe
utilization of A. stolonifera.

Artemisia stolonifera, Artemisia argyi, metabolome, transcriptome, terpenoid
biosynthesis, flavonoid biosynthesis
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1 Introduction

Moxibustion, a cornerstone therapeutic modality in traditional
Chinese medicine (TCM) (Tian et al., 2020), utilizes moxa wool
derived primarily from the dried leaves of Artemisia argyi
(designated “mugwort leaf” in the Chinese Pharmacopoeia) as its
combustion. During the fourth national medicinal resource
investigation in China, our research team identified Artemisia
stolonifera as an original plant source for mugwort leaf due to its
superior combustion properties. Multidisciplinary analyses,
including textual examination of classical pharmacopeias,
geographical provenance assessment, and field investigations,
confirmed that A. stolonifera corresponds to the historical Jiu-
Niu-Cao documented in classical pharmacopeia records (Ben Cao
Tu Jing, 1061 CE) (Luo et al., 2020b). However, clear botanical
descriptions distinguishing A. stolonifera from A. argyi remain
relatively scarce, impeding accurate species identification and
quality control. Importantly, while both A. argyi and A.
stolonifera have been historically used for moxibustion and
medicine, only A. argyi is currently recorded in the Chinese
Pharmacopoeia for the medicinal use of Artemisiae Argyi Folium
and has the largest cultivation scale. This is largely due to
insufficient comparative data on their chemical composition
profiles and associated bioactivities.

Chemical investigations have demonstrated that the bioactive
constituents in Artemisia species predominantly consist of
terpenoids, flavonoids, polysaccharides, coumarins, sesquiterpene
lactones, and organic acids (Abad et al.,, 2012; Anwar et al,, 2016;
Han et al, 2017; Zhang et al., 2018; Jiang et al, 2019). These
secondary metabolites exhibit a wide range of pharmacological
properties, including antioxidant, antitumor, anti-inflammatory,
anticoagulant, anti-osteoporotic, and immunomodulatory
activities (Kim et al., 2015b, 2015a; Ge et al., 2016; Yun et al.,
20165 Lv et al., 2018). Consequently, the medicinal efficacy of these
plants correlates directly with their metabolite profiles. However,
systematic comparative investigations of the specialized secondary
metabolites, particularly volatile terpenoids and non-volatile
bioactive components such as flavonoids, between A. stolonifera
and A. argyi remain notably limited. Although A. stolonifera has
documented therapeutic uses, its application remains restricted
compared to A. argyi, primarily due to the absence of
comprehensive comparative metabolomic studies. Current
research on A. stolonifera has predominantly focused on
characterizing its volatile components using techniques such as
HS-SPME-GC-MS, revealing significant differences when
compared to A. argyi (Li et al, 2022, 2023). Notably, A.
stolonifera is distinguished by a mild and fresh aroma, a
characteristic attributed to its lower volatile oil content. However,
despite the recognized importance of terpenoids and flavonoids in
the therapeutic efficacy of A. stolonifera, comprehensive
metabolomic profiling targeting these key constituents is notably
lacking. This deficiency was the primary reason terpenoids and
flavonoids were utilized as comparative indices in this investigation.
Previous studies on A. argyi have often prioritized the volatile
secondary metabolite profiling of its various tissues; although fewer
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in number, studies examining the biosynthetic pathways have
established a foundational understanding, particularly concerning
the main flavonoid biosynthetic pathway, which is known to
critically influence the quality of A. argyi. In contrast, the
biosynthetic pathways and regulatory networks governing the
production of these critical metabolites in A. stolonifera, especially
in comparison to A. argyi, remain poorly elucidated. This lack of
understanding regarding the metabolic machinery of A. stolonifera
hinders a comprehensive assessment of its full potential for
medicinal or moxibustion applications.

Headspace solid-phase microextraction coupled with gas
chromatography-mass spectrometry (HS-SPME-GC-MS) provides
exceptional sensitivity in characterizing volatile terpenoids in A.
stolonifera. However, its inability to detect non-volatile metabolites
necessitates the use of complementary analytical platforms. To
address the limitations of GC-based methods for non-volatile
metabolites, this study employs ultra-performance liquid
chromatography coupled with mass spectrometry (UPLC-MS).
Specifically, UPLC-ESI-MS facilitates comprehensive
quantification of polar bioactive compounds, while UPLC-ESI-
QTRAP-MS enhances the precision of targeted biomarker
quantification through multiple reaction monitoring (MRM). This
methodological integration, validated by Luo et al. (2020a), who
identified chlorogenic acids and flavonoids as dominant non-
volatiles, underscores the necessity of employing UPLC
techniques to construct comprehensive flavonoid metabolomes
for comparative structural characterization. This integrated
metabolomic platform is vital for developing a detailed
metabolome, particularly for flavonoids and other essential non-
volatile phytochemicals, thereby enabling high-resolution structural
characterization crucial for establishing bioactivity-compound
relationships and quality control protocols for A. stolonifera.
When integrated with transcriptomics, a multi-omics strategy
offers systems-level insights into the regulatory mechanisms that
govern metabolite accumulation and gene expression. Such multi-
omics integration can effectively reveal the chemical basis of
pharmacological properties and species-specific metabolic
patterns (Chen et al., 2021; Du et al,, 2021; Zhang et al., 2022).

In summary, this study employs integrated transcriptomic and
metabolomic analyses of functional leaves to systematically
investigate the secondary metabolism of A. stolonifera in
comparison to A. argyi. We hypothesized that the distinct mild
aroma and metabolic profile of A. stolonifera, compared to A. argyi,
are primarily governed by species-specific differences in the
expression of key genes involved in the terpenoid and flavonoid
biosynthesis pathways, leading to significantly different abundances
of volatile compounds. To validate this hypothesis, our study
comprehensively characterizes and compares the metabolite
profiles of volatile terpenoids and non-volatile key metabolites
between the two species. We aim to delineate species-specific
transcriptional regulation patterns, with particular focus on genes
involved the terpenoid backbone biosynthesis pathways and the
flavonoid biosynthetic pathway. Furthermore, we will construct
integrated gene-metabolite correlation networks to elucidate the
molecular mechanisms responsible for the observed metabolic
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divergence between A. stolonifera and A. argyi. These findings will
significantly advance our understanding of the genetic and
metabolic basis governing the biosynthesis of bioactive
compounds in economically and medicinally significant Artemisia
species, providing fundamental insights for evaluating the potential
and safe utilization of A. stolonifera.

2 Materials and methods
2.1 Plant materials

Fresh leaves of A. stolonifera (AS) and A. argyi (AA) were collected
for this study, identified by Academician Luqgi Huang from the China
Academy of Chinese Medical Sciences. Both species were initially
cultivated in February 2020 at the Standardized Planting Base of Jiu-
Niu-Cao in Sunjia Village, Zhangshu City, Jiangxi Province. After 20
days of growth, the plants were transplanted to Shennongling Herb
Science and Technology Park (28.94°N, 115.81°E) in Nanchang City,
Jiangxi Province, for field acclimatization and domestication. The
plants were grown under standardized cultivation conditions for over
45 days prior to sampling in October 2024. The samples were
immediately placed in 15 mL centrifuge tubes, flash-frozen in liquid
nitrogen, and stored at -80°C until analysis. Three biological replicates
per species were processed.

2.2 RNA-sequencing based on
transcriptomic detection

Total RNA was extracted from 100 mg of leaf tissue using the
RNAprep Pure Plant Plus Kit (TTANGEN, Beijing, China),
following the manufacturer’s instructions. The integrity of the
RNA was verified through 1.5% agarose gel electrophoresis and
assessed using a NanoDrop 2000 (OD260/280 > 1.8). Libraries were
constructed from 3 g of total RNA per sample and sequenced on
the Illumina NovaSeq 6000.

Six RNA libraries (AS-1, AS-2, AS-3, AA-1, AA-2, and AA-3)
were constructed and analyzed. The HISAT2 v2.0.5 software
(Mortazavi et al., 2008) was utilized to map reads to the reference
genome of A. argyi. The assembly of new transcripts was performed
using StringTie v1.3.0 (Pertea et al., 2015). Gene expression was
quantified as fragments per kilobase of transcript per million
mapped reads (FPKM) (Bray et al, 2016) using featureCounts
v1.5.0-p3 (Liao et al., 2014; Love et al., 2014). Differentially
expressed genes (DEGs) were identified using DESeq2 v1.20.0
(Anders and Huber, 2010) (Jlog,FC| = 1 and a false discovery rate
(FDR) < 0.05). Functional annotation was conducted using the
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Pfam databases. Enrichment analysis was performed
with clusterProfiler v3.8.1 (p < 0.05). Heatmaps were generated by
TBtools-II (Chen et al., 2023).
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2.3 Volatile components detection using
HS-SPME-GC-MS metabolomic method

Volatile organic compounds (VOCs) were extracted from 500 mg
of leaf powder using 20 mL of head-space 1 in a SPME process with a
120 um DVB/CAR/PDMS fiber (Supelco). During the SPME analysis,
each vial was maintained at 60°C for 5 min, after which the fiber was
exposed to the headspace at the same temperature for 15 minutes. GC-
MS (Agilent Technologies Inc., CA, USA) analysis was conducted
using an Agilent 8890/7000D system equipped with a DB-5MS column
(30 m x 0.25 mm x 0.25 pm). Helium (purity > 99.999%) was used as
the carrier gas flowing at a constant rate of 1.2 mL-min™". The injector
temperature was set to 250°C. The temperature program was as
follows: the column thermostat was held at 40°C for 3.5 min, then
increased to 100°C at a rate of 10°C-min"", further increased to 180°C at
7°Cmin”', escalated to 280°C at 25°C min™', and held at this final
temperature for 5 min. Mass spectra were recorded in electron impact
(EI) ionization mode at 70 eV. The temperatures of the MS electron
impact ion source and quadrupole were set to 230 and 150°C,
respectively. Mass data were collected in ion monitoring (SIM) mode
for the identification and quantification of analytes, with a solvent delay
time of 5 min.

The raw data were obtained following the automatic and
manual integration of the peak area using MassHunter
Quantitative Analysis vB.07.00 (Yuan et al., 2022). Metabolites
were identified by comparing mass spectra with the NIST20
library (similarity > 80%) and linear retention indices (RI) from
the data system libraries.

2.4 Non-volatile components using UPLC-
ESI (-Q TRA)-MS/MS metabolomic method

Fresh leaves of A. stolonifera and A. argyi were lyophilized using
a vacuum freeze-dryer. The dried leaves were ground into a powder
(30 Hz, 1.5 min) using a grinder. For UPLC-ESI-MS/MS analysis,
50 mg of the powder was extracted with 1.2 mL of 70% aqueous
methanol. Following centrifugation at 12,000 rpm for 3 min, the
supernatant was aspirated with a syringe and filtered through a 0.22
um organic-phase membrane. For UPLC-ESI-Q TRAP-MS/MS
analysis, 100 mg of the powder was extracted with 0.6 mL of 70%
aqueous methanol at 4 °C for 12 h. After centrifugation (10, 000
rpm for 10 min), the supernatant was aspirated and filtered.

Chromatographic separation was achieved using Agilent SB-
C18 columns (100 x 2.1 mm, 1.8 um) on two platforms: (1) UPLC
system (UPLC, ExionLC' " AD) coupled with a tandem mass
spectrometry system (Sciex QTRAP 6500+), and (2) UPLC
system (UPLC, Shim-pack UFLC SHIMADZU CBM30A system)
with a tandem mass spectrometry system (Applied Biosystems 4500
Q TRAP). Both systems employed identical mobile phases: solvent
A (pure water with 0.1% formic acid) and solvent B (acetonitrile
with 0.1% formic acid), with a flow rate of 0.35 mL-min™ and a
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column temperature maintained at 40 °C. The analytical conditions
were as follows: gradient program starting at 5% B at 0 min,
increasing to 95% B at 9 min, maintaining 95% B for 1 min, then
adjusting to 5.0% B within 1.1 min and maintaining it for 2.9 min.

For QQQ-MS/MS analysis (injection volume 2 L), the ESI
source conditions were as follows: ion source temperature at 500°C;
ion spray voltage ranging from 5,500 to 4,500 V; ion source gas I,
gas II, and curtain gas set at 50, 60, and 25.0 psi, respectively, with
medium collision gas (N,) setting. For QTRAP-MS/MS analysis
(4 pL injection), the ESI source conditions were as follows: ion
source temperature at 550°C; ion spray voltage ranging from 5500
to 4500 V; ion source gas I, gas II, and curtain gas set at 50, 60, and
30.0 psi, respectively, with a collision gas setting of 5 psi. Both
platforms acquired data in MRM mode. The qualitative and
quantitative analyses of metabolites integrated both public
databases and a self-built database of metabolite information.

The GC-/UPLC-/LC-MS data were imported into Microsoft
Excel 2019 for data organization, processing, and statistical analysis.
Multivariate analyses including principal component analysis
(PCA) and orthogonal partial least squares discriminant analysis
(OPLS-DA), were performed using R packages. Differentially
accumulated metabolites (DAMs) were identified based on the
thresholds of [log,(FC)| = 1, FDR < 0.05, and variable importance
in projection (VIP) > 1.

2.5 Combined correlation analysis of DAMs
and DEGs

Hierarchical clustering and KEGG pathway enrichment analyses
were conducted using clusterProfiler (v4.0.5). All DEGs and DAMs
that were associated with KEGG pathways were utilized. The Pearson
correlation coefficients between DAMs and DEGs were calculated
using the Psych package in R software. Significant pairs (r > 0.9, p <
0.05) were subsequently converted to mutual ranks using scripts
available on GitHub (jwisecav/coexp-pipe).

10.3389/fpls.2025.1713657

2.6 Quantitative real-time polymerase
chain reaction

Total RNA was extracted from 100 mg of frozen leaf tissue using
the RNAprep Pure Plant Plus Kit (TTANGEN, Beijing, China)
according to the manufacturer’s specifications, with integrity and
concentration verified using a NanoDrop 2000 (Thermo Fisher
Scientific). First-strand cDNA was synthesized from 1 pg of RNA
with the PrimeScriptTM RT Kit with gDNA Eraser (Perfect Real
Time) (Takara Bio Inc., Shiga, Japan) under optimized conditions:
42°C for 2 min, 37°C for 15 min, and 85°C for 5 s. Amplification was
performed on a CFX96 Real-Time PCR Detection System (Bio-Rad
Laboratories, Hercules, CA) and included initial denaturation at
95°C for 30 s, followed by 40 cycles of 95°C for 5 s and 60°C for 30's,
concluding with melt curve analysis from 65°C to 95°C at a rate of
0.5°C-s?, using TB Green® Premix Ex TaqTM II (Tli RNaseH Plus)
(Takara Bio Inc., Shiga, Japan). The qPCR reactions (25 pL)
contained 12.5 UL of TB Green Master Mix, 20 UM gene-specific
primers (Supplementary Table S1, synthesized by Sangon Biotech,
Shanghai, China), and 2 uL of diluted cDNA template. The
constitutively expressed AaActin served as the internal control for
Ct value normalization. Relative quantification was determined

AACT

using the 2° method with efficiency correction, employing

three biological and technical replicates.

3 Results

3.1 Botanical description of two similar
species between A. stolonifera and A. argyi

A. stolonifera and A. argyi are perennial herbs belonging to the
genus Artemisia, exhibiting distinct morphological characteristics.
A. stolonifera typically reaches a height of 50-120 c¢m, characterized
by sparse gray arachnoid pubescence or a glabrescent appearance.
The middle stem leaves are nearly sessile and can be described as

FIGURE 1

Morphological characterization and leaf of A. stolonifera (A) and A. argyi (B).
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obovate-elliptic, ovate-elliptic, or ovate, often exhibiting 2- or 3-
cleft or -partite structures with coarse teeth, and are gland-dotted on
the adaxial surface (Figure 1A). In contrast, A. argyi is taller,
ranging from 80-250 cm, and features numerous lateral roots
with short apical branching, also covered in gray arachnoid
pubescence. Its middle stem leaves are ovate, triangular-ovate, or
subrhombic, with the adaxial surfaces are incanous pubescent and
white gland-dotted. These leaves are generally 1- or 2-pinnatipartite
or -cleft (Figure 1B). Furthermore, we observed that A. stolonifera
emits a mild and fresh aroma, which is distinctly different from the
intense odor of A. argyi. To systematically investigate these
phytochemical differences, we analyzed both the volatile and non-
volatile components of each species. The volatile profiling aimed to
elucidate the specific compositional basis for the characteristically
mild aroma of A. stolonifera, while flavonoid quantification assessed
its potential for non-volatile bioactive constituents. This combined
approach provides a comprehensive chemical foundation for
understanding the traditional and potential applications of both
species, highlighting how the unique sensory characteristics of A.
stolonifera arise from its distinctive volatile metabolome.

3.2 Differential expression of RNA
sequencing between A. stolonifera and A.

argyi

To elucidate the molecular mechanisms underlying the
differences in secondary metabolism between A. stolonifera and
A. argyi, we conducted comparative transcriptome analysis. A total
of 38.25 Gb of raw bases were obtained (Supplementary Table S2).
After quality filtering, 37.61 Gb of clean data were acquired, with
individual sample data ranging from 5.87 to 6.75 Gb. High
sequencing quality was confirmed, with Q30 scores exceeding
96.3% and an average GC content of 43.36% (Supplementary
Table S2). De novo assembly of the clean reads yielded 76,717
expressed transcripts (unigenes), including 13,874 novel genes, with
over 78.83% of clean reads mapping to the reference genome. GO
analysis assigned 38,655 unigenes (50.39%) to functional categories,
with the most abundant subcategories being “metabolic process”
(Biological Process), “cellular anatomical entity” (Cellular
Component), and “binding” (Molecular Function)
(Supplementary Figure S1). KEGG pathway annotation assigned
36,468 unigenes (47.54%) to five categories, including 22
subcategories; those with the highest gene representation included
“global and overview maps”, “carbohydrate metabolism”, and
“translation” (Supplementary Figure S2). PCA confirmed clear
separation between the transcriptomes of AS and AA
(Supplementary Figure S3), which confirms the high quality of
sampling, sequencing, and gene expression quantification in
this study.

The comparative analysis between the AS and AA groups
identified 9,554 upregulated and 8,446 downregulated DEGs in
AS relative to AA (Figures 2A, B). This substantial set of DEGs
likely underlies the observed differences in secondary metabolism
between the two species. Among these DEGs, 4,656 were annotated
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with GO terms, with the most enriched subcategories in BP, CC,
and MF being “arginyl-tRNA aminoacylation (G0O:0006420)”,
“eukaryotic translation initiation factor 3 complex
(G0O:0005852)”, and “translation initiation factor binding
(GO:0031369)”, respectively (Figure 2C). To specifically
investigate the molecular basis of secondary metabolic differences,
we conducted KEGG enrichment analysis on the DEGs. This
analysis revealed significant enrichment (p < 0.05) of DEGs in
pathways directly related to secondary metabolism. Notably, the
“phenylpropanoid biosynthesis” pathway was significantly enriched
in both upregulated (80) and downregulated (66) gene sets
(Figures 2D, E). Among the 18 significant pathways enriched for
upregulated DEGs in AS, “biosynthesis of various plant secondary
metabolites” (62), “linoleic acid metabolism” (23), “flavone/flavonol
biosynthesis” (9), and “sesquiterpenoid/triterpenoid biosynthesis”
(13) were prominent (Figure 2D). For downregulated DEGs in AS
(12 significant pathways), the most enriched pathway was
“glycolysis/gluconeogenesis” (71), while “monoterpenoid
biosynthesis” (18) and “terpenoid backbone biosynthesis” (29)
were also enriched (Figure 2E). Analysis of the top 20 most
significantly enriched KEGG pathways further underscored
distinct regulatory mechanisms within phenylpropanoid
metabolism (“phenylpropanoid biosynthesis”) and terpenoid
metabolism (“monoterpenoid biosynthesis” and “sesquiterpenoid/
triterpenoid biosynthesis”) (Figure S4). Collectively, these
transcriptomic analyses identified extensive DEGs and revealed
significant alterations in key secondary metabolic pathways,
particularly in phenylpropanoid and terpenoid biosynthesis,
providing crucial insights into the molecular mechanisms
responsible for the divergent secondary metabolite profiles
between A. stolonifera and A. argyi.

3.3 Volatile terpenoids reveals metabolite
changes between A. stolonifera and A.

argyi

To comprehensively profile the metabolomic differences
between AS and AA, we conducted a metabolic profiling analysis
of VOCs using HS-SPME-GC-MS. An initial assessment of the total
ion chromatograms (TICs) revealed strong analytical signals, high
peak capacity, and good retention time reproducibility across all
samples, indicating robust instrument performance
(Supplementary Figure S5). A total of 1,577 metabolites were
detected across all samples and categorized into 15 distinct
groups. Terpenoids represented the most abundant class,
accounting for 22.32%, followed by esters at 18.14%. Multivariate
analysis utilizing PCA and OPLS-DA effectively segregated the
samples into two distinct clusters corresponding to AS and AA,
underscoring the significant metabolic divergence between A.
stolonifera and A. argyi (Figures 3A-C).

Employing both single- and multidimensional analytical
approaches, we identified a total of 1,338 DAMs, of which 1,029
were significantly downregulated and 309 were significantly
upregulated in AS compared to AA (Figure 3D). The top 30
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Functional classification of DEGs. (A) Hierarchical clustering heatmap of DEGs. (B) Volcano plot of DEGs. (C) Comparison of the distribution of DEGs
at the GO level. KEGG enrichment analysis of upregulated (D) and downregulated (E) DEGs in AS.
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DAMs exhibiting the highest absolute value of Log,FC were
predominantly terpenoids (Supplementary Table S3). KEGG
pathway enrichment analysis of the DAMs (Figures 3E, F)
revealed significant alterations in specific metabolic pathways.
Terpenoids constituted the dominant class among both the
upregulated and downregulated DAMs, suggesting their key roles
in differentiating the species. The upregulated DAMs in AS were
extremely significantly enriched (p < 0.01) in “sesquiterpenoid/
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triterpenoid biosynthesis” (6) and significantly enriched (p < 0.05)
in “biosynthesis of various plant secondary metabolites” (8)
(Figure 3E). Conversely, the downregulated DAMs in AS were
significantly enriched (p < 0.05) in “monoterpenoid biosynthesis”
(17) (Figure 3F). Notably, this pattern of terpenoid metabolite
enrichment aligns remarkably well with the transcriptomic data,
which showed significant enrichment of DEGs in the corresponding
terpenoid backbone and branch pathways (Figures 2D, E).
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Specifically, the upregulation of sesquiterpenoid/triterpenoid
DAMs corresponds to the enrichment of upregulated DEGs in
pathways such as “sesquiterpenoid/triterpenoid biosynthesis”, while
the downregulation of monoterpenoid DAMs correlates with the
observed downregulation of DEGs in “monoterpenoid
biosynthesis” pathways. These findings strongly support the
hypothesis that the differential accumulation of terpenoids in
their biosynthetic pathways is a major contributor to the
metabolic distinction between A. stolonifera and A. argyi.

10.3389/fpls.2025.1713657

3.4 Non-volatile flavonoids and lignin-
related metabolites reveal metabolite
changes between A. stolonifera and A.

argyi

To investigate secondary metabolic divergence indicated by
transcriptomic data, we performed targeted UPLC-ESI-MS
analyses focusing on flavonoids and lignin biosynthesis
intermediates. The assessment of base peak chromatograms
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confirmed the robustness of the instrument’s performance
(Supplementary Figure S6). A total of 560 flavonoid metabolites
were identified (417 neg and 143 pos), with flavones (179) and
flavonols (130) constituting the predominant subclasses. PCA and
OPLS-DA clearly separated AS and AA (Figures 4A-C), confirming
substantial inter-species metabolic differentiation, as observed in
the VOCs metabolomics and transcriptomics. We identified 390
DAMs in the flavonoid dataset, of which 273 were downregulated
and 117 upregulated in AS (Figure 4D). Among the top 30 DAMs
ranked by absolute value of Log2FC, flavones and flavonols showed
the most pronounced alterations, with the majority being
downregulated in AS (Supplementary Table S4). KEGG
enrichment highlighted “flavone/flavonol biosynthesis” (21) and
“flavonoid biosynthesis” (18) as the most significantly enriched
pathways (Figure 4E), corroborating transcriptomic findings
(Figure 2). This analysis illustrates that the predominantly
downregulated accumulation of flavones and flavonols in AS
significantly contributes to the metabolic differentiation between
A. stolonifera and A. argyi.

Complementary analysis of the lignin biosynthesis pathway
identified 14 key intermediate metabolites, among which 5 DAMs
were detected. Sinapic acid and sinapinaldehyde, precursors of S-
lignin, were significantly upregulated in AS compared to AA,
whereas p-coumaric acid, coniferyl alcohol, and p-coumaryl
alcohol, precursors of G- and H-lignin, were significantly
downregulated (Figure 5). These results suggest species-specific
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lignin subunit composition and illustrate coordinated regulation
of phenylpropanoid-derived metabolism. Collectively, our UPLC-
ESI-MS data delineate distinct flavonoid and lignin biosynthesis
profiles between the two species, providing metabolite-
level evidence.

3.5 Correlation analysis between the
transcriptome and metabolome data

To elucidate the regulation of secondary metabolism, integrated
KEGG enrichment analysis revealed 33 pathways co-enriched in
DEGs and DAMs. Figure 6A highlighted the top 20 pathways with
the largest number of DAMs. Among these pathways, flavone/
flavonol biosynthesis, flavonoid biosynthesis, monoterpenoid
biosynthesis, and sesquiterpenoid/triterpenoid biosynthesis
exhibited the highest numbers of DAMs. Notably,
sesquiterpenoid/triterpenoid biosynthesis, monoterpenoid
biosynthesis, terpenoid backbone biosynthesis, and flavone/
flavonol biosynthesis were significantly enriched in the
transcriptomic data, indicating their central roles in the
differences observed between A. stolonifera and A. argyi.
Specifically, 50 DEGs and 24 DAMs were identified as being
associated with the terpenoid-related biosynthesis pathway, while
55 DEGs and 39 DAMs were linked to the flavonoid-related
biosynthesis pathway.
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Crucially, Pearson correlations were computed using DEGs and
DAMs, as visualized in Figures 6B, C. This analysis focused on
terpenoid-related and flavonoid-related biosynthesis pathways,
with a significance threshold set at p < 0.01 and |r| > 0.9. Among
the findings, 24 terpenoids demonstrated significant correlations
with 30 DEGs, while 33 flavonoids were significantly correlated with
27 DEGs. The co-expression analysis revealed that terpenoid
metabolites could be distinctly categorized into two groups:
Category I, which includes 6 sesquiterpenoids, and Category II,
which comprises of 5 sesquiterpenoids and 13 monoterpenoids.
Notably, 21 DEGs were positively correlated with Category I DAMs
and negatively correlated with Category II DAMs (Figure 6B).
Similarly, flavonoid-related metabolites were classified into two
categories: Category I, consisting of 4 flavanones, 3 flavones, 3
flavonols, 3 chalcones and 1 flavanol, and Category II, which
includes 9 flavones, 7 flavonols, 2 flavanonols and 1 flavanone. A
total of 16 DEGs were positively correlated with Category I DAMs
(Figure 6C). Within each category, metabolites exhibited positive
correlations, while those from different categories typically
displayed negative correlations. Collectively, we hypothesize that
species-specific divergence is mechanistically linked to the
differential regulation of terpenoid-related and flavonoid-
related biosynthesis.
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3.6 Identification of unigenes related to
terpenoid-related, and flavonoid-related
biosynthesis pathways

Our results, obtained through the integration of transcriptomics
and metabolomics, indicate significant differences in the expression
of genes related to terpenoid and flavonoid biosynthesis between the
two species. The mevalonate (MVA) and methylerythritol
phosphate (MEP) pathways are central to terpenoid biosynthesis,
generating isoprenoid precursors including isopentenyl
diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). To
investigate the potential functions of genes involved in terpenoid
backbone biosynthesis in leaves, which serve as the primary storage
organ for essential oils, we identified candidate genes encoding
enzymes within the MVA and MEP pathways from RNA-seq data.
Transcriptomic analysis revealed 48 DEGs associated with
terpenoid backbone biosynthesis, of which 19 unigenes exhibited
upregulation in AS compared to AA. Within the MVA pathway,
acetyl-CoA C-acetyltransferase (AACT), hydroxy methylglutaryl
CoA reductase (HMGR), and phosphomevalonate kinase (PMK)
showed species-specific regulation. Notably, the expression of
AACTI1-4 was markedly elevated in AS, corresponding to a 2.3-
to 5.0-fold increase relative to AA. In contrast, genes associated with
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FIGURE 7

Metabolic pathway map of the terpenoid-related biosynthesis pathways. Small squares and circles indicate the expressed levels of unigenes/
metabolites, and red/green/yellow graphics indicates up/down/both up- and downregulated genes or metabolites in the AS group.

the MEP pathway, such as 1-deoxy-D-xylulose-5-phosphate
synthase (DXS) and reductoisomerase (DXR), displayed
preferential expression in AA.

Downstream terpenoid synthesis revealed nuanced regulatory
patterns. Farnesyl diphosphate synthase (FPPS) isoforms (FPPSI-3)
exhibited statistically significant, albeit low-abundance,
upregulation in AS, indicating a subtle enhancement of
sesquiterpenoid precursor production. Additionally, four
additional genes (FLDHI-3 and GPPSI) demonstrated AS-
upregulated expression linked to specialized terpenoid
diversification. Sesquiterpenoid/triterpenoid biosynthesis
pathways contained 19 DEGs, predominantly upregulated in AS.
In contrast, monoterpenoid and diterpenoid biosynthesis involved
31 and 12 DEGs respectively, with 18 and 8 unigenes upregulated in
AA. Metabolomic validation confirmed species-specific
accumulation. Notably, all 13 DAMs in monoterpenoid
biosynthesis significantly increased in AA, with (-)-carvone,
(-)-menthone, and cis-4-thujanol exhibiting 79.07-, 28.62-, and
24.57-fold higher contents respectively (Figure 7). Furthermore,
11 DAMs associated with sesquiterpenoid and triterpenoid
biosynthesis were identified, predominantly upregulated in AS.

Through combined transcriptomic and metabolomic profiling,
along with KEGG pathway mapping, we reconstructed the species-
divergent regulation of flavonoid biosynthesis in AS and AA. The
phenylpropanoid pathway served as the central biosynthetic node,
supplying precursors for both flavonoid and lignin production. In
this study, we identified 145, 40, and 15 DEGs involved in
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phenylpropanoid, flavonoid, and flavone/flavonol biosynthesis,
respectively, of which 80, 19, and 9 DEGs were significantly
upregulated (p < 0.05) in AS. Correspondingly, 5, 18, and 15
metabolites were associated with phenylpropanoid, flavonoid, and
flavone/flavonol biosynthesis (Figure 8). We identified distinct
expression patterns for 39 peroxidases (PERs), 26 acetylserotonin
O-methyltransferases (COMTs), 16 cinnamyl-alcohol
dehydrogenases (CADs), 10 4-coumarate-CoA ligases (4CLs), 7
spermidine hydroxycinnamoyl transferases (HCTs), 7
lysophospholipases (LysoPLs), 6 cinnamate-4-hydroxylases
(C4Hs), 6 UDP-glucosyl transferases 72E (UGT72Es), 5 aldehyde
dehydrogenases (ALDH2Cs), 5 ferulate-5-hydroxylases (F5Hs), 3
caffeoyl-CoA O-methyltransferases (CCoAOMTs), 2 cytochrome
P450 family 98 subfamily A8s (CYP98As), and 2 cinnamoyl-CoA
reductases (CCRs) between the two species. This metabolic profile
aligns with the observed transcriptomic differences, particularly the
downregulation of key precursors for G-lignin (coniferyl alcohol) in
AS, in conjunction with the upregulation of intermediates
associated with S-lignin synthesis (sinapic acid, sinapinaldehyde).
These monolignols are subsequently polymerized to form the
complex lignin polymer.

The early steps of the flavonoid pathway exhibited
complementary regulation among species. Chalcone synthase
(CHS) genes showed significantly higher expression in AA,
facilitating the accumulation of naringenin chalcone. In contrast,
chalcone isomerase (CHI) isoforms displayed species-specific
induction, with CHI2 expression increasing 6.3-fold, thereby
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enhancing the conversion to naringenin. Downstream
hydroxylation modifications indicated pathway specialization.
Flavanone 3-hydroxylase (F3H) expression increased by an
average of 4.4-fold in AA, catalyzing the conversion of flavanones
into flavanonols. The expression of flavonoids 3’-monooxygenase
(F3’H) isoforms demonstrated divergent regulation: F3’H7-11
expression rose between 2.9 and 148.4-fold in AA, while F3’HI-6
expression by 2.0 to 11.1-fold in AS, facilitating the conversion of
isoflavones into flavonols. Glycosylation processes played a crucial
role in determining the final metabolite speciation. A total of 3
UDP-glycosyltransferases (UGT) 73Cs and 1 UGT78D were
identified, with their expression levels varying between the leaves
of the two Artemisia species. Metabolomic validation corroborated
this divergence. Among 15 DAMs in flavone/flavonol biosynthesis,
9 compounds preferentially accumulated in AS, including
kaempferide, while 6 metabolites enriched in AA, exemplified by
naringenin. Therefore, the differential expression of UGT73Cs and
UGT?78D may be a critical factor directly influencing the type of
flavone/flavonol synthesized.

3.7 qRT-PCR validation of DEG expression

To validate the reliability and robustness of our transcriptome
dataset, we conducted an independent verification by quantifying
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the expression patterns of eight DEGs using qRT-PCR. The
expression profiles of these DEGs were consistent with those
obtained from RNA sequencing analysis (Figure 9). This robust
correlation establishes a reliable resource for elucidating species-
specific divergence in specialized metabolite pathways between A.
stolonifera and A. argyi, particularly in the terpenoid and flavonoid
metabolic networks.

4 Discussion

Currently, A. argyi is officially documented in the Chinese
Pharmacopoeia and is extensively cultivated across China for
medicinal, food, and moxibustion applications, owing to its well-
characterized efficacy and intensely aromatic properties. A.
stolonifera exhibits a mild and delicate aroma, despite
documented historical use, remains markedly underexplored and
underutilized in modern applications, primarily due to insufficient
comparative studies of its phytochemical aspects. Our integrated
metabolomic platform characterized 2,153 metabolites (1,579 via
GC-MS and 574 via UPLC- ESI (-QTRAP) -MS) with clear
definitions. Among these, 1,657 metabolites were identified as
DAMs, showing pronounced divergence between A. stolonifera
and A. argyi (Supplementary Figures S2, S5). This represents an
expansion in metabolite coverage compared to prior comparative

frontiersin.org


https://doi.org/10.3389/fpls.2025.1713657
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Cao et al.

10.3389/fpls.2025.1713657

Aargl17G004080 Aargl16G024750 Aarg0G016200 Aarg10G040180
R=09.p=0014 f
30 30
R=081.p=0053 r 10 0 |
R=0.77,p=0073 ° R=094,p=00049
« o o ®
: :
g 5 g £ s g
% | . & & =)
® 5
» 10 L3
. * 0 .
15
200 400 600 800 1000 1500 2000 2500 300 600 900 0 200 600
RNA-Seq RNA-Seq RNA-Seq RNA-Seq
12.
Aargl17G011270 3 Aarg14G028100 Aarg13G007020 Aarg11G009440
25 R=089,p=0019 ¥
100 R=08.p=0054 *
R=0.73,p=0097 ® 30
201 kooss.p=002 1 *
=0.88,p =0,
5 P 5 75 o ~ .
) i : £ . . 5 [
g o . = = .
=15 I 2 . 220
. 30
L)
10 25 s
204 10
.
05 00
0 100 150 100 200 300 400 400 800 1200 200 600
RNA-Seq RNA-Seq RNA-Seq RNA-Seq
FIGURE 9

Scatter plot of Pearson correlation coefficient between RNA-Seq and gRT-PCR.

studies. Li et al. (2023) employed HS-SPME-GC-MS to profile
essential oils in A. stolonifera (59 volatile compounds) and A.
argyi (64 volatile compounds). Luo et al. (2020a) utilized UPLC-
Q-TOF-MS to analyze the chemical components of leaf and floss
extracts from A. stolonifera and A. argyi sourced from different
locations, identifying 18 compounds. Crucially, our non-targeted
UPLC-ESI-MS and targeted UPLC-ESI-QTRAP-MS approaches,
complementing the HS-SPME-GC-MS dataset, enabled
unprecedented resolution of polar bioactive compounds,
establishing a foundational framework for elucidating species-
specific metabolic networks. Our results delineated distinct
chemotypes: A. stolonifera accumulates sesquiterpenoids, while A.
argyi enriches in monoterpenoids and flavonoids. The
compositional differences identified through chemical analysis
elucidate the contrasting olfactory profiles of the two species. A.
stolonifera exhibits a much milder and more delicate aroma, a
sensory characteristic closely linked to its significantly lower
abundance of volatile constituents and reduced levels of strong-
smelling monoterpenoids such as eucalyptol and camphor.
Conversely, A. stolonifera contains higher proportions of lighter,
less aggressive sesquiterpenoids, which contribute to its subtle and
pleasant aroma. These characteristics suggest that A. stolonifera
may be a suitable material for applications where milder odors are
preferred, such as in sensitive-skin moxibustion or light-aroma
therapeutics. In stark contrast, A. argyi produces a distinctively
strong and penetrating aroma, which primarily arises from its high
concentrations of monoterpenes. Species-specific metabolic have
also been reported in other medicinal genera. In Coptis species,
interspecific variation in alkaloid profiles directly influences
pharmacological potency (Qi et al., 2022), supporting our
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hypothesis that the metabolic differences observed between
Artemisia species have significant functional implications.

Field cultivation practices confirm that both A. argyi and A.
stolonifera undergo stem lignification during development, a
process supported by the positive correlation between lignin
content and stem strength (Nan et al., 2022). Metabolomic
profiling revealed higher accumulation of lignin pathway
intermediates (p-coumaryl alcohols and coniferyl alcohols) in AA,
indicating enhanced lignin deposition. Following the synthesis of
monolignols (p-coumaryl alcohols, coniferyl alcohols, and sinapyl
alcohols) in the cytoplasm, these compounds are transported to the
apoplast where they are polymerized with lignin units (S, H and G
units) by peroxidase (POD) and laccase (LAC) (Bonawitz and
Chapple, 2010; Miao and Liu, 2010; Shah et al., 2017).
Transcriptomic analysis further identified 145 DEGs involved in
lignin biosynthesis, most exhibiting higher expression in AA,
consistent with the metabolite data. In contrast, the lower
accumulation of intermediate lignin metabolites in AS suggests
that more phenylpropanoid precursors might be channeled to the
biosynthesis of volatile terpenoids or aromatic esters, providing a
metabolic explanation for its mild and fresh aroma profile. This
divergence in phenylpropanoid partitioning provides a biochemical
basis for the distinct aroma profiles of the two species.

Terpenoids are a class of important chemicals produced by
plants, classified by carbon skeleton size into monoterpenes (Cio),
sesquiterpenes (C;s), diterpenes (Cso), triterpenes (Cso),
tetraterpenes (Caso), and polyterpenes. Among these,
sesquiterpenoids/triterpenoids are primarily biosynthesized via
the cytosolic MVA pathway (Dubey et al, 2003). Focusing on
terpenoid biosynthesis, structural genes within the MVA pathway
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exhibited significantly elevated expression (e.g., AACT1-4, HMGRI-
3) in A. stolonifera. HMGR, the rate-limiting enzyme that converts
HMG-CoA to mevalonate (Rodriguez-Concepcion and Boronat,
2002; Rohmer, 2007), positively regulates terpenoid synthesis
(Gondet et al., 1992; Zhang et al., 2019), which partially explains
the accumulation of sesquiterpenoids observed in A. stolonifera.
Conversely, genes of the MEP pathway displayed significantly
higher expression (e.g., DXS2, DXRI-5) in A. argyi (Figure 7).
DXS and DXR are key rate-limiting enzymes (Lange et al., 1998;
Takahashi et al, 1998) that enhance the precursor supply for
monoterpene biosynthesis (Lichtenthaler et al., 1997). The
divergent terpenoid biosynthesis in A. stolonifera and A. argyi
likely stems from evolutionary specialization. Evidence suggests
that organellar genomes, in addition to nuclear genes, may
influence metabolic differentiation. Mitochondrial genomic
studies in Coptis species have demonstrated substantial organelle-
level variation associated with interspecific metabolic divergence
(Zhong et al., 2023), suggesting that cyto-nuclear interactions could
similarly contribute to metabolic disparity in Artemisia.
Transcriptome-metabolome correlation analysis identified key
genes (TPS, SQS, BAS, SDR, LUP, CAMS, SQE, and XF) in
terpenoid-related biosynthesis pathways regulating the differential
synthesis of terpenoids in A. stolonifera and A. argyi (Figure 6B).
Specifically, the enhanced expression of downstream terpenoid
backbone biosynthesis genes (e.g., BASI, LUP2, CAMSI, and XFI)
in A. stolonifera showed a strong positive correlation with its
significantly higher accumulation of specific sesquiterpenoids,
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including &-cadinene, B-bisabolene, B-caryophyllene, humulene,
longifolene, and PB-selinene (Figures 6B, 7), indicating an
enhanced flux toward sesquiterpenoid precursors. The elevated
expression of key downstream genes (e.g., SDR2-4, TPSI4) is
closely associated with the preferential accumulation of
monoterpenoids, such as eucalyptol and (+)-camphor. The
complexity of this metabolic network, with characterized by
numerous branches, underscores the necessity for further
investigation into the cooperative expression and regulatory
mechanisms of each gene. The terpenoids metabolic divergence
between A. stolonifera and A. argyi may extend beyond
transcriptional regulation to include post-translational
modifications. PRMT5-mediated methylation significantly
reshapes protein function and cell metastasis (Fan et al., 2025),
suggesting that analogous mechanisms may similarly influence
metabolic specialization in Artemisia species.

The differences identified between A. stolonifera and A. argyi
emphasize the need for a deeper understanding of the properties of
individual species used in various applications. This perspective
echoes recent advances in medicinal plant resource evaluation,
including innovative approaches to utilizing non-traditional plant
parts as demonstrated in Coptis research (Ding et al., 2025).
Previous studies have validated that monoterpenes exhibit potent
antimicrobial and antioxidant activities, positioning them as ideal
natural food preservatives that ensure the microbiological and
oxidative stability of food products (Rehman et al., 2021; Kumar
et al, 2022). Our metabolomic quantification confirmed that
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monoterpenes are primarily enriched in A. argyi (Figure 10),
establishing this species as a premium source for natural food
preservatives. Additionally, the higher levels of eucalyptol and
camphor further highlight its suitability as a promising additive
(Yazgan, 2020; éojié etal, 2021). A. stolonifera is characterized by a
high abundance of sesquiterpenoids, especially [-caryophyllene.
Mechanistic studies demonstrate B-caryophyllene possesses a
greater ability to retain in the stratum corneum compared to
eucalyptol (Figure 10), thereby facilitating its disruptive effect on
stratum corneum lipids (Tang et al, 2023). According to Zhang
et al. (2024), seven flavonoids (5-desmethylnobiletin, rhoifolin,
baicalin, biorobin, nepetin, eriodictyol, and isorhoifolin) and nine
terpenoids (bornyl acetate, endo-borneol, L-fenchone, 2-pinen-7-
one, caryophyllene, camphor, levomenthol, (+)--cedrene, and y-
terpinene) were identified as important biomarkers for tracking the
aging time of A. argyi. The transformation of these compounds
during post-harvest aging is critical for enhancing both the efficacy
and safety of A. argyi, corroborating the traditional practice of
prolonged storage. In contrast, the inherently mild properties of A.
stolonifera suggest that it may not require extended aging to achieve
optimal applicability. This fundamental difference not only
indicates distinct post-harvest processing needs for the two
species but also positions A. stolonifera as a promising resource
with advantages for rapid utilization.

Flavonoids, which are low molecular weight secondary
metabolites with significant pharmacological value, are
predominantly biosynthesized via the phenylpropanoid pathway
(Nigam et al.,, 2019). An analysis of flavonoid biosynthesis in A.
argyi further demonstrated a significantly elevated expression of
core structural genes (e.g., CHSI-2, CHI, F3HI-3) (Figure 8),
correlating with the notably higher accumulation of specific
flavonoids, including chrysin, neohesperidin, and isovitexin.
These findings align with previous studies on the flavonoid
profiles of Artemisia species (Liu et al., 2015; Song et al., 2017),
confirming species-specific accumulation. Mechanistically, CHS
catalyzes the stepwise condensation of 4-coumaroyl-CoA and
malonyl-CoA to naringenin chalcone, thereby diverting
phenylpropanoid flux toward flavonoids (Winkel-Shirley, 2001;
Grotewold, 2006). The CHS genes constitute a polygenic family
characterized by strong conservation (Park et al., 2020). Subsequent
enzymatic conversions drive downstream synthesis: CHI catalyzes
the isomerization of chalcone to naringenin (Dixon and Paiva,
1995), while the reaction catalyzed by F3H converts naringenin to
dihydrokaempferol, which is subsequently converted to kaempferol
by FLS (Winkel-Shirley, 2001). Thus, the coordinated upregulation
of CHS, CHI, and F3H was positively associated with flavonoid
synthesis in A. argyi. Collectively, these transcriptional changes
underlie the significantly higher flavonoid accumulation in A. argyi
relative to A. stolonifera. These biochemical advantages translate
into substantial agricultural applications. The flavonoids from
Artemisia have been shown to improve the growth performance
and meat quality of broilers (Yang et al., 2021; Shi et al., 2022).
Notably, 0.4 mg/mL of A. argyi flavonoids effectively prolongs the
storage period of fresh-grade breast meat (Yang et al., 2023). The
abundant flavonoid metabolites underlying these applications
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provide a biochemical basis for future innovations in deep
processing beyond traditional moxibustion.

5 Conclusion

This study established a comprehensive multi-omics integration
of metabolomic and transcriptomic profiles contrasting the
historically significant A. stolonifera with the pharmacopeial
standard A. argyi, revealing species-specific divergences.
Comparative analysis identified 1,728 DAMs and 18,000 DEGs,
demonstrating that species-specific divergence drives
transcriptional and metabolic network reorganization in A.
stolonifera and A. argyi. Transcriptomic profiling revealed
significant regulatory divergence in terpenoid and flavonoid
biosynthesis between the two species. In A. stolonifera, the
coordinated upregulation of MVA pathway genes and
sesquiterpene synthases strongly correlated with sesquiterpenoid
accumulation. Conversely, A. argyi exhibited preferential induction
of MEP pathway genes, monoterpenoid biosynthesis genes, and
flavonoid biosynthesis genes, which are associated with
monoterpenoid and flavonoid enrichment. These pronounced
metabolic and transcriptional differences underscore the necessity
for evaluating of A. stolonifera’s distinct phytochemical profile,
particularly concerning its equivalence to A. argyi for medicinal
applications reliant on monoterpenoids or specific flavonoids.
Furthermore, while we elucidated novel molecular regulatory
networks governing the biosynthesis of terpenoids and flavonoids,
the potential regulatory characteristics still required systematic
characterization. Our research team is currently investigating the
precise functions of specific genes in A. stolonifera to decipher their
mechanistic contributions to terpenoid biosynthesis. Our findings
established a foundational framework for future research, including
the functional validation of candidate genes involved in A.
stolonifera’s terpenoid and flavonoid biosynthesis, which will
inform strategies for its precision breeding and sustainable
utilization in TCM.
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