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Estimating rice yield-related
traits using machine learning
models integrating hyperspectral
and texture features
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Background: Rapidly estimating multiple trait indicators simultaneously,
nondestructively, and with high precision is an important means of accurate
diagnosis in modern phenomics. Increasing the accuracy of estimation models
for rice yield-related trait indicators (leaf nitrogen concentration, LNC; leaf area
index, LAl; aboveground biomass, AGB; and grain yield, GY) through a strategy of
"spectral data + texture data + dimensionality reduction + machine learning” is
highly important.

Methods: Between 2022 and 2023, hyperspectral canopy images, the LNC, LAI,
AGB, and GY were collected synchronously. Then, dimensionality reduction was
performed on the preprocessed spectral data using the Pearson correlation
coefficient method, the successive projections algorithm (SPA), and competitive
adaptive reweighted sampling (CARS) to select sensitive wavelengths. Estimation
models were constructed using artificial neural networks (ANNs), support vector
machine regression, one-dimensional convolutional neural networks, and long
short-term memory networks. By extracting the texture features corresponding
to sensitive wavelengths, high-precision estimation models were constructed
using a "spectral data + texture data + dimensionality reduction + machine
learning” method.

Results: SPA-ANN provided the best prediction for LNC (R? = 0.82, RMSE = 3.68
g/kg) and LAl (R? = 0.75, RMSE = 0.47), while CARS-ANN was optimal for AGB (R?
=0.90, RMSE = 79.05 g/m2) and GY (R® = 0.63, RMSE = 0.59 t/ha). Adding texture
features increased R? by up to 9.9% and reduced RMSE by up to 27.2%.
Conclusion: The optimized method can significantly increase the accuracy of
estimation models. The results provide a scientific basis and technical data for the
precise diagnosis of rice yield-related traits.
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1 Introduction

Rice (Oryza sativa L.) is one of China’s main food crops and
plays an important role in ensuring the country’s food security and
stabilizing economic development. Accurately monitoring and
predicting multiple growth traits of rice is highly important for
guiding healthy growth and precise fertilization management
(Zhang et al., 2002). The leaf nitrogen concentration (LNC), leaf
area index (LAI), aboveground biomass (AGB), and grain yield
(GY) of rice are the most common indicators for monitoring and
predicting the growth of high-yield and efficient rice (Wang et al.,
2021). Research on the hyperspectral prediction of multiple growth
indicators of rice is highly important for promoting the healthy
growth of rice and increasing food security.

In recent years, owing to the efficient, accurate, objective, and
nondestructive characteristics of hyperspectral remote sensing
technology, scholars worldwide have conducted extensive research
on monitoring various biological indicators of field crops using
hyperspectral technology and have achieved useful results (Onoyama
etal, 2018; Xu et al, 2023; Zhang et al., 2024). These studies often use
the full spectrum for modelling. However, the predictive performance
of the models is somewhat affected by the presence of a large amount
of redundant information in the spectrum (Gao, 1993; Kuusk, 2001).
When conducting hyperspectral analysis, the high spectral values
generally range from 400 to 2500 nm, which leads to very high data
dimensionality. Therefore, reducing the dimensionality of spectral data
and identifying sensitive wavelengths are the primary conditions for
improving the efficiency of model operation, simplifying the model
structure, and increasing model stability (Barman and Patra, 2020).

Huan et al. (Huan et al, 2021) used four dimensionality
reduction algorithms—CARS, variable combination population
analysis, Monte Carlo variable combination population analysis,
and automatic weighted variable combination population analysis
(AWVCPA)—to extract spectral feature wavelengths for wheat
protein content. They combined these methods with partial least
squares regression (PLSR) to construct a quantitative detection
model for wheat protein, with the AWVCPA-PLSR model yielding
the best performance. Wang et al. (Wang et al., 2020) used the SPA
to select sensitive wavelengths for above-ground biomass. The SPA-
PLSR model for estimating and validating the aboveground biomass
of winter wheat achieved high accuracy. Tong et al. (Tong et al,
2020) used mathematical transformation and discrete wavelet
transform algorithms to process and analyze the spectral data of
passion fruit leaves. They utilized the PCC method to extract
sensitive wavelengths. The results showed that the PCC-PLSR
model for estimating the chlorophyll content in passion fruit
leaves was superior. Therefore, there are significant differences in
dimensionality reduction methods with different monitoring targets
and trait indicators.

Machine learning is an interdisciplinary field involving multiple
areas, such as statistics, probability theory, convex analysis, and
algorithmic complexity theory (de Castro et al., 2020). Traditional
linear regression methods have limitations in terms of model fit,
often resulting in low model accuracy. With the development of
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machine learning technology, algorithms such as artificial neural
network (ANN), support vector regression (SVR), and random
forest (RF) have been widely used to estimate biochemical crop
parameters (Kganyago et al., 2021; Jabed and Azmi Murad, 2024).
Mao et al. (Mao et al., 2024) obtained hyperspectral remote sensing
data for winter wheat and used four mainstream machine learning
algorithms to predict wheat yield. They reported that the transfer
learning model with multiple random ensembles has advantages in
improving the Pearson correlation coefficient. Cheng et al. (Cheng
et al., 2017) established estimation models for the soil and plant
analyzer development (SPAD) values of apple leaves on the basis of
univariate regression models and SVR models. The research results
showed that the SVR model had greater estimation accuracy for the
SPAD values of apple leaves. Therefore, the most suitable model
algorithm is different for different crops or different trait indicators.
Moreover, single-spectrum data may not provide comprehensive
information about the growth status of crops. Spectral data mainly
reflect the biochemical characteristics of crops, whereas texture
features include information about their spatial structure
and morphology.

In recent years, the number of studies estimating crop growth
conditions on the basis of unmanned aerial vehicle imagery,
combined with spectral and texture features, has gradually
increased (Liu et al,, 2019; Yue et al.,, 2019). Research has shown
that integrating vegetation indices with texture features can
effectively increase the estimation accuracy of various growth
parameters, such as the nitrogen nutrition index (Yang et al,
2020), biomass (Liu et al., 2018), and chlorophyll (Chen et al,
2019) content. Therefore, the effective integration of spectral and
texture features is of significant importance for enhancing the
accuracy of estimation models for various crop trait parameters.

In summary, in constructing spectral estimation models for
crop biochemical parameters, different data dimensionality
reduction techniques and machine learning algorithms each have
advantages, but there are still significant challenges in selecting the
best methods. However, studies on integrating spectral data with
texture features to estimate rice yield-related traits, based on the
optimal combination of dimensionality reduction techniques and
machine learning algorithms, have rarely been reported. In this
study, the widely cultivated high-quality indica varieties
“Meixiangzhan No. 2” and “Nanjingxiangzhan” in South China
were used as experimental materials. Using a multirotor drone
M300 RTK equipped with an X20P airborne hyperspectral imager,
the spectral data of rice were collected at four key growth stages
between 2022 and 2023. Different combinations of dimensionality
reduction and modelling methods were examined, and model
evaluation indicators were used to construct high-precision
estimation models for rice yield-related traits that combine
spectral data, texture features, dimensionality reduction, and
machine learning on the basis of the best combination model.
This further improves the estimation capability of the models. The
results provide a theoretical basis and scientific guidance for the
precise phenotypic diagnosis and prediction of yield-related traits of
high-quality indica rice varieties in South China.
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2 Materials and methods

2.1 Experimental materials and soil
physicochemical properties

The experimental rice varieties used were the high-quality
indica rice varieties “Meixiangzhan No. 2” (V1) and
“Nanjingxiangzhan” (V2), which are widely cultivated in South
China. The experiment was conducted at the Guangdong Academy
of Agricultural Sciences experimental base in Zhongluotan town,
Baiyun district, Guangzhou city, Guangdong province, during the
early and late seasons of 2022 and the early season of 2023
(Figure 1). The physicochemical properties of the experimental
field soil were as follows: pH, 5.95; organic matter, 22.48 g/kg; total
nitrogen, 1.29 g/kg; total phosphorus, 0.42 g/kg; total potassium,
8.43 g/kg; alkaline hydrolysable nitrogen, 58.03 mg/kg; available
phosphorus, 6.49 mg/kg; and readily available potassium, 47.00
mg/kg.

2.2 Experimental design

The experiment used a split-plot design, with nitrogen levels as
the main plot and varieties as the subplot. Five nitrogen fertilizer
levels were considered: 0, 60, 120, 180, and 240 kg N/ha.
Transplanting was performed manually using a line-drawing
method, with a planting density of 20 cm x 20 c¢m, two seedlings
per hill, and three replicates. Nitrogen fertilizer was applied in the
form of urea, and phosphorus and potassium fertilizers were
applied as superphosphate and potassium chloride, respectively.
Nitrogen fertilizer was applied at a ratio of basal fertilizer: tillering
fertilizer: panicle fertilizer=>5:2:3. Basal fertilizer was applied one day

10.3389/fpls.2025.1713014

before transplanting, tillering fertilizer was applied 15 days after
transplanting, and panicle fertilizer was applied at the panicle
initiation (PI) stage. Phosphorus and potassium fertilizers were
applied at standard rates of 54 kg P,Os/ha and 144 kg K,O/ha,
respectively. All the phosphorus fertilizer was applied as basal
fertilizer, and half of the potassium fertilizer was applied as basal
fertilizer, with the other half applied as panicle fertilizer. The field
ridges of each plot were wrapped with plastic film (PVC) to prevent
fertilizer runoff between plots. Field management was conducted
according to the “three controls” (Zhong et al., 2007) fertilization
technique for rice, which optimizes nitrogen application to control
fertilization, tillering, and pests. Strict prevention and control of
pests and diseases. High spectral data of the canopy and data for
four agronomic traits (LNC, LAI, AGB, and GY) were collected at
the heading stage (HD) in the early season of 2022 on June 16, the
panicle initiation stage (PI) in the late season of 2022potassium
fertilizers were applied at standard rates of 54 kg on September 16,
the heading stage (HD) in the late season of 2022 on October 12,
and the panicle initiation stage (PI) in the early season of 2023 on
May 15.

2.3 Experimental methods

2.3.1 Hyperspectral data acquisition and
preprocessing

The hyperspectral rice canopy data were acquired with an M300
RTK (DJI, China) multirotor drone equipped with an X20P
(Cubert, Germany) airborne hyperspectral imager. The spectral
range of the imager is 350 to 1000 nm, with a resolution of 4 nm
and 164 effective bands. The drone flies at a height of 50 meters. The
measurement time ranged from 10:00 to 14:00 Beijing time, and the
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Overview of the experimental site. V1 and V2 represent "Meixiangzhan No. 2" and "Nanjingxiangzhan”

treatments of 0, 60, 120, 180, and 240 kg/ha, respectively.

, respectively. NO, N1, N2, N3, and N4 represent
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weather was clear. Through image stitching, radiometric
calibration, atmospheric correction, orthorectification, image
fusion, geometric correction, and band normalization, the spectral
average value of the region of interest (ROI) in each plot was
extracted using an ROI tool to determine the original spectral
reflectance of each plot. To address the noise bands caused by
environmental factors and increase the prediction accuracy of the
estimation model, the original spectra were processed using the
Savitzky-Golay convolution smoothing algorithm (Wu et al., 2014).
The Savitzky-Golay convolution smoothing algorithm uses a
polynomial to perform a polynomial least squares fit on the data
within a moving window. Essentially, it is a weighted averaging
method that emphasizes the central role of the center point (Chu
et al,, 2004). This enables effective noise reduction while preserving
the original spectral information well (Li SL. et al., 2024). After
parameter optimization, the window_length value for the Savitzky-
Golay convolution smoothing method was set to 9, and the number
of polynomials was set to 2.

2.3.2 Data dimensionality reduction methods

Through comparative analysis, we adopted three of the most
representative dimensionality reduction methods for analysis: PCC,
SPA, and CARS. PCC is an analysis method based on the partial least
squares regression model. This method primarily involves calculating
and analyzing the correlation between the spectral data
corresponding to each band and the biometric data of the rice to
screen out combinations of feature bands with higher correlations
(Yang et al., 2015). SPA uses vector projection to select the minimum
number of spectral variables, addressing issues such as information
overlap and collinearity in the spectra. This reduces the number of
variables used in modelling, thereby increasing the modelling
efficiency (Aratjo et al., 2001). CARS simulates Darwin’s
evolutionary concept of “survival of the fittest.” Through adaptive
reweighted sampling techniques, wavelengths with larger absolute
regression coefficients as calculated by partial least squares regression
are selected. Cross-validation is then used to choose the combination
set with the lowest root mean square error (Li et al., 2009).

2.3.3 Hyperspectral image texture feature
extraction

Using the grey-level co-occurrence matrix method in ENVI 5.3,
the texture features of the selected sensitive bands are extracted with a
3x3 resolution window size, the spatial correlation matrix offsets X
and Y default to 1. These include the mean, variance, homogeneity,
contrast, dissimilarity, entropy, second moment, and correlation
(Yang et al, 2020). The Regions of Interest (ROI) for each plot
were delineated on the texture feature images of each band using the
Region of Interest (ROI) tool, the texture values of those regions can
be extracted. A correlation analysis was conducted between the
extracted texture values and various biophysical parameters. The
two texture values showing the strongest correlations with the
biophysical parameters were selected as inputs.
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2.3.4 Biological indicators

After the spectral measurements were performed, 12
representative rice plants were randomly selected from the
experimental plots. The root systems were removed. At the PI
stage, the stems and leaves were separated, and at the HD stage, the
stems, leaves, and panicles were separated. A leaf area meter was
used to measure the leaf area (S). The stems, leaves, and panicles
were then placed in an oven at 105°C for blanching for 30 min,
followed by drying at a constant temperature of 75°C until a
constant weight was reached. The dry weights were recorded
separately (wl, w2, w3).

Leaf Nitrogen Concentration (LNC, g/kg): After grinding, the
nitrogen concentration in the rice leaves was determined using the
Kjeldahl method (Yu et al., 2022).

Leaf Area Index (LAI): This index is calculated via Equation 1.

LAI=S « D (1)
C

In Equation 1, C represents the number of sampled holes, and D
represents the planting density, which is the number of rice holes
per unit area.

Aboveground Biomass (AGB, g/m This calculation is based on
the planting density at the sampling points and the dry weight of the
sampled rice, as shown in Equation 2.

1 2 3
AGB:WXD 2)

In Equation 2, C is the number of sampled holes, and D is the
planting density.

Grain Yield (GY, t/ha): During the maturity stage, 125 rice
plants (5 m®) were harvested from each plot to measure yield. The
paddy material was air-dried, and approximately 100 g was dried at
105°C for 48 hours to determine the moisture content. The paddy
material was then converted to a yield with a moisture content of
14% (Jing et al., 2022).

2.3.5 Model construction and validation

In this experiment, four algorithms are used to establish
hyperspectral prediction models for the four rice agronomic traits
at the panicle initiation, heading and maturation stages (Table 1):
ANN, SVR, one-dimensional convolutional neural network
(IDCNN), and long short-term memory (LSTM).

The ANN was first proposed by psychologist McCulloch and
mathematician Pitts in 1943. They constructed the M-P model,
which combines the working principle of neurons with logical
operations, thereby laying the theoretical foundation for the
development of ANNs (Mcculloch and Pitts, 1943). The ANN is a
computational model that mimics the structure and function of the
neural network of the human brain. It consists of many nodes (or
“neurons”), which are typically arranged in layers, such as the input
layer, hidden layers, and output layer. Each node receives input from
the nodes in the previous layer, performs a weighted sum, and then
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TABLE 1 Statistics of measured yield-related traits at various rice growth stages.

Collected indicators

Sampling time  Growth stages

Sample size = Minimum value

Maximum value

LNC(g/kg) 2022.06.16 HD 30 13.902 19.720 17.282
2022.09.16 PI 30 15.559 23.036 20.218
2022.10.12 HD 30 14913 24.557 19.220
2023.05.15 PI 30 27.829 51.673 38.570
LAI 2022.06.16 HD 30 1.609 5.031 3.170
2022.09.16 PI 30 1.410 3.529 2.626
2022.10.12 HD 30 1.871 5.445 3.597
2023.05.15 PI 30 1.299 3.392 2.273
AGB(g/mz) 2022.06.16 HD 30 462.521 852.333 669.876
2022.09.16 PI 30 222.458 409.146 316.796
2022.10.12 HD 30 580.875 1039.479 791.457
2023.05.15 PI 30 115.438 268.458 197.110
GY(t/ha) 2022.07.12 MA 30 3.810 6.485 5.300
2022.11.16 MA 30 3.929 7.410 5.753
2023.07.10 MA 30 3.363 7.227 5.538

LNC, LAI, AGB and GY represent the leaf nitrogen concentration, leaf area index, aboveground biomass and grain yield, respectively. PI, HD and MA represent the panicle differentiation,

heading and maturation stages, respectively.

generates an output through a nonlinear activation function, which is
passed to the next layer. ANNs learn the complex relationships and
patterns of input data by adjusting the connection weights between
neurons (Lussier et al, 2020). The main parameters of the ANN
—7activation”, “alpha”, “hidden_layer_sizes”, “learning_rate”,
“max_iter”, “momentum”, “solver”, and “tol”—were set to relu,
0.0001, 100, adaptive, 200, 0.7, adam, and 0.00001, respectively.

SVR (Bakhshipour and Jafari, 2018) is widely applied in the
fields of machine learning, artificial intelligence, and big data. It was
originally designed to address binary classification problems. SVR
works by finding the regression plane to which all the data points in
a set are closest. The algorithm features a kernel function that allows
it to flexibly address various nonlinear regression problems (Zhang
J. etal., 2021). The main parameters of the SVR—"kernel”, “degree”,
“gamma”, “coef0”, “tol”, “C”, “Epsilon”, “shrinking”, “cache_size”,
“verbose”, and “max_iter”—were set to rbf, 3, auto, 0.0, 0.001, 1.0,
0.1, True, 200, False, and -1, respectively.

The prototype of a 1IDCNN, LeNet-5, was first proposed in
1998 (Lecun et al., 1998). This model is based on a convolutional
and pooling network structure and is trained using the
backpropagation (BP) algorithm. Convolutional neural networks
can automatically extract data features without manual intervention
and possess strong robustness and fault tolerance, making them
easy to train and optimize. Additionally, they have abilities such as
local perception, parameter sharing, and -multilevel feature
abstraction (Hu et al., 2024). The main parameters of the
1DCNN—"in_channels”, “out_channels”, “kernel_size”,
“padding”, and “num_epochs”—were set to 1, 16, 3, 1, and
10, respectively.

Frontiers in Plant Science

LSTM is a type of recurrent neural network (RNN) with
memory capabilities that was originally proposed by Hochreiter
et al. and is specifically designed for processing time series data
(Hochreiter and Schmidhuber, 1997). It addresses the issues of
gradient vanishing and gradient explosion that occur in traditional
RNNs when processing long time series, particularly the problem of
gradient vanishing (Wang P. et al,, 2023). The main parameters of
the LSTM—"input_size”, “output_size”, “hidden_size_temp”,
“num_layer_temp”, and “drop_temp”—were set to 3, 1, 64, 1, and
0.4, respectively.

The model construction process is shown in Figure 2.

A total of 120 samples were collected across the four periods.
During modelling, 70% of the samples were randomly selected for
model building, and 30% of the samples were used for model
accuracy validation. All the parameter estimation models were
evaluated using the coefficient of determination (R?) and the root
mean square error (RMSE) to assess model accuracy (Niu et al,
2021). Here, R? is used to evaluate the model’s fit, with values closer
to 1 indicating a better fit; RMSE is used to evaluate the model’s
stability, with smaller values indicating greater stability. The
calculation formulas for R? and RMSE were shown in Equations 3,
4, respectively (Li et al., 2022; Li et al., 2023).

R = 1-(ZL 0~/ (i = 7)) )

RMSE = % X (LG =) )

where # is the number of samples, y; is the predicted value, y; is
the mean value, and y; is the actual value.
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Technology roadmap. PCC, SPA, and CARS represent the Pearson correlation coefficient, successive projections algorithm, and competitive adaptive
reweighted sampling, respectively; ANN, SVR, 1D CNN, and LSTM represent —the artificial neural network, support vector regression, the 1D
convolutional neural network, and long short—term memory, respectively. Pl and HD represent the panicle differentiation and heading stages,

respectively.

2.4 Statistical methods

Hyperspectral images were mosaicked via PhotoScan 2.0.2.16102
software and were radiometrically corrected, preprocessed, and texture

Frontiers in Plant Science

extracted via ENVI 5.3 software. The experimental data were analyzed
using Excel 2019 and SPSS 27.0, and graphs were created using Origin
2022 and ArcMap 10.8. Data dimensionality reduction and model
training were conducted using Python 3.6 software.
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3 Results and analysis
3.1 Spectral reflectance smoothing

Figure 3 shows the spectral reflectance after SG smoothing, which
effectively reduces the “jagged” appearance of the spectral reflectance.
The canopy spectral reflectances of the two varieties during the four
sampling periods showed consistent trends. Between 350 nm and 720
nm, the canopy spectral reflectance showed no significant differences.
Between 720 nm and 898 nm, the spectral reflectance increased with
increasing nitrogen application.

3.2 Biological indicators

As shown in Figure 4, with increasing nitrogen application, the
LNC, LAI AGB, and GY of rice gradually increased. For both the
“Meixiangzhan No. 2” and the “Nanjingxiangzhan” rice varieties,
when the nitrogen application reached 120 kg/ha, there was no
significant difference in GY among the N2, N3, and N4 treatments
(P< 0.05).

3.3 Correlations of trait indicators

As shown in Figure 5, LNC, LAIL, and AGB all exhibited
significant positive correlations with GY, with the strength of
these relationships expressed as the coefficient of determination
(R?), which is the square of the Pearson correlation coefficient (r).
Among the correlations of AGB, LNC, and LAI with GY, the
correlation between AGB and GY was the highest, with R%>0.60,
followed by LAI, with R*>0.44. Regarding the correlations among
AGB, LNC, and LAJ, the correlation between AGB and LAI was the
highest, with R®>0.75.

3.4 Feature band selection

A correlation analysis was conducted between canopy spectral
reflectance and various trait indicators. When the absolute value of
the correlation coefficient was greater than 0.5, it was considered to
indicate strong correlation. As shown in Figure 6, when the PCC
dimensionality reduction method was used, the bands strongly
correlated with LNC were found to be 406, 410, 414, 418, and
422 nm. Among them, the band with the strongest correlation to
LNC was 410 nm, with a correlation coefficient of 0.508. AGB had a
strong correlation in the range of 366 nm to 694 nm, with the
strongest correlation occurring at 422 nm, where the correlation
coefficient reached 0.845. LAI had a strong correlation in the range
of 454 nm to 502 nm, as well as at 425 nm and 426 nm, with the
strongest correlation occurring at 486 nm, where the correlation
coefficient reached 0.686. AGB had a strong correlation in the range
of 366 nm to 694 nm, with the strongest correlation occurring at
422 nm, where the correlation coefficient reached 0.845. GY had a
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strong correlation in the range of 642 nm to 670 nm, with the
strongest correlation occurring at 654 nm, where the correlation
coefficient reached 0.523. In addition, SPA and CARS were used to
screen sensitive bands. Ultimately, the top 3 bands with the
strongest correlations obtained from PCC and CARS and the top
5 bands obtained from SPA were selected as sensitive bands. The
results are shown in Table 2.

3.5 Estimation modelling and analysis

Three dimensionality reduction methods, PCC, SPA, and
CARS, were used for sensitive band selection. The selected
sensitive bands were used as feature inputs to construct
estimation models for LNC, LAIL, AGB, and GY using four
machine learning algorithms: ANN, SVR, 1DCNN, and LSTM.
The resulting model R* and RMSE values are shown in Table 3.
When PCC was used for sensitive band selection, the estimation of
AGB yielded the best results. The model using the ANN algorithm
had the highest precision and stability, with an R? of 0.89 and an
RMSE of 86.25 g/m>. When SPA was used for sensitive band
selection, the estimation of LNC, LAI, and AGB yielded the best
results. In this case, the model using the ANN algorithm had the
highest precision and stability, with R* values of 0.82, 0.75, and 0.90
for LNC, LAI, and AGB, respectively, and RMSE values of 3.68 g/kg,
0.47, and 81.29 g/m?, respectively. When CARS was used for
sensitive band selection, the estimations of LAI, AGB, and GY
yielded the best results. For LAI, the model using the SVR algorithm
had the highest precision and stability, with an R of 0.62 and an
RMSE of 0.54. For AGB and GY, the models using the ANN
algorithm had the highest precision and stability, with R* values of
0.90 and 0.63 and RMSE values of 79.05 g/m* and 0.59 t/ha,
respectively. In summary, among the three data dimensionality
reduction methods and four modelling approaches, the model
constructed using SPA-ANN had high precision and good
stability for estimating LNC and LAI. For estimating AGB and
GY, the model built using CARS-ANN was the best.

3.6 Model validation

The optimal dimensionality reduction method and machine
learning algorithm were selected for the four indicators, with 70% of
the data used as the training set and 30% used as the validation set
for verification. The model validation results are shown in Figure 7.
The SPA-ANN model had the best performance in estimating LNC
and LAIL with R? values of 0.81 and 0.76 and RMSE values of 4.82 g/
kg and 0.43, respectively. The CARS-ANN model had the best
performance in estimating AGB and GY, with R* values of 0.90 and
0.61 and RMSE values of 94.93 g/m” and 0.57 t/ha, respectively. The
results indicate that compared with those of the PCC method, the
sensitive bands selected by SPA and CARS are more representative.
Compared with SVR, 1IDCNN, and LSTM, the ANN algorithm has
an advantage in estimating rice LNC, LAI, AGB, and GY.
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FIGURE 3

SG-smoothed canopy spectral reflectances of "Meixiangzhan No. 2" (A, C, E, G) and “"Nanjingxiangzhan” (B, D, F, H) at various growth stages. The
spectral range displayed is limited to 400-900 nm to exclude the noisy regions at the spectral extremes (particularly beyond 900 nm) of the X20P
sensor, ensuring a clear presentation of the reliable spectral data used for analysis

3.7 Opt|ma[ combination model with texture features corresponding to the sensitive bands were
texture features introduced. The results are shown in Figure 8 and Table 3. The

models constructed by incorporating texture features all showed
On the basis of the optimal dimensionality reduction methods  certain improvements. In estimating LNC, compared with spectral
and machine learning algorithms for the four indicators in Figure 7, modelling alone, the R of the training set increased by 8.5%, and
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Effects of different nitrogen fertilizer levels on the leaf nitrogen concentration, leaf area index, —aboveground biomass, and yield of “Meixiangzhan

No. 2" (A, C, E, G) and “Nanjingxiangzhan” (B, D, F, H) at various growth stages. HD in 2022 E, Pl in 2022 L, HD in 2022 L, and Pl in 2023 E represent
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season of 2022, and the beginning of panicle differentiation in the early season of 2023, respectively; NO, N1, N2, N3, and N4 represent treatments

of 0, 60, 120, 180, and 240 kg/ha, respectively; Lowercase letters for the same growth stage under different nitrogen fertilizer levels indicate

significant differences at the p < 0.05 level.
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the RMSE decreased by 10.9% when texture features were
introduced into the model; the R? of the test set increased by
9.9%, and the RMSE decreased by 27.2%. In estimating GY, the R®
of the test set increased by 8.2% and the RMSE decreased by 3.5%
when texture features were incorporated into the modelling.

1.0
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Correlation coefficient
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FIGURE 6

Correlation coefficients between spectral reflectance and biological
indicators. LNC, LAI, AGB and GY represent the leaf nitrogen
concentration, leaf area index, aboveground biomass and grain
yield, respectively.
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4 Discussion

4.1 Impact of dimensionality reduction
methods on model accuracy

Performing dimensionality reduction on spectral data to reduce
redundancy is a key step in establishing crop growth parameter
estimation models and is an important aspect of improving model
accuracy and stability. The three dimensionality reduction methods,
PCC, SPA, and CARS, can all be used to effectively reduce the
dimensionality of spectral data and select sensitive bands for
specific growth parameters (Table 2). These methods have been
widely used in numerous studies to extract key spectral features
(Zhang et al., 2022; Qin et al.,, 2020). Che et al. (Che et al., 2024)
used PCC to select the three spectral bands with the highest
correlation with rice nitrogen: 756 nm, 813 nm, and 899 nm.
They conducted nitrogen estimation modelling with these bands,
achieving high precision and stability, with an R* of 0.886 and an
RMSE of 1.104. Liu et al. (Liu et al, 2024) used SPA to select
sensitive bands for classifying rice blast disease. The classification
accuracy was second only to that of the PCA method, with a
modelling R of 0.933 and a kappa coefficient of 91.67%. Xu et al.
(Xu et al,, 2022) used CARS to reduce the dimensionality of spectral
data, and the nitrogen estimation model constructed with the
selected sensitive bands had R* values of 0.690 and 0.596 and
RMSE values of 0.669 and 0.774 mg/g for the training and

frontiersin.org


https://doi.org/10.3389/fpls.2025.1713014
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhang et al.

10.3389/fpls.2025.1713014

TABLE 2 Sensitive bands of rice yield—related traits after dimensionality reduction.

Dimensionality reduction

methods
PCC 410nm, 414nm, 418nm ‘ 422nm,
SPA 398nm, 410nm, 478nm, 350nm,
498nm, 590nm 486nm,
CARS 406nm, 410nm, 414nm ‘ 402nm,

486nm, 678nm

378nm, 394nm,
890nm

674nm, 678nm

‘ 370nm, 422nm, 678nm ‘ 650nm, 654nm, 658nm

402nm, 422nm, 450nm,
718nm, 898nm

630nm, 654nm, 658nm,
690nm, 742nm

366nm, 370nm, 418nm

‘ 350nm, 398nm, 898nm

LNC, LAI, AGB and GY represent the leaf nitrogen concentration, leaf area index, aboveground biomass and grain yield, respectively. PCC, SPA and CARS represent person correlation
coefficient, successive projections algorithm, and competitive adaptive reweighted sampling, respectively.

validation sets, respectively. Therefore, there are also obvious
differences in the sensitive bands obtained and in the model
prediction performance when different dimensionality reduction
methods are used. This is because these dimensionality reduction
methods have different emphases on feature selection. For example,
the CARS algorithm is similar to the “survival of the fittest”
principle in Darwin’s theory (Li et al., 2009), identifying sensitive
bands that have a significant impact on the target variable through
Monte Carlo model sampling and exponential decay wavelength
selection. PCC focuses on the strength of linear correlation and on
selecting multiple bands with high correlations, but these bands
may contain redundant information, affecting the model’s
predictive performance. The SPA selects bands that contribute the
most to the model step by step, and it can establish a band
combination with the least redundancy while effectively reducing
the collinearity among variables (Aratjo et al, 2001). In this
experiment, when LNC and LAI were estimated, dimensionality
reduction by the SPA was significantly better than that via the PCC
and CARS algorithms (Table 3, Figure 7). Changes in LNC can
affect the chlorophyll content of plant leaves, which in turn affects
leaf spectral reflectance (Gitelson et al., 2003). LAI refers to the leaf

TABLE 3 Model accuracy.

area per unit land area. An increase in the LAI means that there is
more leaf area, which is likely to increase the scattering and
reflection of spectra. Research has shown that an increase in the
LAI can lead to a significant increase in spectral reflectance in the
near—infrared band (760-1315 nm) (Qin et al., 2017). Liet al. (Li et
al., 2003) reported that the extent of the impact of chlorophyll
content changes on canopy reflectance is related to the LAI The
larger the LNC and LAI are, the greater the chlorophyll content, and
the stronger the canopy reflectance. Therefore, both the LAI and
LNC have a direct connection with leaf spectral characteristics. SPA
is a forwards iterative search method used to select wavelengths
with the least redundant spectral information to solve collinearity
problems (Galvo et al., 2008). The algorithm is relatively simple and
has high computational efficiency, making it suitable for screening
sensitive bands directly related to leaf spectral characteristics. When
AGB and GY were estimated, the sensitive bands selected by CARS
dimensionality reduction were clearly superior to those selected by
SPA and PCC (Table 3, Figure 7). This is because AGB and GY are
related not only to spectral data but also to texture features and
spatial structures, among other factors. There are complex
interactions among these factors, and this complexity requires

Dimensionality reduction Machine learning LNC LAI AGB GY
methods algorithms
RMSE R? RMSE RMSE R? RMSE
PCC ANN 031 763 058 056 0.89 8625 | 026 079
SVR 028 830 059 056 0.85 99.99 | 028 078
IDCNN 027 = 802 053 062 0.85 9895 | 029 075
LSTM 026 781 050 066 073 = 14131 028 091
SPA ANN 082 368 075 047 0.90 8129 054 065
SVR 073 542 067 056 0.85 97.02 | 047  0.69
IDCNN 079 = 460 068 053 0.87 9457 | 050  0.69
LSTM 028 822 048 066 074 13059 | 040 079
CARS ANN 035 801 061 058 0.90 79.05 | 063 059
SVR 028 827 062 054 0.87 9515 | 053 067
IDCNN 027 801 058 058 084 10707 043 072
LSTM 028 745 048 069 070 14819 010 095

LNC, LAIL, AGB and GY represent the leaf nitrogen concentration, leaf area index, aboveground biomass and grain yield, respectively. PCC, SPA and CARS represent person correlation
coefficient, successive projections algorithm, and competitive adaptive reweighted sampling, respectively. ANN, SVR, IDCNN and LSTM represent artificial neural network, support vector
regression, the 1D convolutional neural network and long short-term memory, respectively.
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FIGURE 7

Model validation for LNC (A-C), LAl (D—F), AGB (H-J), and GY (K—M) with optimal performance under PCC, SPA, and CARS dimensionality reduction
methods combined with machine learning algorithms. LNC, LAI, AGB and GY represent the leaf nitrogen concentration, leaf area index,
aboveground biomass and grain yield, respectively. PCC, SPA and CARS represent person correlation coefficient, successive projections algorithm,
and competitive adaptive reweighted sampling, respectively. ANN, SVR and 1IDCNN represent artificial neural network, support vector regression and

1D convolutional neural network.

that the estimation models be able to handle and interpret these
complex multivariate relationships. The CARS algorithm is well-
suited for handling complex multivariate relationships and
hyperspectral data with a large amount of redundant information
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and multicollinearity. It can effectively select the key feature bands
that contribute the most from among complex data and can reduce
the number of data dimensions, thereby achieving higher model
accuracy and stability (Tang et al., 2021).
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Adding textural features to the optimal combined models for estimating LNC (A), LAI (B), AGB (C), and GY (D). LNC, LAI, AGB and GY represent the
leaf nitrogen concentration, leaf area index, aboveground biomass and grain yield, respectively. SPA and CARS represent successive projections
algorithm, and competitive adaptive reweighted sampling, respectively. ANN represent artificial neural network.

4.2 Impact of machine learning algorithms
on model accuracy

The results of this experiment indicate that the ANN model
performs better than the SVR, 1IDCNN, and LSTM models do. The
optimal model for all four biological indicators is the ANN model (see
Table 3, Figure 7). ANNs are primarily applied to prediction and
classification problems and are among the most widely used machine
learning algorithms at present. Among the many machine learning
algorithms, it has relatively good accuracy and stability (Wang et al.,
2023). SVR is often used to address regression and classification
problems in pattern recognition and data analysis (Li et al., 2024). It
can avoid the effects of noise generated by data, thereby reducing the
risk of model overfitting. However, owing to the need to calculate the
kernel function and adjust the parameters, the choice of parameters
may have a significant effect on the model’s performance (Liu et al,
2017). 1IDCNN is a special type of feedforward neural network used
for processing sequential data and is currently one of the more popular
deep learning methods. It is mainly used for processing image and
speech data (Ye and Zheng
number of parameters to adjust, and the interpretability of the results

, 2024), but it has an inconveniently large

is not very high. LSTM is a special RNN structure that is often used for
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sequence data analysis. It can better address the problems of gradient
vanishing and gradient explosion during the training of long
sequences (Li and Cao, 2018), and it performs better when
processing longer sequential data. In previous studies, ANN
estimation models for various crop physiological parameter
indicators all demonstrated good performance, particularly in terms
of prediction accuracy, stability, and generalizability (Santos et al,
2021; Krupavathi et al, 2022). Santos et al. (Santos et al.2021)
constructed an ANN estimation model for soybean yield, with an
R® of 0.88 and an RMSE of 167.85. Krupavathi et al. (Krupavathi et al.,
2022) used the ANN algorithm to estimate sugarcane yield, with the
R? of the best model reaching 0.867-0.916 on the training set and
0.829-0.991 on the test set. As a universal function approximator, an
ANN is nonlinear because of its activation function (Zhang H. et al,,
2021), enabling it to learn any complex nonlinear relationship between
inputs and outputs. This capability allows it to perform excellently
when dealing with nonlinear problems. In comparison, SVR and
IDCNN are less flexible than ANN when dealing with nonlinear
datasets. Although LSTM is suitable for processing sequential data, it
has disadvantages in computational complexity and parallelization
capabilities, which leads to poor performance in estimating the
biological indicators of interest.
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TABLE 4 Spectral models and spectral + texture models.

Dimensionality reduction Machine Learning LNC LAl AGB GY
methods Algorlthms RMSE RZ RMSE RMSE RZ RMSE
ANN 031 763 058 | 056 0.89 8625 026 079
SVR 028 830 059 | 056 0.85 9999 028 078
PCC
IDCNN 027 = 802 053 062 0.85 9895 | 029 075
LSTM 026 781 050 066 073 14131 028 091
ANN 082 368 075 047 0.90 8129 054 065
SVR 073 542 067 056 0.85 97.02 | 047  0.69
SPA
IDCNN 079 460 068 | 053 0.87 9457 | 050  0.69
LSTM 028 822 048 | 066 074 = 13059 040 079
ANN 035 80l 061 058 0.90 79.05 | 063 059
SVR 028 827 062 054 0.87 9515 | 053 067
CARS
IDCNN 027 = 80l 058 058 084 10707 043 072
LSTM 028 745 048 069 070 14819 0.0 095

LNC, LAIL AGB and GY represent the leaf nitrogen concentration, leaf area index, aboveground biomass and grain yield, respectively.

4.3 | mpact of addi ng texture features on model accuracy and stability for AGB estimation than LAI estimation.
model accu racy Zhang et al. (Zhang et al,, 2025) employed the Spectral-Texture Fusion

Indices (STFIs) method to estimate rice leaf nitrogen content. This

When texture features were added to the optimal combination approach deeply integrates selected sensitive spectral bands and key
model for optimization, the estimation model for LNC achieved the  texture features through mathematical operations. Among all feature
greatest improvement in accuracy. The R? of the model's test set ~ combinations, the optimal model—SFS-DNN combined with STFIs—
increased by up to 9.9%, and the RMSE was reduced by up to 27.2% achieved an R” of 0.874 and an RMSE of 2621 mg/g. In future
(Table 4, Figure 8). Texture is an intrinsic characteristic of the surface research, the STFI methodology would be referenced to construct
of an object, independent of changes in color and brightness, and can ~ novel fusion indices by mathematically combining spectral data with
be used to address cases such as —different objects with the same  corresponding key texture features, thereby building more robust and
spectrum and —one object with multiple spectra (Wang et al, 2009). ~ accurate estimation models and providing stronger technical support
Cheng et al. (Cheng et al., 2024) reported that after texture features  for precision agriculture management.
were added, the precision of comprehensive growth models for winter
wheat constructed using three machine learning methods improved.
This is mainly because texture features provide additional spatial 5 Conclusion
information, which helps capture the microstructures and patterns of
objects. Under the experimental conditions, the model accuracies for Under the conditions of this experiment, the feature bands
the LAI, AGB, and GY all improved after texture features were added, ~ obtained after SPA dimensionality reduction were best for
but the improvements were limited (Table 4, Figure 8). This is because ~ estimating LNC and LAI, whereas the feature bands after CARS
the optimal dimensionality reduction + machine learning  dimensionality reduction were best for estimating AGB and GY.
combination model was used during the research process, and the  The estimation models for LNC, LAL, AGB, and GY constructed
model accuracy was already high, leaving limited room for further  using the ANN method had higher accuracy and stability than those
improvement. Furthermore, for the four indicators in this experiment, ~ built via the SVR, 1IDCNN, and LSTM models. The SPA-ANN
the AGB estimation model had the highest accuracy (Tables 2, 4, model was optimal for estimating LNC and LAI, whereas the
Figures 7, 8). This is because when the AGB is larger, more light ~ CARS-ANN model was optimal for estimating AGB and GY. The
energy is absorbed for photosynthesis, resulting in lower reflectance in ~ model precision improved when texture features were incorporated
these bands, making it easier to select sensitive bands. Consequently,  into the optimal combination model. The model constructed by
greater model accuracy can be achieved when the AGB estimation =~ LNC through “spectral data + texture data + dimensionality
model is constructed. Casanova et al. (Casanova et al,, 1998) obtained ~ reduction + machine learning” yielded the greatest improvement
similar results. They combined rice spectral reflectance with  in precision. These results provide a scientific basis for the -
information on the photosynthesis process to establish rice AGB  nondestructive real-time prediction of rice yield-related traits
and LAI estimation models, and their results also showed greater ~ and precise diagnosis of phenotypes in indica rice in South China.
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