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and texture features
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Xiangyu Hu1, Rui Hu1, Meijuan Li1, Xinyu Wang1, Qunhuan Ye1,
Yuanhong Yin1, Zhaowen Mo2* and Youqiang Fu1*

1Rice Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Genetics
and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province),
Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Rice Science and Technology,
Guangzhou, China, 2College of Agriculture, South China Agricultural University, Guangzhou, China
Background: Rapidly estimating multiple trait indicators simultaneously,

nondestructively, and with high precision is an important means of accurate

diagnosis in modern phenomics. Increasing the accuracy of estimation models

for rice yield-related trait indicators (leaf nitrogen concentration, LNC; leaf area

index, LAI; aboveground biomass, AGB; and grain yield, GY) through a strategy of

"spectral data + texture data + dimensionality reduction + machine learning" is

highly important.

Methods: Between 2022 and 2023, hyperspectral canopy images, the LNC, LAI,

AGB, and GY were collected synchronously. Then, dimensionality reduction was

performed on the preprocessed spectral data using the Pearson correlation

coefficient method, the successive projections algorithm (SPA), and competitive

adaptive reweighted sampling (CARS) to select sensitive wavelengths. Estimation

models were constructed using artificial neural networks (ANNs), support vector

machine regression, one-dimensional convolutional neural networks, and long

short-term memory networks. By extracting the texture features corresponding

to sensitive wavelengths, high-precision estimation models were constructed

using a "spectral data + texture data + dimensionality reduction + machine

learning" method.

Results: SPA-ANN provided the best prediction for LNC (R2 = 0.82, RMSE = 3.68

g/kg) and LAI (R2 = 0.75, RMSE = 0.47), while CARS-ANN was optimal for AGB (R2

= 0.90, RMSE = 79.05 g/m2) and GY (R2 = 0.63, RMSE = 0.59 t/ha). Adding texture

features increased R2 by up to 9.9% and reduced RMSE by up to 27.2%.

Conclusion: The optimized method can significantly increase the accuracy of

estimationmodels. The results provide a scientific basis and technical data for the

precise diagnosis of rice yield-related traits.
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1 Introduction

Rice (Oryza sativa L.) is one of China’s main food crops and

plays an important role in ensuring the country’s food security and

stabilizing economic development. Accurately monitoring and

predicting multiple growth traits of rice is highly important for

guiding healthy growth and precise fertilization management

(Zhang et al., 2002). The leaf nitrogen concentration (LNC), leaf

area index (LAI), aboveground biomass (AGB), and grain yield

(GY) of rice are the most common indicators for monitoring and

predicting the growth of high-yield and efficient rice (Wang et al.,

2021). Research on the hyperspectral prediction of multiple growth

indicators of rice is highly important for promoting the healthy

growth of rice and increasing food security.

In recent years, owing to the efficient, accurate, objective, and

nondestructive characteristics of hyperspectral remote sensing

technology, scholars worldwide have conducted extensive research

on monitoring various biological indicators of field crops using

hyperspectral technology and have achieved useful results (Onoyama

et al., 2018; Xu et al., 2023; Zhang et al., 2024). These studies often use

the full spectrum for modelling. However, the predictive performance

of the models is somewhat affected by the presence of a large amount

of redundant information in the spectrum (Gao, 1993; Kuusk, 2001).

When conducting hyperspectral analysis, the high spectral values

generally range from 400 to 2500 nm, which leads to very high data

dimensionality. Therefore, reducing the dimensionality of spectral data

and identifying sensitive wavelengths are the primary conditions for

improving the efficiency of model operation, simplifying the model

structure, and increasing model stability (Barman and Patra, 2020).

Huan et al. (Huan et al., 2021) used four dimensionality

reduction algorithms—CARS, variable combination population

analysis, Monte Carlo variable combination population analysis,

and automatic weighted variable combination population analysis

(AWVCPA)—to extract spectral feature wavelengths for wheat

protein content. They combined these methods with partial least

squares regression (PLSR) to construct a quantitative detection

model for wheat protein, with the AWVCPA-PLSR model yielding

the best performance. Wang et al. (Wang et al., 2020) used the SPA

to select sensitive wavelengths for above-ground biomass. The SPA-

PLSR model for estimating and validating the aboveground biomass

of winter wheat achieved high accuracy. Tong et al. (Tong et al.,

2020) used mathematical transformation and discrete wavelet

transform algorithms to process and analyze the spectral data of

passion fruit leaves. They utilized the PCC method to extract

sensitive wavelengths. The results showed that the PCC–PLSR

model for estimating the chlorophyll content in passion fruit

leaves was superior. Therefore, there are significant differences in

dimensionality reduction methods with different monitoring targets

and trait indicators.

Machine learning is an interdisciplinary field involving multiple

areas, such as statistics, probability theory, convex analysis, and

algorithmic complexity theory (de Castro et al., 2020). Traditional

linear regression methods have limitations in terms of model fit,

often resulting in low model accuracy. With the development of
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machine learning technology, algorithms such as artificial neural

network (ANN), support vector regression (SVR), and random

forest (RF) have been widely used to estimate biochemical crop

parameters (Kganyago et al., 2021; Jabed and Azmi Murad, 2024).

Mao et al. (Mao et al., 2024) obtained hyperspectral remote sensing

data for winter wheat and used four mainstream machine learning

algorithms to predict wheat yield. They reported that the transfer

learning model with multiple random ensembles has advantages in

improving the Pearson correlation coefficient. Cheng et al. (Cheng

et al., 2017) established estimation models for the soil and plant

analyzer development (SPAD) values of apple leaves on the basis of

univariate regression models and SVR models. The research results

showed that the SVR model had greater estimation accuracy for the

SPAD values of apple leaves. Therefore, the most suitable model

algorithm is different for different crops or different trait indicators.

Moreover, single-spectrum data may not provide comprehensive

information about the growth status of crops. Spectral data mainly

reflect the biochemical characteristics of crops, whereas texture

features include information about their spatial structure

and morphology.

In recent years, the number of studies estimating crop growth

conditions on the basis of unmanned aerial vehicle imagery,

combined with spectral and texture features, has gradually

increased (Liu et al., 2019; Yue et al., 2019). Research has shown

that integrating vegetation indices with texture features can

effectively increase the estimation accuracy of various growth

parameters, such as the nitrogen nutrition index (Yang et al.,

2020), biomass (Liu et al., 2018), and chlorophyll (Chen et al.,

2019) content. Therefore, the effective integration of spectral and

texture features is of significant importance for enhancing the

accuracy of estimation models for various crop trait parameters.

In summary, in constructing spectral estimation models for

crop biochemical parameters, different data dimensionality

reduction techniques and machine learning algorithms each have

advantages, but there are still significant challenges in selecting the

best methods. However, studies on integrating spectral data with

texture features to estimate rice yield-related traits, based on the

optimal combination of dimensionality reduction techniques and

machine learning algorithms, have rarely been reported. In this

study, the widely cultivated high-quality indica varieties

“Meixiangzhan No. 2” and “Nanjingxiangzhan” in South China

were used as experimental materials. Using a multirotor drone

M300 RTK equipped with an X20P airborne hyperspectral imager,

the spectral data of rice were collected at four key growth stages

between 2022 and 2023. Different combinations of dimensionality

reduction and modelling methods were examined, and model

evaluation indicators were used to construct high-precision

estimation models for rice yield-related traits that combine

spectral data, texture features, dimensionality reduction, and

machine learning on the basis of the best combination model.

This further improves the estimation capability of the models. The

results provide a theoretical basis and scientific guidance for the

precise phenotypic diagnosis and prediction of yield-related traits of

high-quality indica rice varieties in South China.
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2 Materials and methods

2.1 Experimental materials and soil
physicochemical properties

The experimental rice varieties used were the high-quality

indica rice varieties “Meixiangzhan No. 2” (V1) and

“Nanjingxiangzhan” (V2), which are widely cultivated in South

China. The experiment was conducted at the Guangdong Academy

of Agricultural Sciences experimental base in Zhongluotan town,

Baiyun district, Guangzhou city, Guangdong province, during the

early and late seasons of 2022 and the early season of 2023

(Figure 1). The physicochemical properties of the experimental

field soil were as follows: pH, 5.95; organic matter, 22.48 g/kg; total

nitrogen, 1.29 g/kg; total phosphorus, 0.42 g/kg; total potassium,

8.43 g/kg; alkaline hydrolysable nitrogen, 58.03 mg/kg; available

phosphorus, 6.49 mg/kg; and readily available potassium, 47.00

mg/kg.
2.2 Experimental design

The experiment used a split-plot design, with nitrogen levels as

the main plot and varieties as the subplot. Five nitrogen fertilizer

levels were considered: 0, 60, 120, 180, and 240 kg N/ha.

Transplanting was performed manually using a line-drawing

method, with a planting density of 20 cm × 20 cm, two seedlings

per hill, and three replicates. Nitrogen fertilizer was applied in the

form of urea, and phosphorus and potassium fertilizers were

applied as superphosphate and potassium chloride, respectively.

Nitrogen fertilizer was applied at a ratio of basal fertilizer: tillering

fertilizer: panicle fertilizer=5:2:3. Basal fertilizer was applied one day
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before transplanting, tillering fertilizer was applied 15 days after

transplanting, and panicle fertilizer was applied at the panicle

initiation (PI) stage. Phosphorus and potassium fertilizers were

applied at standard rates of 54 kg P2O5/ha and 144 kg K2O/ha,

respectively. All the phosphorus fertilizer was applied as basal

fertilizer, and half of the potassium fertilizer was applied as basal

fertilizer, with the other half applied as panicle fertilizer. The field

ridges of each plot were wrapped with plastic film (PVC) to prevent

fertilizer runoff between plots. Field management was conducted

according to the “three controls” (Zhong et al., 2007) fertilization

technique for rice, which optimizes nitrogen application to control

fertilization, tillering, and pests. Strict prevention and control of

pests and diseases. High spectral data of the canopy and data for

four agronomic traits (LNC, LAI, AGB, and GY) were collected at

the heading stage (HD) in the early season of 2022 on June 16, the

panicle initiation stage (PI) in the late season of 2022potassium

fertilizers were applied at standard rates of 54 kg on September 16,

the heading stage (HD) in the late season of 2022 on October 12,

and the panicle initiation stage (PI) in the early season of 2023 on

May 15.
2.3 Experimental methods

2.3.1 Hyperspectral data acquisition and
preprocessing

The hyperspectral rice canopy data were acquired with anM300

RTK (DJI, China) multirotor drone equipped with an X20P

(Cubert, Germany) airborne hyperspectral imager. The spectral

range of the imager is 350 to 1000 nm, with a resolution of 4 nm

and 164 effective bands. The drone flies at a height of 50 meters. The

measurement time ranged from 10:00 to 14:00 Beijing time, and the
FIGURE 1

Overview of the experimental site. V1 and V2 represent “Meixiangzhan No. 2” and “Nanjingxiangzhan”, respectively. N0, N1, N2, N3, and N4 represent
treatments of 0, 60, 120, 180, and 240 kg/ha, respectively.
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weather was clear. Through image stitching, radiometric

calibration, atmospheric correction, orthorectification, image

fusion, geometric correction, and band normalization, the spectral

average value of the region of interest (ROI) in each plot was

extracted using an ROI tool to determine the original spectral

reflectance of each plot. To address the noise bands caused by

environmental factors and increase the prediction accuracy of the

estimation model, the original spectra were processed using the

Savitzky–Golay convolution smoothing algorithm (Wu et al., 2014).

The Savitzky–Golay convolution smoothing algorithm uses a

polynomial to perform a polynomial least squares fit on the data

within a moving window. Essentially, it is a weighted averaging

method that emphasizes the central role of the center point (Chu

et al., 2004). This enables effective noise reduction while preserving

the original spectral information well (Li SL. et al., 2024). After

parameter optimization, the window_length value for the Savitzky–

Golay convolution smoothing method was set to 9, and the number

of polynomials was set to 2.

2.3.2 Data dimensionality reduction methods
Through comparative analysis, we adopted three of the most

representative dimensionality reduction methods for analysis: PCC,

SPA, and CARS. PCC is an analysis method based on the partial least

squares regression model. This method primarily involves calculating

and analyzing the correlation between the spectral data

corresponding to each band and the biometric data of the rice to

screen out combinations of feature bands with higher correlations

(Yang et al., 2015). SPA uses vector projection to select the minimum

number of spectral variables, addressing issues such as information

overlap and collinearity in the spectra. This reduces the number of

variables used in modelling, thereby increasing the modelling

efficiency (Araújo et al., 2001). CARS simulates Darwin’s

evolutionary concept of “survival of the fittest.” Through adaptive

reweighted sampling techniques, wavelengths with larger absolute

regression coefficients as calculated by partial least squares regression

are selected. Cross–validation is then used to choose the combination

set with the lowest root mean square error (Li et al., 2009).

2.3.3 Hyperspectral image texture feature
extraction

Using the grey–level co–occurrence matrix method in ENVI 5.3,

the texture features of the selected sensitive bands are extracted with a

3×3 resolution window size, the spatial correlation matrix offsets X

and Y default to 1. These include the mean, variance, homogeneity,

contrast, dissimilarity, entropy, second moment, and correlation

(Yang et al., 2020). The Regions of Interest (ROI) for each plot

were delineated on the texture feature images of each band using the

Region of Interest (ROI) tool, the texture values of those regions can

be extracted. A correlation analysis was conducted between the

extracted texture values and various biophysical parameters. The

two texture values showing the strongest correlations with the

biophysical parameters were selected as inputs.
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2.3.4 Biological indicators
After the spectral measurements were performed, 12

representative rice plants were randomly selected from the

experimental plots. The root systems were removed. At the PI

stage, the stems and leaves were separated, and at the HD stage, the

stems, leaves, and panicles were separated. A leaf area meter was

used to measure the leaf area (S). The stems, leaves, and panicles

were then placed in an oven at 105°C for blanching for 30 min,

followed by drying at a constant temperature of 75°C until a

constant weight was reached. The dry weights were recorded

separately (w1, w2, w3).

Leaf Nitrogen Concentration (LNC, g/kg): After grinding, the

nitrogen concentration in the rice leaves was determined using the

Kjeldahl method (Yu et al., 2022).

Leaf Area Index (LAI): This index is calculated via Equation 1.

LAI =
S
C
� D (1)

In Equation 1, C represents the number of sampled holes, and D

represents the planting density, which is the number of rice holes

per unit area.

Aboveground Biomass (AGB, g/m This calculation is based on

the planting density at the sampling points and the dry weight of the

sampled rice, as shown in Equation 2.

AGB =
(w1 + w2 + w3)

C
� D (2)

In Equation 2, C is the number of sampled holes, and D is the

planting density.

Grain Yield (GY, t/ha): During the maturity stage, 125 rice

plants (5 m²) were harvested from each plot to measure yield. The

paddy material was air–dried, and approximately 100 g was dried at

105°C for 48 hours to determine the moisture content. The paddy

material was then converted to a yield with a moisture content of

14% (Jing et al., 2022).

2.3.5 Model construction and validation
In this experiment, four algorithms are used to establish

hyperspectral prediction models for the four rice agronomic traits

at the panicle initiation, heading and maturation stages (Table 1):

ANN, SVR, one–dimensional convolutional neural network

(1DCNN), and long short–term memory (LSTM).

The ANN was first proposed by psychologist McCulloch and

mathematician Pitts in 1943. They constructed the M–P model,

which combines the working principle of neurons with logical

operations, thereby laying the theoretical foundation for the

development of ANNs (Mcculloch and Pitts, 1943). The ANN is a

computational model that mimics the structure and function of the

neural network of the human brain. It consists of many nodes (or

“neurons”), which are typically arranged in layers, such as the input

layer, hidden layers, and output layer. Each node receives input from

the nodes in the previous layer, performs a weighted sum, and then
frontiersin.org
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generates an output through a nonlinear activation function, which is

passed to the next layer. ANNs learn the complex relationships and

patterns of input data by adjusting the connection weights between

neurons (Lussier et al., 2020). The main parameters of the ANN

—”activation”, “alpha”, “hidden_layer_sizes”, “learning_rate”,

“max_iter”, “momentum”, “solver”, and “tol”—were set to relu,

0.0001, 100, adaptive, 200, 0.7, adam, and 0.00001, respectively.

SVR (Bakhshipour and Jafari, 2018) is widely applied in the

fields of machine learning, artificial intelligence, and big data. It was

originally designed to address binary classification problems. SVR

works by finding the regression plane to which all the data points in

a set are closest. The algorithm features a kernel function that allows

it to flexibly address various nonlinear regression problems (Zhang

J. et al., 2021). The main parameters of the SVR—”kernel”, “degree”,

“gamma”, “coef0”, “tol”, “C”, “Epsilon”, “shrinking”, “cache_size”,

“verbose”, and “max_iter”—were set to rbf, 3, auto, 0.0, 0.001, 1.0,

0.1, True, 200, False, and −1, respectively.

The prototype of a 1DCNN, LeNet–5, was first proposed in

1998 (Lecun et al., 1998). This model is based on a convolutional

and pooling network structure and is trained using the

backpropagation (BP) algorithm. Convolutional neural networks

can automatically extract data features without manual intervention

and possess strong robustness and fault tolerance, making them

easy to train and optimize. Additionally, they have abilities such as

local perception, parameter sharing, and –multilevel feature

abstraction (Hu et al., 2024). The main parameters of the

1DCNN—” in_channels” , “out_channels” , “kernel_size” ,

“padding”, and “num_epochs”—were set to 1, 16, 3, 1, and

10, respectively.
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LSTM is a type of recurrent neural network (RNN) with

memory capabilities that was originally proposed by Hochreiter

et al. and is specifically designed for processing time series data

(Hochreiter and Schmidhuber, 1997). It addresses the issues of

gradient vanishing and gradient explosion that occur in traditional

RNNs when processing long time series, particularly the problem of

gradient vanishing (Wang P. et al., 2023). The main parameters of

the LSTM—”input_size”, “output_size”, “hidden_size_temp”,

“num_layer_temp”, and “drop_temp”—were set to 3, 1, 64, 1, and

0.4, respectively.

The model construction process is shown in Figure 2.

A total of 120 samples were collected across the four periods.

During modelling, 70% of the samples were randomly selected for

model building, and 30% of the samples were used for model

accuracy validation. All the parameter estimation models were

evaluated using the coefficient of determination (R2) and the root

mean square error (RMSE) to assess model accuracy (Niu et al.,

2021). Here, R2 is used to evaluate the model’s fit, with values closer

to 1 indicating a better fit; RMSE is used to evaluate the model’s

stability, with smaller values indicating greater stability. The

calculation formulas for R2 and RMSE were shown in Equations 3,

4, respectively (Li et al., 2022; Li et al., 2023).

R2 = 1 − (Sn
i=1(ŷ i − �yi)

2)=(Sn
i=1(yi − �yi)

2) (3)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
� (on

i=1(ŷ i − �yi)
2

r
) (4)

where n is the number of samples, ŷ i is the predicted value, �yi is

the mean value, and yi is the actual value.
TABLE 1 Statistics of measured yield-related traits at various rice growth stages.

Collected indicators Sampling time Growth stages Sample size Minimum value Maximum value Mean

LNC(g/kg) 2022.06.16 HD 30 13.902 19.720 17.282

2022.09.16 PI 30 15.559 23.036 20.218

2022.10.12 HD 30 14.913 24.557 19.220

2023.05.15 PI 30 27.829 51.673 38.570

LAI 2022.06.16 HD 30 1.609 5.031 3.170

2022.09.16 PI 30 1.410 3.529 2.626

2022.10.12 HD 30 1.871 5.445 3.597

2023.05.15 PI 30 1.299 3.392 2.273

AGB(g/m2) 2022.06.16 HD 30 462.521 852.333 669.876

2022.09.16 PI 30 222.458 409.146 316.796

2022.10.12 HD 30 580.875 1039.479 791.457

2023.05.15 PI 30 115.438 268.458 197.110

GY(t/ha) 2022.07.12 MA 30 3.810 6.485 5.300

2022.11.16 MA 30 3.929 7.410 5.753

2023.07.10 MA 30 3.363 7.227 5.538
LNC, LAI, AGB and GY represent the leaf nitrogen concentration, leaf area index, aboveground biomass and grain yield, respectively. PI, HD and MA represent the panicle differentiation,
heading and maturation stages, respectively.
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2.4 Statistical methods

Hyperspectral images were mosaicked via PhotoScan 2.0.2.16102

software and were radiometrically corrected, preprocessed, and texture
Frontiers in Plant Science 06
extracted via ENVI 5.3 software. The experimental data were analyzed

using Excel 2019 and SPSS 27.0, and graphs were created using Origin

2022 and ArcMap 10.8. Data dimensionality reduction and model

training were conducted using Python 3.6 software.
FIGURE 2

Technology roadmap. PCC, SPA, and CARS represent the Pearson correlation coefficient, successive projections algorithm, and competitive adaptive
reweighted sampling, respectively; ANN, SVR, 1D CNN, and LSTM represent –the artificial neural network, support vector regression, the 1D
convolutional neural network, and long short–term memory, respectively. PI and HD represent the panicle differentiation and heading stages,
respectively.
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3 Results and analysis

3.1 Spectral reflectance smoothing

Figure 3 shows the spectral reflectance after SG smoothing, which

effectively reduces the “jagged” appearance of the spectral reflectance.

The canopy spectral reflectances of the two varieties during the four

sampling periods showed consistent trends. Between 350 nm and 720

nm, the canopy spectral reflectance showed no significant differences.

Between 720 nm and 898 nm, the spectral reflectance increased with

increasing nitrogen application.
3.2 Biological indicators

As shown in Figure 4, with increasing nitrogen application, the

LNC, LAI, AGB, and GY of rice gradually increased. For both the

“Meixiangzhan No. 2” and the “Nanjingxiangzhan” rice varieties,

when the nitrogen application reached 120 kg/ha, there was no

significant difference in GY among the N2, N3, and N4 treatments

(P< 0.05).
3.3 Correlations of trait indicators

As shown in Figure 5, LNC, LAI, and AGB all exhibited

significant positive correlations with GY, with the strength of

these relationships expressed as the coefficient of determination

(R²), which is the square of the Pearson correlation coefficient (r).

Among the correlations of AGB, LNC, and LAI with GY, the

correlation between AGB and GY was the highest, with R2≥0.60,

followed by LAI, with R2≥0.44. Regarding the correlations among

AGB, LNC, and LAI, the correlation between AGB and LAI was the

highest, with R2≥0.75.
3.4 Feature band selection

A correlation analysis was conducted between canopy spectral

reflectance and various trait indicators. When the absolute value of

the correlation coefficient was greater than 0.5, it was considered to

indicate strong correlation. As shown in Figure 6, when the PCC

dimensionality reduction method was used, the bands strongly

correlated with LNC were found to be 406, 410, 414, 418, and

422 nm. Among them, the band with the strongest correlation to

LNC was 410 nm, with a correlation coefficient of 0.508. AGB had a

strong correlation in the range of 366 nm to 694 nm, with the

strongest correlation occurring at 422 nm, where the correlation

coefficient reached 0.845. LAI had a strong correlation in the range

of 454 nm to 502 nm, as well as at 425 nm and 426 nm, with the

strongest correlation occurring at 486 nm, where the correlation

coefficient reached 0.686. AGB had a strong correlation in the range

of 366 nm to 694 nm, with the strongest correlation occurring at

422 nm, where the correlation coefficient reached 0.845. GY had a
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strong correlation in the range of 642 nm to 670 nm, with the

strongest correlation occurring at 654 nm, where the correlation

coefficient reached 0.523. In addition, SPA and CARS were used to

screen sensitive bands. Ultimately, the top 3 bands with the

strongest correlations obtained from PCC and CARS and the top

5 bands obtained from SPA were selected as sensitive bands. The

results are shown in Table 2.
3.5 Estimation modelling and analysis

Three dimensionality reduction methods, PCC, SPA, and

CARS, were used for sensitive band selection. The selected

sensitive bands were used as feature inputs to construct

estimation models for LNC, LAI, AGB, and GY using four

machine learning algorithms: ANN, SVR, 1DCNN, and LSTM.

The resulting model R² and RMSE values are shown in Table 3.

When PCC was used for sensitive band selection, the estimation of

AGB yielded the best results. The model using the ANN algorithm

had the highest precision and stability, with an R² of 0.89 and an

RMSE of 86.25 g/m2. When SPA was used for sensitive band

selection, the estimation of LNC, LAI, and AGB yielded the best

results. In this case, the model using the ANN algorithm had the

highest precision and stability, with R² values of 0.82, 0.75, and 0.90

for LNC, LAI, and AGB, respectively, and RMSE values of 3.68 g/kg,

0.47, and 81.29 g/m2, respectively. When CARS was used for

sensitive band selection, the estimations of LAI, AGB, and GY

yielded the best results. For LAI, the model using the SVR algorithm

had the highest precision and stability, with an R² of 0.62 and an

RMSE of 0.54. For AGB and GY, the models using the ANN

algorithm had the highest precision and stability, with R² values of

0.90 and 0.63 and RMSE values of 79.05 g/m2 and 0.59 t/ha,

respectively. In summary, among the three data dimensionality

reduction methods and four modelling approaches, the model

constructed using SPA–ANN had high precision and good

stability for estimating LNC and LAI. For estimating AGB and

GY, the model built using CARS–ANN was the best.
3.6 Model validation

The optimal dimensionality reduction method and machine

learning algorithm were selected for the four indicators, with 70% of

the data used as the training set and 30% used as the validation set

for verification. The model validation results are shown in Figure 7.

The SPA–ANNmodel had the best performance in estimating LNC

and LAI, with R² values of 0.81 and 0.76 and RMSE values of 4.82 g/

kg and 0.43, respectively. The CARS–ANN model had the best

performance in estimating AGB and GY, with R² values of 0.90 and

0.61 and RMSE values of 94.93 g/m2 and 0.57 t/ha, respectively. The

results indicate that compared with those of the PCC method, the

sensitive bands selected by SPA and CARS are more representative.

Compared with SVR, 1DCNN, and LSTM, the ANN algorithm has

an advantage in estimating rice LNC, LAI, AGB, and GY.
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3.7 Optimal combination model with
texture features

On the basis of the optimal dimensionality reduction methods

and machine learning algorithms for the four indicators in Figure 7,
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texture features corresponding to the sensitive bands were

introduced. The results are shown in Figure 8 and Table 3. The

models constructed by incorporating texture features all showed

certain improvements. In estimating LNC, compared with spectral

modelling alone, the R² of the training set increased by 8.5%, and
FIGURE 3

SG–smoothed canopy spectral reflectances of “Meixiangzhan No. 2” (A, C, E, G) and “Nanjingxiangzhan” (B, D, F, H) at various growth stages. The
spectral range displayed is limited to 400–900 nm to exclude the noisy regions at the spectral extremes (particularly beyond 900 nm) of the X20P
sensor, ensuring a clear presentation of the reliable spectral data used for analysis.
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FIGURE 4

Effects of different nitrogen fertilizer levels on the leaf nitrogen concentration, leaf area index, –aboveground biomass, and yield of “Meixiangzhan
No. 2” (A, C, E, G) and “Nanjingxiangzhan” (B, D, F, H) at various growth stages. HD in 2022 E, PI in 2022 L, HD in 2022 L, and PI in 2023 E represent
the heading stage in the early season of 2022, the beginning of panicle differentiation in the late season of 2022, the heading stage in the late
season of 2022, and the beginning of panicle differentiation in the early season of 2023, respectively; N0, N1, N2, N3, and N4 represent treatments
of 0, 60, 120, 180, and 240 kg/ha, respectively; Lowercase letters for the same growth stage under different nitrogen fertilizer levels indicate
significant differences at the p < 0.05 level.
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the RMSE decreased by 10.9% when texture features were

introduced into the model; the R² of the test set increased by

9.9%, and the RMSE decreased by 27.2%. In estimating GY, the R²

of the test set increased by 8.2% and the RMSE decreased by 3.5%

when texture features were incorporated into the modelling.
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4 Discussion

4.1 Impact of dimensionality reduction
methods on model accuracy

Performing dimensionality reduction on spectral data to reduce

redundancy is a key step in establishing crop growth parameter

estimation models and is an important aspect of improving model

accuracy and stability. The three dimensionality reduction methods,

PCC, SPA, and CARS, can all be used to effectively reduce the

dimensionality of spectral data and select sensitive bands for

specific growth parameters (Table 2). These methods have been

widely used in numerous studies to extract key spectral features

(Zhang et al., 2022; Qin et al., 2020). Che et al. (Che et al., 2024)

used PCC to select the three spectral bands with the highest

correlation with rice nitrogen: 756 nm, 813 nm, and 899 nm.

They conducted nitrogen estimation modelling with these bands,

achieving high precision and stability, with an R² of 0.886 and an

RMSE of 1.104. Liu et al. (Liu et al., 2024) used SPA to select

sensitive bands for classifying rice blast disease. The classification

accuracy was second only to that of the PCA method, with a

modelling R² of 0.933 and a kappa coefficient of 91.67%. Xu et al.

(Xu et al., 2022) used CARS to reduce the dimensionality of spectral

data, and the nitrogen estimation model constructed with the

selected sensitive bands had R² values of 0.690 and 0.596 and

RMSE values of 0.669 and 0.774 mg/g for the training and
FIGURE 5

Correlations between leaf nitrogen concentration (A), leaf area index (B), aboveground biomass (C) and yield at different growth stages of rice, as
well as correlations between leaf nitrogen concentration and leaf area index (D), leaf nitrogen concentration and aboveground biomass (E), and leaf
area index and aboveground biomass (F). PI and HD represent the PI stage and heading stage, respectively. “*” and “**” indicate significant
correlations at the P<0.05 and P<0.01 levels, respectively.
FIGURE 6

Correlation coefficients between spectral reflectance and biological
indicators. LNC, LAI, AGB and GY represent the leaf nitrogen
concentration, leaf area index, aboveground biomass and grain
yield, respectively.
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validation sets, respectively. Therefore, there are also obvious

differences in the sensitive bands obtained and in the model

prediction performance when different dimensionality reduction

methods are used. This is because these dimensionality reduction

methods have different emphases on feature selection. For example,

the CARS algorithm is similar to the “survival of the fittest”

principle in Darwin’s theory (Li et al., 2009), identifying sensitive

bands that have a significant impact on the target variable through

Monte Carlo model sampling and exponential decay wavelength

selection. PCC focuses on the strength of linear correlation and on

selecting multiple bands with high correlations, but these bands

may contain redundant information, affecting the model’s

predictive performance. The SPA selects bands that contribute the

most to the model step by step, and it can establish a band

combination with the least redundancy while effectively reducing

the collinearity among variables (Araújo et al., 2001). In this

experiment, when LNC and LAI were estimated, dimensionality

reduction by the SPA was significantly better than that via the PCC

and CARS algorithms (Table 3, Figure 7). Changes in LNC can

affect the chlorophyll content of plant leaves, which in turn affects

leaf spectral reflectance (Gitelson et al., 2003). LAI refers to the leaf
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area per unit land area. An increase in the LAI means that there is

more leaf area, which is likely to increase the scattering and

reflection of spectra. Research has shown that an increase in the

LAI can lead to a significant increase in spectral reflectance in the

near–infrared band (760–1315 nm) (Qin et al., 2017). Li et al. (Li et

al., 2003) reported that the extent of the impact of chlorophyll

content changes on canopy reflectance is related to the LAI. The

larger the LNC and LAI are, the greater the chlorophyll content, and

the stronger the canopy reflectance. Therefore, both the LAI and

LNC have a direct connection with leaf spectral characteristics. SPA

is a forwards iterative search method used to select wavelengths

with the least redundant spectral information to solve collinearity

problems (Galvo et al., 2008). The algorithm is relatively simple and

has high computational efficiency, making it suitable for screening

sensitive bands directly related to leaf spectral characteristics. When

AGB and GY were estimated, the sensitive bands selected by CARS

dimensionality reduction were clearly superior to those selected by

SPA and PCC (Table 3, Figure 7). This is because AGB and GY are

related not only to spectral data but also to texture features and

spatial structures, among other factors. There are complex

interactions among these factors, and this complexity requires
TABLE 2 Sensitive bands of rice yield–related traits after dimensionality reduction.

Dimensionality reduction
methods

LNC LAI AGB GY

PCC 410nm、414nm、418nm 422nm、486nm、678nm 370nm、422nm、678nm 650nm、654nm、658nm

SPA 398nm、410nm、478nm、

498nm、590nm
350nm、378nm、394nm、

486nm、890nm
402nm、422nm、450nm、

718nm、898nm
630nm、654nm、658nm、

690nm、742nm

CARS 406nm、410nm、414nm 402nm、674nm、678nm 366nm、370nm、418nm 350nm、398nm、898nm
LNC, LAI, AGB and GY represent the leaf nitrogen concentration, leaf area index, aboveground biomass and grain yield, respectively. PCC, SPA and CARS represent person correlation
coefficient, successive projections algorithm, and competitive adaptive reweighted sampling, respectively.
TABLE 3 Model accuracy.

Dimensionality reduction
methods

Machine learning
algorithms

LNC LAI AGB GY

R² RMSE R² RMSE R² RMSE R² RMSE

PCC ANN 0.31 7.63 0.58 0.56 0.89 86.25 0.26 0.79

SVR 0.28 8.30 0.59 0.56 0.85 99.99 0.28 0.78

1DCNN 0.27 8.02 0.53 0.62 0.85 98.95 0.29 0.75

LSTM 0.26 7.81 0.50 0.66 0.73 141.31 0.28 0.91

SPA ANN 0.82 3.68 0.75 0.47 0.90 81.29 0.54 0.65

SVR 0.73 5.42 0.67 0.56 0.85 97.02 0.47 0.69

1DCNN 0.79 4.60 0.68 0.53 0.87 94.57 0.50 0.69

LSTM 0.28 8.22 0.48 0.66 0.74 130.59 0.40 0.79

CARS ANN 0.35 8.01 0.61 0.58 0.90 79.05 0.63 0.59

SVR 0.28 8.27 0.62 0.54 0.87 95.15 0.53 0.67

1DCNN 0.27 8.01 0.58 0.58 0.84 107.07 0.43 0.72

LSTM 0.28 7.45 0.48 0.69 0.70 148.19 0.10 0.95
front
LNC, LAI, AGB and GY represent the leaf nitrogen concentration, leaf area index, aboveground biomass and grain yield, respectively. PCC, SPA and CARS represent person correlation
coefficient, successive projections algorithm, and competitive adaptive reweighted sampling, respectively. ANN, SVR, 1DCNN and LSTM represent artificial neural network, support vector
regression, the 1D convolutional neural network and long short–term memory, respectively.
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that the estimation models be able to handle and interpret these

complex multivariate relationships. The CARS algorithm is well–

suited for handling complex multivariate relationships and

hyperspectral data with a large amount of redundant information
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and multicollinearity. It can effectively select the key feature bands

that contribute the most from among complex data and can reduce

the number of data dimensions, thereby achieving higher model

accuracy and stability (Tang et al., 2021).
FIGURE 7

Model validation for LNC (A–C), LAI (D–F), AGB (H–J), and GY (K–M) with optimal performance under PCC, SPA, and CARS dimensionality reduction
methods combined with machine learning algorithms. LNC, LAI, AGB and GY represent the leaf nitrogen concentration, leaf area index,
aboveground biomass and grain yield, respectively. PCC, SPA and CARS represent person correlation coefficient, successive projections algorithm,
and competitive adaptive reweighted sampling, respectively. ANN, SVR and 1DCNN represent artificial neural network, support vector regression and
1D convolutional neural network.
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4.2 Impact of machine learning algorithms
on model accuracy

The results of this experiment indicate that the ANN model

performs better than the SVR, 1DCNN, and LSTM models do. The

optimal model for all four biological indicators is the ANNmodel (see

Table 3, Figure 7). ANNs are primarily applied to prediction and

classification problems and are among the most widely used machine

learning algorithms at present. Among the many machine learning

algorithms, it has relatively good accuracy and stability (Wang et al.,

2023). SVR is often used to address regression and classification

problems in pattern recognition and data analysis (Li et al., 2024). It

can avoid the effects of noise generated by data, thereby reducing the

risk of model overfitting. However, owing to the need to calculate the

kernel function and adjust the parameters, the choice of parameters

may have a significant effect on the model’s performance (Liu et al.,

2017). 1DCNN is a special type of feedforward neural network used

for processing sequential data and is currently one of themore popular

deep learning methods. It is mainly used for processing image and

speech data (Ye and Zheng, 2024), but it has an inconveniently large

number of parameters to adjust, and the interpretability of the results

is not very high. LSTM is a special RNN structure that is often used for
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sequence data analysis. It can better address the problems of gradient

vanishing and gradient explosion during the training of long

sequences (Li and Cao, 2018), and it performs better when

processing longer sequential data. In previous studies, ANN

estimation models for various crop physiological parameter

indicators all demonstrated good performance, particularly in terms

of prediction accuracy, stability, and generalizability (Santos et al.,

2021; Krupavathi et al., 2022). Santos et al. (Santos et al.2021)

constructed an ANN estimation model for soybean yield, with an

R² of 0.88 and an RMSE of 167.85. Krupavathi et al. (Krupavathi et al.,

2022) used the ANN algorithm to estimate sugarcane yield, with the

R² of the best model reaching 0.867–0.916 on the training set and

0.829–0.991 on the test set. As a universal function approximator, an

ANN is nonlinear because of its activation function (Zhang H. et al.,

2021), enabling it to learn any complex nonlinear relationship between

inputs and outputs. This capability allows it to perform excellently

when dealing with nonlinear problems. In comparison, SVR and

1DCNN are less flexible than ANN when dealing with nonlinear

datasets. Although LSTM is suitable for processing sequential data, it

has disadvantages in computational complexity and parallelization

capabilities, which leads to poor performance in estimating the

biological indicators of interest.
FIGURE 8

Adding textural features to the optimal combined models for estimating LNC (A), LAI (B), AGB (C), and GY (D). LNC, LAI, AGB and GY represent the
leaf nitrogen concentration, leaf area index, aboveground biomass and grain yield, respectively. SPA and CARS represent successive projections
algorithm, and competitive adaptive reweighted sampling, respectively. ANN represent artificial neural network.
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4.3 Impact of adding texture features on
model accuracy

When texture features were added to the optimal combination

model for optimization, the estimation model for LNC achieved the

greatest improvement in accuracy. The R² of the model’s test set

increased by up to 9.9%, and the RMSE was reduced by up to 27.2%

(Table 4, Figure 8). Texture is an intrinsic characteristic of the surface

of an object, independent of changes in color and brightness, and can

be used to address cases such as –different objects with the same

spectrum and –one object with multiple spectra (Wang et al., 2009).

Cheng et al. (Cheng et al., 2024) reported that after texture features

were added, the precision of comprehensive growth models for winter

wheat constructed using three machine learning methods improved.

This is mainly because texture features provide additional spatial

information, which helps capture the microstructures and patterns of

objects. Under the experimental conditions, the model accuracies for

the LAI, AGB, and GY all improved after texture features were added,

but the improvements were limited (Table 4, Figure 8). This is because

the optimal dimensionality reduction + machine learning

combination model was used during the research process, and the

model accuracy was already high, leaving limited room for further

improvement. Furthermore, for the four indicators in this experiment,

the AGB estimation model had the highest accuracy (Tables 2, 4,

Figures 7, 8). This is because when the AGB is larger, more light

energy is absorbed for photosynthesis, resulting in lower reflectance in

these bands, making it easier to select sensitive bands. Consequently,

greater model accuracy can be achieved when the AGB estimation

model is constructed. Casanova et al. (Casanova et al., 1998) obtained

similar results. They combined rice spectral reflectance with

information on the photosynthesis process to establish rice AGB

and LAI estimation models, and their results also showed greater
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model accuracy and stability for AGB estimation than LAI estimation.

Zhang et al. (Zhang et al., 2025) employed the Spectral-Texture Fusion

Indices (STFIs) method to estimate rice leaf nitrogen content. This

approach deeply integrates selected sensitive spectral bands and key

texture features through mathematical operations. Among all feature

combinations, the optimal model—SFS-DNN combined with STFIs—

achieved an R2 of 0.874 and an RMSE of 2.621 mg/g. In future

research, the STFI methodology would be referenced to construct

novel fusion indices by mathematically combining spectral data with

corresponding key texture features, thereby building more robust and

accurate estimation models and providing stronger technical support

for precision agriculture management.
5 Conclusion

Under the conditions of this experiment, the feature bands

obtained after SPA dimensionality reduction were best for

estimating LNC and LAI, whereas the feature bands after CARS

dimensionality reduction were best for estimating AGB and GY.

The estimation models for LNC, LAI, AGB, and GY constructed

using the ANNmethod had higher accuracy and stability than those

built via the SVR, 1DCNN, and LSTM models. The SPA–ANN

model was optimal for estimating LNC and LAI, whereas the

CARS–ANN model was optimal for estimating AGB and GY. The

model precision improved when texture features were incorporated

into the optimal combination model. The model constructed by

LNC through “spectral data + texture data + dimensionality

reduction + machine learning” yielded the greatest improvement

in precision. These results provide a scientific basis for the –

nondestructive real–time prediction of rice yield–related traits

and precise diagnosis of phenotypes in indica rice in South China.
TABLE 4 Spectral models and spectral + texture models.

Dimensionality reduction
methods

Machine Learning
Algorithms

LNC LAI AGB GY

R² RMSE R² RMSE R² RMSE R² RMSE

PCC

ANN 0.31 7.63 0.58 0.56 0.89 86.25 0.26 0.79

SVR 0.28 8.30 0.59 0.56 0.85 99.99 0.28 0.78

1DCNN 0.27 8.02 0.53 0.62 0.85 98.95 0.29 0.75

LSTM 0.26 7.81 0.50 0.66 0.73 141.31 0.28 0.91

SPA

ANN 0.82 3.68 0.75 0.47 0.90 81.29 0.54 0.65

SVR 0.73 5.42 0.67 0.56 0.85 97.02 0.47 0.69

1DCNN 0.79 4.60 0.68 0.53 0.87 94.57 0.50 0.69

LSTM 0.28 8.22 0.48 0.66 0.74 130.59 0.40 0.79

CARS

ANN 0.35 8.01 0.61 0.58 0.90 79.05 0.63 0.59

SVR 0.28 8.27 0.62 0.54 0.87 95.15 0.53 0.67

1DCNN 0.27 8.01 0.58 0.58 0.84 107.07 0.43 0.72

LSTM 0.28 7.45 0.48 0.69 0.70 148.19 0.10 0.95
front
LNC, LAI, AGB and GY represent the leaf nitrogen concentration, leaf area index, aboveground biomass and grain yield, respectively.
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