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Introduction: The advancement of smart agriculture has witnessed increasing

applications of computer vision in crop monitoring and management. However,

existing approaches remain challenged by high computational complexity,

limited real-time capability, and poor multi-task coordination in tomato

cultivation scenarios.
Methods: To address these limitations, an intelligent tomato management

system is proposed based on the Ghost-based Adaptive Efficient You Only

Look Once (GAE-YOLO) algorithm. The lightweight architecture of the GAE-

YOLO framework is achieved through the replacement of standard convolutional

layers with Ghost Convolution (GhostConv) modules, while detection accuracy is

significantly improved by the integration of both AReLU activation functions and

Effective Intersection over Union (E-IoU) loss optimization. The system,

implemented on a Jetson TX2 embedded platform, also incorporates ZED

stereo vision for 3D localization and a PyQt6-based visualization platform.

Results: When implemented on Jetson TX2, the system achieving 93.5% mean

Average Precision at 50% intersection over union (mAP@50) at 10.2 frames per

second (FPS), which can be optimized to 27 FPS by employing TensorRT

acceleration and 720p resolution for scenarios demanding higher throughput.

Furthermore, it establishes standardized assessment systems for tomato maturity

and yield prediction, and offers integrated modules for disease diagnosis and

agricultural large language model consultation.

Discussion: Thiswork establishes a newparadigm for edge computing in agriculture

while providing critical technical support for smart farming development.
KEYWORDS

tomato smart agriculture, lightweight YOLO, edge computing, multimodal detection,
plant phenotyping
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1 Introduction

Tomato (Solanum lycopersicum), as a globally significant

economic crop rich in essential vitamins, plays a pivotal role in

agricultural production and human nutrition. In recent years, the

global cultivation area of tomato has experienced substantial

expansion, driven by increasing market demand. However,

industrialized tomato production continues to face critical

technical constraints, including inefficient harvesting systems,

inconsistent fruit maturity, and challenges in accurate disease

identification, which collectively hinder sustainable development

of the industry (Liu J. et al., 2020). Three major challenges are

identified in conventional tomato production: (1) Inefficient

harvesting processes: Tomato yield and economic returns are

significantly impacted by harvesting efficiency. Current operations

remain heavily dependent on manual labor due to the complexity of

maturity assessment and limited mechanization, resulting in

elevated labor costs and suboptimal productivity. (2) Imprecise

pest/disease management: During ripening stages, tomato crops are

particularly vulnerable to pest infestations and diseases, often

leading to substantial yield reduction. Traditional monitoring

approaches relying on manual field inspections and empirical

judgments are characterized by delayed responses and high

misidentification rates. Under large-scale cultivation conditions,

such labor-intensive methods fail to provide comprehensive

coverage, creating significant prevention gaps. (3) Scientific

cultivation limitations: The expansion of cultivation areas has

exacerbated management challenges, particularly in regions with

limited agricultural expertise. Improper pesticide application not

only compromises disease control efficacy but also risks secondary

contamination through excessive residues. Furthermore, the

prevalent overuse of broad-spectrum pesticides in technician-

deficient regions increases production costs while aggravating

environmental pollution risks.

Recent advancements in artificial intelligence (AI) have

provided transformative technological support for intelligent

agricultural systems. Particularly in tomato production, AI-based

computer vision and deep learning technologies have emerged as

innovative solutions to conventional harvesting challenges. Studies

have demonstrated that agricultural robotic systems equipped with

high-precision visual recognition modules are capable of real-time

morphological characterization, enabling precise robotic harvesting

operations through mechanical arm guidance. The evolution of fruit

detection methodologies has witnessed a paradigm shift from

traditional approaches to deep learning techniques. Conventional

detection methods, including single-feature analysis, multi-feature

fusion, and threshold segmentation algorithms, have been shown to

exhibit significant limitations when applied to complex tomato

growth patterns characterized by fruit occlusion and foliar

obstruction. In contrast, deep learning approaches have

demonstrated substantial improvements in both recognition

accuracy and environmental robustness through autonomous

multi-scale feature extraction. This technological advancement

provides fundamental support for developing intelligent

harvesting systems that address the critical limitations of
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traditional methods, particularly their inefficiency and labor-

intensive nature. Afonso et al. applied MaskRCNN for tomato

detection in greenhouse images, by leveraging deep learning to

handle variability, implicitly learn depth, and enable accurate fruit

counting and background elimination in real-world conditions

(Afonso et al., 2020). Liu et al. proposed YOLO-Tomato, an

improved YOLOv3 model with dense architecture and circular

bounding boxes, enhancing tomato detection accuracy under

challenging conditions like occlusion and overlap, outperforming

state-of-the-art methods (Liu G. et al., 2020). Liu et al. proposed

SM-YOLOv5, a lightweight model based on YOLOv5 and

MobileNetV3, achieving 98.8% mAP for small-target tomato

detection in plant factories, meeting real-time requirements for

picking robots with reduced computational cost (Wang et al., 2023).

Wang et al. proposed an improved Faster R-CNN with CBAM and

FPN for tomato young fruit detection, achieving 98.46% mAP and

0.084s/image, addressing color similarity, occlusion, and overlap

challenges for real-time precision (Wang et al., 2021). Zhou et al.

proposed a real-time tomato maturity detection method using

YOLOv4 for fruit detection and RGB color analysis with K-means

clustering for maturity estimation in greenhouse environments

(Zhou et al., 2021). Chen et al. enhanced YOLOv3 for cherry

tomato detection by integrating a dual-path network for richer

small-target features, multi-scale prediction, and improved K-

means++ clustering for anchor box optimization (Chen et al.,

2021). Su et al. proposed SE-YOLOv3-MobileNetV1, integrating

depthwise separable convolution, Mosaic augmentation, K-means

clustering, and SE attention for efficient tomato maturity

classification in greenhouse environments, optimized for

embedded systems (Su et al., 2022). Rong et al. developed

YOLOv5-4D, combining RGB-depth fusion and ByteTrack for

tomato cluster tracking, with a specific counting region method to

enhance stability and accuracy in greenhouse yield estimation

(Rong et al., 2023). Tian et al. proposed TF-YOLOv5s, enhancing

YOLOv5s with C3Faster, depth-wise separable convolution, EIoU

loss, and SE modules for efficient tomato flower and fruit detection

in natural environments, optimized for edge computing

deployment (Tian et al., 2024).

Recent studies have further advanced lightweight architecture

design. Wang et al. introduced a novel combination of switchable

atrous convolution for dynamic receptive field adjustment and

wavelet transform convolution for multi-frequency feature

decomposition, which effectively preserved critical edge details of

occluded tomatoes in greenhouse environments (Wang et al., 2025).

Concurrently, Zhang et al. addressed the challenge of detecting

dense, small-sized disease spots by integrating a Normalized

Wasserstein Distance loss that stabilized the learning process for

tiny features, along with a lightweight hybrid attention mechanism

to enhance focus on discriminative regions (Zhang and Jiang, 2025).

Hao et al. achieved a significant reduction in parameters and

computational load by designing a GSim module and replacing

standard components with C3Ghost and BiFPN structures, while

maintaining high ripeness detection accuracy in complex

environments (Hao et al., 2025). Furthermore, Deng et al.

implemented a fundamentally different approach through
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embedding Sobel operators directly into the network stem for

explicit edge feature extraction from the initial stage, combined

with a weighted Focaler-IoU loss that achieved state-of-the-art

accuracy while demonstrating practical deployment capability on

edge hardware platforms (Deng et al., 2025). However, these models

remain isolated perception modules, creating a perception-action

gap due to the lack of integrated 3D coordination for robotics. The

present study bridges this gap through the GAE-YOLO system,

which couples detection with ZED stereo vision to form a complete

detection-localization-analysis-decision pipeline. This integration

enables precise spatial localization for robotic manipulation

alongside maturity assessment and yield estimation, establishing a

new paradigm for comprehensive edge intelligence in agriculture.

The early detection of plant diseases has been recognized as a

critical factor in maintaining agricultural productivity. Initial

disease manifestations on plant foliage are frequently associated

with significant reductions in both crop yield and quality.

Conventional diagnostic approaches, which predominantly rely

on visual inspection by human experts, have been demonstrated

to suffer from two fundamental limitations: operational inefficiency

and substantial subjective bias. Recent advances in artificial

intelligence have led to the development of deep learning-based

image recognition systems. These systems have shown considerable

potential in plant pathology applications due to their exceptional

capabilities in automated feature extraction and diagnostic

accuracy. Mokhtar et al. proposed an image processing approach

using GLCM for texture analysis and SVM with linear kernel for

classifying healthy and infected tomato leaves, achieving high

accuracy with N-fold cross-validation (Mokhtar et al., 2015b).

Mokhtar et al. proposed a method using Gabor wavelet transform

for feature extraction and SVMs with alternate kernel functions to

detect and classify tomato leaf diseases, achieving high accuracy and

reliability (Mokhtar et al., 2015a). Fuentes et al. analyzed non-

destructive image-based techniques for detecting tomato plant

diseases, emphasizing the importance of accurate data collection

to reduce agricultural production and economic losses (Fuentes

et al., 2016). Mohanty et al. developed a deep convolutional neural

network (CNN) for crop disease diagnosis using a large public

image dataset, demonstrating the potential for smartphone-assisted

global disease identification (Mohanty et al., 2016). TM et al.

proposed a modified LeNet CNN for tomato leaf disease

detection, utilizing minimal computing resources and automatic

feature extraction to achieve efficient and accurate classification

under challenging conditions (Tm et al., 2018). Ji et al. proposed a

lightweight YOLOv8-based method for tomato leaf disease

detection, integrating enhanced IoU, AKConv, and GSConv to

improve localization accuracy and reduce computational

complexity for efficient disease recognition (Ji et al., 2024). Phan

et al. proposed four deep learning frameworks combining Yolov5m

with ResNet50, ResNet-101, and EfficientNet-B0 for classifying

tomato fruit into ripe, immature, and damaged categories,

demonstrating potential for automated harvesting (Phan et al.,

2023). Umar et al. proposed an improved YOLOv7 model with

SimAM, DAiAM, and MPConv for accurate tomato leaf disease
Frontiers in Plant Science 03
detection, combined with SIFT-based segmentation and CNN

classification for enhanced feature extraction and disease

identification (Umar et al., 2024). This non-destructive intelligent

detection approach has been demonstrated to significantly improve

diagnostic efficiency while providing crucial technical support for

timely and effective disease management, thereby playing a pivotal

role in ensuring tomato yield and quality.

Agricultural large language models (LLMs), as an important

artificial intelligence technology, have demonstrated significant

potential in various agricultural applications, particularly in crop

identification and disease early warning systems. Wang et al.

introduced Agri-LLaVA, a knowledge-infused multimodal

conversation system for agriculture, leveraging a novel 400,000-

entry dataset covering 221 pests and diseases. The system enhances

visual understanding and pest control, with open-source resources

to advance agricultural LMM research (Wang et al., 2024). Yu et al.

proposed AgriVLM, a framework fine-tuning visual language

models with Q-former and Low-Rank adaptation for cross-modal

fusion of agricultural data, enhancing crop disease and growth stage

recognition through multimodal analysis (Yu and Lin, 2024).Wang

et al. developed an intelligent agricultural Q&A system using LLMs,

fine-tuned with Lora and Prompt-tuning for named entity

recognition and question answering, enhancing agricultural

knowledge dissemination for rural revitalization (Wang et al.,

2023). Zhang et al. proposed IPM-AgriGPT, a Chinese LLM for

pest management, using a G-EA framework, ACR-CoTD, and

LoRA techniques to optimize dynamic reasoning and reduce

reliance on labeled data for agricultural intelligence (Zhang et al.,

2025). Large model technology has demonstrated outstanding

performance in agricultural multimodal dialogue and visual

comprehension, providing novel insights and methodologies for

addressing agricultural disease challenges.

As evidenced by current research, computer vision-based

intelligent tomato detection has emerged as a critical component in

automated harvesting systems, where detection accuracy directly

determines the operational efficiency of subsequent robotic processes.

However, existing approaches are constrained by two fundamental

limitations: On the one hand, the practical deployment of high-

complexity models in agricultural environments presents significant

challenges, on the other hand most current developments remain

confined to theoretical algorithm research without comprehensive

implementable solutions. To identify the most suitable lightweight

architecture for agricultural edge detection, we systematically evaluated

mainstream backbones and identified GhostConv as offering a superior

trade-off between accuracy and efficiency, which subsequently formed

the core of our GAE-YOLO model. To address these practical

challenges in automated tomato harvesting, an intelligent computer

vision-based tomato detection and management system is proposed in

this study. This system aims to resolve core technical barriers in

agricultural automation through systematic integration of advanced

visual algorithms with edge computing technologies, thereby achieving

a crucial transition from theoretical research to practical application.

The primary contributions of this work are manifested in four

key aspects:
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Fron
1. Algorithm Optimization: The conventional convolutional

structure was replaced with Ghost-conv modules, achieving

a significant reduction in model parameters. The E-IoU loss

function and AReLU activation function were implemented

to enhance detection accuracy, enabling high-precision

identification of tomato fruits and foliar diseases.

2. System Deployment: A novel three-dimensional tomato

detection framework was developed by integrating ZED

binocular vision with the Jetson TX2 edge computing

platform. This integrated system facilitates real-time

dynamic analysis and provides precise guidance for

robotic harvesting operations.

3. Scientific Management: Standardized algorithms for

tomato maturity evaluation and single-plant yield

estimation were established, providing quantitative data

support for precision agriculture practices.

4. Application Functionality: A cross-platform visualization

interface was developed with modular design,

incorporating multidimensional diagnostic reporting and

optimized agricultural language models to deliver

intelligent disease prevention and control solutions.
Experimental results demonstrate that the proposed system

significantly outperforms conventional approaches in multiple

critical aspects, including tomato detection accuracy, disease

identification precision, maturity assessment reliability, and

prevention strategy effectiveness. This study has established not

only a practical and implementable solution for agricultural

automation, but also a scalable technical framework that can be

readily adapted for intelligent management of various cash crops. The

proposed system exhibits substantial academic significance while

demonstrating considerable potential for industrial deployment.
tiers in Plant Science 04
2 Materials and methods

2.1 Construction of data set

2.1.1 Tomato detection datasets construction
Tomato detection datasets construction: A multi-source data

fusion strategy was employed to construct a comprehensive tomato

detection datasets. The datasets comprises two primary

components: (1) a standardized benchmark datasets containing

895 high-resolution tomato images obtained from Kaggle, with

each image professionally annotated in PASCAL VOC format

(Figure 1a), and (2) supplementary field-collected data acquired

from greenhouse environments in Shouguang City, Shandong

Province (36°51’19.73”N, 118°47’26.35”E) using ZED binocular

cameras. The field collection protocol ensured diverse samples by

capturing tomato plants at various growth stages under multiple

lighting conditions and viewing angles (Figure 1b).

2.1.2 Foliar disease detection datasets
The foliar disease datasets used in this study was obtained from the

Kaggle platform, comprising over 700 tomato leaf images collected

from both laboratory and field environments. The dataset contains six

disease categories and one healthy class, including common tomato

pathogens: Bacterial spot, Early blight, Late blight, Leaf mold, Target

Spot, and Black Spot. The data has been augmented of using multiple

advanced techniques such as image flipping, Gamma correction, noise

injection, PCA color augmentation, rotation, and scaling. Some foliar

disease datasets are shown in Figure 2.

2.1.3 Image acquisition and processing facilities
This study focuses on intelligent tomato recognition and

detection in real-world agricultural settings, moving beyond
FIGURE 1

Partial tomato datasets. (a) Example images from the tomato dataset. (b) Tomato images captured by a ZED stereo camera.
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traditional static datasets-based algorithm research. To address the

complex imaging challenges in greenhouse environments, a mobile

image acquisition system was developed, comprising three core

components: (1) a ZED binocular vision camera (Figure 3a), which

provides high-precision depth perception and 4K resolution

imaging; (2) a McNam wheel omnidirectional mobile platform

(Figure 3c), enabling flexible and adaptive data collection; and (3)

a Jetson TX2 edge computing module (Figure 3b), responsible for

real-time image processing and analysis. This integrated system

effectively overcomes the challenges posed by variable lighting

conditions and foliar obstructions in greenhouse environments,

ensuring reliable data acquisition for subsequent tomato detection

and maturity analysis.
2.2 Proposed methods

This study presents an intelligent tomato detection and

management system based on the GAE-YOLO model, which

achieves end-to-end process optimization—from fruit detection to

disease diagnosis and ripeness assessment—through the integration

of multiple advanced technologies. Methodologically, the system is

built upon four core technical modules: (1) a lightweight GAE-

YOLO object detection framework for high-precision identification
Frontiers in Plant Science 05
of tomato fruits and disease symptoms; (2) a three-dimensional

vision system integrated with a ZED depth camera to establish

accurate spatial coordinate calculations for robotic harvesting; (3) a

multi-scale feature fusion algorithm designed for tomato ripeness

classification and yield estimation; and (4) visualization software

that combines disease diagnosis with LLMs interaction, enabling a

modular “detection-diagnosis-decision” closed-loop management

system. The collaborative workflow of these modules is

demonstrated in the technical roadmap (Figure 4).

2.2.1 Lightweight GAE-YOLO
This study proposes an innovative lightweight object detection

model, GAE-YOLO, which systematically optimizes the Ultralytics

YOLOv11-nano (YOLOv11n) architecture. As shown in Figure 5,

GAE-YOLO achieves significant improvements in balancing model

efficiency and detection accuracy through three key technological

innovations: (1) Lightweight architecture design: GhostConv

modules are employed to replace conventional convolution

operations, reducing parameters while maintaining feature

extraction capability through a feature map redundancy

utilization mechanism, thereby improving inference speed. (2)

Adaptive feature enhancement: Parametric AReLU activation

functions are introduced to replace standard SiLU, dynamically

adjusting negative interval slopes to better capture key
FIGURE 3

Hardware facilities for image acquisition and processing. (a) ZED binocular vision camera. (b) Jetson TX2 edge computing module. (c) McNam wheel
omnidirectional mobile platform.
FIGURE 2

Partial foliar disease datasets.
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morphological features of tomato fruits. (3) Optimized training

strategy: The E-IoU loss function is adopted, integrating direction-

aware terms and scale-sensitive factors to effectively address

recognition deviations in tomato occlusion scenarios. These

innovations enable GAE-YOLO to maintain detection accuracy

while achieving lightweight deployment on mobile devices (Jetson

TX2) for real-time tomato detection.
2.2.1.1 Lightweight GhostConv design

CNNs have demonstrated remarkable success in computer

vision applications; however, their deployment on resource-

constrained devices remains challenging. Traditional CNN

architectures rely on stacked convolutional layers for feature

extraction, which, while achieving high detection accuracy, incur

substantial computational costs. To address this limitation, this

study introduces GhostConv as an innovative replacement for

conventional convolution operations. As illustrated in Figure 6,

the GhostConv module employs depth-wise convolution as its

foundational operation, decoupling channel dependencies by

performing independent convolution operations for each feature

channel. This design significantly reduces computational

complexity while maintaining representational capacity. The

module further enhances efficiency through a secondary linear

transformation layer, which generates supplementary ghost

feature maps at minimal computational overhead. Collectively,

these mechanisms enable efficient yet powerful feature extraction.
Frontiers in Plant Science 06
The GhostConv operation proceeds as follows: A minimal set of

conventional convolution kernels are first applied to the input

feature map X to extract intrinsic feature maps Y 0, where X

denotes the input features and f 0 represents the number of

convolutional layers, as shown in Equation 1.

Y 0 = X   �   f 0 (1)

A linear transformation is then applied to the output intrinsic

feature maps Y 0 to generate ghost feature maps (Equations 2, 3).

yij = Fi,j(y
0
i ),     ∀i = 1,…,m,     j = 1,…, s (2)

Y = ½y11, y12,…, y1s,…, yms� (3)

The intrinsic feature maps obtained in the first step and the

ghost feature maps generated in the second step are concatenated to

produce the final output feature maps.

The innovation of this design is demonstrated through

optimized feature learning mechanisms that significantly reduce

the model’s computational cost for non-critical features in tomatoes

and their foliage. Specifically, conventional convolution operations

are replaced by a lightweight kernel combination strategy integrated

with efficient linear transformations. This approach maintains

model performance stability while substantially decreasing

computational resource requirements, making it particularly

suitable for efficient deployment on resource-constrained edge

devices such as the Jetson TX2 platform.
FIGURE 4

Technical roadmap of tomato smart management system.
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2.2.1.2 Improving activation functions with AReLU

Activation functions, serving as fundamental components of

deep neural networks, critically influence model performance

through their impact on both representational capacity and

learning dynamics. While traditional static activation functions
Frontiers in Plant Science 07
(e.g., ReLU, ELU) demonstrate computational efficiency, they are

constrained by two inherent limitations. First, fixed nonlinear

transformation patterns that fail to adapt to hierarchical feature

distributions. Second, uniform activation thresholds that lack

adaptive feature selection capabilities. Although existing
FIGURE 5

GAE-YOLO network architecture diagram.
FIGURE 6

The GhostConv module.
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parametric activation functions (e.g., PReLU, SReLU) partially

mitigate these issues through learnable parameters, their feature

selection mechanisms remain suboptimal in precision. To address

these challenges, this study proposes an innovative framework that

deeply integrates attention mechanisms with activation functions,

wherein the original SiLU is replaced by AReLU (Chen et al., 2020).

The used AReLU achieves fine-grained feature regulation through

three core mechanisms: (1) a dynamic threshold mechanism that

automatically adjusts activation thresholds based on feature

importance. (2) a context-aware module that modulates activation

intensity using local feature statistics. and (3) a multi-scale fusion

technique that enables layer-specific activation pattern learning.

Figure 7 presents schematic diagrams of various attention

mechanisms, including: Channel-wise Attention Mechanism, Spatial-

wise Attention Mechanism, and Element-wise Attention Mechanism.

This study employs an Element-wise Learned Sign Attention

(ELSA) module to learn sign-dependent attention weights for pre-

activation feature maps, where distinct learnable parameters are

assigned to positive and negative elements respectively, enabling

dynamic regulation through amplifying positive elements while

suppressing negative ones. Considering a feature volume V =

vif g ∈ RW·H·C , the work compute an element-wise attention map

S = sif g ∈ RW·H·C ,where f can be implemented via a neural

network, as shown in Equation 4.

si = F(vi,Q) =
C(a),     vi < 0

s (b),     vi ≥ 0

(
(4)

For a feature element vi, its attention value si is governed by

both negative and positive elements, with the positive element
Frontiers in Plant Science 08
weight being computed via the sigmoid function, where Q =

a, bf g ∈ R2 is learnable parameters. C( · ) clamps the input

variable into ½0:01,  0:99�. s is the sigmoid function. The attention

weights are combined with input features through element-wise

multiplication. The modulation functionY is defined as Equation 5.

ui = Y(vi, si) = vi · si (5)

This study implements function F in ELSA using a neural layer

with learnable parameters aand b: AReLU is constructed by

combining the ELSA module with conventional ReLU, thereby

yielding a learnable activation function, as shown in Equation 6.

F(xi,a, b) =
C(a)xi,     xi < 0

(1 + s (b))xi,     xi ≥ 0

(
(6)

where X = xif g represents the input to the current layer. Here,

ReLU provides fundamental nonlinear activation, while ELSA

learns residual weights to further amplify positive elements and

moderately suppress negative ones.

This innovative design not only preserves the computational

efficiency of traditional ReLU but also incorporates feature selection

adaptability through attention mechanisms, significantly improving

the model’s capability to learn multi-scale features in tomato vision

tasks. Specifically, AReLU employs a learnable parameterization

mechanism that dynamically adjusts activation patterns across

different feature map levels. This adaptation enables the network

to effectively capture multi-scale fruit morphological features,

ranging from microscopic to macroscopic details, while providing

enhanced nonlinear expressiveness for precise tomato detection and

foliar disease identification.
FIGURE 7

Schematic diagrams of different attention mechanisms.
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2.2.1.3 Optimized Focal-EIoU loss function

This study presents a comprehensive analysis of the bounding

box regression optimization challenge in the YOLOv11 object

detection framework. While the conventional CIoU loss function

demonstrates improved bounding box prediction accuracy, two

critical limitations are identified: (1) The coupled aspect ratio

penalty term fails to precisely characterize the dimensional

discrepancies between target and anchor boxes in width and

height; and (2) The scale sensitivity in bounding box regression is

inadequately addressed, leading to suboptimal convergence rates

during model optimization and constrained localization precision.

These limitations become particularly pronounced in tomato

detection scenarios, especially when processing densely clustered

or partially occluded targets, where coordinate localization accuracy

is substantially compromised. To address these issues, the Focal-

EIoU loss function is implemented in this study, with its diagram

illustrated in Figure 8.

The EIoU penalty term builds upon the CIoU framework by

decoupling the aspect ratio influence factor and separately

computing width and height discrepancies between target and

anchor boxes. This loss function comprises three components:

overlap loss, center distance loss, and width-height loss, with the

first two components maintaining the CIoU methodology. This

design not only preserves the beneficial properties of CIoU loss but

also directly minimizes width and height deviations between target

and anchor boxes through EIoU, resulting in accelerated

convergence and enhanced localization performance. The penalty

term is formulated as shown in Equation 7.

LEIoU = LIoU + Ldis + Lasp

= 1 − IoU +
r2(b, bgt)

(wc)2 + (hc)2
+
r2(w,wgt)

(wc)2
+
r2(h, hgt)
(hc)2

(7)

where wc and hc are the width and height of the smallest

enclosing box covering the two boxes. Addressing the inherent

imbalance in bounding box regression training samples, where

high-quality anchor boxes are significantly outnumbered by low-

quality samples, requires special consideration, as poor-quality
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samples can generate excessively large gradients that adversely

affect the training process. However, conventional reweighting

methods cannot be directly applied to IoU-based losses. To

mitigate this issue, the Focal-EIoU loss is applied (Zhang et al.,

2022), which leverages the IoU value to reweight the EIoU loss. This

design places greater emphasis on difficult-to-classify samples

during optimization, thereby improving the overall performance

of the target detection algorithm. The formulation is given in

Equation 8.

LFocal−EIoU = IoUg LEIoU (8)

The parameter g controls the suppression intensity for outlier

samples. As derived from the formulation, higher IoU values

correspond to increased loss magnitudes, effectively implementing

a weighting mechanism that assigns greater loss values to superior

regression targets - thereby enhancing regression accuracy. The g
value directly determines the model’s focus level on challenging

samples. In tomato detection tasks, this mechanism exhibits two key

advantages: First, by allocating higher loss weights to high-IoU

samples, the positioning accuracy for mature tomatoes is

significantly improved. Second, this dynamic weighting strategy

effectively balances the contributions of varying-quality samples to

model optimization, enabling the detection algorithm to achieve

enhanced robustness in complex agricultural environments.
2.2.2 Tomato maturity calculation based on
GAE-YOLO

Tomato maturity detection and yield estimation play a pivotal

role in precision agriculture by providing critical decision-making

support. This study leverages the GAE-YOLO detection algorithm

combined with ZED binocular depth cameras to accomplish three

core functionalities: (1) accurate maturity stage classification

(unripe/ripe/overripe) through multi-feature analysis; (2) precise

calculation of three-dimensional spatial coordinates and size

parameters using depth vision technology; and (3) intelligent

yield prediction at both plant and area-unit levels by integrating

tomato variety characteristics with evaluation algorithms.
FIGURE 8

Schematic diagram of EIOU bounding box regression.
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Furthermore, real-time monitoring of tomato maturity distribution

enables optimal harvesting time determination. A tomato maturity

assessment model was developed based on the GAE-YOLO

framework, incorporating a multi-feature weighted fusion

strategy. In this model, three key feature sets were identified as

maturity indicators: (1) HSV color space characteristics, where hue

serves as the most visually discriminative maturity parameter; (2)

size characteristics, which exhibit high inter-variety differentiation

when combined with cultivar-specific traits; and (3) shape

characteristics, which primarily assist in overripe fruit

identification while showing limited discrimination between

unripe and ripe stages. The relative importance of these maturity

indicators is quantitatively presented in Table 1.

2.2.2.1 Tomato maturity judgment based on color space

In this study, the HSV color space was selected as the primary

metric for tomato maturity assessment. Color distributions within

GAE-YOLO detection bounding boxes were systematically

analyzed through targeted extraction. Compared to RGB color

space, HSV demonstrates superior suitability for tomato ripeness

evaluation due to three key advantages: (1) The hue (H) channel

exhibits strong correlation with ripeness progression, enabling

direct assessment through H-values without requiring complex

threshold combinations as in RGB; (2) Enhanced robustness

against lighting variations, making it particularly suitable for

greenhouse environments with fluctuating illumination; and (3)

Independent V-channel (value) that maintains color interpretation

stability across lighting conditions while remaining decoupled from

H and S channels.

It should be emphasized that in Table 2, the H (Hue) parameter

represents color types through angular measurements (0°, 360°).

This angular representation exhibits two unique characteristics: (1)

The (0°, 360°) range is not mathematically continuous due to its

periodic nature (where 0° and 360° represent identical colors), and

(2) Distinct maturity stages correspond to specific hue ranges -
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unripe tomatoes display green/yellow hues ½50°, 100°), ripe tomatoes

exhibit red hues ½0°, 20°) ∪ ½330°, 360°�, while overripe tomatoes

transition toward orange/brown tones ½20°, 40°). These hue-based

differentiations form the fundamental basis for establishing a robust

maturity classification model. The scoring formula based on color

as the criterion is given in Equation 9.

Scolor =

1:0,       ifH ∈ ½0°, 20°) ∪ ½330°, 360°�
h1 + c1 · (40 −H),     ifH ∈ ½20°, 40°)
h2 + c2 · (H − 50),     ifH ∈ ½50°, 100°)

8>><>>: (9)

h1 is usually taken as 0.5, h2 as 0.2, c1 as 0.015, and c2 as 0.01.

Their values can be adjusted according to the actual situation.

2.2.2.2 Tomato maturity judgment based on diameter size

This study developed a three-dimensional spatial positioning

algorithm for tomatoes through the integrated operation of the

GAE-YOLO model and ZED binocular cameras. The algorithm

utilizes the width (w) and height (h) of the detection frame (in

pixels) generated by GAE-YOLO, along with the depth perception

capability of the ZED camera, to compute the three-dimensional

coordinates (w, h, z) of tomatoes, where z denotes the actual

distance (in millimeters) from the tomato to the camera. The

system implementation is based on key parameters derived from

camera calibration, including the focal length (f ) in pixels. The

actual width (wreal) and height (hreal) of tomatoes are calculated

using the following formulas given in Equations 10, 11.

wreal =
w · z
fw

(10)

hreal =
h · z
fh

(11)

where fw and fh represent the horizontal and vertical focal

lengths of the camera (in pixels), respectively. Based on these

parameters, the diameter of the tomato can be calculated using

the formula given in Equation 12.

dreal =
(wreal + hreal) · z

fw + fh
(12)

It should be noted that the diameter-based maturity judgment

thresholds for tomatoes require calibration according to specific

cultivars, with the current system configured based on the

empirically derived thresholds presented in Table 3. The scoring

formula for using diameter as a maturity criterion is given in

Equation 13.
TABLE 1 Key characteristics for judging tomato maturity.

Feature
Unripe
tomato

Ripe
tomato

Overripe tomato

Color
Green or light

red
Uniform bright

red
Dark red with local

blackening

Size Smaller
Variety-standard

size
Shriveled/swollen

Shape Regular round Regular round
Deformed/sunken/

shriveled
TABLE 2 Threshold for judging tomato maturity based on color space.

Maturity stage H (hue)

Unripe Tomato ½50°, 100°)

Ripe Tomato ½0°, 20°) ∪ ½330°, 360°�

Overripe Tomato ½20°, 40°)
TABLE 3 Threshold for judging tomato maturity based on diameter size.

Maturity stage
Diameter threshold (example:

beefsteak tomato)

Unripe Tomato (0, 50)

Ripe Tomato ½50, 70�

Overripe Tomato (70,e )
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Ssize =

s1 ·
dreal
unripe ,    if  dreal < dunripe

s1 + s2 ·
dreal−dunripe
dripe−dunripe

,    if  dunripe < dreal < dripe

1:0 − s3 ·
dreal−dripe

doverripe−dripe
,    if  dreal > dripe

8>>>><>>>>: (13)

where dunripe denotes the maximum diameter of unripe

tomatoes, dripe represents the standard diameter of ripe tomatoes,

and doverripe indicates the minimum diameter of overripe tomatoes.

The weight coefficients are typically assigned as s1 = 0:3, s2 = 0:7,

and s3 = 0:2 based on empirical validation.

2.2.2.3 Tomato maturity judgment based on shape

This study presents a tomato maturity assessment method utilizing

shape characteristics. The tomato size is first derived from the GAE-

YOLO detection bounding box, followed by preliminary maturity

estimation through aspect ratio calculation (Equation 14). While this

approach demonstrates high computational efficiency, its accuracy is

somewhat limited, making it particularly suitable for large-scale

cultivation scenarios. The threshold for judging tomato shape

maturity is presented in Table 4.

r =
wreal

hreal
(14)

A high-precision contour analysis-based algorithm can be

implemented to extract tomato ROIs (Regions of Interest) from

GAE-YOLO detection frames. Following binarization processing,

contours are extracted and the area-to-perimeter ratio is calculated.

While this approach enables more accurate shape assessment for

individual tomato plants, its application in large-scale cultivation

scenar ios i s not recommended due to compromised

computational efficiency.

The scoring formula for tomato maturity based on shape is

defined in Equation 15.

Sshape =

1:0 − p1 · r − 1j j,     if   r − 1j j ≤ 0:3

0:7 − p2 · ( r − 1j j − 0:3),     if   0:3 < r − 1j j ≤ 0:7    

0:4 − p3 · ( r − 1j j − 0:7),     if r − 1  j j > 0:7

8>><>>: (15)

For uniformly shaped immature or mature tomatoes, the aspect

ratio typically falls within the range of ½0:7,  1:3�. However, mature

tomatoes may exhibit moderate aspect ratio deviations due to slight

deformations. In contrast, overripe, diseased, or mechanically

damaged tomatoes often demonstrate significant aspect ratio

variations resulting from severe morphological changes. The

weighting coefficients are empirically assigned as p1 = 0.2, p2 =

0.3, and p3 = 0.4.
Frontiers in Plant Science 11
In summary, this study has constructed a tomato maturity

assessment model that integrates multi-feature fusion of HSV color

space, size, and shape characteristics, as formulated in Equation 16.

RipenessScore = wc · Scolor + wd · Ssize + ws · Sshape (16)

where Scolor , Ssize, Sshape normalized scores for color, size, and

shape features, wc, wd , ws corresponding weighting coefficients wc +

wd + ws = 1.

All feature scores are normalized to the range (0, 1), and the

final maturity determination rule is mathematically formulated in

Equation 17.

RipenessScore =

immature,     if  RipenessScore < 0:4

ripe,     if   0:4 ≤ RipenessScore ≤ 0:7

overripe,     if  RipenessScore > 0:7

8>><>>: (17)

In the tomato maturity assessment model, the weight distribution

among HSV color space, size, and shape features must be adaptively

adjusted based on both their discriminative contributions to maturity

evaluation and practical application requirements.

2.2.3 Method for estimating the yield of tomato
plants

This study develops a tomato volume calculation method

integrating GAE-YOLO detection with depth vision technology.

The true tomato volume is calculated by combining depth

information (z) acquired from the ZED binocular camera and

pre-calibrated focal length (f ) parameters with the detected width

(wreal) and height (hreal). Under the idealized spherical assumption

for tomato morphology, the volume of individual tomatoes is

estimated using the formula provided in Equation 18.

v =
4
3
· p · (

dreal
2

)3 (18)

However, since tomatoes are not perfect spheres, an ellipticity

correction factor k (typically k=0.85-0.95, as shown in Equation 19)

must be introduced to adjust Equation 18:

v = k · v (19)

This study has developed a single-plant tomato yield estimation

method based on 3D spatial clustering. The method employs

tomato three-dimensional coordinates acquired by ZED cameras

and implements the density-based DBSCAN (Bi et al., 2012)

clustering algorithm to accurately associate fruits with individual

plants. The core principle posits that density-connected samples

belong to the same cluster, whereby fruits from the same plant

exhibit spatial proximity (high-density regions), while fruits from

different plants or isolated fruits demonstrate spatial separation

(low-density regions).

The implementation is specified as follows: Given a tomato

plant’s 3D coordinate point p = (wreal , hreal , z) and neighborhood

radius e, its neighborhood is defined as Equation 20:

Ne(p) = q ∈ dataset     dist(p, q) ≤ ej gf (20)
TABLE 4 Threshold for judging tomato shape maturity.

Maturity stage Aspect ratio range

Unripe Tomato (0:9, 1:1)

Ripe Tomato (0:7, 0:9� ∪ ½1:1, 1:3)

Overripe Tomato ( e, 0:7� ∪ ½1:3, e )
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where dist(p, q) denotes the Euclidean distance between points

p and q, as shown in Equation 21. Points within this neighborhood

are merged into the current cluster, ensuring density-reachability

within clusters.

dist(p, q) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(wreal _p − wreal _q )

2 + (hrealp − hrealq )
2 + (zp − zq)

2
q

(21)

Therefore, the calculation formula of tomato yield per plant is

given in Equation 22.

nper _ accurate = w ·oq
i vi (22)

where w denotes the density parameter, which needs to be

determined according to specific tomato cultivars.

2.2.4 Intelligent diagnosis of tomato foliar
diseases based on large models

This study developed visualization software for intelligent

tomato diagnosis and management to address challenges in leaf

disease prevention and control during tomato cultivation. In

current agricultural practice, the absence of professional guidance

often leads to difficulties in accurately identifying disease symptoms

(e.g., distinguishing yellow spots caused by leaf mold versus nutrient

deficiency), resulting in improper control measures and subsequent

losses. To overcome these issues, an innovative visual interactive

interface was designed based on the PyQt6 framework, integrating

core functional modules including maturity analysis, foliar disease

identification, and prevention recommendations. Large model

network APIs were implemented to enable real-time diagnosis on

Jetson TX2 edge devices, ensuring smooth operation even with

limited computational resources.
2.3 Evaluation indicators

This study selects precision rate, recall rate, mean average

precision (mAP), frames per second (FPS), and GFLOPS as the

performance metrics for evaluating deep learning models. The

calculation formula for the evaluation indicators is as follows.

Precision (P): Measures the proportion of true positive

predictions among all positive predictions made by the model.

The formula is given in Equation 23.

Precision =  
TP

TP + FN
� 100% (23)

Recall (R): Measures the proportion of true positive predictions

among all actual positive instances. The formula is given in

Equation 24.

Recall =
TP

TP + FN
� 100% (24)

where TP represents true positives (correctly detected targets),

FP represents false positives (incorrectly detected targets), FN

represents false negatives (missed targets).

Precision and recall values are used to construct the precision-

recall curve (PR curve), with the area under this curve denoted as
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AP (Average Precision), as shown in Equation 25.

AP =
Z 1

0
P(R)dR (25)

The average of AP values across all categories in the dataset. The

formula is given in Equation 26.

mAP = o
n
i=1APi
n

(26)

where mAP@0.5 represents the mAP at an Intersection over

Union (IoU) threshold of 0.5, commonly used to evaluate the

model’s localization accuracy.

T denotes the detection time per image, while FPS represents

the number of images processed per second, as shown in Equation

27.

FPS =
1
T

(27)

In addition, GFLOPs reflects the computational complexity of

the model, serving as an important metric for measuring

computational efficiency.
2.4 Experimental details

The Model training and development configuration for this

study is configured as follows: CPU: Intel (R) Core (TM) i9-

13900H, RAM: 32GB, GPU: NVIDIA GeForce RTX 4060 with

8GB of video memory. The framework environment is built on

PyTorch 2.5.1, with Python version 3.9.21 (running on Windows

11), CUDA version 12.1, and CUDNN version 9.0.0. All

experiments were conducted with uniform parameter settings,

and the specific hyperparameters are listed in Table 5.

The edge computing device TX2 is configured with: NVIDIA

Parker series SoC (64-bit ARM architecture), CPU (dual-core Denver

2), GPU (256-core NVIDIA Pascal architecture GP10B), 8GB

LPDDR4 memory, running on Ubuntu 18.04 LTS. To ensure

maximum computational throughput, the module was operated in

its default MAX-N performance mode. For power profiling,

collecting data over a continuous 10-mins window under sustained

workload, establishing a reliable power consumption baseline.

The GAE-YOLO model trained on RTX 4060 was converted

into an optimized inference engine for TX2 using TensorRT,
TABLE 5 Experimental hyperparameters.

Hyperparameter Value

Initial Learning Rate 0.01

Momentum 0.937

Batch Size 16

Image Size 640×640

Training Epochs 300

Seeds [42, 123, 2023]
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significantly improving execution speed while reducing resource

consumption. The PyTorch model was first exported to ONNX

format to ensure full operator compatibility with TensorRT. The

ONNXmodel was then loaded and optimized using TensorRT tools

on TX2 to generate the final engine file. By strategically distributing

computational tasks across TX2’s GPU, DLA, and CPU, maximum

resource utilization was achieved.
3 Results and analysis

The experimental results of the intelligent tomato model

developed in this study are systematically presented across three

key aspects: (1) tomato fruit detection performance, (2) foliar

disease identification accuracy, and (3) integrated diagnostic

capabilities. To ensure statistical robustness, our proposed model

was trained and evaluated over three independent runs with

different random seeds. Accordingly, a statistical reporting

protocol has been adopted: the performance metrics for our

model are reported as the mean ± standard deviation, while

results for comparative models are from a single representative run.

To validate the advantages of GhostConv’s lightweight

architecture (Han et al., 2020), performed systematic experiments

on the ImageNet classification task. The results demonstrate a
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positive correlation between computational resource utilization

and model accuracy in these compact networks, thereby

conclusively verifying its superior performance characteristics.

Figure 9 presents a comprehensive comparison between GhostNet

and existing lightweight models in terms of FLOPs and inference

latency. A critical finding of the comparative analysis is that

GhostNet emerges as the more efficient architecture, achieving

approximately 0.5% higher top-1 accuracy than MobileNetV3

under equivalent latency while also requiring less time to reach a

comparable performance level. Moreover, evaluation across

different complexity scales confirms that this performance

advantage is consistently maintained, demonstrating the

architecture’s robust superiority.
3.1 Tomato detection results and analysis

This study establishes model lightweighting as the primary

objective and conducts a systematic evaluation of mainstream

lightweight architectures for tomato detection tasks. Using the

standard YOLOv11 as the baseline model, the most representative

lightweight network architectures were selected for comparative

analysis. The YOLOv11 backbone was modified by implementing

depthwise separable convolution and its derivative architectures,
FIGURE 9

Comparison of lightweight models (a) Comparison of lightweight models in flops. (b) Comparison of lightweight models in latency.
TABLE 6 Comparison of modified by GhostConv with other lightweight improvement models (RTX 4060, FP32, 1080p).

Model P R mAP@50 mAP@95 GFLOPS

Baseline 0.880 0.886 0.933 0.639 6.3

Backbone modified by DC 0.854 0.794 0.901 0.587 5.4

Backbone modified by MobileNetv3 0.865 0.821 0.887 0.603 5.5

Backbone modified by Efficient 0.873 0.833 0.911 0.601 5.5

Baseline modified by GhostConv (ours) 0.871 ± 0.09% 0.878 ± 0.10% 0.925 ± 0.09% 0.620 ± 0.13% 5.5 ± 0.37%
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including MobileNetV3 and EfficientNet. Through controlled

experiments, the performance of each model was rigorously

compared and analyzed across key dimensions: precision, recall,

mAP, GFLOPS. The architectural exploration led to a key

revelation: the GhostConv-based modification proved to be an

optimal strategy, successfully maintaining high detection accuracy

(mAP@50 = 93.5%) while reducing computational complexity by

12.6% to 5.5 GFLOPS compared to the baseline. Importantly, under

comparable computational constraints, GAE-YOLO consistently

surpassed all other benchmarked models, an outcome that

solidifies its status as the most effective solution evaluated. These

findings conclusively validate the technical advantages of GAE-

YOLO for agricultural edge computing applications. The detailed

results are presented in Table 6.

Recent advancements in YOLO series improvements have

primarily focused on attention mechanisms and loss function

optimization. However, these approaches often prioritize

theoretical algorithmic enhancements while overlooking the

critical need for lightweight designs in practical implementations.

To bridge this gap, this study introduces the innovative GAE-YOLO

model, which achieves an optimal balance between lightweight

architecture and high detection accuracy through carefully

engineered modifications. Specifically, two parameter-efficient

enhancement strategies are incorporated: AReLU and E-IoU loss

function, both designed to improve performance without increasing

model parameters. To validate the efficacy of the proposed model,

systematic comparative experiments were conducted (see Table 7).

The results demonstrate that GAE-YOLO maintains high detection

accuracy (mAP@50 = 93.2%) while achieving real-time processing

at 10.2 FPS on Jetson TX2 edge devices. Notably, an FPS threshold

exceeding 10 is required to ensure smooth target detection

performance on the TX2 platform.
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Table 8 presents a systematic ablation study of the GAE-YOLO

model, evaluating the individual contributions and synergistic

effects of each enhancement module through controlled

experiments. The experimental design follows a progressive

integration strategy, sequentially incorporating three core

modules: GhostConv, E-IoU, and AReLU (where “✓” denotes

module inclusion). As the foundational lightweight component,

GhostConv achieves 0.925 mAP@50 and 0.620 mAP@95 while

maintaining high-speed performance of 96 FPS (GPU 4060) and

10.2 FPS (TX2). The addition of the E-IoU loss function yields a

2.7% improvement in mAP@95, demonstrating significant

enhancement in bounding box regression precision. When

integrated with the AReLU activation function, mAP@95 further

increases by 4.0%, validating the efficacy of the adaptive feature

activation mechanism. The complete model combining all three

modules achieves optimal performance (0.933 mAP@50 and 0.648

mAP@95), representing improvements of 0.8% and 4.5% over the

baseline, respectively, without additional computational overhead.

Consistent GFLOPS and FPS metrics across all experimental groups

confirm that the proposed enhancements achieve performance

gains at minimal computational cost. On the TX2 edge device,

the full model maintains real-time processing at 10.2 FPS under a

1080p resolution without TensorRT optimization, demonstrating

the baseline performance and satisfying deployment requirements

for practical agricultural applications.

Figure 10 illustrates the training dynamics of the GAE-YOLO

model, exhibiting optimal convergence behavior and learning

efficiency. During the initial training phase (0–50 epochs), a rapid

decrease in loss function values is observed alongside a

corresponding sharp increase in mAP@50, demonstrating the

model’s effective capture of essential tomato target features. In

subsequent training stages (50–250 epochs), the loss curve slope
TABLE 7 Comparison of GAE-YOLO with other advanced modified models.

Model P R mAP@50 mAP@95 GFLOPS FPS FPS(TX2)

Baseline 0.880 0.886 0.931 0.639 6.3 83 7.7

Baseline+CBAM 0.881 0.884 0.933 0.641 7.9 81 7.5

Baseline+CBAM+GS 0.882 0.881 0.931 0.643 7.6 85 8.1

Baseline+ iRMB 0.891 0.883 0.932 0.649 8.2 72 6.1

Baseline+GS+AReLU (ours) 0.889 ± 0.12% 0.884 ± 0.11% 0.933 ± 0.13% 0.648 ± 0.16% 5.5 ± 0.43% 96 ± 2.3% 10.2 ± 2.4%
FPS is measured under: (RTX 4060, FP32, 1080p) for FSP; (Jetson TX2, PyTorch, MAX-N, 1080p) for FPS (TX2).
TABLE 8 Ablation experiment results of the GAE-YOLO model.

GhostConv E-IoU AReLu mAP@50 mAP@95 GFLOPS FPS
FPS
(TX2)

✓ 0.925 0.620 5.5 96 10.2

✓ ✓ 0.928 0.637 5.5 96 10.2

✓ ✓ 0.931 0.645 5.5 96 10.2

✓ ✓ ✓ 0.933 ± 0.13% 0.648 ± 0.16% 5.5 ± 0.43% 96 ± 2.3% 10.2 ± 2.4%
fr
FPS is measured under: (RTX 4060, FP32, 1080p) for FSP, (Jetson TX2, PyTorch, MAX-N, 1080p) for FPS (TX2).
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progressively diminishes while mAP improvements stabilize,

consistent with established deep learning optimization patterns.

Notably, all metrics reach equilibrium during the final 250–300

epoch period, with this synchronous convergence validating the

model’s architectural soundness. These results confirm that GAE-

YOLO simultaneously avoids overfitting risks while achieving target

detection accuracy objectives.

Figure 11 demonstrates the superior performance of the GAE-

YOLO model in tomato detection tasks. Specifically, Figure 11a

displays the visual detection results on the standardized test set,

while Figure 11b showcases its application performance in real

greenhouse environments, where high detection accuracy is

maintained despite complex background interference. Through

visual analysis, two primary error sources are identified: (1)

missed detections due to severe foliage occlusion, and (2) false

positives involving unripe tomatoes with leaf-like coloration. These
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errors predominantly occur in high-density fruit clusters with

minimal inter-fruit spacing. These results validate not only the

model’s detection capability under controlled conditions but also its

practical performance in real-world agricultural scenarios.
3.2 Detection results and analysis of
tomato foliar diseases

Table 9 presents the performance evaluation results of the GAE-

YOLO model for tomato leaf disease detection, demonstrating its

capabilities across different disease categories through multiple

metrics. The model achieves an overall precision of 0.756, recall

of 0.725, mAP@50 of 0.724, and mAP@95 of 0.492, indicating

strong detection performance. Healthy leaves show the best results

with 0.967 precision, 0.99 recall, and 0.995 mAP@95, confirming
FIGURE 10

Visualization results of the GAE-YOLO training process (RTX 4060, FP32, 1080p).
FIGURE 11

Visualization results of GAE-YOLO tomato detection. (a) Standardized test set. (b) Real greenhouse scenario.
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accurate health/disease discrimination. Bacterial spot and late blight

achieve mAP@50 scores of 0.747 and 0.921 respectively, reflecting

good recognition of visually distinctive diseases, while early blight

shows higher recall (0.827) than precision (0.753), suggesting some

false positives. Target spot maintains balanced metrics (P = 0.619,

R = 0.667), indicating stable feature learning, whereas leaf mold and

black spot perform poorly (black spot mAP@95: 0.185) due to

challenging visual characteristics like irregular shapes and low color

contrast. Notably, the significant performance gap between mAP@

50 and mAP@95 (average difference: 0.232) highlights ongoing

challenges in precise lesion boundary localization.

The significant performance variation across disease categories,

as detailed in Table 9, warrants further analysis. Diseases like Black

Spot and Leaf Mold present particular challenges primarily due to

their subtle and irregular visual characteristics. In early stages, Black

Spot lesions are small, dark, and lack a defined shape, making them

difficult to distinguish from shadows or soil splashes. Similarly, Leaf

Mold often manifests as diffuse, chlorotic areas with low color

contrast against the healthy green leaf background, confounding the

model. These challenges are compounded by two factors: (1) Intra-

class variability, where the appearance of a single disease can vary

significantly, and (2) Inter-class similarity, where early symptoms of

different diseases can be visually analogous. The substantial gap

between the mAP@50 and mAP@95 metrics further underscores

the model’s difficulty in achieving precise pixel-level localization for

these complex, non-uniform lesions. This difficulty is reflected in

the large mAP@50–95 gap, highlighting a struggle with precise

lesion localization. To address this, future work should prioritize

enhanced multi-scale feature fusion to capture both minute spots

and broad discolorations, alongside class-balanced training

strategies to directly counteract data imbalance. Incorporating

attention mechanisms also presents a promising path for

improving focus on these subtle, critical features.

Figure 12 demonstrates the performance of the GAE-YOLO

model in tomato leaf disease detection tasks, showcasing both its

robust capabilities and characteristic failure modes. Figure 12a

shows the model accurately identifying and localizing multiple

disease instances under challenging conditions, confirming its

strong baseline performance. Figures 12b, c present representative
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error cases to visually contextualize the quantitative analysis

discussed in the text: each panel contrasts the model’s prediction

(left) with the ground-truth annotation (right).

Figure 13 presents the classification performance of the model

for tomato leaf disease detection through a normalized confusion

matrix. The matrix reveals that healthy leaves are identified with the

highest accuracy (main diagonal value: 0.99). However, disease

category recognition, particularly for early blight demonstrates

significant challenges, with only 46% correct identification and

83% misclassification as healthy leaves. Other disease categories

(e.g., leaf mold and black spot) exhibit varying confusion levels,

primarily due to visual similarity in early-stage symptoms. These

results highlight the model’s current limitations in detecting subtle

disease features, providing critical insights for subsequent

optimization of early disease identification capabilities. The

observed performance gap, particularly for minority classes such

as black spot and leaf mold, is primarily attributed to class

imbalance within the dataset. To mitigate this issue and the

associated risk of overfitting, several targeted strategies can be

implemented during training: (1) a class-weighted loss function

can be employed to increase the penalty for misclassifying minority

classes, thereby directing greater attention to them; (2) specialized

data augmentation techniques—such as PCA color augmentation,

random rotation, and noise injection—can be preferentially applied

to these under-represented classes to increase their effective sample

size and feature diversity.
3.3 Results and analysis of tomato maturity
discrimination

Figure 14 presents the tomato maturity classification confusion

matrix, demonstrating the model’s performance in maturity

discrimination by visualizing the correspondence between

predicted labels (immature, mature, overripe) and ground truth

labels. The model achieves an overall accuracy of 92.91%, with

particularly strong performance in overripe category identification

(F1-score: 0.95) and relatively weaker performance in mature

category discrimination (F1-score: 0.80). Detailed error analysis
TABLE 9 Detection results of tomato foliar diseases (RTX 4060, FP32, 1080p).

Calss P ( ≤ ±0:12%j j) R ( ≤ ±0:11%j j) mAP@50 ( ≤ ±0:13%j j) mAP@95 ( ≤ ±0:16%j j)
all 0.756 0.725 0.724 0.492

Bacterial Spot 0.934 0.750 0.747 0.531

Early_Blight 0.753 0.827 0.783 0.446

Healthy 0.967 0.99 0.995 0.929

Late_blight 0.823 0.862 0.921 0.749

Leaf Mold 0.564 0.571 0.497 0.251

Target_Spot 0.619 0.667 0.679 0.352

Black spot 0.396 0.396 0.445 0.185
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reveals that among 88 immature samples, 1 was misclassified as

mature, while mature samples showed 4 misclassifications as

immature and 1 as overripe, with only 1 overripe sample

misclassified as mature. This error distribution indicates

persistent challenges in distinguishing adjacent maturity stages

(particularly immature-to-mature transitions), with most

misclassifications occurring during color transition phases,

though the model demonstrates high reliability in overripe state

identification (precision/recall: 0.95). It should be noted that tomato

maturity assessment currently lacks unified standards and

authoritative benchmark datasets, with practical harvesting still

relying on subjective judgment. To ensure experimental rigor, this

study implemented random selection of 15 tomato plants as

samples and consensus evaluations from 5 experienced

agricultural growers. While this methodology is widely recognized

in the industry, its inherent subjectivity reflects broader challenges

in agricultural visual inspection. The achieved performance is

particularly significant given this challenging context, as it

establishes a critical quantitative baseline for future research. This

experimental design not only mirrors real-world assessment criteria

but also establishes a critical baseline for developing more objective

maturity quantification systems.
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3.4 Estimated results and analysis of
tomato production

This study employs tomato fruit count as the primary yield

assessment metric, based on two key considerations: (1) the

substantial density variations across tomato varieties make quantity-

based evaluation more robust against varietal characteristic biases, and

(2) fruit count per plant represents the most intuitive and rapidly

verifiable yield parameter in agricultural management practices. This

approach not only fulfills standardized evaluation requirements during

algorithm development but also establishes a reliable foundation for

practical weight conversion applications.

Figure 15 presents the performance evaluation of the GAE-

YOLO model for tomato counting tasks through dual-perspective

analysis. The actual vs. predicted scatter plot demonstrates strong

linear correlation (R²=0.71), confirming the model’s capability to

capture tomato quantity variations. However, most data points

distribute below the ideal prediction reference line, revealing a

systematic underestimation tendency that becomes pronounced in

high-count regions (actual>8) with maximum underestimation

reaching 2. Quantitative metrics (MAE = 1.13, MSE = 1.93)

confirm the model’s practical prediction accuracy. The error
FIGURE 12

Visual detection results and error case analysis of tomato leaf diseases based on GAE-YOLO. (a) Successful detection cases under challenging
conditions. (b, c) Representative error cases contrasting model predictions (left) with ground-truth annotations (right).
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FIGURE 13

Confusion matrix of tomato leaf disease detection (RTX 4060, FP32, 1080p).
FIGURE 14

Confusion matrix for judging tomato ripeness (Jetson TX2, PyTorch, MAX-N, 1080p).
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distribution histogram shows approximately normal characteristics

(m=-0.60, s=1.25), with 68% predictions within ±1.25 of actual

counts. While extreme over/under-estimation values show

symmetric distribution (± 2.0), the overall negative bias confirms

conservative prediction behavior. Although slight systematic

underestimation persists, primarily caused by leaf occlusion and

fruit overlap, 94% of errors remain within ±2 counts, satisfying

agricultural yield prediction requirements.
3.5 Analysis of memory and power
consumption

A comprehensive analysis of resource utilization is crucial for

assessing the feasibility of deploying intelligent systems in real-

world agricultural scenarios, where computational resources and

power are often constrained. The system achieves a detection

accuracy of 93.5% mAP@50 under a high-precision configuration,

with a processing speed of 10.2 FPS. Under the optimized

configuration, the system achieved a real-time processing speed of

27 FPS on the TX2 edge device, with a corresponding per-frame

latency of 33 ms. This low latency ensures prompt responsiveness

for robotic control, while the frame rate satisfies the throughput

requirement for continuous monitoring.

The runtime memory footprint of the complete system

comprising the Jetson TX2 module, the ZED stereo camera

operating at 720p resolution, and the TensorRT-optimized GAE-
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YOLO model was rigorously profiled. Using the integrated

tegrastats system monitoring tool over multiple operational

cycles, a peak memory consumption of 5.1 GB was recorded. This

measurement confirms that the system operates comfortably within

the 8 GB memory budget of the Jetson TX2, leaving approximately

2.9 GB of available headroom. This surplus memory is sufficient to

accommodate other essential robotic processes, such as

simultaneous data logging, path planning algorithms, or

communication modules, without risking system instability.

Power Consumption and Deployment Feasibility. The

operational power budget is a key determinant for sustained field

deployment. Based on the documented thermal design power of the

Jetson TX2 module (ranging from 7.5W to 15W), the total system

power draw is estimated to be between 10W and 13W when

operating in the default MAX-N performance mode. This efficient

power profile enables long-duration operation using standard,

commercially available power sources. Several viable options are

identified: A standard 12V,10Ah lithium polymer battery can

theoretically power the system for 9 to 12 hours of continuous

operation. High-capacity mobile power banks supporting 12V

output via power delivery trigger modules offer a portable and

flexible power solution. Configurations such as 4S2P (8 cells),

providing a nominal 14.8V and high capacity, represent another

robust and rechargeable option.

To quantitatively evaluate the inference speed achieved under

different deployment scenarios, a comparative analysis was

conducted across the development platform and the edge device
FIGURE 15

Tomato count and error distribution graph and error distribution histogram (Jetson TX2, PyTorch, MAX-N, 1080p). (a) Scatter plot of true versus
predicted tomato counts with model metrics. (b) Histogram showing the distribution of prediction errors.
TABLE 10 Comparative inference performance across different hardware and optimization configurations.

Configuration Hardware Framework Power mode Precision Resolution FPS

GAE-YOLO(GPU) RTX4060 Pytorch N/A FP32 1080P 96

GAE-YOLO(TX2) Jetson TX2 Pytorch MAX-N FP32 1080P 10.2

GAE-YOLO(TX2) Jetson TX2 TensorRT MAX-N FP16 720P 27
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under various optimization settings. The results are summarized

in Table 10.
3.6 Design of tomato smart detection and
diagnosis software

This study developed intelligent tomato cultivation management

software based on the PyQt6 framework, with its visual interface

design presented in Figure 16. The software features a modular

architecture comprising two core functional modules: (1) a tomato

detection and growth monitoring module (Figure 16a) integrating

fruit localization, maturity analysis, and yield prediction functions;

and (2) a disease diagnosis and control module (Figure 16b) enabling

disease spot detection, disease classification, and treatment

recommendation generation. Compared with conventional

agricultural management systems, this software employs an

intuitive graphical interface that transforms complex AI algorithms

into simplified button operations, offering a cost-effective digital

solution for small-to-medium greenhouse operations.
4 Discussion

The GAE-YOLO model and intelligent agricultural

management system developed in this study demonstrate

significant innovations and practical value through three key

aspects. First, at the algorithmic level, the proposed model

overcomes the limitations of conventional object detection models

in agricultural applications by incorporating GhostConv modules to

reduce parameters and enhance inference speed, effectively

addressing the computational constraints of edge devices. A

critical finding from the systematic architectural comparison was

the superior performance of GhostConv over other lightweight

backbones like MobileNetV3 and EfficientNet. This advantage is

attributed to GhostConv’s fundamental operating principle: it

generates a portion of its feature maps through efficient, linear
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transformations rather than relying solely on costly dense

convolutions. This mechanism preserves richer spatial context

and feature channel information compared to the extreme

channel compression of depthwise separable convolution used in

MobileNetV3. For the specific challenge of distinguishing tomatoes

from similarly colored leaves and complex backgrounds, this

retained contextual information proves more critical than simply

maximizing theoretical FLOPs reduction, thereby providing a more

favorable accuracy-efficiency trade-off. The novel AReLU activation

function and E-IoU loss function further enable the model to

maintain high accuracy in complex agricultural environments.

Second, regarding system integration, this work pioneers the deep

integration of binocular vision and edge computing, where the

coordinated operation of ZED cameras and Jetson TX2 achieves

precise tomato 3D localization while the intelligent agricultural

advisory system provides effective disease prevention solutions.

Additionally, the established tomato maturity assessment and per-

plant yield estimation models overcome the functional limitations

of traditional agricultural management systems, forming a complete

detection-analysis-decision closed loop. Compared with existing

studies, this system offers three distinct advantages: (1) first

implementation of a complete detection-to-management pipeline,

(2) balanced real-time performance and high accuracy, and (3)

significantly reduced operational complexity through intuitive

visual design. Notwithstanding these contributions, it is

imperative to address the limitations pertaining to dataset scope

and model generalization. While the dataset is representative and

rigorous augmentation strategies were employed to mitigate

overfitting, its finite size inherently limits the model’s exposure to

the full spectrum of variability encountered in unstructured

agricultural environments. Consequently, the model ’s

performance may be susceptible to scenarios not well-represented

in the training data, such as unprecedented disease manifestations,

extreme abiotic stresses, or unique cultivar characteristics. This

study proactively combated overfitting through advanced

regularization and data augmentation, yet the pursuit of robust

generalization remains an ongoing challenge in agricultural
FIGURE 16

Tomato smart detection and diagnosis software. (a) Tomato detection and growth monitoring module. (b) Disease diagnosis and control module.
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computer vision. In this context, several specific limitations should

be noted: (1) model generalization requires larger sample sizes, (2)

performance under extreme lighting conditions needs

improvement, and (3) multi-cultivar adaptability requires further

validation. Addressing these challenges will constitute the primary

focus of future research.
5 Conclusion

This study developed an intelligent tomato management system

based on the GAE-YOLO algorithm, which addresses key

challenges in agricultural production through algorithmic

innovations and technological integration. The primary

contributions include: (1) the GAE-YOLO lightweight model,

achieving real-time tomato detection at 10.2 FPS on Jetson TX2

with 93.3% mAP@50 in real-world agricultural environments; (2)

the first integrated 3D tomato detection system combining

binocular vision and edge computing; (3) a standardized tomato

maturity assessment system and yield estimation model,

establishing a foundation for future research; and (4) visual

management software incorporating large model technology for

tomato disease control. These advancements not only demonstrate

the value of technological innovation but also provide scalable

solutions for smart agriculture development. The significance of

this research is twofold: theoretically, it proposes a lightweight

model design methodology tailored for agricultural applications;

practically, it delivers a cost-effective smart agriculture system,

contributing substantially to precision agriculture and sustainable

development goals.
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