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Introduction: The advancement of smart agriculture has witnessed increasing
applications of computer vision in crop monitoring and management. However,
existing approaches remain challenged by high computational complexity,
limited real-time capability, and poor multi-task coordination in tomato
cultivation scenarios.

Methods: To address these limitations, an intelligent tomato management
system is proposed based on the Ghost-based Adaptive Efficient You Only
Look Once (GAE-YOLO) algorithm. The lightweight architecture of the GAE-
YOLO framework is achieved through the replacement of standard convolutional
layers with Ghost Convolution (GhostConv) modules, while detection accuracy is
significantly improved by the integration of both ARelLU activation functions and
Effective Intersection over Union (E-loU) loss optimization. The system,
implemented on a Jetson TX2 embedded platform, also incorporates ZED
stereo vision for 3D localization and a PyQt6-based visualization platform.
Results: When implemented on Jetson TX2, the system achieving 93.5% mean
Average Precision at 50% intersection over union (MAP@50) at 10.2 frames per
second (FPS), which can be optimized to 27 FPS by employing TensorRT
acceleration and 720p resolution for scenarios demanding higher throughput.
Furthermore, it establishes standardized assessment systems for tomato maturity
and yield prediction, and offers integrated modules for disease diagnosis and
agricultural large language model consultation.

Discussion: This work establishes a new paradigm for edge computing in agriculture
while providing critical technical support for smart farming development.

KEYWORDS

tomato smart agriculture, lightweight YOLO, edge computing, multimodal detection,
plant phenotyping
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1 Introduction

Tomato (Solanum lycopersicum), as a globally significant
economic crop rich in essential vitamins, plays a pivotal role in
agricultural production and human nutrition. In recent years, the
global cultivation area of tomato has experienced substantial
expansion, driven by increasing market demand. However,
industrialized tomato production continues to face critical
technical constraints, including inefficient harvesting systems,
inconsistent fruit maturity, and challenges in accurate disease
identification, which collectively hinder sustainable development
of the industry (Liu J. et al, 2020). Three major challenges are
identified in conventional tomato production: (1) Inefficient
harvesting processes: Tomato yield and economic returns are
significantly impacted by harvesting efficiency. Current operations
remain heavily dependent on manual labor due to the complexity of
maturity assessment and limited mechanization, resulting in
elevated labor costs and suboptimal productivity. (2) Imprecise
pest/disease management: During ripening stages, tomato crops are
particularly vulnerable to pest infestations and diseases, often
leading to substantial yield reduction. Traditional monitoring
approaches relying on manual field inspections and empirical
judgments are characterized by delayed responses and high
misidentification rates. Under large-scale cultivation conditions,
such labor-intensive methods fail to provide comprehensive
coverage, creating significant prevention gaps. (3) Scientific
cultivation limitations: The expansion of cultivation areas has
exacerbated management challenges, particularly in regions with
limited agricultural expertise. Improper pesticide application not
only compromises disease control efficacy but also risks secondary
contamination through excessive residues. Furthermore, the
prevalent overuse of broad-spectrum pesticides in technician-
deficient regions increases production costs while aggravating
environmental pollution risks.

Recent advancements in artificial intelligence (AI) have
provided transformative technological support for intelligent
agricultural systems. Particularly in tomato production, Al-based
computer vision and deep learning technologies have emerged as
innovative solutions to conventional harvesting challenges. Studies
have demonstrated that agricultural robotic systems equipped with
high-precision visual recognition modules are capable of real-time
morphological characterization, enabling precise robotic harvesting
operations through mechanical arm guidance. The evolution of fruit
detection methodologies has witnessed a paradigm shift from
traditional approaches to deep learning techniques. Conventional
detection methods, including single-feature analysis, multi-feature
fusion, and threshold segmentation algorithms, have been shown to
exhibit significant limitations when applied to complex tomato
growth patterns characterized by fruit occlusion and foliar
obstruction. In contrast, deep learning approaches have
demonstrated substantial improvements in both recognition
accuracy and environmental robustness through autonomous
multi-scale feature extraction. This technological advancement
provides fundamental support for developing intelligent
harvesting systems that address the critical limitations of
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traditional methods, particularly their inefficiency and labor-
intensive nature. Afonso et al. applied MaskRCNN for tomato
detection in greenhouse images, by leveraging deep learning to
handle variability, implicitly learn depth, and enable accurate fruit
counting and background elimination in real-world conditions
(Afonso et al, 2020). Liu et al. proposed YOLO-Tomato, an
improved YOLOv3 model with dense architecture and circular
bounding boxes, enhancing tomato detection accuracy under
challenging conditions like occlusion and overlap, outperforming
state-of-the-art methods (Liu G. et al., 2020). Liu et al. proposed
SM-YOLOV5, a lightweight model based on YOLOv5 and
MobileNetV3, achieving 98.8% mAP for small-target tomato
detection in plant factories, meeting real-time requirements for
picking robots with reduced computational cost (Wang et al., 2023).
Wang et al. proposed an improved Faster R-CNN with CBAM and
FPN for tomato young fruit detection, achieving 98.46% mAP and
0.084s/image, addressing color similarity, occlusion, and overlap
challenges for real-time precision (Wang et al., 2021). Zhou et al.
proposed a real-time tomato maturity detection method using
YOLOV4 for fruit detection and RGB color analysis with K-means
clustering for maturity estimation in greenhouse environments
(Zhou et al,, 2021). Chen et al. enhanced YOLOV3 for cherry
tomato detection by integrating a dual-path network for richer
small-target features, multi-scale prediction, and improved K-
means++ clustering for anchor box optimization (Chen et al,
2021). Su et al. proposed SE-YOLOv3-MobileNetV1, integrating
depthwise separable convolution, Mosaic augmentation, K-means
clustering, and SE attention for efficient tomato maturity
classification in greenhouse environments, optimized for
embedded systems (Su et al, 2022). Rong et al. developed
YOLOV5-4D, combining RGB-depth fusion and ByteTrack for
tomato cluster tracking, with a specific counting region method to
enhance stability and accuracy in greenhouse yield estimation
(Rong et al.,, 2023). Tian et al. proposed TF-YOLOV5s, enhancing
YOLOv5s with C3Faster, depth-wise separable convolution, EIoU
loss, and SE modules for efficient tomato flower and fruit detection
in natural environments, optimized for edge computing
deployment (Tian et al., 2024).

Recent studies have further advanced lightweight architecture
design. Wang et al. introduced a novel combination of switchable
atrous convolution for dynamic receptive field adjustment and
wavelet transform convolution for multi-frequency feature
decomposition, which effectively preserved critical edge details of
occluded tomatoes in greenhouse environments (Wang et al., 2025).
Concurrently, Zhang et al. addressed the challenge of detecting
dense, small-sized disease spots by integrating a Normalized
Wasserstein Distance loss that stabilized the learning process for
tiny features, along with a lightweight hybrid attention mechanism
to enhance focus on discriminative regions (Zhang and Jiang, 2025).
Hao et al. achieved a significant reduction in parameters and
computational load by designing a GSim module and replacing
standard components with C3Ghost and BiFPN structures, while
maintaining high ripeness detection accuracy in complex
environments (Hao et al., 2025). Furthermore, Deng et al.
implemented a fundamentally different approach through
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embedding Sobel operators directly into the network stem for
explicit edge feature extraction from the initial stage, combined
with a weighted Focaler-IoU loss that achieved state-of-the-art
accuracy while demonstrating practical deployment capability on
edge hardware platforms (Deng et al., 2025). However, these models
remain isolated perception modules, creating a perception-action
gap due to the lack of integrated 3D coordination for robotics. The
present study bridges this gap through the GAE-YOLO system,
which couples detection with ZED stereo vision to form a complete
detection-localization-analysis-decision pipeline. This integration
enables precise spatial localization for robotic manipulation
alongside maturity assessment and yield estimation, establishing a
new paradigm for comprehensive edge intelligence in agriculture.

The early detection of plant diseases has been recognized as a
critical factor in maintaining agricultural productivity. Initial
disease manifestations on plant foliage are frequently associated
with significant reductions in both crop yield and quality.
Conventional diagnostic approaches, which predominantly rely
on visual inspection by human experts, have been demonstrated
to suffer from two fundamental limitations: operational inefficiency
and substantial subjective bias. Recent advances in artificial
intelligence have led to the development of deep learning-based
image recognition systems. These systems have shown considerable
potential in plant pathology applications due to their exceptional
capabilities in automated feature extraction and diagnostic
accuracy. Mokhtar et al. proposed an image processing approach
using GLCM for texture analysis and SVM with linear kernel for
classifying healthy and infected tomato leaves, achieving high
accuracy with N-fold cross-validation (Mokhtar et al, 2015b).
Mokhtar et al. proposed a method using Gabor wavelet transform
for feature extraction and SVMs with alternate kernel functions to
detect and classify tomato leaf diseases, achieving high accuracy and
reliability (Mokhtar et al., 2015a). Fuentes et al. analyzed non-
destructive image-based techniques for detecting tomato plant
diseases, emphasizing the importance of accurate data collection
to reduce agricultural production and economic losses (Fuentes
et al., 2016). Mohanty et al. developed a deep convolutional neural
network (CNN) for crop disease diagnosis using a large public
image dataset, demonstrating the potential for smartphone-assisted
global disease identification (Mohanty et al, 2016). TM et al.
proposed a modified LeNet CNN for tomato leaf disease
detection, utilizing minimal computing resources and automatic
feature extraction to achieve efficient and accurate classification
under challenging conditions (Tm et al., 2018). Ji et al. proposed a
lightweight YOLOv8-based method for tomato leaf disease
detection, integrating enhanced IoU, AKConv, and GSConv to
improve localization accuracy and reduce computational
complexity for efficient disease recognition (Ji et al., 2024). Phan
et al. proposed four deep learning frameworks combining Yolovsm
with ResNet50, ResNet-101, and EfficientNet-B0O for classifying
tomato fruit into ripe, immature, and damaged categories,
demonstrating potential for automated harvesting (Phan et al,
2023). Umar et al. proposed an improved YOLOv7 model with
SimAM, DAiAM, and MPConv for accurate tomato leaf disease
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detection, combined with SIFT-based segmentation and CNN
classification for enhanced feature extraction and disease
identification (Umar et al., 2024). This non-destructive intelligent
detection approach has been demonstrated to significantly improve
diagnostic efficiency while providing crucial technical support for
timely and effective disease management, thereby playing a pivotal
role in ensuring tomato yield and quality.

Agricultural large language models (LLMs), as an important
artificial intelligence technology, have demonstrated significant
potential in various agricultural applications, particularly in crop
identification and disease early warning systems. Wang et al.
introduced Agri-LLaVA, a knowledge-infused multimodal
conversation system for agriculture, leveraging a novel 400,000-
entry dataset covering 221 pests and diseases. The system enhances
visual understanding and pest control, with open-source resources
to advance agricultural LMM research (Wang et al., 2024). Yu et al.
proposed AgriVLM, a framework fine-tuning visual language
models with Q-former and Low-Rank adaptation for cross-modal
fusion of agricultural data, enhancing crop disease and growth stage
recognition through multimodal analysis (Yu and Lin, 2024).Wang
et al. developed an intelligent agricultural Q&A system using LLMs,
fine-tuned with Lora and Prompt-tuning for named entity
recognition and question answering, enhancing agricultural
knowledge dissemination for rural revitalization (Wang et al,
2023). Zhang et al. proposed IPM-AgriGPT, a Chinese LLM for
pest management, using a G-EA framework, ACR-CoTD, and
LoRA techniques to optimize dynamic reasoning and reduce
reliance on labeled data for agricultural intelligence (Zhang et al.,
2025). Large model technology has demonstrated outstanding
performance in agricultural multimodal dialogue and visual
comprehension, providing novel insights and methodologies for
addressing agricultural disease challenges.

As evidenced by current research, computer vision-based
intelligent tomato detection has emerged as a critical component in
automated harvesting systems, where detection accuracy directly
determines the operational efficiency of subsequent robotic processes.
However, existing approaches are constrained by two fundamental
limitations: On the one hand, the practical deployment of high-
complexity models in agricultural environments presents significant
challenges, on the other hand most current developments remain
confined to theoretical algorithm research without comprehensive
implementable solutions. To identify the most suitable lightweight
architecture for agricultural edge detection, we systematically evaluated
mainstream backbones and identified GhostConv as offering a superior
trade-off between accuracy and efficiency, which subsequently formed
the core of our GAE-YOLO model. To address these practical
challenges in automated tomato harvesting, an intelligent computer
vision-based tomato detection and management system is proposed in
this study. This system aims to resolve core technical barriers in
agricultural automation through systematic integration of advanced
visual algorithms with edge computing technologies, thereby achieving
a crucial transition from theoretical research to practical application.
The primary contributions of this work are manifested in four
key aspects:
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1. Algorithm Optimization: The conventional convolutional
structure was replaced with Ghost-conv modules, achieving
a significant reduction in model parameters. The E-IoU loss
function and AReLU activation function were implemented
to enhance detection accuracy, enabling high-precision
identification of tomato fruits and foliar diseases.

. System Deployment: A novel three-dimensional tomato
detection framework was developed by integrating ZED
binocular vision with the Jetson TX2 edge computing
platform. This integrated system facilitates real-time
dynamic analysis and provides precise guidance for
robotic harvesting operations.

. Scientific Management: Standardized algorithms for
tomato maturity evaluation and single-plant yield
estimation were established, providing quantitative data
support for precision agriculture practices.

. Application Functionality: A cross-platform visualization
interface was developed with modular design,
incorporating multidimensional diagnostic reporting and
optimized agricultural language models to deliver
intelligent disease prevention and control solutions.

Experimental results demonstrate that the proposed system
significantly outperforms conventional approaches in multiple
critical aspects, including tomato detection accuracy, disease
identification precision, maturity assessment reliability, and
prevention strategy effectiveness. This study has established not
only a practical and implementable solution for agricultural
automation, but also a scalable technical framework that can be
readily adapted for intelligent management of various cash crops. The
proposed system exhibits substantial academic significance while
demonstrating considerable potential for industrial deployment.

10.3389/fpls.2025.1712432

2 Materials and methods
2.1 Construction of data set

2.1.1 Tomato detection datasets construction

Tomato detection datasets construction: A multi-source data
fusion strategy was employed to construct a comprehensive tomato
detection datasets. The datasets comprises two primary
components: (1) a standardized benchmark datasets containing
895 high-resolution tomato images obtained from Kaggle, with
each image professionally annotated in PASCAL VOC format
(Figure 1a), and (2) supplementary field-collected data acquired
from greenhouse environments in Shouguang City, Shandong
Province (36°51’19.73”N, 118°47°26.35”E) using ZED binocular
cameras. The field collection protocol ensured diverse samples by
capturing tomato plants at various growth stages under multiple
lighting conditions and viewing angles (Figure 1b).

2.1.2 Foliar disease detection datasets

The foliar disease datasets used in this study was obtained from the
Kaggle platform, comprising over 700 tomato leaf images collected
from both laboratory and field environments. The dataset contains six
disease categories and one healthy class, including common tomato
pathogens: Bacterial spot, Early blight, Late blight, Leaf mold, Target
Spot, and Black Spot. The data has been augmented of using multiple
advanced techniques such as image flipping, Gamma correction, noise
injection, PCA color augmentation, rotation, and scaling. Some foliar
disease datasets are shown in Figure 2.

2.1.3 Image acquisition and processing facilities
This study focuses on intelligent tomato recognition and
detection in real-world agricultural settings, moving beyond

FIGURE 1

Partial tomato datasets. (a) Example images from the tomato dataset. (b) Tomato images captured by a ZED stereo camera.
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Healthy Early blight

FIGURE 2
Partial foliar disease datasets.

Late blight

Leaf mold Target Spot Black Spot

traditional static datasets-based algorithm research. To address the
complex imaging challenges in greenhouse environments, a mobile
image acquisition system was developed, comprising three core
components: (1) a ZED binocular vision camera (Figure 3a), which
provides high-precision depth perception and 4K resolution
imaging; (2) a McNam wheel omnidirectional mobile platform
(Figure 3c), enabling flexible and adaptive data collection; and (3)
a Jetson TX2 edge computing module (Figure 3b), responsible for
real-time image processing and analysis. This integrated system
effectively overcomes the challenges posed by variable lighting
conditions and foliar obstructions in greenhouse environments,
ensuring reliable data acquisition for subsequent tomato detection
and maturity analysis.

2.2 Proposed methods

This study presents an intelligent tomato detection and
management system based on the GAE-YOLO model, which
achieves end-to-end process optimization—from fruit detection to
disease diagnosis and ripeness assessment—through the integration
of multiple advanced technologies. Methodologically, the system is
built upon four core technical modules: (1) a lightweight GAE-
YOLO object detection framework for high-precision identification

of tomato fruits and disease symptoms; (2) a three-dimensional
vision system integrated with a ZED depth camera to establish
accurate spatial coordinate calculations for robotic harvesting; (3) a
multi-scale feature fusion algorithm designed for tomato ripeness
classification and yield estimation; and (4) visualization software
that combines disease diagnosis with LLMs interaction, enabling a
modular “detection-diagnosis-decision” closed-loop management
system. The collaborative workflow of these modules is
demonstrated in the technical roadmap (Figure 4).

2.2.1 Lightweight GAE-YOLO

This study proposes an innovative lightweight object detection
model, GAE-YOLO, which systematically optimizes the Ultralytics
YOLOvl11-nano (YOLOv11n) architecture. As shown in Figure 5,
GAE-YOLO achieves significant improvements in balancing model
efficiency and detection accuracy through three key technological
innovations: (1) Lightweight architecture design: GhostConv
modules are employed to replace conventional convolution
operations, reducing parameters while maintaining feature
extraction capability through a feature map redundancy
utilization mechanism, thereby improving inference speed. (2)
Adaptive feature enhancement: Parametric AReLU activation
functions are introduced to replace standard SiLU, dynamically
adjusting negative interval slopes to better capture key

(@)

FIGURE 3

Hardware facilities for image acquisition and processing. (a) ZED binocular vision camera. (b) Jetson TX2 edge computing module. (c) McNam wheel

omnidirectional mobile platform.
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Technical roadmap of tomato smart management system.

morphological features of tomato fruits. (3) Optimized training
strategy: The E-IoU loss function is adopted, integrating direction-
aware terms and scale-sensitive factors to effectively address
recognition deviations in tomato occlusion scenarios. These
innovations enable GAE-YOLO to maintain detection accuracy
while achieving lightweight deployment on mobile devices (Jetson
TX2) for real-time tomato detection.

2.2.1.1 Lightweight GhostConv design

CNNs have demonstrated remarkable success in computer
vision applications; however, their deployment on resource-
constrained devices remains challenging. Traditional CNN
architectures rely on stacked convolutional layers for feature
extraction, which, while achieving high detection accuracy, incur
substantial computational costs. To address this limitation, this
study introduces GhostConv as an innovative replacement for
conventional convolution operations. As illustrated in Figure 6,
the GhostConv module employs depth-wise convolution as its
foundational operation, decoupling channel dependencies by
performing independent convolution operations for each feature
channel. This design significantly reduces computational
complexity while maintaining representational capacity. The
module further enhances efficiency through a secondary linear
transformation layer, which generates supplementary ghost
feature maps at minimal computational overhead. Collectively,
these mechanisms enable efficient yet powerful feature extraction.

Frontiers in Plant Science

The GhostConv operation proceeds as follows: A minimal set of
conventional convolution kernels are first applied to the input
feature map X to extract intrinsic feature maps Y’, where X
denotes the input features and f’ represents the number of
convolutional layers, as shown in Equation 1.

Y =X x f (1)

A linear transformation is then applied to the output intrinsic
feature maps Y’ to generate ghost feature maps (Equations 2, 3).

y,]:CIJ,»,j(y,»,), Vi=1,...,m, j=1,..,s (2)

Y= [y11>y12>--- o> Yims) (3)

The intrinsic feature maps obtained in the first step and the

Ve

ghost feature maps generated in the second step are concatenated to
produce the final output feature maps.

The innovation of this design is demonstrated through
optimized feature learning mechanisms that significantly reduce
the model’s computational cost for non-critical features in tomatoes
and their foliage. Specifically, conventional convolution operations
are replaced by a lightweight kernel combination strategy integrated
with efficient linear transformations. This approach maintains
model performance stability while substantially decreasing
computational resource requirements, making it particularly
suitable for efficient deployment on resource-constrained edge
devices such as the Jetson TX2 platform.
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2.2.1.2 Improving activation functions with AReLU
Activation functions, serving as fundamental components of
deep neural networks, critically influence model performance
through their impact on both representational capacity and
learning dynamics. While traditional static activation functions

identity

)
Input k

FIGURE 6
The GhostConv module.

Frontiers in Plant Science 07

o O

(e.g., ReLU, ELU) demonstrate computational efficiency, they are
constrained by two inherent limitations. First, fixed nonlinear
transformation patterns that fail to adapt to hierarchical feature
distributions. Second, uniform activation thresholds that lack
adaptive feature selection capabilities. Although existing
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frontiersin.org


https://doi.org/10.3389/fpls.2025.1712432
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al.

parametric activation functions (e.g., PReLU, SReLU) partially
mitigate these issues through learnable parameters, their feature
selection mechanisms remain suboptimal in precision. To address
these challenges, this study proposes an innovative framework that
deeply integrates attention mechanisms with activation functions,
wherein the original SiLU is replaced by AReLU (Chen et al., 2020).
The used AReLU achieves fine-grained feature regulation through
three core mechanisms: (1) a dynamic threshold mechanism that
automatically adjusts activation thresholds based on feature
importance. (2) a context-aware module that modulates activation
intensity using local feature statistics. and (3) a multi-scale fusion
technique that enables layer-specific activation pattern learning.

Figure 7 presents schematic diagrams of various attention
mechanisms, including: Channel-wise Attention Mechanism, Spatial-
wise Attention Mechanism, and Element-wise Attention Mechanism.

This study employs an Element-wise Learned Sign Attention
(ELSA) module to learn sign-dependent attention weights for pre-
activation feature maps, where distinct learnable parameters are
assigned to positive and negative elements respectively, enabling
dynamic regulation through amplifying positive elements while
suppressing negative ones. Considering a feature volume V =
{v;} € R"HC the work compute an element-wise attention map
S={s;} € R"HC where ¢ can be implemented via a neural
network, as shown in Equation 4.

{ Cla), v;<0
5;=D(v;,0) = (4)
o(B), vi=0

For a feature element v;, its attention value s; is governed by
both negative and positive elements, with the positive element

10.3389/fpls.2025.1712432

weight being computed via the sigmoid function, where © =
{0, B} € R* is learnable parameters. C(-) clamps the input
variable into [0.01, 0.99]. o is the sigmoid function. The attention
weights are combined with input features through element-wise
multiplication. The modulation function ¥ is defined as Equation 5.

u;=Y,s)=v-s (5)

This study implements function ® in ELSA using a neural layer
with learnable parameters oand : AReLU is constructed by
combining the ELSA module with conventional ReLU, thereby
yielding a learnable activation function, as shown in Equation 6.

Clo)x;, x<0

el { (1 + 0B x>0 ©

where X = {x;} represents the input to the current layer. Here,
ReLU provides fundamental nonlinear activation, while ELSA
learns residual weights to further amplify positive elements and
moderately suppress negative ones.

This innovative design not only preserves the computational
efficiency of traditional ReLU but also incorporates feature selection
adaptability through attention mechanisms, significantly improving
the model’s capability to learn multi-scale features in tomato vision
tasks. Specifically, AReLU employs a learnable parameterization
mechanism that dynamically adjusts activation patterns across
different feature map levels. This adaptation enables the network
to effectively capture multi-scale fruit morphological features,
ranging from microscopic to macroscopic details, while providing
enhanced nonlinear expressiveness for precise tomato detection and
foliar disease identification.

Dimension extension

P
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attention map

—»(l)-»
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FIGURE 7
Schematic diagrams of different attention mechanisms.
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2.2.1.3 Optimized Focal-EloU loss function

This study presents a comprehensive analysis of the bounding
box regression optimization challenge in the YOLOvI1 object
detection framework. While the conventional CloU loss function
demonstrates improved bounding box prediction accuracy, two
critical limitations are identified: (1) The coupled aspect ratio
penalty term fails to precisely characterize the dimensional
discrepancies between target and anchor boxes in width and
height; and (2) The scale sensitivity in bounding box regression is
inadequately addressed, leading to suboptimal convergence rates
during model optimization and constrained localization precision.
These limitations become particularly pronounced in tomato
detection scenarios, especially when processing densely clustered
or partially occluded targets, where coordinate localization accuracy
is substantially compromised. To address these issues, the Focal-
EloU loss function is implemented in this study, with its diagram
illustrated in Figure 8.

The EloU penalty term builds upon the CloU framework by
decoupling the aspect ratio influence factor and separately
computing width and height discrepancies between target and
anchor boxes. This loss function comprises three components:
overlap loss, center distance loss, and width-height loss, with the
first two components maintaining the CIoU methodology. This
design not only preserves the beneficial properties of CIoU loss but
also directly minimizes width and height deviations between target
and anchor boxes through EIoU, resulting in accelerated
convergence and enhanced localization performance. The penalty
term is formulated as shown in Equation 7.

Leru = Loy + Lais + L

asp
L RBE) P P
R LR LA O R (S U

where w® and h° are the width and height of the smallest
enclosing box covering the two boxes. Addressing the inherent
imbalance in bounding box regression training samples, where
high-quality anchor boxes are significantly outnumbered by low-
quality samples, requires special consideration, as poor-quality

10.3389/fpls.2025.1712432

samples can generate excessively large gradients that adversely
affect the training process. However, conventional reweighting
methods cannot be directly applied to IoU-based losses. To
mitigate this issue, the Focal-EIoU loss is applied (Zhang et al.,
2022), which leverages the IoU value to reweight the EIoU loss. This
design places greater emphasis on difficult-to-classify samples
during optimization, thereby improving the overall performance
of the target detection algorithm. The formulation is given in
Equation 8.

(@)

The parameter y controls the suppression intensity for outlier

Lrocar-rou = 1 OUVLEIDU

samples. As derived from the formulation, higher IoU values
correspond to increased loss magnitudes, effectively implementing
a weighting mechanism that assigns greater loss values to superior
regression targets - thereby enhancing regression accuracy. The 7y
value directly determines the model’s focus level on challenging
samples. In tomato detection tasks, this mechanism exhibits two key
advantages: First, by allocating higher loss weights to high-IoU
samples, the positioning accuracy for mature tomatoes is
significantly improved. Second, this dynamic weighting strategy
effectively balances the contributions of varying-quality samples to
model optimization, enabling the detection algorithm to achieve
enhanced robustness in complex agricultural environments.

2.2.2 Tomato maturity calculation based on
GAE-YOLO

Tomato maturity detection and yield estimation play a pivotal
role in precision agriculture by providing critical decision-making
support. This study leverages the GAE-YOLO detection algorithm
combined with ZED binocular depth cameras to accomplish three
core functionalities: (1) accurate maturity stage classification
(unripe/ripe/overripe) through multi-feature analysis; (2) precise
calculation of three-dimensional spatial coordinates and size
parameters using depth vision technology; and (3) intelligent
yield prediction at both plant and area-unit levels by integrating
tomato variety characteristics with evaluation algorithms.

e \
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FIGURE 8
Schematic diagram of EIOU bounding box regression.

Frontiers in Plant Science

09

frontiersin.org


https://doi.org/10.3389/fpls.2025.1712432
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al.

TABLE 1 Key characteristics for judging tomato maturity.

Unripe Ripe .
Feature P P Overrlpe tomato
tomato tomato
Green or light Uniform bright Dark red with local
Color .
red red blackening
Size Smaller Varlety»'standard Shriveled/swollen
size
Deformed/sunken/
Shape Regular round Regular round shriveled

Furthermore, real-time monitoring of tomato maturity distribution
enables optimal harvesting time determination. A tomato maturity
assessment model was developed based on the GAE-YOLO
framework, incorporating a multi-feature weighted fusion
strategy. In this model, three key feature sets were identified as
maturity indicators: (1) HSV color space characteristics, where hue
serves as the most visually discriminative maturity parameter; (2)
size characteristics, which exhibit high inter-variety differentiation
when combined with cultivar-specific traits; and (3) shape
characteristics, which primarily assist in overripe fruit
identification while showing limited discrimination between
unripe and ripe stages. The relative importance of these maturity
indicators is quantitatively presented in Table 1.

2.2.2.1 Tomato maturity judgment based on color space

In this study, the HSV color space was selected as the primary
metric for tomato maturity assessment. Color distributions within
GAE-YOLO detection bounding boxes were systematically
analyzed through targeted extraction. Compared to RGB color
space, HSV demonstrates superior suitability for tomato ripeness
evaluation due to three key advantages: (1) The hue (H) channel
exhibits strong correlation with ripeness progression, enabling
direct assessment through H-values without requiring complex
threshold combinations as in RGB; (2) Enhanced robustness
against lighting variations, making it particularly suitable for
greenhouse environments with fluctuating illumination; and (3)
Independent V-channel (value) that maintains color interpretation
stability across lighting conditions while remaining decoupled from
H and S channels.

It should be emphasized that in Table 2, the H (Hue) parameter
represents color types through angular measurements (0°,360°).
This angular representation exhibits two unique characteristics: (1)
The (0°,360°) range is not mathematically continuous due to its
periodic nature (where 0° and 360° represent identical colors), and
(2) Distinct maturity stages correspond to specific hue ranges -

TABLE 2 Threshold for judging tomato maturity based on color space.

Maturity stage H (hue)

Unripe Tomato [50°,100")

Ripe Tomato [07,20") U [330°,360°]

Overripe Tomato [20°,40)
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TABLE 3 Threshold for judging tomato maturity based on diameter size.

Diameter threshold (example:

SIELITIS) SR beefsteak tomato)

Unripe Tomato (0,50)
Ripe Tomato [50,70]
Overripe Tomato (70,~)

unripe tomatoes display green/yellow hues [50°, 100°), ripe tomatoes
exhibit red hues [0°,207) U [330,360°], while overripe tomatoes
transition toward orange/brown tones [20°,40°). These hue-based
differentiations form the fundamental basis for establishing a robust
maturity classification model. The scoring formula based on color
as the criterion is given in Equation 9.

1.0, ifH €10°,20") U [330,360)
By +c - (40 — H), ifH € [20°,40") 9)
hy + ¢, - (H-50), ifH € [50°,100")

Scolor =

hy is usually taken as 0.5, h, as 0.2, ¢; as 0.015, and ¢, as 0.01.
Their values can be adjusted according to the actual situation.

2.2.2.2 Tomato maturity judgment based on diameter size

This study developed a three-dimensional spatial positioning
algorithm for tomatoes through the integrated operation of the
GAE-YOLO model and ZED binocular cameras. The algorithm
utilizes the width (w) and height (h) of the detection frame (in
pixels) generated by GAE-YOLO, along with the depth perception
capability of the ZED camera, to compute the three-dimensional
coordinates (w,h,z) of tomatoes, where z denotes the actual
distance (in millimeters) from the tomato to the camera. The
system implementation is based on key parameters derived from
camera calibration, including the focal length (f) in pixels. The
actual width (w,.,) and height (h,.,) of tomatoes are calculated
using the following formulas given in Equations 10, 11.

w-z

Wreal = f—w (10)
h-z

Byeal = —— 11

= (11)

where f,, and f, represent the horizontal and vertical focal
lengths of the camera (in pixels), respectively. Based on these
parameters, the diameter of the tomato can be calculated using
the formula given in Equation 12.
i - Wreat + Myeal) - 2 (12)
f w +fh
It should be noted that the diameter-based maturity judgment
thresholds for tomatoes require calibration according to specific
cultivars, with the current system configured based on the
empirically derived thresholds presented in Table 3. The scoring
formula for using diameter as a maturity criterion is given in
Equation 13.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1712432
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al.

TABLE 4 Threshold for judging tomato shape maturity.

Maturity stage Aspect ratio range

Unripe Tomato (0.9,1.1)

Ripe Tomato (0.7,0.9] U [1.1,1.3)

Overripe Tomato (~0.7] U [1.3,~)

real i
Sp- ,mn'ape > lf dreal < dumipe
S _ S1 4+ 5 - dreul*dumipc If d . < d < d
size — 1 2 dnpe_dunnpe > unripe real ripe (13)
dreul’dripc .
LO =83 Gy I reat > e

where d,,,. denotes the maximum diameter of unripe

tomatoes, d,;,, represents the standard diameter of ripe tomatoes,

ipe
and doyeryip indicates the minimum diameter of overripe tomatoes.
The weight coefficients are typically assigned as s; = 0.3, s, = 0.7,

and s; = 0.2 based on empirical validation.

2.2.2.3 Tomato maturity judgment based on shape

This study presents a tomato maturity assessment method utilizing
shape characteristics. The tomato size is first derived from the GAE-
YOLO detection bounding box, followed by preliminary maturity
estimation through aspect ratio calculation (Equation 14). While this
approach demonstrates high computational efficiency, its accuracy is
somewhat limited, making it particularly suitable for large-scale
cultivation scenarios. The threshold for judging tomato shape
maturity is presented in Table 4.

_ Wreal
h

(14)
real

A high-precision contour analysis-based algorithm can be
implemented to extract tomato ROIs (Regions of Interest) from
GAE-YOLO detection frames. Following binarization processing,
contours are extracted and the area-to-perimeter ratio is calculated.
While this approach enables more accurate shape assessment for
individual tomato plants, its application in large-scale cultivation
scenarios is not recommended due to compromised
computational efficiency.

The scoring formula for tomato maturity based on shape is
defined in Equation 15.

1.0-p,-|r=1|, if [r-=1/<03
0.7-p,-(r-=1]-0.3), if 03<|r—-1]<0.7
iflr—=11>07

Sshape = ( 1 5)

0.4—ps-(Ir—1/-0.7),

For uniformly shaped immature or mature tomatoes, the aspect
ratio typically falls within the range of [0.7, 1.3]. However, mature
tomatoes may exhibit moderate aspect ratio deviations due to slight
deformations. In contrast, overripe, diseased, or mechanically
damaged tomatoes often demonstrate significant aspect ratio
variations resulting from severe morphological changes. The
weighting coefficients are empirically assigned as p; = 0.2, p, =
0.3, and p; = 0.4.
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In summary, this study has constructed a tomato maturity
assessment model that integrates multi-feature fusion of HSV color
space, size, and shape characteristics, as formulated in Equation 16.

RipenessScore = @, + Scolor + @ + Ssize + Oy * Seape (16)

where Scors Ssizes Sshape NOrmalized scores for color, size, and
shape features, @,, @;, @, corresponding weighting coefficients @, +
Wy + o, = 1.

All feature scores are normalized to the range (0,1), and the
final maturity determination rule is mathematically formulated in
Equation 17.

immature, if RipenessScore < 0.4

RipenessScore = < ripe, if 0.4 < RipenessScore < 0.7  (17)

overripe, if RipenessScore > 0.7

In the tomato maturity assessment model, the weight distribution
among HSV color space, size, and shape features must be adaptively
adjusted based on both their discriminative contributions to maturity
evaluation and practical application requirements.

2.2.3 Method for estimating the yield of tomato
plants

This study develops a tomato volume calculation method
integrating GAE-YOLO detection with depth vision technology.
The true tomato volume is calculated by combining depth
information (z) acquired from the ZED binocular camera and
pre-calibrated focal length (f) parameters with the detected width
(Wrear) and height (h,,,). Under the idealized spherical assumption
for tomato morphology, the volume of individual tomatoes is
estimated using the formula provided in Equation 18.

4

V:E.ﬂ.( 5

dreal

=) (18)
However, since tomatoes are not perfect spheres, an ellipticity
correction factor k (typically k=0.85-0.95, as shown in Equation 19)

must be introduced to adjust Equation 18:

v=k-v (19)

This study has developed a single-plant tomato yield estimation
method based on 3D spatial clustering. The method employs
tomato three-dimensional coordinates acquired by ZED cameras
and implements the density-based DBSCAN (Bi et al.,, 2012)
clustering algorithm to accurately associate fruits with individual
plants. The core principle posits that density-connected samples
belong to the same cluster, whereby fruits from the same plant
exhibit spatial proximity (high-density regions), while fruits from
different plants or isolated fruits demonstrate spatial separation
(low-density regions).

The implementation is specified as follows: Given a tomato
plant’s 3D coordinate point p = (Wyeqp, Hyeqr» 2) and neighborhood
radius €, its neighborhood is defined as Equation 20:

N.(p) = {q E dataset | dist(p,q) < €} (20)
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where dist(p, q) denotes the Euclidean distance between points
p and q, as shown in Equation 21. Points within this neighborhood
are merged into the current cluster, ensuring density-reachability
within clusters.

diSt(P’ ‘1) = \/(Wreal_p - Wreul_q)2 + (hreulp - hrealq)z + (zp - Zq)2 (21)

Therefore, the calculation formula of tomato yield per plant is
given in Equation 22.

Nper _accurate = @ * Z?Vi (22)

where @ denotes the density parameter, which needs to be
determined according to specific tomato cultivars.

2.2.4 Intelligent diagnosis of tomato foliar
diseases based on large models

This study developed visualization software for intelligent
tomato diagnosis and management to address challenges in leaf
disease prevention and control during tomato cultivation. In
current agricultural practice, the absence of professional guidance
often leads to difficulties in accurately identifying disease symptoms
(e.g., distinguishing yellow spots caused by leaf mold versus nutrient
deficiency), resulting in improper control measures and subsequent
losses. To overcome these issues, an innovative visual interactive
interface was designed based on the PyQt6 framework, integrating
core functional modules including maturity analysis, foliar disease
identification, and prevention recommendations. Large model
network APIs were implemented to enable real-time diagnosis on
Jetson TX2 edge devices, ensuring smooth operation even with

limited computational resources.

2.3 Evaluation indicators

This study selects precision rate, recall rate, mean average
precision (mAP), frames per second (FPS), and GFLOPS as the
performance metrics for evaluating deep learning models. The
calculation formula for the evaluation indicators is as follows.

Precision (P): Measures the proportion of true positive
predictions among all positive predictions made by the model.
The formula is given in Equation 23.

Precision = x 100 % (23)

TP
TP + FN
Recall (R): Measures the proportion of true positive predictions
among all actual positive instances. The formula is given in
Equation 24.
Recall =

x 100 % (24)

TP
TP + FN

where TP represents true positives (correctly detected targets),
FP represents false positives (incorrectly detected targets), FN
represents false negatives (missed targets).

Precision and recall values are used to construct the precision-
recall curve (PR curve), with the area under this curve denoted as
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TABLE 5 Experimental hyperparameters.

Hyperparameter Value

Initial Learning Rate 0.01
Momentum 0.937
Batch Size 16
Image Size 640x640

Training Epochs 300
Seeds [42, 123, 2023]

AP (Average Precision), as shown in Equation 25.

1
AP = / P(R)dR (25)
0
The average of AP values across all categories in the dataset. The
formula is given in Equation 26.

n AP
mAp:h (26)
n

where mAP@0.5 represents the mAP at an Intersection over
Union (IoU) threshold of 0.5, commonly used to evaluate the
model’s localization accuracy.

T denotes the detection time per image, while FPS represents
the number of images processed per second, as shown in Equation
27.

1

FPS = —

T (27)

In addition, GFLOPs reflects the computational complexity of
the model, serving as an important metric for measuring
computational efficiency.

2.4 Experimental details

The Model training and development configuration for this
study is configured as follows: CPU: Intel (R) Core (TM) i9-
13900H, RAM: 32GB, GPU: NVIDIA GeForce RTX 4060 with
8GB of video memory. The framework environment is built on
PyTorch 2.5.1, with Python version 3.9.21 (running on Windows
11), CUDA version 12.1, and CUDNN version 9.0.0. All
experiments were conducted with uniform parameter settings,
and the specific hyperparameters are listed in Table 5.

The edge computing device TX2 is configured with: NVIDIA
Parker series SoC (64-bit ARM architecture), CPU (dual-core Denver
2), GPU (256-core NVIDIA Pascal architecture GP10B), 8GB
LPDDR4 memory, running on Ubuntu 18.04 LTS. To ensure
maximum computational throughput, the module was operated in
its default MAX-N performance mode. For power profiling,
collecting data over a continuous 10-mins window under sustained
workload, establishing a reliable power consumption baseline.

The GAE-YOLO model trained on RTX 4060 was converted
into an optimized inference engine for TX2 using TensorRT,
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Comparison of lightweight models (a) Comparison of lightweight models in flops. (b) Comparison of lightweight models in latency.

significantly improving execution speed while reducing resource
consumption. The PyTorch model was first exported to ONNX
format to ensure full operator compatibility with TensorRT. The
ONNX model was then loaded and optimized using TensorRT tools
on TX2 to generate the final engine file. By strategically distributing
computational tasks across TX2’s GPU, DLA, and CPU, maximum
resource utilization was achieved.

3 Results and analysis

The experimental results of the intelligent tomato model
developed in this study are systematically presented across three
key aspects: (1) tomato fruit detection performance, (2) foliar
disease identification accuracy, and (3) integrated diagnostic
capabilities. To ensure statistical robustness, our proposed model
was trained and evaluated over three independent runs with
different random seeds. Accordingly, a statistical reporting
protocol has been adopted: the performance metrics for our
model are reported as the mean + standard deviation, while
results for comparative models are from a single representative run.

To validate the advantages of GhostConv’s lightweight
architecture (Han et al., 2020), performed systematic experiments
on the ImageNet classification task. The results demonstrate a

positive correlation between computational resource utilization
and model accuracy in these compact networks, thereby
conclusively verifying its superior performance characteristics.
Figure 9 presents a comprehensive comparison between GhostNet
and existing lightweight models in terms of FLOPs and inference
latency. A critical finding of the comparative analysis is that
GhostNet emerges as the more efficient architecture, achieving
approximately 0.5% higher top-1 accuracy than MobileNetV3
under equivalent latency while also requiring less time to reach a
comparable performance level. Moreover, evaluation across
different complexity scales confirms that this performance
advantage is consistently maintained, demonstrating the
architecture’s robust superiority.

3.1 Tomato detection results and analysis

This study establishes model lightweighting as the primary
objective and conducts a systematic evaluation of mainstream
lightweight architectures for tomato detection tasks. Using the
standard YOLOVI11 as the baseline model, the most representative
lightweight network architectures were selected for comparative
analysis. The YOLOv11 backbone was modified by implementing
depthwise separable convolution and its derivative architectures,

TABLE 6 Comparison of modified by GhostConv with other lightweight improvement models (RTX 4060, FP32, 1080p).

Model P R
Baseline 0.880 0.886
Backbone modified by DC 0.854 0.794
Backbone modified by MobileNetv3 0.865 0.821
Backbone modified by Efficient 0.873 0.833
Baseline modified by GhostConv (ours) 0.871 + 0.09% 0.878 + 0.10%
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mMAP@50 mAP@95 GFLOPS
0.933 0.639 63
0.901 0.587 5.4
0.887 0.603 55
0911 0.601 55

0.925 + 0.09% 0.620 + 0.13% 5.5+ 0.37%
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TABLE 7 Comparison of GAE-YOLO with other advanced modified models.

10.3389/fpls.2025.1712432

Model P R mAP@50 mAP@95 GFLOPS FPS FPS(TX2)
Baseline 0.880 0.886 0.931 0.639 6.3 83 7.7
Baseline+CBAM 0.881 0.884 0933 0.641 7.9 81 7.5
Baseline+CBAM+GS 0.882 0.881 0.931 0.643 7.6 85 8.1
Baseline+ iRMB 0.891 0.883 0.932 0.649 8.2 72 6.1
Baseline+GS+AReLU (ours) 0.889 + 0.12% 0.884 + 0.11% 0933 +£0.13%  0.648 £0.16% 55+ 043% 96 +2.3% 102 +2.4%

FPS is measured under: (RTX 4060, FP32, 1080p) for FSP; (Jetson TX2, PyTorch, MAX-N, 1080p) for FPS (TX2).

including MobileNetV3 and EfficientNet. Through controlled
experiments, the performance of each model was rigorously
compared and analyzed across key dimensions: precision, recall,
mAP, GFLOPS. The architectural exploration led to a key
revelation: the GhostConv-based modification proved to be an
optimal strategy, successfully maintaining high detection accuracy
(mAP@50 = 93.5%) while reducing computational complexity by
12.6% to 5.5 GFLOPS compared to the baseline. Importantly, under
comparable computational constraints, GAE-YOLO consistently
surpassed all other benchmarked models, an outcome that
solidifies its status as the most effective solution evaluated. These
findings conclusively validate the technical advantages of GAE-
YOLO for agricultural edge computing applications. The detailed
results are presented in Table 6.

Recent advancements in YOLO series improvements have
primarily focused on attention mechanisms and loss function
optimization. However, these approaches often prioritize
theoretical algorithmic enhancements while overlooking the
critical need for lightweight designs in practical implementations.
To bridge this gap, this study introduces the innovative GAE-YOLO
model, which achieves an optimal balance between lightweight
architecture and high detection accuracy through carefully
engineered modifications. Specifically, two parameter-efficient
enhancement strategies are incorporated: AReLU and E-IoU loss
function, both designed to improve performance without increasing
model parameters. To validate the efficacy of the proposed model,
systematic comparative experiments were conducted (see Table 7).
The results demonstrate that GAE-YOLO maintains high detection
accuracy (mAP@50 = 93.2%) while achieving real-time processing
at 10.2 FPS on Jetson TX2 edge devices. Notably, an FPS threshold
exceeding 10 is required to ensure smooth target detection
performance on the TX2 platform.

TABLE 8 Ablation experiment results of the GAE-YOLO model.

Table 8 presents a systematic ablation study of the GAE-YOLO
model, evaluating the individual contributions and synergistic
effects of each enhancement module through controlled
experiments. The experimental design follows a progressive
integration strategy, sequentially incorporating three core
modules: GhostConv, E-IoU, and AReLU (where “v” denotes
module inclusion). As the foundational lightweight component,
GhostConv achieves 0.925 mAP@50 and 0.620 mAP@95 while
maintaining high-speed performance of 96 FPS (GPU 4060) and
10.2 FPS (TX2). The addition of the E-IoU loss function yields a
2.7% improvement in mAP@95, demonstrating significant
enhancement in bounding box regression precision. When
integrated with the AReLU activation function, mAP@95 further
increases by 4.0%, validating the efficacy of the adaptive feature
activation mechanism. The complete model combining all three
modules achieves optimal performance (0.933 mAP@50 and 0.648
mAP@95), representing improvements of 0.8% and 4.5% over the
baseline, respectively, without additional computational overhead.
Consistent GFLOPS and FPS metrics across all experimental groups
confirm that the proposed enhancements achieve performance
gains at minimal computational cost. On the TX2 edge device,
the full model maintains real-time processing at 10.2 FPS under a
1080p resolution without TensorRT optimization, demonstrating
the baseline performance and satisfying deployment requirements
for practical agricultural applications.

Figure 10 illustrates the training dynamics of the GAE-YOLO
model, exhibiting optimal convergence behavior and learning
efficiency. During the initial training phase (0-50 epochs), a rapid
decrease in loss function values is observed alongside a
corresponding sharp increase in mAP@50, demonstrating the
model’s effective capture of essential tomato target features. In
subsequent training stages (50-250 epochs), the loss curve slope

GhostConv ARelu mAP@50 mAP@95 GFLOPS
v 0.925 0.620 55 9% 10.2
v v 0.928 0.637 55 9% 10.2
v v 0.931 0.645 55 9% 10.2
v v/ v 0.933 +0.13% | 0.648 + 0.16% 55 + 0.43% 96 + 2.3% 10.2 + 2.4%

FPS is measured under: (RTX 4060, FP32, 1080p) for FSP, (Jetson TX2, PyTorch, MAX-N, 1080p) for FPS (TX2).
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Visualization results of the GAE-YOLO training process (RTX 4060, FP32, 1080p).

progressively diminishes while mAP improvements stabilize,
consistent with established deep learning optimization patterns.
Notably, all metrics reach equilibrium during the final 250-300
epoch period, with this synchronous convergence validating the
model’s architectural soundness. These results confirm that GAE-
YOLO simultaneously avoids overfitting risks while achieving target
detection accuracy objectives.

Figure 11 demonstrates the superior performance of the GAE-
YOLO model in tomato detection tasks. Specifically, Figure 11a
displays the visual detection results on the standardized test set,
while Figure 11b showcases its application performance in real
greenhouse environments, where high detection accuracy is
maintained despite complex background interference. Through
visual analysis, two primary error sources are identified: (1)
missed detections due to severe foliage occlusion, and (2) false
positives involving unripe tomatoes with leaf-like coloration. These

errors predominantly occur in high-density fruit clusters with
minimal inter-fruit spacing. These results validate not only the
model’s detection capability under controlled conditions but also its
practical performance in real-world agricultural scenarios.

3.2 Detection results and analysis of
tomato foliar diseases

Table 9 presents the performance evaluation results of the GAE-
YOLO model for tomato leaf disease detection, demonstrating its
capabilities across different disease categories through multiple
metrics. The model achieves an overall precision of 0.756, recall
of 0.725, mAP@50 of 0.724, and mAP@95 of 0.492, indicating
strong detection performance. Healthy leaves show the best results
with 0.967 precision, 0.99 recall, and 0.995 mAP@95, confirming
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FIGURE 11

Visualization results of GAE-YOLO tomato detection. (a) Standardized test set. (b) Real greenhouse scenario.
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TABLE 9 Detection results of tomato foliar diseases (RTX 4060, FP32, 1080p).

P (< |+0.12%])

R(<[+0.11%)|)

mAP@50 (< [+0.13%|) mAP@95 (< |+0.16 %))

all 0.756 0.725 0.724 0.492
Bacterial Spot 0.934 0.750 0.747 0.531
Early_Blight 0.753 0.827 0.783 0.446
Healthy 0.967 0.99 0.995 0.929
Late_blight 0.823 0.862 0.921 0.749
Leaf Mold 0.564 0.571 0.497 0.251
Target_Spot 0.619 0.667 0.679 0.352
Black spot 0.396 0.396 0.445 0.185

accurate health/disease discrimination. Bacterial spot and late blight
achieve mAP@50 scores of 0.747 and 0.921 respectively, reflecting
good recognition of visually distinctive diseases, while early blight
shows higher recall (0.827) than precision (0.753), suggesting some
false positives. Target spot maintains balanced metrics (P = 0.619,
R =0.667), indicating stable feature learning, whereas leaf mold and
black spot perform poorly (black spot mAP@95: 0.185) due to
challenging visual characteristics like irregular shapes and low color
contrast. Notably, the significant performance gap between mAP@
50 and mAP@95 (average difference: 0.232) highlights ongoing
challenges in precise lesion boundary localization.

The significant performance variation across disease categories,
as detailed in Table 9, warrants further analysis. Diseases like Black
Spot and Leaf Mold present particular challenges primarily due to
their subtle and irregular visual characteristics. In early stages, Black
Spot lesions are small, dark, and lack a defined shape, making them
difficult to distinguish from shadows or soil splashes. Similarly, Leaf
Mold often manifests as diffuse, chlorotic areas with low color
contrast against the healthy green leaf background, confounding the
model. These challenges are compounded by two factors: (1) Intra-
class variability, where the appearance of a single disease can vary
significantly, and (2) Inter-class similarity, where early symptoms of
different diseases can be visually analogous. The substantial gap
between the mAP@50 and mAP@95 metrics further underscores
the model’s difficulty in achieving precise pixel-level localization for
these complex, non-uniform lesions. This difficulty is reflected in
the large mAP@50-95 gap, highlighting a struggle with precise
lesion localization. To address this, future work should prioritize
enhanced multi-scale feature fusion to capture both minute spots
and broad discolorations, alongside class-balanced training
strategies to directly counteract data imbalance. Incorporating
attention mechanisms also presents a promising path for
improving focus on these subtle, critical features.

Figure 12 demonstrates the performance of the GAE-YOLO
model in tomato leaf disease detection tasks, showcasing both its
robust capabilities and characteristic failure modes. Figure 12a
shows the model accurately identifying and localizing multiple
disease instances under challenging conditions, confirming its
strong baseline performance. Figures 12b, ¢ present representative
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error cases to visually contextualize the quantitative analysis
discussed in the text: each panel contrasts the model’s prediction
(left) with the ground-truth annotation (right).

Figure 13 presents the classification performance of the model
for tomato leaf disease detection through a normalized confusion
matrix. The matrix reveals that healthy leaves are identified with the
highest accuracy (main diagonal value: 0.99). However, disease
category recognition, particularly for early blight demonstrates
significant challenges, with only 46% correct identification and
83% misclassification as healthy leaves. Other disease categories
(e.g., leaf mold and black spot) exhibit varying confusion levels,
primarily due to visual similarity in early-stage symptoms. These
results highlight the model’s current limitations in detecting subtle
disease features, providing critical insights for subsequent
optimization of early disease identification capabilities. The
observed performance gap, particularly for minority classes such
as black spot and leaf mold, is primarily attributed to class
imbalance within the dataset. To mitigate this issue and the
associated risk of overfitting, several targeted strategies can be
implemented during training: (1) a class-weighted loss function
can be employed to increase the penalty for misclassifying minority
classes, thereby directing greater attention to them; (2) specialized
data augmentation techniques—such as PCA color augmentation,
random rotation, and noise injection—can be preferentially applied
to these under-represented classes to increase their effective sample
size and feature diversity.

3.3 Results and analysis of tomato maturity
discrimination

Figure 14 presents the tomato maturity classification confusion
matrix, demonstrating the model’s performance in maturity
discrimination by visualizing the correspondence between
predicted labels (immature, mature, overripe) and ground truth
labels. The model achieves an overall accuracy of 92.91%, with
particularly strong performance in overripe category identification
(F1-score: 0.95) and relatively weaker performance in mature
category discrimination (FIl-score: 0.80). Detailed error analysis
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FIGURE 12

Visual detection results and error case analysis of tomato leaf diseases based on GAE-YOLO. (a) Successful detection cases under challenging
conditions. (b, c) Representative error cases contrasting model predictions (left) with ground-truth annotations (right).

reveals that among 88 immature samples, 1 was misclassified as
mature, while mature samples showed 4 misclassifications as
immature and 1 as overripe, with only 1 overripe sample
misclassified as mature. This error distribution indicates
persistent challenges in distinguishing adjacent maturity stages
(particularly immature-to-mature transitions), with most
misclassifications occurring during color transition phases,
though the model demonstrates high reliability in overripe state
identification (precision/recall: 0.95). It should be noted that tomato
maturity assessment currently lacks unified standards and
authoritative benchmark datasets, with practical harvesting still
relying on subjective judgment. To ensure experimental rigor, this
study implemented random selection of 15 tomato plants as
samples and consensus evaluations from 5 experienced
agricultural growers. While this methodology is widely recognized
in the industry, its inherent subjectivity reflects broader challenges
in agricultural visual inspection. The achieved performance is
particularly significant given this challenging context, as it
establishes a critical quantitative baseline for future research. This
experimental design not only mirrors real-world assessment criteria
but also establishes a critical baseline for developing more objective
maturity quantification systems.
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3.4 Estimated results and analysis of
tomato production

This study employs tomato fruit count as the primary yield
assessment metric, based on two key considerations: (1) the
substantial density variations across tomato varieties make quantity-
based evaluation more robust against varietal characteristic biases, and
(2) fruit count per plant represents the most intuitive and rapidly
verifiable yield parameter in agricultural management practices. This
approach not only fulfills standardized evaluation requirements during
algorithm development but also establishes a reliable foundation for
practical weight conversion applications.

Figure 15 presents the performance evaluation of the GAE-
YOLO model for tomato counting tasks through dual-perspective
analysis. The actual vs. predicted scatter plot demonstrates strong
linear correlation (R*=0.71), confirming the model’s capability to
capture tomato quantity variations. However, most data points
distribute below the ideal prediction reference line, revealing a
systematic underestimation tendency that becomes pronounced in
high-count regions (actual>8) with maximum underestimation
reaching 2. Quantitative metrics (MAE = 1.13, MSE = 1.93)
confirm the model’s practical prediction accuracy. The error
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Accuracy: 92.91%

Class Metrics:

Immature:
Precision: 0.87
Recall: 0.90
F1:0.88

Ripe:
Precision: 0.80
Recall: 0.80
F1:0.80

Overripe:
Precision: 0.96
Recall: 0.95
F1:0.95

frontiersin.org


https://doi.org/10.3389/fpls.2025.1712432
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al.

10.3389/fpls.2025.1712432

True vs Predicted Tomato Count (Improved YOLO Model)

Distribution of Prediction Errors

139" Evaluation Metrics: i 51 Error Statistics:
MAE = 1.13 prd Mean Error = -0.60
2 MSE=1.93 | Std Dev = 1.25
1 R*=0.71 o Max Overestimate = 2.0
o 4 Max Underestimate = -2.0
% ]
11 s .
5 7
ES %4
S 10 Tl ®
2 s 231
g N 7 | g [0 Error Distribution
] - s
& /,/ :c; === Zero Error
3 £
8 -
35 2
= P
[ 2
71— ° P © °
/”
e 1
64 ® &~ ®
-
o e Data Points
54—+~ === Perfect Prediction
0
5 6 7 8 9 10 11 12 13 2.0 -5 -1.0 -0.5 0.0 0.5 1.0 L5 20
True Tomato Count Prediction Error (Predicted - True)
@) (b)
FIGURE 15

Tomato count and error distribution graph and error distribution histogram (Jetson TX2, PyTorch, MAX-N, 1080p). (a) Scatter plot of true versus
predicted tomato counts with model metrics. (b) Histogram showing the distribution of prediction errors.

distribution histogram shows approximately normal characteristics
(u=-0.60, 6=1.25), with 68% predictions within +1.25 of actual
counts. While extreme over/under-estimation values show
symmetric distribution (+ 2.0), the overall negative bias confirms
conservative prediction behavior. Although slight systematic
underestimation persists, primarily caused by leaf occlusion and
fruit overlap, 94% of errors remain within +2 counts, satisfying
agricultural yield prediction requirements.

3.5 Analysis of memory and power
consumption

A comprehensive analysis of resource utilization is crucial for
assessing the feasibility of deploying intelligent systems in real-
world agricultural scenarios, where computational resources and
power are often constrained. The system achieves a detection
accuracy of 93.5% mAP@50 under a high-precision configuration,
with a processing speed of 10.2 FPS. Under the optimized
configuration, the system achieved a real-time processing speed of
27 FPS on the TX2 edge device, with a corresponding per-frame
latency of 33 ms. This low latency ensures prompt responsiveness
for robotic control, while the frame rate satisfies the throughput
requirement for continuous monitoring.

The runtime memory footprint of the complete system
comprising the Jetson TX2 module, the ZED stereo camera
operating at 720p resolution, and the TensorRT-optimized GAE-

YOLO model was rigorously profiled. Using the integrated
tegrastats system monitoring tool over multiple operational
cycles, a peak memory consumption of 5.1 GB was recorded. This
measurement confirms that the system operates comfortably within
the 8 GB memory budget of the Jetson TX2, leaving approximately
2.9 GB of available headroom. This surplus memory is sufficient to
accommodate other essential robotic processes, such as
simultaneous data logging, path planning algorithms, or
communication modules, without risking system instability.

Power Consumption and Deployment Feasibility. The
operational power budget is a key determinant for sustained field
deployment. Based on the documented thermal design power of the
Jetson TX2 module (ranging from 7.5W to 15W), the total system
power draw is estimated to be between 10W and 13W when
operating in the default MAX-N performance mode. This efficient
power profile enables long-duration operation using standard,
commercially available power sources. Several viable options are
identified: A standard 12V,10Ah lithium polymer battery can
theoretically power the system for 9 to 12 hours of continuous
operation. High-capacity mobile power banks supporting 12V
output via power delivery trigger modules offer a portable and
flexible power solution. Configurations such as 4S2P (8 cells),
providing a nominal 14.8V and high capacity, represent another
robust and rechargeable option.

To quantitatively evaluate the inference speed achieved under
different deployment scenarios, a comparative analysis was
conducted across the development platform and the edge device

TABLE 10 Comparative inference performance across different hardware and optimization configurations.

Configuration Hardware Framework Power mode Precision Resolution FPS
GAE-YOLO(GPU) ‘ RTX4060 Pytorch N/A FP32 1080P 96
GAE-YOLO(TX2) ‘ Jetson TX2 Pytorch MAX-N FP32 1080P 10.2
GAE-YOLO(TX2) ‘ Jetson TX2 TensorRT MAX-N FP16 720P 27
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FIGURE 16

Tomato smart detection and diagnosis software. (a) Tomato detection and growth monitoring module. (b) Disease diagnosis and control module.

under various optimization settings. The results are summarized
in Table 10.

3.6 Design of tomato smart detection and
diagnosis software

This study developed intelligent tomato cultivation management
software based on the PyQt6 framework, with its visual interface
design presented in Figure 16. The software features a modular
architecture comprising two core functional modules: (1) a tomato
detection and growth monitoring module (Figure 16a) integrating
fruit localization, maturity analysis, and yield prediction functions;
and (2) a disease diagnosis and control module (Figure 16b) enabling
disease spot detection, disease classification, and treatment
recommendation generation. Compared with conventional
agricultural management systems, this software employs an
intuitive graphical interface that transforms complex Al algorithms
into simplified button operations, offering a cost-effective digital
solution for small-to-medium greenhouse operations.

4 Discussion

The GAE-YOLO model and intelligent agricultural
management system developed in this study demonstrate
significant innovations and practical value through three key
aspects. First, at the algorithmic level, the proposed model
overcomes the limitations of conventional object detection models
in agricultural applications by incorporating GhostConv modules to
reduce parameters and enhance inference speed, effectively
addressing the computational constraints of edge devices. A
critical finding from the systematic architectural comparison was
the superior performance of GhostConv over other lightweight
backbones like MobileNetV3 and EfficientNet. This advantage is
attributed to GhostConv’s fundamental operating principle: it
generates a portion of its feature maps through efficient, linear
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transformations rather than relying solely on costly dense
convolutions. This mechanism preserves richer spatial context
and feature channel information compared to the extreme
channel compression of depthwise separable convolution used in
MobileNetV3. For the specific challenge of distinguishing tomatoes
from similarly colored leaves and complex backgrounds, this
retained contextual information proves more critical than simply
maximizing theoretical FLOPs reduction, thereby providing a more
favorable accuracy-efficiency trade-off. The novel AReLU activation
function and E-IoU loss function further enable the model to
maintain high accuracy in complex agricultural environments.
Second, regarding system integration, this work pioneers the deep
integration of binocular vision and edge computing, where the
coordinated operation of ZED cameras and Jetson TX2 achieves
precise tomato 3D localization while the intelligent agricultural
advisory system provides effective disease prevention solutions.
Additionally, the established tomato maturity assessment and per-
plant yield estimation models overcome the functional limitations
of traditional agricultural management systems, forming a complete
detection-analysis-decision closed loop. Compared with existing
studies, this system offers three distinct advantages: (1) first
implementation of a complete detection-to-management pipeline,
(2) balanced real-time performance and high accuracy, and (3)
significantly reduced operational complexity through intuitive
visual design. Notwithstanding these contributions, it is
imperative to address the limitations pertaining to dataset scope
and model generalization. While the dataset is representative and
rigorous augmentation strategies were employed to mitigate
overfitting, its finite size inherently limits the model’s exposure to
the full spectrum of variability encountered in unstructured
agricultural environments. Consequently, the model’s
performance may be susceptible to scenarios not well-represented
in the training data, such as unprecedented disease manifestations,
extreme abiotic stresses, or unique cultivar characteristics. This
study proactively combated overfitting through advanced
regularization and data augmentation, yet the pursuit of robust
generalization remains an ongoing challenge in agricultural
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computer vision. In this context, several specific limitations should
be noted: (1) model generalization requires larger sample sizes, (2)
performance under extreme lighting conditions needs
improvement, and (3) multi-cultivar adaptability requires further
validation. Addressing these challenges will constitute the primary
focus of future research.

5 Conclusion

This study developed an intelligent tomato management system
based on the GAE-YOLO algorithm, which addresses key
challenges in agricultural production through algorithmic
innovations and technological integration. The primary
contributions include: (1) the GAE-YOLO lightweight model,
achieving real-time tomato detection at 10.2 FPS on Jetson TX2
with 93.3% mAP@50 in real-world agricultural environments; (2)
the first integrated 3D tomato detection system combining
binocular vision and edge computing; (3) a standardized tomato
maturity assessment system and yield estimation model,
establishing a foundation for future research; and (4) visual
management software incorporating large model technology for
tomato disease control. These advancements not only demonstrate
the value of technological innovation but also provide scalable
solutions for smart agriculture development. The significance of
this research is twofold: theoretically, it proposes a lightweight
model design methodology tailored for agricultural applications;
practically, it delivers a cost-effective smart agriculture system,
contributing substantially to precision agriculture and sustainable
development goals.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: The data and code supporting this
study are publicly available at GitHub under the following links:
https://github.com/NSSCk/GAE-YOLO.

Author contributions

XL: Conceptualization, Formal analysis, Funding acquisition,
Methodology, Validation, Writing - original draft, Writing - review

References

Afonso, M., Fonteijn, H., Fiorentin, F. S., Lensink, D., Mooij, M., Faber, N., et al.
(2020). Tomato fruit detection and counting in greenhouses using deep learning. Front.
Plant Sci. 11, 571299. doi: 10.3389/fpls.2020.571299

Bi, F. M,, Wang, W. K,, and Chen, L. (2012). DBSCAN: density-based spatial
clustering of applications with noise. J. Nanjing Univ 48 (4), 491-498.

Chen, D., Li, J., and Xu, K. (2020). Arelu: Attention-based rectified linear unit. arXiv.

Frontiers in Plant Science

21

10.3389/fpls.2025.1712432

& editing. WT: Resources, Supervision, Writing - original draft.
HY: Methodology, Validation, Visualization, Writing - original
draft. ZY: Validation, Visualization, Writing - original draft.
CW: Software, Visualization, Writing — original draft. YP: Project
administration, Writing - review & editing. XH: Data curation,
Funding acquisition, Software, Writing - review & editing.
JL: Project administration, Resources, Writing — review & editing.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This work was supported
by Educational Teaching Reform and Research Project of Shandong
Second Medical University (No. 2025YB017 and 2024YB001). The
authors gratefully acknowledge the financial support provided by
these projects.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Chen, J., Wang, Z., Wu, J., Hu, Q., Zhao, C,, Tan, C,, et al. (2021). An improved
Yolov3 based on dual path network for cherry tomatoes detection. J. Food Process Eng.
44, €13803. doi: 10.1111/jfpe.13803

Deng, X, Huang, T., Wang, W, and Feng, W. (2025). SE-YOLO: A sobel-enhanced
framework for high-accuracy, lightweight real-time tomato detection with edge deployment
capability. Comput. Electron. Agric. 239, 110973. doi: 10.1016/j.compag.2025.110973

frontiersin.org


https://github.com/NSSCk/GAE-YOLO
https://doi.org/10.3389/fpls.2020.571299
https://doi.org/10.1111/jfpe.13803
https://doi.org/10.1016/j.compag.2025.110973
https://doi.org/10.3389/fpls.2025.1712432
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al.

Fuentes, A., Yoon, S., Youngki, H., Lee, Y., and Park, D. S. (2016). Characteristics of
tomato plant diseases—a study for tomato plant disease identification. Proc. Int. Symp.
Inf. Technol. Converg. 1, 226-231.

Han, K., Wang, Y., Tian, Q., Guo, J., and Xu, C. (2020). “Ghostnet: More
features from cheap operations,” in Proceedings of the 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). (Seattle, WA, USA: IEEE), 1580-
1589.

Hao, F., Zhang, Z., Ma, D., and Kong, H. (2025). GSBF-YOLO: a lightweight model
for tomato ripeness detection in natural environments. J. Real-Time Image Process. 22,
47. doi: 10.1007/s11554-025-01624-y

Ji, B., Li, H,, Jin, X,, Zhang, J., Tao, F,, Li, P., et al. (2024). Lightweight tomato leaf
intelligent disease detection model based on adaptive kernel convolution and feature
fusion. IEEE Trans. AgriFood Electron. 2:563-75. doi: 10.1109/TAFE.2024.3445119

Liu, G., Nouaze, J. C., Touko Mbouembe, P. L., Mbouembe, P. L., and Kim, J. H.
(2020). YOLO-tomato: A robust algorithm for tomato detection based on YOLOV3.
Sensors 20, 2145. doi: 10.3390/520072145

Liu, J., Pi, J., and Xia, L. (2020). A novel and high precision tomato maturity
recognition algorithm based on multi-level deep residual network. Multimedia Tools
Appl. 79, 9403-9417. doi: 10.1007/s11042-019-7648-7

Mohanty, S. P., Hughes, D. P, and Salathé, M. (2016). Using deep learning for image-
based plant disease detection. Front. Plant Sci. 7, 215232. doi: 10.3389/fpls.2016.01419

Mokhtar, U., Ali, M. A. S., Hassenian, A. E., and Hefny, H. (2015a). “Tomato leaves
diseases detection approach based on support vector machines,” in Proceedings of the
2015 11th International Computer Engineering Conference (ICENCO). 246-250 (Cairo,
Egypt: IEEE).

Mokhtar, U., El Bendary, N., Hassenian, A. E., Emary, E., Mahmoud, M. A., Hefny,
H., et al. (2015b). “SVM-based detection of tomato leaves diseases,” in Intelligent
Systems' 2014: Proceedings of the 7th IEEE International Conference Intelligent Systems
IS'2014, September 24-26, 2014, Warsaw, Poland, Volume 2: Tools, Architectures,
Systems, Applications, Cham. 641-652 (Cham, Switzerland: Springer International
Publishing).

Phan, Q. H., Nguyen, V. T,, Lien, C. H,, Duong, T. P., Hou, M. T. K, and Le, N. B.
(2023). Classification of tomato fruit using yolov5 and convolutional neural network
models. Plants 12, 790. doi: 10.3390/plants12040790

Rong, J., Zhou, H., Zhang, F., Yuan, T., and Wang, P. (2023). Tomato cluster
detection and counting using improved YOLOV5 based on RGB-D fusion. Comput.
Electron. Agric. 207, 107741. doi: 10.1016/j.compag.2023.107741

Su, F., Zhao, Y., Wang, G,, Liu, P, Yan, Y, and Zu, L. (2022). Tomato maturity
classification based on SE-YOLOv3-MobileNetV1 network under nature greenhouse
environment. Agronomy 12, 1638. doi: 10.3390/agronomy12071638

Frontiers in Plant Science

22

10.3389/fpls.2025.1712432

Tian, S., Fang, C., Zheng, X., and Liu, J. (2024). Lightweight detection method for
real-time monitoring tomato growth based on improved YOLOvS5s. IEEE Access 12,
29891-29899. doi: 10.1109/ACCESS.2024.3368914

Tm, P., Pranathi, A., SaiAshritha, K., Chittaragi, N. B., and Koolagudi, S. G. (2018).
“Tomato leaf disease detection using convolutional neural networks,” in Proceedings of
the 2018 Eleventh International Conference on Contemporary Computing (IC3). 1-5
(Noida, India: IEEE).

Umar, M., Altaf, S., Ahmad, S., Mahmoud, H., Mohamed, A. S. N, and Ayub, R.
(2024). Precision agriculture through deep learning: Tomato plant multiple diseases
recognition with cnn and improved yolov7. IEEE Access 12, 49167-49183. doi: 10.1109/
ACCESS.2024.3383154

Wang, Q., Hua, Y., Lou, Q., and Kan, X. (2025). SWMD-YOLO: A lightweight model
for tomato detection in greenhouse environments. Agronomy 15, 1593. doi: 10.3390/
agronomy15071593

Wang, L, Jin, T., Yang, J., Leonardis, A., Wang, F., and Zheng, F. (2024). Agri-llava:
Knowledge-infused large multimodal assistant on agricultural pests and diseases. arXiv
preprint arXiv.

Wang, P., Niu, T., and He, D. (2021). Tomato young fruits detection method under
near color background based on improved faster R-CNN with attention mechanism.
Agriculture 11, 1059. doi: 10.3390/agriculture11111059

Wang, T., Wang, N, Cui, Y., and Liu, J. (2023). Agricultural technology knowledge
intelligent question-answering system based on large language model. Smart Agric. 5,
105-116.

Wang, X., Wu, Z, Jia, M., Xu, T,, Pan, C,, Qi, X, et al. (2023). Lightweight SM-
YOLOV5 tomato fruit detection algorithm for plant factory. Sensors 23, 3336.
doi: 10.3390/523063336

Yu, P, and Lin, B. (2024). A framework for agricultural intelligent analysis based on a
visual language large model. Appl. Sci. 14, 8350. doi: 10.3390/app14188350

Zhang, Y., Fan, Q,, Chen, X, Li, M., Zhao, Z,, Li, F., et al. (2025). IPM-agriGPT: A
large language model for pest and disease management with a G-EA framework and
agricultural contextual reasoning. Mathematics 13, 566. doi: 10.3390/math13040566

Zhang, W., and Jiang, F. (2025). AHN-YOLO: A lightweight tomato detection
method for dense small-sized features based on YOLO architecture. Horticulturae 11,
639. doi: 10.3390/horticulturae11060639

Zhang, Y. F,, Ren, W, Zhang, Z., Jia, Z., Wang, L., and Tan, T. (2022). Focal and
efficient IOU loss for accurate bounding box regression. Neurocomputing 506, 146-157.
doi: 10.1016/j.neucom.2022.07.042

Zhou, X., Wang, P., Dai, G,, Yan, J., and Yang, Z. (2021). “Tomato fruit maturity
detection method based on YOLOV4 and statistical color model,” in Proceedings of the
2021 IEEE 11th Annual International Conference on CYBER Technology in Automation,
Control, and Intelligent Systems (CYBER). 904-908 (Jiaxing, China: IEEE).

frontiersin.org


https://doi.org/10.1007/s11554-025-01624-y
https://doi.org/10.1109/TAFE.2024.3445119
https://doi.org/10.3390/s20072145
https://doi.org/10.1007/s11042-019-7648-7
https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.3390/plants12040790
https://doi.org/10.1016/j.compag.2023.107741
https://doi.org/10.3390/agronomy12071638
https://doi.org/10.1109/ACCESS.2024.3368914
https://doi.org/10.1109/ACCESS.2024.3383154
https://doi.org/10.1109/ACCESS.2024.3383154
https://doi.org/10.3390/agronomy15071593
https://doi.org/10.3390/agronomy15071593
https://doi.org/10.3390/agriculture11111059
https://doi.org/10.3390/s23063336
https://doi.org/10.3390/app14188350
https://doi.org/10.3390/math13040566
https://doi.org/10.3390/horticulturae11060639
https://doi.org/10.1016/j.neucom.2022.07.042
https://doi.org/10.3389/fpls.2025.1712432
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	GAE-YOLO: a lightweight multimodal detection framework for tomato smart agriculture with edge computing
	1 Introduction
	2 Materials and methods
	2.1 Construction of data set
	2.1.1 Tomato detection datasets construction
	2.1.2 Foliar disease detection datasets
	2.1.3 Image acquisition and processing facilities

	2.2 Proposed methods
	2.2.1 Lightweight GAE-YOLO
	2.2.1.1 Lightweight GhostConv design
	2.2.1.2 Improving activation functions with AReLU
	2.2.1.3 Optimized Focal-EIoU loss function

	2.2.2 Tomato maturity calculation based on GAE-YOLO
	2.2.2.1 Tomato maturity judgment based on color space
	2.2.2.2 Tomato maturity judgment based on diameter size
	2.2.2.3 Tomato maturity judgment based on shape

	2.2.3 Method for estimating the yield of tomato plants
	2.2.4 Intelligent diagnosis of tomato foliar diseases based on large models

	2.3 Evaluation indicators
	2.4 Experimental details

	3 Results and analysis
	3.1 Tomato detection results and analysis
	3.2 Detection results and analysis of tomato foliar diseases
	3.3 Results and analysis of tomato maturity discrimination
	3.4 Estimated results and analysis of tomato production
	3.5 Analysis of memory and power consumption
	3.6 Design of tomato smart detection and diagnosis software

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


