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Introduction: Agriculture is crucial to human survival. The growing of biotic rice

plants is very helpful for feeding a lot of people around the world, especially in

places where rice is a main food. The detection of rice leaf disease is critical to

increasing crop productivity.

Methods: To improve the accuracy of rice leaf disease prediction, this paper

proposes a hybrid Vision Transformer (ViT) with pre-trained ResNet18 models

(ViT-ResNet18). In general, the input images apply to the pre-trained ViT and

ResNet18 models independently. The output features of these two models are

combined and fed into the final Fully Connected (FC) layer, followed by a Softmax

layer for final classification.

Results: The output of rice leaf diseases from the FC layer of the proposed hybrid

ViT with ResNet18 model achieved 94.4% accuracy, a precision of 0.948, a recall

of 0.944, an F1-Score of 0.942, and an Area Under Curve (AUC) of 0.985.

Discussion: The proposed hybrid model ViT-ResNet18 shows a 5%, 1%, and 1%

improvement in accuracy compared to VGG16 with Neural Network, Inception

V3 with Neural Network, and SqueezeNet with Neural Network

classifier, respectively.
KEYWORDS

rice leaf disease, vision transformer, Resnet18, agriculture, image classification, deep
learning, biotic rice, neural networks
1 Introduction

Agriculture is critical to both the economy and a country’s progress. In developing

countries, agriculture is an important source of employment and money. The global

population is projected to exceed 10 billion by 2050. Therefore, the need for agricultural

products is always rising (Jafar et al., 2024). Rice is an imported food, and most countries

consume it as rice. Biotic rice is a breed that is resistant to biological threats such as insects

and fungi. Furthermore, rice crops are mostly produced throughout Asia and around the

world. Due to population growth, farmers need to increase production by roughly 1.2%

each year (Li et al., 2024). There are various reasons why the farmer was unable to meet the
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desired level of rice production. One of the causes is that rice leaves

are susceptible to a variety of illnesses. Rice leaf diseases encompass

leaf blast, bacterial blight, and brown spot, among others (Trinh

et al., 2024; Simhadri et al., 2025).

Finding rice leaf disease is a challenging task. The reason is that

disease detection is done manually, which takes longer, or the

farmer notices it too late, does not identify the disease, and

sometimes predicts the disease incorrectly. Earlier, a greater

number of specialists and plant monitoring were required in

manual inspection. However, the farmers were unable to obtain

expert assistance due to a lack of facilities and an inability to absorb

the cost. To overcome the challenges mentioned above and achieve

automatic disease detection, a technology-based solution is needed

to detect and recognize leaf illnesses promptly and give care based

on the severity of the diseases (Kaur and Trivedi, 2024).

Earlier, Image Processing (IP) and Machine Learning (ML)

were utilized to detect rice leaf diseases. IP is used to improve

images and extract features, such as numerical values (Rahman

et al., 2024). Rice leaf disease is predicted by using machine learning

(ML) methods. Though ML algorithms have been used in disease

prediction, their accuracy is not significant.

Deep Learning (DL) primarily relies on Artificial Neural

Networks (ANN), which are employed to learn from data and

facilitate decision-making, or disease classification based on images.

The architecture has three separate layers: input, hidden, and

output (Haridasan et al., 2023; Rajpoot et al., 2023). In the past

few years, many studies have used DL algorithms to identify

illnesses that affect rice leaves. The researchers focused on DL

methods that are used a lot, like Convolutional Neural Networks

(CNN) and pre-trained models based on Transfer Learning, such as

ResNet, Inception Net, Vision Transformer (ViT), and others

(Ahad et al., 2023; Simhadri and Kondaveeti, 2023a; Thai

et al., 2023).

Single DL approaches did not achieve higher accuracy. To

improve classification accuracy, the researchers used a hybrid DL

model. In general, hybrid DL models enhance accuracy while

successfully dealing with local and global features (Chug et al.,

2023). Recent studies show that hybrid DL models have been

utilized for the identification of rice plant diseases; however, there

is still an opportunity to improve prediction accuracy. As a result,

this paper proposes a hybrid Vision Transformer (ViT) that

incorporates pre-trained ResNet18 models. In general, the input

images apply to the pre-trained ViT and ResNet18 models

independently. The outputs from these two models are

concatenated and subsequently input into the final FC layer. The

output of rice leaf disease from the FC and Softmax layers.

The highlights of the contribution are follows:
Fron
• In the related works, several deep learning-based methods

for detecting rice leaf disease were presented, and their

shortcomings were identified.

• To improve the detection of biotic leaf disease, a hybrid

novel model combining ViT and ResNet18 is proposed.
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• We have adjusted the number of epochs to determine the

best training configuration in order to improve the accuracy

of leaf disease detection.

• To validate the effectiveness of the proposed hybrid model

ViT- ResNet18 and its variant, an ablation study

was conducted.

• The goal of this research work is to improve crop disease

detection accuracy and promote food security through the

use of deep learning models in agricultural applications.
The structure of the paper is outlined as follows: Section 2 provides

an overview of the related work. Section 3 discusses deep learning

architecture. Section 4 presents a hybrid Vision Transformer (ViT)

with ResNet18 model. In Section 5, a comparative analysis of the

performance of the proposed model against existing models is

presented. Section 6 provides the analysis and discussion. The

conclusion and future research are presented in the paper’s conclusion.
2 Related works

This section outlines numerous research works focusing on rice

leaf disease prediction.

Kaur et al (Kaur et al., 2024). proposed a deep learning model-

based rice leaf detecting method. This research employs pre-trained

models to perform feature extraction, alongside DL models for the

classification process. The evaluation of the feature extraction

method was conducted utilizing pre-trained models, including

VGG16, Inception V3, and Squeeze Net. The classification

approach utilized ML and DL models, including SVM, Naïve

Bayes, K-Nearest Neighbor (KNN), and neural networks.

Following multiple experiments, this work came up with the

Squeeze Net for feature extraction and neural networks for

classification. It attained an accuracy of 93.3%. However, it is

necessary to improve the accuracy of the disease-affected images.

Aggarwal et al (Aggarwal et al., 2023). proposed ML-based rice

leaf prediction. Images are preprocessed according to image dataset

model parameters. This work involves two processes: feature

extraction and categorization. For feature extraction, 32 pre-

trained deep learning models were employed, including VGG,

ResNet, Inception V3, Xception, EfficentNet, and its variation.

This work uses a variety of machine learning techniques for

categorization. The primary emphasis was on rice leaf diseases,

specifically leaf blast, bacterial blight and brown spot. The proposed

model outperformed others. However, it has only considered three

disease types and needs to improve its accuracy.

Simhadri and Kondaveeti (2023b) proposed a rice leaf detecting

method utilizing transfer learning. This work used transfer learning

on 15 pre-trained CNN models to identify rice leaf disease. It

receives the input image and applies the resize operation. The

dataset was split into training and testing. Data augmentation was

performed for the class with fewer images. After conducting several

experiments, Inception v3 outperformed other deep learning
frontiersin.org

https://doi.org/10.3389/fpls.2025.1711700
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sennan et al. 10.3389/fpls.2025.1711700
models. In total, ten classes were used in this research. However, the

model exhibits increased misclassification for specific categories.

Lamba et al (Lamba et al., 2023b). proposed a fine-tuned deep

learning model for paddy leaf disease classification. This work

emphasizes paddy leaf disease severity. The dataset images were

gathered from GitHub, UCI, Kaggle, and Mendeley. The dataset

contains 4068 images. Initially, images are pre-processed using an

image generator. A Generative Adversarial Network (GAN) was used

to enhance the images. Leaf image severity is calculated using

segmentation algorithms. CNN and SVM are feature extraction and

classification methods. The diseases are classified as mild, moderate,

severe, and profound. This model predicted a high severity rate

compared to previous models. However, this model only tested

bacterial blight, blast, and leaf smut.

Bijoy et alet al., 2024). proposed utilizing deep CNN (dCNN) to

detect rice leaf diseases. This work collected an enhanced dataset of

5593 images from five disease types. Sheath blight, brown spot,

bacterial leaf blight, and leaf smut are the four disease

classifications. The input image has been scaled and the feature

extracted before being applied to the pooling layers. The proposed

dCNN’s performance is compared to standard benchmark models

such as AlexNet, MobileNet, and ResNet50. However, it is

important to increase the number of leaf disease categories.

Lamba et al (Lamba et al., 2023a). proposed a hybrid GCL

model for paddy leaf diseases. This work utilizes datasets from

Mendeley, UCI, Kaggle, and GitHub. It employed 3535 images

across three classes: bacterial blight, rice blast, and leaf smuf. The

GAN model is used for data augmentation. This hybrid work

combined CNN and the Long-term Short Memory (LSTM)

model. It increased accuracy by 97% when compared to previous

approaches. However, it has only used three disease categories.

Abasi et al (Abasi et al., 2023). introduced an improved method for

detecting rice leaf diseases utilizing a customized CNNmodel. This was

developed specifically for images related to rice leaf disease. The input

image dimensions are 224 × 224 x 3. The dataset is divided into three

segments: 80% allocated for training, 10% designated for validation,

and 10% reserved for testing. Features of rice leaves may be extracted

from images using the CNN model. The customized CNN model

includes convolution, max pooling, flattening, and dropout layers. This

model scored a 91% accuracy against the Inception v3 and EfficientNet

B2 models. This customized model delivered higher accuracy, lower

loss, and reduced model overfitting. However, the rice leaf disease

dataset’s accuracy need improvement.

Narmadha et al (Narmadha et al., 2022). proposed a method for

detecting rice leaves utilizing deep learning techniques. The

DenseNet169-MLP model combines a dense CNN (DenseNet) with

a multi-layer perceptron (MLP). It seeks to accurately classify the leaf

diseases. The dataset employed three classes: brown spot, bacterial leaf

blight, and leaf smut. This process begins with channel separation,

followed by greyscale conversion and noise removal with a median

filter. The segmentation process is carried out utilizing fuzzy cmethods.

The DenseNet169model, which has been pre-trained, is utilized for the

purpose of feature extraction, whereas aMulti-Layer Perceptron (MLP)

is applied for classification tasks. The proposed model’s performance is

compared to other models. It outperforms other similar methods in
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terms of accuracy. However, it only analyzed three classifications in the

input dataset and needs to improve accuracy. It also did not address the

severity of diseases.

Upadhyay and Kumar (2022) proposed a DL algorithm for

predicting rice plant leaf diseases. It focusses on the following

diseases: leaf smut, leaf blight, and brown spot. Most disease

predictions depend on leaf size, color, and shape. Otsu’s global

thresholding removed image background noise. The proposed CNN

was trained on healthy, leaf smut, leaf blight, and brown spot

datasets. Each class contains 4000 photos. The proposed CNN

outperformed other models. However, it must focus on

improving the accuracy of leaf disease images.

Ramadan et al (Ramadan et al., 2025). built a model for rice leaf

disease detection using CNNs and GANs. They aimed to solve the

problem of small and imbalanced datasets by creating synthetic

images. The main advantage of using GANs for leaf disease

detection is their ability to generate synthetic images. This

increases the dataset size, adds variety, and lowers the chance of

overfitting. Three GAN types were tested: Simple GAN, CycleGAN,

and DCGAN. CycleGAN gave the best results.

Swati et al (Lipsa et al., 2025). built a CNN model for rice leaf

disease detection with a focus on interpretability. To address the

black box issue in CNNs, they used three explainable AI tools:

Layer-wise Relevance Propagation (LRP), SHAP, and LIME. LRP

traced how each layer contributed, SHAP explained feature

importance, and LIME showed the image regions that guided

predictions. The proposed method reached 96.5% of accuracy.

Most existing models focus on only a few rice leaf disease types.

Their accuracy is often limited. Many models misclassify diseases or

overfit when trained on small datasets. Some use only CNNs or transfer

learning and do not explore hybrid models for stronger feature

extraction. This study proposes a hybrid model that joins a Vision

Transformer (ViT) with ResNet18. ViT captures global image patterns,

while ResNet18 extracts local details. Combining these features gives a

richer representation. Our experiments show the hybrid model reaches

94.4% accuracy. It performs better than SqueezeNet with Neural

Network, VGG16 with Neural Network, and InceptionV3 with

Neural Network. The results show fewer misclassifications and

higher accuracy in rice leaf disease detection. Table 1. summarizes

the related works which covers the research articles contributions

and limitations.
3 Deep learning architectures

This section covers the fundamental concepts and

functionalities of the Vision Transformer (Han et al., 2022) and

ResNet18 models (Ayyachamy et al., 2019). Section 4 discusses the

proposed hybrid model.
3.1 Vision transformer

This model is designed for deep learning applications focused

on image-related tasks, including image classification,
frontiersin.org
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segmentation, and object detection. The input image size (224 × 224

x 3) is typically fed into the Vision Transformer (ViT) model and is

represented as Height x Width x Number of channels (Red, Green,

and Blue).

3.1.1 Input image
The image has been divided into patches of constant size, pt x pt

(16 × 16) pixels. The number of patches (N) is computed using

Equation 1.

N =
Height  �  Width

pt2
(1)

where pt is the patch size.

3.1.2 Patch embedding
Each patch is converted to a one-dimensional (1-D) vector,

which is represented in Equation 2.

yi = Flatten(ptn) (2)

Where yi denotes Flattened vector of ith patch (pt).

The flattened patches are linearly converted using a learnable

weight matrix, which is provided in Equation 3.
Frontiers in Plant Science 04
zi = wembed � yi (3)

Where zi denotes embedded vector of ith patch (pt).

3.1.3 Positional embedding
Transformers cannot capture position information directly. To

preserve spatial order, positional encoding is added. The final

embedding of the ith patch (embedi) is calculated by combining

the positional encoding of the ith (posi) with zi embedded vector of

ith patch, as shown in Equation 4.

embedi = zi + posi (4)

where posi is the positional encoding of the ith patch.

3.1.4 Transformer encoder
The encoder takes the sequence of embeddings (embed1, embe

d2,…… embedn).

It consists of Multi-Head Self-Attention (MHSA), a Feed-

Forward Network (FFN), and Layer Normalization (LN).

3.1.4.1 Multi-head self-attention

It extracts or maintains global dependencies between patches.

The self-attention computes the association between all patches
TABLE 1 Summary of related works and their contributions and limitations.

Authors Proposed Model Advantages Limitation

Kaur et al (Kaur et al., 2024)

Feature Extraction:
VGG16, Inception V3 and Squeeze Net
Classification:
SVM, KNN, NN

Gained 93.3% accuracy using transfer
learning with standard classifiers.

Accuracy below 95% and weak results
on complex disease images.

Aggarwal et al (Aggarwal et al., 2023)
Feature extraction-32 pre-trained deep
learning models
Classification- ML algorithms

Reached 91% accuracy using many pre-
trained models on three diseases.

Only considered three classes, poor
generalization to other diseases.

Simhadri and Kondaveeti (2023b) 15 pretrained CNN models
Better results across ten classes using
transfer learning and augmentation.

High misclassification in unbalanced
data, less reliable overall.

Lamba et al (Lamba et al., 2023b) fine-tuned deep learning model
Classified disease severity into four
levels, useful for field diagnosis.

Only focused on three diseases, lacks
wider disease coverage.

Bijoy et al (Bitoy et al., 2024) deep CNN
Tested on 5593 images, suitable for IoT-
based low-resource systems.

Accuracy drops on manual datasets,
limited scalability.

Lamba et al (Lamba et al., 2023a) hybrid GCL model
Reached 97% accuracy by combining
CNN and LSTM with GAN
augmentation.

Only covered three classes, not
scalable for large datasets.

Abasi et al (Abasi et al., 2023) customized CNN model
Reduced overfitting and achieved 91%
accuracy against strong baselines.

Still lower than hybrid models, needs
better generalization.

Narmadha et al (Narmadha et al.,
2022)

DenseNet with MLP
Boosted feature extraction and
classification with DenseNet169+MLP.

Limited to three classes and ignored
disease severity.

Upadhyay and Kumar (2022) CNN model
Handled four disease types with better
accuracy.

It only considered 3 classes, focused
on the other dataset, and needs to
increase the accuracy.

Ramadan et al (Ramadan et al., 2025) CNN +GAN Achieves high accuracy
GAN training is slow and resource
heavy.

Swati et al (Lipsa et al., 2025) Interpretable and Explainable CNN

Provides transparency with explainable
AI tools
and Shows image regions influencing
predictions

Accuracy is lower than some GAN or
hybrid models.
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(pt). For each head, Query (Q), Key (K), and Value (V) must be

calculated, as shown in Equations 5–7.

 Q = embed  �  wQ   (5)

K = embed  �  wK   (6)

           V = embed  �  wV   (7)

where embed indicates the path embedding, wQ, wK and wV  

are learnable weight matrices.

In addition, it computes the attention score, which is

represented in Equation 8.

attention   (Q,K ,V) = Softmax
Q  �KTffiffiffiffiffiffiffiffiffiffiffi
dimK

p
� �

� V (8)

where dimK denotes the dimensionality of K.

Finally, ViT combines multiple heads and is defined in

Equation 9.

MHSA(embed) = concat(  Head1,  Head2 … :Headn)

�Woutput (9)

where Woutput denotes the output weight matrix.

3.1.4.2 Feedforward neural networks

Each patch embedding is processed using a feed-forward neural

network, and its calculation is provided in Equation 10.

FFNs = ReLu   (embed  �  w1 + b1)� w2 + b2 (10)

where w1 and w2 are weight matrix of first and second feed-

forward networks, b1 and b2 are the bias vectors of the first and

second feed-forward networks.

3.1.4.3 Layer normalization and residual connections

It adds the residual connections to the training and is calculated

using Equations 11 and 12.

embed
0
= LayerNorm(embed +MHSA(embed) (11)

embed
0 0
= LayerNorm(embed + FFN(embed) (12)

where embed denotes patch embedding,  embed} denotes

output after attention and normalization, and  embed} } denotes

output after the feedforward process, residual addition, and

normalization process.

3.1.5 Class token
The class token is a special token that is added to the patch

embedding sequence. This token’s final output is sent to the

transformer encoder, which classifies the image.

3.1.6 MLP head
The class token’s output is given to the Multi-Layer Perceptron

(MLP) head, which uses the soft max activation function to provide
Frontiers in Plant Science 05
the final class prediction. Figure 1 depicts the whole process of a

vision transformer.

3.2 ResNet18

The pre-trained ResNet18 model receives the image as input. It

starts with an initial convolutional layer that applies both

convolution and max pooling.

3.2.1 Input image
The convolution layer divides the image into blocks of 7x7 using

a 64-size filter and a stride of 2, and its calculation is shown in

Equation 13.

out = Conv2D(in,w1, b1) (13)

where in and out represent the input and output of the

convolution layer, respectively. w1 and b1 denote weights and bias

convolution filter.

3.2.2 Max pooling
The max pooling layer processes a 3x3 input feature map and

selects the maximum value.

The stride value for this operation is set to 2, as represented in

Equation 14.

outpooled = MaxPool(out,   Kernel   size = 3,   stride = 2) (14)

where outpooled denotes output of the pooling layer.

3.2.3 Residual block
ResNet18 has 4 layers, including residual blocks near the first

convolution layer. Layer1 has two residual blocks with two

convolutional layers. Each layer of the 3x3 input feature map

includes 64 filters and stride 1. Two remaining bricks form

Layer2. Two convolutional layers make up each residual block,

and the input feature map is 3x3. Every layer has 128 filters and a

stride of 2. Two leftover blocks make up Layer 3. Two convolutional

layers and a 3x3 input feature map make up each residual block.

Each layer has 256 filters and a stride of 2. Two blocks remain in

layer 4. Each residual block comprises two convolutional layers, 512

filters, a 3x3 input feature map, and a stride of 2. The operations of

the residual block are typically expressed in Equations 15–17.

IFM = ReLu(Conv2D(in,   w2, b2)) (15)

IFM = ReLu(Conv2D(IFM,   w3, b3)) (16)

out = ReLu(in + IFM) (17)

where IFM denotes intermediate feature map.

3.2.4 Global average pooling
After the final residual blocks, a 7x7 Global Average Pooling

(GAP) layer is added to reduce the feature dimensions from 3x3 to

1x1. The feature map of GAP is presented in Equation 18.
frontiersin.org
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outGAP =
1

Height �Weighto
Height
i=1 oWidth

j=1 out½i, j� (18)

where out denotes the output of each residual block.
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3.2.5 Fully connected layer
The global average pooling output is provided to the FC layer

for class prediction, as indicated in Equation 19.
FIGURE 1

Overall process of vision transformer.
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Z = outGAP  �w4 + b4 (19)

where Z denotes the logit function i.e., before applying the

Softmax function, w4 and b4 are the weight matrix and the

bias matrix.

3.2.6 Softmax layer
The final class probability is determined through the Softmax

layer, with the calculation provided in Equation 20.

Probi =
ezi

on
j=1e

zj
(20)

where Probi denotes probability of i
th class and zi denotes logits

for the ith class.

Figure 2 depicts the complete workflow of the ResNet18 model.
4 The proposed hybrid vision
transformer with ResNet18 model

This work proposes a hybrid Vision Transformer (ViT) with

ResNet18 pre-trained models (ViT-ResNet18). The input images

are processed independently using the pre-trained ViT and

ResNet18 models. The output features of these two models are

concatenated and provided to the final FC layer.

A Softmax layer is subsequently applied to the FC output to

perform the classification of rice leaf diseases. The comprehensive

workflow of the Hybrid ViT-RestNet18Model is illustrated in Figure 3.
4.1 Data collection

Diseases in the rice plant impact various parts of the body. The

dataset has been sourced from publicly accessible repositories,

specifically Kaggle (Rice diseases image dataset, 2024) and

Mendeley (Rice leaf diseases dataset, 2023). The dataset for rice

leaf disease available on Kaggle comprises a total of 3,345 images,

categorized into four distinct classifications. The Brown spot class

contains 523 images, the Healthy class consists of 1,488 images, the

Hispa class includes 565 images, and the Leaf Blast class has 779

images. The Mendeley rice leaf disease dataset consists of 4,684

images organized into three separate categories. The Bacterial blight

class contains 1604 images, the Brown spot class comprises 1620

images, and the Leaf smut class consists of 1460 images. This work

considers six classes derived from two distinct datasets. Table 2

presents the specifics of the combined dataset, detailing each class

along with its corresponding image distribution.
4.2 Data preprocessing

Image augmentation utilizes the Albumentations library to

achieve a balanced distribution of images across all classes, as

specified in the base paper by Kaur et al (Kaur et al., 2024). The

augmentation process encompasses several operations, including
Frontiers in Plant Science 07
horizontal and vertical flipping, blurring, random adjustments of

brightness and contrast, as well as shifting, scaling, and rotating.

Figure 4. Shows the sample image of rice leaf diseases namely,

Healthy, Hispa, bacterial Blight, Brown Spot, Tungro and Leaf Blast.

Table 3 presents the distribution of data categorized by class for rice

lease diseases.
FIGURE 2

Overall process of ResNet18 model.
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4.3 Feature extraction and classification

4.3.1 Input preparation
The input image is first resized to 224 × 224 pixels. It is then

given as input to both the ViT and ResNet18 modules.

4.3.2 Feature extraction with ViT
The model uses the ViT variant google/vit-base-patch16-224-

in21k. The image is split into 16 × 16 patches. Each patch is

flattened into a vector and passed through a linear embedding layer.

Positional encoding is added to retain spatial information. The

sequence of patch embeddings is then processed by transformer

encoder layers. Each encoder applies multi-head self-attention and
Frontiers in Plant Science 08
feed-forward layers to preserve global context. The final class token

is extracted as the ViT feature vector.

4.3.3 Feature extraction with ResNet18
The same input image is also processed by ResNet18, a

convolutional neural network. The network uses convolutional

layers, residual blocks, and pooling layers. These layers capture local

features like edges, textures, and shapes. A global average pooling

(GAP) layer then reduces dimensions and produces a feature vector.

4.3.4 Feature fusion
The Vision Transformer (ViT) produces a feature vector that

captures global image context. ResNet18 produces another feature
FIGURE 3

Proposed hybrid vision transformer (ViT)-RestNet18 model.
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vector that captures local patterns such as edges and textures. These

two vectors are combined through concatenation to form a single

feature representation.

Mathematically, if FViT ∈ Rd1 is the ViT feature vector and

FResNet ∈ Rd2 is the Resnet18 feature vector, the fused feature is

expressed in (Equation 21).

Ffusion = ½FViT    j jFResNet � (21)
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where || denotes the concatenation operation.

This fused feature vector combines both global and local

information, giving the model a richer representation of the rice leaf

image. It is then passed to the fully connected layer for classification.

4.3.5 Classification
The fused feature vector Ffusion is sent to a fully connected (FC)

layer. The FC layer maps this high-dimensional feature into class

scores, also called logits. The FC operation can be written in

Equation 22.

Z = W : Ffusion + b (22)

where W is the weight matrix, b is the bias term, and Z is the

logit vector for all classes.

The logits are then passed through a Softmax function to

convert them into probabilities. For a class ‘i’, the probability is

calculated as shown in Equation 23.

P(y = i
x= ) =

eZi

oC
j=1e

Zj
(23)
TABLE 2 Class-wise data distribution in the combined dataset.

Disease name Image count

Healthy 1488

Hispa 565

Bacterial Blight 1604

Brown Spot 1620

Tungro 1308

Leaf Blast 779
FIGURE 4

Sample images of rice leaf diseases: (a) Healthy, (b) Hispa, (c) Bacterial blight, (d) Brown spot, (e) Tungro, and (f) Leaf blast.
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where C is the total number of classes and Zi is the logic value

for ‘i’.

The final output is the class with the highest probability,

predicting the type of rice leaf disease.

4.3.6 Output
The final classification predicts one of six classes: healthy, hispa,

bacterial blight, brown spot, tungro and leaf blast.
5 Results and discussion

The proposed Hybrid ViT–ResNet18 model is compared with

three existing models: VGG16 with Neural Network, Inception V3

with Neural Network and Squeeze Net with Neural Network (Kaur

et al., 2024). The authors discuss the accuracy and loss of the

proposed model utilizing training and validation data, the

confusion matrix based on training data and test data, and will

conclude with an evaluation of performance using specified metrics.
5.1 Model parameters and values

In this work, the dataset is randomly split into 70% of training data

and 30% of testing data, similar to the method used by Kaur et al (Kaur

et al., 2024). The dataset consists of six categories: healthy, hispa,

bacterial blight, brown spot, tungro, and leaf blast. All input images are

accurately classified and organized into their respective categories. The

proposed hybrid ViT-ResNet18 model incorporates the following

essential parameter values and assumptions. The total count of

epochs is 17. The variant of the ViT model has been named as

google/vit-base-patch16-224-in21k. The ResNet variant is ResNet18.

It is used Adam optimization algorithm, configured with a learning rate

of 0.001 and a batch size of 32. Table 4 shows the parameters and

hyperparameter values of the proposed hybrid ViT–ResNet18 Model.
5.2 Experimental setup

This study was performed on a system equipped with an Intel i7

CPU, NVIDIA RTX 3090 GPU, and 16 GB of RAM. The hybrid

ViT-ResNet18 model was built using NumPy, Pandas, Python, and

PyTorch 2.0.
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5.3 Ablation study

In order to analysis the role of each component of the hybrid

architecture suggested, an ablation study between two variations of

model, (1) Hybrid ViT-ResNet18, and (2) Hybrid ViT-ResNet18

accompanied by Neural Network, was performed as a comparative

study. The aim of comparing both variations of model here is to

identify how adding one more Neural Network layer following the

feature fusion process impacts the classification ability of a model.

Table 5 shows quantitative outcome of both variants on several

evaluation criteria, AUC, Accuracy, F1-Score, Precision, and Recall.

From Table 5, it is clear that the Hybrid ViT-ResNet18 model

moderately dominates its version based on the Neural Network

layer by all evaluation criteria. The hybrid model reached an

accuracy improvement of 0.6%, and parallel rise in F1-Score,

precision, and by recall also. The slight difference of AUC (0.985

vs. 0.984) also implies that both models are highly discriminative,

but simpler hybrid model based on omission of Neural Network

layer generalizes better.

These results recommend that incorporating an extra Neural

Network layer does not greatly improve model performance and

potentially adds bloat. The better performance of the Hybrid ViT-

ResNet18 shows that it is possible to achieve direct ViT-ResNet18
TABLE 3 class-wise data distribution for rice lease diseases.

Disease name Image count

Healthy 2382

Hispa 904

Bacterial Blight 1584

Brown Spot 1600

Tungro 1308

Leaf Blast 1440
TABLE 4 Parameters and hyperparameter values of the proposed hybrid
ViT–ResNet18 model.

Parameter/
hyperparameter

Value/setting

Dataset split 70% training, 30% testing

Number of classes
6 (Healthy, Hispa, Bacterial blight,
Brown spot, Tungro, Leaf blast)

Image size 224 × 224 pixels

Vision Transformer variant google/vit-base-patch16-224-in21k

ResNet variant ResNet18

Number of epochs 17

Optimizer Adam

Learning rate 0.001

Batch size 32

Loss function Cross-entropy loss
TABLE 5 Performance comparison of hybrid ViT-ResNet18 with neural
network and hybrid ViT-ResNet18.

Evaluation
metrics

Hybrid ViT-ResNet18 with
neural network

Hybrid ViT-
ResNet18

AUC 0.984 0.985

Accuracy 0.935 0.944

F1-Score 0.930 0.942

Precision 0.930 0.942

Recall 0.933 0.942
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feature representation fusion and a fully connected classifier for

effective capture of rice leaf disease image discriminative patterns,

leading to more compact and precise classification.
5.4 Model accuracy and loss

Figure 5 illustrates the accuracy of the proposed hybrid Vit-

ResNet18 model, comparing both training and validation datasets.

Epochs are shown on the x-axis. Accuracy of the model, from 0 to 1,

is shown on the Y-axis. The yellow color data points and line

represent the training accuracy for the proposed model. The initial

observation indicates a lower model accuracy, which subsequently

shows a gradual increase over time. The accuracy has remained

consistent, exhibiting the same values from epoch 8 through epoch

17. The orange color data points and lines represent the validation

accuracy. During the initial three epochs, significant fluctuations in

accuracy were observed. Subsequently, the accuracy values

stabilized, consistently remaining above 90%.

Figure 6 illustrates the loss of the proposed hybrid ViT-

ResNet18 model, plotted against both training and validation

datasets. Epochs are shown on the x-axis. Loss of the model, from

0 to 1, is shown on the Y-axis. The yellow color data points and line

represent the training loss associated with the proposed model. The

initial observation indicates that the model loss remains elevated for

the first two epochs. The model loss has subsequently shown a

gradual decrease. The loss values have remained consistent from

epoch 6 through epoch 17. The orange color data points and lines

represent the validation loss. The validation loss is recorded at

approximately 10%.
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5.5 Performance evaluation metrics

Accuracy, precision, recall, F1-score, and the confusion matrix

were some of the measures used to evaluate the models that were

concentrated on DL.

5.5.1 Accuracy
This ratio compares the number of correct predicts to the total

number of predictions. The calculation is given in Equation 24.

Accuracy ¼Number of right prediction
Total number of prediction

(24)
5.5.2 Precision
It quantifies the number of positive predictions that correspond

to actual positive instances. The calculation is presented in Equation

25.

Precision ¼ Number   of   True   Positive
Number   of   True   Positive +   Number   of   False   Positive

(25)
5.5.3 Recall
The metric quantifies the number of actual positive instances

that were accurately predicted by the proposed model. The

calculation is provided in Equation 26.

Recall ¼ Number   of   True   Positives
Number   of   True   Positives + Number   of   False   Negatives

(26)
FIGURE 5

Hybrid ViT with ResNet18 training vs validation accuracy.
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5.5.4 F1-score
Precision and recall are used to evaluate model performance.

The calculation is presented in Equation 27.

F1 − Score =
2� P� R
P + R

(27)
where P and R indicate precision and recall.
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5.6 Model performance evaluation

Figure 7 shows how four models perform. These are VGG16

with Neural Network, Inception V3 with Neural Network,

SqueezeNet with Neural Network, and the proposed Hybrid ViT-

ResNet18. Each model is tested under the same setup to compare

accuracy and reliability. The Hybrid ViT with ResNet18 stands out

by offering stronger results and better feature learning.
FIGURE 7

Performance evaluation of proposed hybrid ViT-ResNet18 and existing models.
FIGURE 6

Hybrid ViT-ResNet18 training vs validation loss.
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For the Area Under the Curve (AUC), both VGG16 with Neural

Network and SqueezeNet with Neural Network score 0.989.

Inception V3 with Neural Network and the Hybrid ViT with

ResNet18 record slightly lower scores of 0.985. Although the

Hybrid ViT-ResNet18 falls a bit short in AUC, it performs better

in other key measures. This shows that the Hybrid model is strong

overall and handles tasks more effectively than the others.

For accuracy, VGG16 scores 0.897, Inception V3 scores 0.931,

and SqueezeNet reaches 0.933. The Hybrid ViT achieves the top

score of 0.944, which is 1.1% higher than SqueezeNet and 4.7%

higher than VGG16.

The F1-Score results follow a clear trend. VGG16 with Neural

Network scores 0.902, Inception V3 with Neural Network reaches

0.917, and SqueezeNet with Neural Network achieves 0.928. The

proposed Hybrid ViT-ResNet18 outperforms them all with an F1-

Score of 0.942, showing a stronger balance between precision

and recall.

Regarding Precision, VGG16 with Neural Network achieves

0.918, Inception V3 with Neural Network records 0.917, and

SqueezeNet with Neural Network reaches 0.928, whereas the

Hybrid ViT-ResNet18 attains 0.942, demonstrating an

approximate 1.4% enhancement over the next best model.

For Recall, Neural Network with VGG16 marks 0.897, Neural

Network with Inception V3 marks 0.922, Neural Network with

SqueezeNet marks 0.931, whereas Hybrid ViT-ResNet18 marks

highest recall of 0.942, hence marks better ability for proper

identification of positive instances.

Overall, if we compare the AUC values of our suggested Hybrid

ViT-ResNet18 to those of other models, it shows equivalent results,

yet it shows steady improvement across accuracy, F1-score,

precision, and precision, hence proving its reliability and better

performance compared to classical CNN-based architectures.

Table 6 provides the efficacy evaluation of the proposed Hybrid

ViT-ResNet18 and existing models.

The confusion matrix illustrates how well a classification model

performs by showing the number of correct and incorrect predictions

for each class. Figure 8 shows the confusion matrix of VGG16 with

Neural Network. It reached high accuracy for most classes. Bacterial

blight had 427 correct out of 433, Blast had 305 out of 306, Brownspot

had 477 out of 480, and Tungro had 376 out of 386. These results show

the model can recognize clear disease patterns with few errors. The

main problem was between Healthy and Hispa leaves. The model

confused 192 Healthy samples as Hispa and 53 Hispa samples as

Healthy. This happened because the two look very similar. While this
Frontiers in Plant Science 13
reduced accuracy for those two classes, the model still outperformed

many earlier methods. With more training data, stronger image

features, or attention-based methods, the Healthy–Hispa confusion

can be reduced. This would make the model more reliable for real use

in farms and crop health monitoring.

The Inception V3 with Neural Network model gave strong results

in classifying rice leaf diseases. It correctly identified most cases of

Bacterial Blight (428 of 433), Blast (305 of 306), Brown Spot (477 of

480), and Tungro (376 of 386). The main weakness was in separating

Healthy and Hispa leaves. In this case, 192 Healthy samples were

marked as Hispa and 53 Hispa samples were marked as Healthy. This

shows that the two classes share close visual traits, making them hard to

tell apart. The model still learned clear disease patterns and gave steady

results. With more training images and better handling of Healthy and

Hispa, it could perform better in farm use.

The confusion matrix for SqueezeNet applied to the Neural

Network using test data is shown in Figure 9. The observation

indicates that the dark colors in the grid represent correct

predictions, while the grids with a white background signify

misclassifications of this model.

Figure 10 illustrates the confusion matrix for the proposed

hybrid ViT with ResNet18, utilizing the test dataset. The

observation indicates that the dark colors in the grid represent

correct predictions, while the grids with a white background signify

misclassifications of the model.

It is observed that the proposed Hybrid ViT integrated with

ResNet18 demonstrates a higher accuracy in predictions compared

to VGG16 with Neural Network, Inception V3 with Neural

Network and SqueezeNet combined with a neural network.
6 Analysis and discussion

The hybrid ViT-ResNet18 model was evaluated on the aspects

of the accuracy, precision, recall, F1-score, and AUC as illustrated in

Figure 11. The results obtained 94.4% accuracy, 0.948 precision,

0.944 recall, 0.942 F1-score, and 0.985 AUC, respectively. As

presented, the results indicate that the model keeps a good

equilibrium between sensitivity and specificity.

The performance of the hybrid model was better than that of

baseline models. The accuracy was better than VGG16 with Neural

Network by 5% and InceptionV3, SqueezeNet by 1%. This

enhancement results from the combination of local and global

features. The Vision Transformer are aware of overall image
TABLE 6 Efficacy evaluation of the proposed hybrid ViT-ResNet18 and existing models.

Evaluation
metrics

VGG16 with neural
network

Inception V3 with neural
network

SqueezeNet with neural
network

Hybrid ViT with
ResNet18

AUC 0.989 0.985 0.989 0.985

Accuracy 0.897 0.931 0.933 0.944

F1-Score 0.902 0.917 0.928 0.942

Precision 0.918 0.917 0.928 0.942

Recall 0.897 0.922 0.931 0.942
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patterns, while fine details, along with texture information, are

maintained by ResNet18. Combining them, feature learning, as well

as misclassification reduction, are both enhanced.

The confusion matrix supports this conclusion. There are decent

performances for all the classes of diseases, with less error for close

classes. There are still some errors, however, particularly for classes with

less number of images. This lends support for more extensive and

balanced datasets. The hybrid ViT-ResNet18 model exhibits high

confidence and robustness than the previously suggested techniques.

Additional steps are expanding the dataset, validation with field images,

andminimizing processing expense for real-time vision implementation.

7 Conclusion and future work

Agriculture is essential for sustaining human life. Detecting rice

leaf disease is crucial for enhancing crop productivity. This work
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proposed a hybrid model that combines the Vision Transformer

(ViT) design with a pre-trained ResNet18 to make predicting rice

leaf diseases more accurate. The input images are processed

independently using the pre-trained ViT-ResNet18 models. The

output features of these two models are concatenated and provided

to the final Fully Connected (FC) layer, followed by a Softmax layer

for final classification. The output of rice leaf disease generated from

the FC layer. The hybrid ViT-ResNet18 model has 94.4% accuracy,

0.948 precision, 0.944 recall, 0.942 F1-Score, and 0.985 AUC. The

proposed hybrid model shows a 5%, 1%, and 1% improvement in

accuracy compared to VGG16 with Neural Network, Inception V3

with Neural Network, and SqueezeNet with Neural Network

classifier, respectively.
FIGURE 8

Confusion matrix of VGG16 with neural network.
FIGURE 11

Confusion matrix of inception V3 with neural network.
FIGURE 9

Confusion matrix of squeeze net with neural network.
FIGURE 10

Confusion matrix of hybrid ViT-ResNet18.
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In future, more disease leaf classes will be incorporated to

effectively address various rice leaf diseases. The results will be

implemented in the mobile application. The application enables

farmers to install it and automatically detect leaf diseases

independently.
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