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Introduction: Agriculture is crucial to human survival. The growing of biotic rice
plants is very helpful for feeding a lot of people around the world, especially in
places where rice is a main food. The detection of rice leaf disease is critical to
increasing crop productivity.

Methods: To improve the accuracy of rice leaf disease prediction, this paper
proposes a hybrid Vision Transformer (ViT) with pre-trained ResNetl8 models
(ViT-ResNetl8). In general, the input images apply to the pre-trained ViT and
ResNet18 models independently. The output features of these two models are
combined and fed into the final Fully Connected (FC) layer, followed by a Softmax
layer for final classification.

Results: The output of rice leaf diseases from the FC layer of the proposed hybrid
ViT with ResNet18 model achieved 94.4% accuracy, a precision of 0.948, a recall
of 0.944, an F1-Score of 0.942, and an Area Under Curve (AUC) of 0.985.
Discussion: The proposed hybrid model ViT-ResNet18 shows a 5%, 1%, and 1%
improvement in accuracy compared to VGG16 with Neural Network, Inception
V3 with Neural Network, and SqueezeNet with Neural Network
classifier, respectively.

KEYWORDS

rice leaf disease, vision transformer, Resnetl8, agriculture, image classification, deep
learning, biotic rice, neural networks

1 Introduction

Agriculture is critical to both the economy and a country’s progress. In developing
countries, agriculture is an important source of employment and money. The global
population is projected to exceed 10 billion by 2050. Therefore, the need for agricultural
products is always rising (Jafar et al., 2024). Rice is an imported food, and most countries
consume it as rice. Biotic rice is a breed that is resistant to biological threats such as insects
and fungi. Furthermore, rice crops are mostly produced throughout Asia and around the
world. Due to population growth, farmers need to increase production by roughly 1.2%
each year (Li et al., 2024). There are various reasons why the farmer was unable to meet the
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desired level of rice production. One of the causes is that rice leaves
are susceptible to a variety of illnesses. Rice leaf diseases encompass
leaf blast, bacterial blight, and brown spot, among others (Trinh
et al., 2024; Simhadri et al., 2025).

Finding rice leaf disease is a challenging task. The reason is that
disease detection is done manually, which takes longer, or the
farmer notices it too late, does not identify the disease, and
sometimes predicts the disease incorrectly. Earlier, a greater
number of specialists and plant monitoring were required in
manual inspection. However, the farmers were unable to obtain
expert assistance due to a lack of facilities and an inability to absorb
the cost. To overcome the challenges mentioned above and achieve
automatic disease detection, a technology-based solution is needed
to detect and recognize leaf illnesses promptly and give care based
on the severity of the diseases (Kaur and Trivedi, 2024).

Earlier, Image Processing (IP) and Machine Learning (ML)
were utilized to detect rice leaf diseases. IP is used to improve
images and extract features, such as numerical values (Rahman
etal, 2024). Rice leaf disease is predicted by using machine learning
(ML) methods. Though ML algorithms have been used in disease
prediction, their accuracy is not significant.

Deep Learning (DL) primarily relies on Artificial Neural
Networks (ANN), which are employed to learn from data and
facilitate decision-making, or disease classification based on images.
The architecture has three separate layers: input, hidden, and
output (Haridasan et al., 2023; Rajpoot et al., 2023). In the past
few years, many studies have used DL algorithms to identify
illnesses that affect rice leaves. The researchers focused on DL
methods that are used a lot, like Convolutional Neural Networks
(CNN) and pre-trained models based on Transfer Learning, such as
ResNet, Inception Net, Vision Transformer (ViT), and others
(Ahad et al., 2023; Simhadri and Kondaveeti, 2023a; Thai
et al., 2023).

Single DL approaches did not achieve higher accuracy. To
improve classification accuracy, the researchers used a hybrid DL
model. In general, hybrid DL models enhance accuracy while
successfully dealing with local and global features (Chug et al,
2023). Recent studies show that hybrid DL models have been
utilized for the identification of rice plant diseases; however, there
is still an opportunity to improve prediction accuracy. As a result,
this paper proposes a hybrid Vision Transformer (ViT) that
incorporates pre-trained ResNet18 models. In general, the input
images apply to the pre-trained ViT and ResNetl8 models
independently. The outputs from these two models are
concatenated and subsequently input into the final FC layer. The
output of rice leaf disease from the FC and Softmax layers.

The highlights of the contribution are follows:

* In the related works, several deep learning-based methods
for detecting rice leaf disease were presented, and their
shortcomings were identified.

* To improve the detection of biotic leaf disease, a hybrid
novel model combining ViT and ResNet18 is proposed.
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*  We have adjusted the number of epochs to determine the
best training configuration in order to improve the accuracy
of leaf disease detection.

* To validate the effectiveness of the proposed hybrid model
ViT- ResNetl8 and its variant, an ablation study
was conducted.

» The goal of this research work is to improve crop disease
detection accuracy and promote food security through the
use of deep learning models in agricultural applications.

The structure of the paper is outlined as follows: Section 2 provides
an overview of the related work. Section 3 discusses deep learning
architecture. Section 4 presents a hybrid Vision Transformer (ViT)
with ResNetl8 model. In Section 5, a comparative analysis of the
performance of the proposed model against existing models is
presented. Section 6 provides the analysis and discussion. The
conclusion and future research are presented in the paper’s conclusion.

2 Related works

This section outlines numerous research works focusing on rice
leaf disease prediction.

Kaur et al (Kaur et al., 2024). proposed a deep learning model-
based rice leaf detecting method. This research employs pre-trained
models to perform feature extraction, alongside DL models for the
classification process. The evaluation of the feature extraction
method was conducted utilizing pre-trained models, including
VGG16, Inception V3, and Squeeze Net. The classification
approach utilized ML and DL models, including SVM, Naive
Bayes, K-Nearest Neighbor (KNN), and neural networks.
Following multiple experiments, this work came up with the
Squeeze Net for feature extraction and neural networks for
classification. It attained an accuracy of 93.3%. However, it is
necessary to improve the accuracy of the disease-affected images.

Aggarwal et al (Aggarwal et al., 2023). proposed ML-based rice
leaf prediction. Images are preprocessed according to image dataset
model parameters. This work involves two processes: feature
extraction and categorization. For feature extraction, 32 pre-
trained deep learning models were employed, including VGG,
ResNet, Inception V3, Xception, EfficentNet, and its variation.
This work uses a variety of machine learning techniques for
categorization. The primary emphasis was on rice leaf diseases,
specifically leaf blast, bacterial blight and brown spot. The proposed
model outperformed others. However, it has only considered three
disease types and needs to improve its accuracy.

Simhadri and Kondaveeti (2023b) proposed a rice leaf detecting
method utilizing transfer learning. This work used transfer learning
on 15 pre-trained CNN models to identify rice leaf disease. It
receives the input image and applies the resize operation. The
dataset was split into training and testing. Data augmentation was
performed for the class with fewer images. After conducting several
experiments, Inception v3 outperformed other deep learning

frontiersin.org


https://doi.org/10.3389/fpls.2025.1711700
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sennan et al.

models. In total, ten classes were used in this research. However, the
model exhibits increased misclassification for specific categories.

Lamba et al (Lamba et al,, 2023b). proposed a fine-tuned deep
learning model for paddy leaf disease classification. This work
emphasizes paddy leaf disease severity. The dataset images were
gathered from GitHub, UCI, Kaggle, and Mendeley. The dataset
contains 4068 images. Initially, images are pre-processed using an
image generator. A Generative Adversarial Network (GAN) was used
to enhance the images. Leaf image severity is calculated using
segmentation algorithms. CNN and SVM are feature extraction and
classification methods. The diseases are classified as mild, moderate,
severe, and profound. This model predicted a high severity rate
compared to previous models. However, this model only tested
bacterial blight, blast, and leaf smut.

Bijoy et alet al., 2024). proposed utilizing deep CNN (dCNN) to
detect rice leaf diseases. This work collected an enhanced dataset of
5593 images from five disease types. Sheath blight, brown spot,
bacterial leaf blight, and leaf smut are the four disease
classifications. The input image has been scaled and the feature
extracted before being applied to the pooling layers. The proposed
dCNN'’s performance is compared to standard benchmark models
such as AlexNet, MobileNet, and ResNet50. However, it is
important to increase the number of leaf disease categories.

Lamba et al (Lamba et al, 2023a). proposed a hybrid GCL
model for paddy leaf diseases. This work utilizes datasets from
Mendeley, UCI, Kaggle, and GitHub. It employed 3535 images
across three classes: bacterial blight, rice blast, and leaf smuf. The
GAN model is used for data augmentation. This hybrid work
combined CNN and the Long-term Short Memory (LSTM)
model. It increased accuracy by 97% when compared to previous
approaches. However, it has only used three disease categories.

Abasi et al (Abasi et al., 2023). introduced an improved method for
detecting rice leaf diseases utilizing a customized CNN model. This was
developed specifically for images related to rice leaf disease. The input
image dimensions are 224 x 224 x 3. The dataset is divided into three
segments: 80% allocated for training, 10% designated for validation,
and 10% reserved for testing. Features of rice leaves may be extracted
from images using the CNN model. The customized CNN model
includes convolution, max pooling, flattening, and dropout layers. This
model scored a 91% accuracy against the Inception v3 and EfficientNet
B2 models. This customized model delivered higher accuracy, lower
loss, and reduced model overfitting. However, the rice leaf disease
dataset’s accuracy need improvement.

Narmadha et al (Narmadha et al., 2022). proposed a method for
detecting rice leaves utilizing deep learning techniques. The
DenseNet169-MLP model combines a dense CNN (DenseNet) with
a multi-layer perceptron (MLP). It seeks to accurately classify the leaf
diseases. The dataset employed three classes: brown spot, bacterial leaf
blight, and leaf smut. This process begins with channel separation,
followed by greyscale conversion and noise removal with a median
filter. The segmentation process is carried out utilizing fuzzy ¢ methods.
The DenseNet169 model, which has been pre-trained, is utilized for the
purpose of feature extraction, whereas a Multi-Layer Perceptron (MLP)
is applied for classification tasks. The proposed model’s performance is
compared to other models. It outperforms other similar methods in
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terms of accuracy. However, it only analyzed three classifications in the
input dataset and needs to improve accuracy. It also did not address the
severity of diseases.

Upadhyay and Kumar (2022) proposed a DL algorithm for
predicting rice plant leaf diseases. It focusses on the following
diseases: leaf smut, leaf blight, and brown spot. Most disease
predictions depend on leaf size, color, and shape. Otsu’s global
thresholding removed image background noise. The proposed CNN
was trained on healthy, leaf smut, leaf blight, and brown spot
datasets. Each class contains 4000 photos. The proposed CNN
outperformed other models. However, it must focus on
improving the accuracy of leaf disease images.

Ramadan et al (Ramadan et al., 2025). built a model for rice leaf
disease detection using CNNs and GANs. They aimed to solve the
problem of small and imbalanced datasets by creating synthetic
images. The main advantage of using GANs for leaf disease
detection is their ability to generate synthetic images. This
increases the dataset size, adds variety, and lowers the chance of
overfitting. Three GAN types were tested: Simple GAN, CycleGAN,
and DCGAN. CycleGAN gave the best results.

Swati et al (Lipsa et al., 2025). built a CNN model for rice leaf
disease detection with a focus on interpretability. To address the
black box issue in CNNs, they used three explainable AI tools:
Layer-wise Relevance Propagation (LRP), SHAP, and LIME. LRP
traced how each layer contributed, SHAP explained feature
importance, and LIME showed the image regions that guided
predictions. The proposed method reached 96.5% of accuracy.

Most existing models focus on only a few rice leaf disease types.
Their accuracy is often limited. Many models misclassify diseases or
overfit when trained on small datasets. Some use only CNNss or transfer
learning and do not explore hybrid models for stronger feature
extraction. This study proposes a hybrid model that joins a Vision
Transformer (ViT) with ResNet18. ViT captures global image patterns,
while ResNet18 extracts local details. Combining these features gives a
richer representation. Our experiments show the hybrid model reaches
94.4% accuracy. It performs better than SqueezeNet with Neural
Network, VGG16 with Neural Network, and InceptionV3 with
Neural Network. The results show fewer misclassifications and
higher accuracy in rice leaf disease detection. Table 1. summarizes
the related works which covers the research articles contributions
and limitations.

3 Deep learning architectures

This section covers the fundamental concepts and
functionalities of the Vision Transformer (Han et al, 2022) and
ResNet18 models (Ayyachamy et al., 2019). Section 4 discusses the
proposed hybrid model.

3.1 Vision transformer

This model is designed for deep learning applications focused
on image-related tasks, including image classification,
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TABLE 1 Summary of related works and their contributions and limitations.

Authors Proposed Model

Feature Extraction:

VGG16, Inception V3 and Squeeze Net
Classification:

SVM, KNN, NN

Kaur et al (Kaur et al., 2024)

Feature extraction-32 pre-trained deep
learning models
Classification- ML algorithms

Aggarwal et al (Aggarwal et al., 2023)

Advantages

Gained 93.3% accuracy using transfer
learning with standard classifiers.

Reached 91% accuracy using many pre-
trained models on three diseases.

10.3389/fpls.2025.1711700

Limitation

Accuracy below 95% and weak results
on complex disease images.

Only considered three classes, poor
generalization to other diseases.

Simhadri and Kondaveeti (2023b) 15 pretrained CNN models

Lamba et al (Lamba et al., 2023b) fine-tuned deep learning model

Bijoy et al (Bitoy et al., 2024) deep CNN

Lamba et al (Lamba et al., 2023a) hybrid GCL model

Abasi et al (Abasi et al., 2023) customized CNN model

Narmadha et al (Narmadha et al.,

DenseNet with MLP
2022)

Better results across ten classes using
transfer learning and augmentation.

Classified disease severity into four
levels, useful for field diagnosis.

Tested on 5593 images, suitable for IoT-
based low-resource systems.

Reached 97% accuracy by combining
CNN and LSTM with GAN
augmentation.

Reduced overfitting and achieved 91%
accuracy against strong baselines.

Boosted feature extraction and
classification with DenseNet169+MLP.

High misclassification in unbalanced
data, less reliable overall.

Only focused on three diseases, lacks
wider disease coverage.

Accuracy drops on manual datasets,
limited scalability.

Only covered three classes, not
scalable for large datasets.

Still lower than hybrid models, needs
better generalization.

Limited to three classes and ignored
disease severity.

Upadhyay and Kumar (2022) CNN model

Ramadan et al (Ramadan et al.,, 2025) CNN +GAN

Swati et al (Lipsa et al., 2025) Interpretable and Explainable CNN

Handled four disease types with better
accuracy.

Achieves high accuracy

Provides transparency with explainable
AT tools

and Shows image regions influencing
predictions

It only considered 3 classes, focused
on the other dataset, and needs to
increase the accuracy.

GAN training is slow and resource
heavy.

Accuracy is lower than some GAN or
hybrid models.

segmentation, and object detection. The input image size (224 x 224
x 3) is typically fed into the Vision Transformer (ViT) model and is
represented as Height x Width x Number of channels (Red, Green,
and Blue).

3.1.1 Input image

The image has been divided into patches of constant size, pt x pt
(16 x 16) pixels. The number of patches (N) is computed using
Equation 1.

_ Height x Width

N - (1)

where pt is the patch size.

3.1.2 Patch embedding
Each patch is converted to a one-dimensional (1-D) vector,
which is represented in Equation 2.

y; = Flatten(pt,,) (2)

Where y; denotes Flattened vector of i patch (pt).
The flattened patches are linearly converted using a learnable
weight matrix, which is provided in Equation 3.

Frontiers in Plant Science

Zi = Wembed X Vi (3)

Where z; denotes embedded vector of i patch (pt).

3.1.3 Positional embedding

Transformers cannot capture position information directly. To

preserve spatial order, positional encoding is added. The final

embedding of the i™ patch (embed;) is calculated by combining

the positional encoding of the i™ (pos;) with z; embedded vector of

i™ patch, as shown in Equation 4.

embed; = z; + pos; (4)

where pos; is the positional encoding of the i patch.

3.1.4 Transformer encoder
The encoder takes the sequence of embeddings (embed,, embe

dyye..... embed,).

It consists of Multi-Head Self-Attention (MHSA), a Feed-
Forward Network (FFN), and Layer Normalization (LN).

3.1.4.1 Multi-head self-attention
It extracts or maintains global dependencies between patches.

The self-attention computes the association between all patches

frontiersin.org
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(pt). For each head, Query (Q), Key (K), and Value (V) must be
calculated, as shown in Equations 5-7.

Q =embed x wg (5)
K = embed x wg (6)
V =embed x wy (7)

where embed indicates the path embedding, wq, wyx and wy,
are learnable weight matrices.

In addition, it computes the attention score, which is
represented in Equation 8.

. B Q xKT
attention (Q,K,V) = Softmax (W) xV (8)

where dimy denotes the dimensionality of K.
Finally, ViT combines multiple heads and is defined in
Equation 9.

MHSA(embed) = concat( Head,, Head, ... .Head,)
X Woutpur )

where W, denotes the output weight matrix.

3.1.4.2 Feedforward neural networks
Each patch embedding is processed using a feed-forward neural
network, and its calculation is provided in Equation 10.

FFNs = ReLu (embed X wy +b;) X w,y + b, (10)

where w; and w, are weight matrix of first and second feed-
forward networks, b; and b, are the bias vectors of the first and
second feed-forward networks.

3.1.4.3 Layer normalization and residual connections
It adds the residual connections to the training and is calculated
using Equations 11 and 12.

embed = LayerNorm(embed + MHSA (embed) (11)

embed = LayerNorm(embed + FFN (embed) (12)

where embed denotes patch embedding, embed denotes
output after attention and normalization, and embed}} denotes
output after the feedforward process, residual addition, and
normalization process.

3.1.5 Class token

The class token is a special token that is added to the patch
embedding sequence. This token’s final output is sent to the
transformer encoder, which classifies the image.

3.1.6 MLP head

The class token’s output is given to the Multi-Layer Perceptron
(MLP) head, which uses the soft max activation function to provide
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the final class prediction. Figure 1 depicts the whole process of a
vision transformer.

3.2 ResNetl18

The pre-trained ResNet18 model receives the image as input. It
starts with an initial convolutional layer that applies both
convolution and max pooling.

3.2.1 Input image

The convolution layer divides the image into blocks of 7x7 using
a 64-size filter and a stride of 2, and its calculation is shown in
Equation 13.

out = Conv2D(in, wy, b) (13)

where in and out represent the input and output of the
convolution layer, respectively. w, and b, denote weights and bias
convolution filter.

3.2.2 Max pooling

The max pooling layer processes a 3x3 input feature map and
selects the maximum value.

The stride value for this operation is set to 2, as represented in
Equation 14.

OUtpgoled = MaxPool(out, Kernel size = 3, stride = 2) (14)

where outpye.q denotes output of the pooling layer.

3.2.3 Residual block

ResNet18 has 4 layers, including residual blocks near the first
convolution layer. Layerl has two residual blocks with two
convolutional layers. Each layer of the 3x3 input feature map
includes 64 filters and stride 1. Two remaining bricks form
Layer2. Two convolutional layers make up each residual block,
and the input feature map is 3x3. Every layer has 128 filters and a
stride of 2. Two leftover blocks make up Layer 3. Two convolutional
layers and a 3x3 input feature map make up each residual block.
Each layer has 256 filters and a stride of 2. Two blocks remain in
layer 4. Each residual block comprises two convolutional layers, 512
filters, a 3x3 input feature map, and a stride of 2. The operations of
the residual block are typically expressed in Equations 15-17.

IFM = ReLu(Conv2D(in, w,,b,)) (15)
IFM = ReLu(Conv2D(IFM, w;,bs)) (16)
out = ReLu(in + IFM) (17)

where IFM denotes intermediate feature map.

3.2.4 Global average pooling

After the final residual blocks, a 7x7 Global Average Pooling
(GAP) layer is added to reduce the feature dimensions from 3x3 to
1x1. The feature map of GAP is presented in Equation 18.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1711700
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sennan et al.

FIGURE 1

Overall process of vision transformer.

OutGAp =

where out denotes the output of each residual block.
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The global average pooling output is provided to the FC layer
for class prediction, as indicated in Equation 19.
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Z = outgap Xwy + by (19)

where Z denotes the logit function i.e., before applying the
Softmax function, w, and b, are the weight matrix and the
bias matrix.

3.2.6 Softmax layer
The final class probability is determined through the Softmax
layer, with the calculation provided in Equation 20.

Prob; = (20)

ezi
T
where Prob; denotes probability of i class and z; denotes logits
for the ith class.
Figure 2 depicts the complete workflow of the ResNet18 model.

4 The proposed hybrid vision
transformer with ResNet18 model

This work proposes a hybrid Vision Transformer (ViT) with
ResNet18 pre-trained models (ViT-ResNet18). The input images
are processed independently using the pre-trained ViT and
ResNet18 models. The output features of these two models are
concatenated and provided to the final FC layer.

A Softmax layer is subsequently applied to the FC output to
perform the classification of rice leaf diseases. The comprehensive
workflow of the Hybrid ViT-RestNet18 Model is illustrated in Figure 3.

4.1 Data collection

Diseases in the rice plant impact various parts of the body. The
dataset has been sourced from publicly accessible repositories,
specifically Kaggle (Rice diseases image dataset, 2024) and
Mendeley (Rice leaf diseases dataset, 2023). The dataset for rice
leaf disease available on Kaggle comprises a total of 3,345 images,
categorized into four distinct classifications. The Brown spot class
contains 523 images, the Healthy class consists of 1,488 images, the
Hispa class includes 565 images, and the Leaf Blast class has 779
images. The Mendeley rice leaf disease dataset consists of 4,684
images organized into three separate categories. The Bacterial blight
class contains 1604 images, the Brown spot class comprises 1620
images, and the Leaf smut class consists of 1460 images. This work
considers six classes derived from two distinct datasets. Table 2
presents the specifics of the combined dataset, detailing each class
along with its corresponding image distribution.

4.2 Data preprocessing

Image augmentation utilizes the Albumentations library to
achieve a balanced distribution of images across all classes, as
specified in the base paper by Kaur et al (Kaur et al.,, 2024). The

augmentation process encompasses several operations, including
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horizontal and vertical flipping, blurring, random adjustments of
brightness and contrast, as well as shifting, scaling, and rotating.
Figure 4. Shows the sample image of rice leaf diseases namely,
Healthy, Hispa, bacterial Blight, Brown Spot, Tungro and Leaf Blast.
Table 3 presents the distribution of data categorized by class for rice
lease diseases.
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FIGURE 2
Overall process of ResNet1l8 model.
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FIGURE 3
Proposed hybrid vision transformer (ViT)-RestNet18 model.

4.3 Feature extraction and classification

4.3.1 Input preparation
The input image is first resized to 224 x 224 pixels. It is then
given as input to both the ViT and ResNet18 modules.

4.3.2 Feature extraction with ViT

The model uses the ViT variant google/vit-base-patch16-224-
in21k. The image is split into 16 x 16 patches. Each patch is
flattened into a vector and passed through a linear embedding layer.
Positional encoding is added to retain spatial information. The
sequence of patch embeddings is then processed by transformer
encoder layers. Each encoder applies multi-head self-attention and
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feed-forward layers to preserve global context. The final class token
is extracted as the ViT feature vector.

4.3.3 Feature extraction with ResNet18

The same input image is also processed by ResNetl8, a
convolutional neural network. The network uses convolutional
layers, residual blocks, and pooling layers. These layers capture local
features like edges, textures, and shapes. A global average pooling
(GAP) layer then reduces dimensions and produces a feature vector.

4.3.4 Feature fusion

The Vision Transformer (ViT) produces a feature vector that
captures global image context. ResNet18 produces another feature
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TABLE 2 Class-wise data distribution in the combined dataset.

Disease name Image count

Healthy 1488
Hispa 565
Bacterial Blight 1604
Brown Spot 1620
Tungro 1308
Leaf Blast 779

vector that captures local patterns such as edges and textures. These
two vectors are combined through concatenation to form a single
feature representation.

Mathematically, if Fy;; € R? is the ViT feature vector and
Fresve: € R is the Resnet18 feature vector, the fused feature is
expressed in (Equation 21).

FﬁA.sion = [FViT | |FResNet] (21)

10.3389/fpls.2025.1711700

where || denotes the concatenation operation.

This fused feature vector combines both global and local
information, giving the model a richer representation of the rice leaf
image. It is then passed to the fully connected layer for classification.

4.3.5 Classification

The fused feature vector Fy,g, is sent to a fully connected (FC)
layer. The FC layer maps this high-dimensional feature into class
scores, also called logits. The FC operation can be written in
Equation 22.

Z=W . Fjgion +b (22)

where W is the weight matrix, b is the bias term, and Z is the
logit vector for all classes.
The logits are then passed through a Softmax function to

<

convert them into probabilities. For a class 7, the probability is

calculated as shown in Equation 23.

Ply="/,) = (23)

Pz
i

a.Healthy

c. Bacterial blight

d. Brown spot

e. Tungro

f. Leaf blast

FIGURE 4

Sample images of rice leaf diseases: (a) Healthy, (b) Hispa, (c) Bacterial blight, (d) Brown spot, (e) Tungro, and (f) Leaf blast.
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TABLE 3 class-wise data distribution for rice lease diseases.

Disease name Image count

Healthy 2382
Hispa 904
Bacterial Blight 1584
Brown Spot 1600
Tungro 1308
Leaf Blast 1440

where C is the total number of classes and Z; is the logic value
for 7.

The final output is the class with the highest probability,
predicting the type of rice leaf disease.

4.3.6 Output
The final classification predicts one of six classes: healthy, hispa,
bacterial blight, brown spot, tungro and leaf blast.

5 Results and discussion

The proposed Hybrid ViT-ResNet18 model is compared with
three existing models: VGG16 with Neural Network, Inception V3
with Neural Network and Squeeze Net with Neural Network (Kaur
et al, 2024). The authors discuss the accuracy and loss of the
proposed model utilizing training and validation data, the
confusion matrix based on training data and test data, and will
conclude with an evaluation of performance using specified metrics.

5.1 Model parameters and values

In this work, the dataset is randomly split into 70% of training data
and 30% of testing data, similar to the method used by Kaur et al (Kaur
et al, 2024). The dataset consists of six categories: healthy, hispa,
bacterial blight, brown spot, tungro, and leaf blast. All input images are
accurately classified and organized into their respective categories. The
proposed hybrid ViT-ResNetl8 model incorporates the following
essential parameter values and assumptions. The total count of
epochs is 17. The variant of the ViT model has been named as
google/vit-base-patch16-224-in21k. The ResNet variant is ResNet18.
It is used Adam optimization algorithm, configured with a learning rate
of 0.001 and a batch size of 32. Table 4 shows the parameters and
hyperparameter values of the proposed hybrid ViT-ResNet18 Model.

5.2 Experimental setup

This study was performed on a system equipped with an Intel i7
CPU, NVIDIA RTX 3090 GPU, and 16 GB of RAM. The hybrid
ViT-ResNet18 model was built using NumPy, Pandas, Python, and
PyTorch 2.0.

Frontiers in Plant Science

10.3389/fpls.2025.1711700

TABLE 4 Parameters and hyperparameter values of the proposed hybrid
ViT—ResNet18 model.

Parameter/

hyperparameter Value/setting

Dataset split 70% training, 30% testing

6 (Healthy, Hispa, Bacterial blight,

Number of cl:
Hmber of classes Brown spot, Tungro, Leaf blast)

Image size 224 x 224 pixels

Vision Transformer variant google/vit-base-patch16-224-in21k

ResNet variant ResNet18
Number of epochs 17
Optimizer Adam
Learning rate 0.001
Batch size 32

Loss function Cross-entropy loss

5.3 Ablation study

In order to analysis the role of each component of the hybrid
architecture suggested, an ablation study between two variations of
model, (1) Hybrid ViT-ResNet18, and (2) Hybrid ViT-ResNet18
accompanied by Neural Network, was performed as a comparative
study. The aim of comparing both variations of model here is to
identify how adding one more Neural Network layer following the
feature fusion process impacts the classification ability of a model.

Table 5 shows quantitative outcome of both variants on several
evaluation criteria, AUC, Accuracy, F1-Score, Precision, and Recall.

From Table 5, it is clear that the Hybrid ViT-ResNet18 model
moderately dominates its version based on the Neural Network
layer by all evaluation criteria. The hybrid model reached an
accuracy improvement of 0.6%, and parallel rise in FI1-Score,
precision, and by recall also. The slight difference of AUC (0.985
vs. 0.984) also implies that both models are highly discriminative,
but simpler hybrid model based on omission of Neural Network
layer generalizes better.

These results recommend that incorporating an extra Neural
Network layer does not greatly improve model performance and
potentially adds bloat. The better performance of the Hybrid ViT-
ResNet18 shows that it is possible to achieve direct ViT-ResNet18

TABLE 5 Performance comparison of hybrid ViT-ResNet18 with neural
network and hybrid ViT-ResNet18.

Evaluation = Hybrid ViT-ResNetl8 with  Hybrid ViT-
metrics neural network ResNet18
AUC 0.984 0.985
Accuracy 0.935 0.944
F1-Score 0.930 0.942
Precision 0.930 0.942
Recall 0.933 0.942
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feature representation fusion and a fully connected classifier for
effective capture of rice leaf disease image discriminative patterns,
leading to more compact and precise classification.

5.4 Model accuracy and loss

Figure 5 illustrates the accuracy of the proposed hybrid Vit-
ResNet18 model, comparing both training and validation datasets.
Epochs are shown on the x-axis. Accuracy of the model, from 0 to 1,
is shown on the Y-axis. The yellow color data points and line
represent the training accuracy for the proposed model. The initial
observation indicates a lower model accuracy, which subsequently
shows a gradual increase over time. The accuracy has remained
consistent, exhibiting the same values from epoch 8 through epoch
17. The orange color data points and lines represent the validation
accuracy. During the initial three epochs, significant fluctuations in
accuracy were observed. Subsequently, the accuracy values
stabilized, consistently remaining above 90%.

Figure 6 illustrates the loss of the proposed hybrid ViT-
ResNet18 model, plotted against both training and validation
datasets. Epochs are shown on the x-axis. Loss of the model, from
0 to 1, is shown on the Y-axis. The yellow color data points and line
represent the training loss associated with the proposed model. The
initial observation indicates that the model loss remains elevated for
the first two epochs. The model loss has subsequently shown a
gradual decrease. The loss values have remained consistent from
epoch 6 through epoch 17. The orange color data points and lines
represent the validation loss. The validation loss is recorded at
approximately 10%.
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5.5 Performance evaluation metrics

Accuracy, precision, recall, F1-score, and the confusion matrix
were some of the measures used to evaluate the models that were
concentrated on DL.

5.5.1 Accuracy
This ratio compares the number of correct predicts to the total
number of predictions. The calculation is given in Equation 24.

Number of right prediction

A = 24
CCUAY = Total number of prediction 24)

5.5.2 Precision

It quantifies the number of positive predictions that correspond
to actual positive instances. The calculation is presented in Equation
25.

Number of True Positive

Precision =
Number of True Positive + Number of False Positive

(25)

5.5.3 Recall

The metric quantifies the number of actual positive instances
that were accurately predicted by the proposed model. The
calculation is provided in Equation 26.

Number of True Positives

Recall =
€4 = Number of True Positives + Number of False Negatives

(26)

FIGURE 5
Hybrid ViT with ResNetl18 training vs validation accuracy.
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FIGURE 6

Hybrid ViT-ResNetl18 training vs validation loss.

5.5.4 Fl1-score

10.3389/fpls.2025.1711700

Training Loss
—=— Validation Loss

m,_ —a
6 8 10
Epoch

Precision and recall are used to evaluate model performance.

The calculation is presented in Equation 27.

5.6 Model performance evaluation

Figure 7 shows how four models perform. These are VGG16
with Neural Network, Inception V3 with Neural Network,

2xPxR
F1 - Score = PR (27)  SqueezeNet with Neural Network, and the proposed Hybrid ViT-
ResNet18. Each model is tested under the same setup to compare
accuracy and reliability. The Hybrid ViT with ResNet18 stands out
where P and R indicate precision and recall. by offering stronger results and better feature learning.
B
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For the Area Under the Curve (AUC), both VGG16 with Neural  reduced accuracy for those two classes, the model still outperformed
Network and SqueezeNet with Neural Network score 0.989. many earlier methods. With more training data, stronger image
Inception V3 with Neural Network and the Hybrid ViT with  features, or attention-based methods, the Healthy-Hispa confusion
ResNet18 record slightly lower scores of 0.985. Although the  can be reduced. This would make the model more reliable for real use
Hybrid ViT-ResNet18 falls a bit short in AUC, it performs better  in farms and crop health monitoring.
in other key measures. This shows that the Hybrid model is strong The Inception V3 with Neural Network model gave strong results
overall and handles tasks more effectively than the others. in classifying rice leaf diseases. It correctly identified most cases of

For accuracy, VGGI16 scores 0.897, Inception V3 scores 0.931,  Bacterial Blight (428 of 433), Blast (305 of 306), Brown Spot (477 of
and SqueezeNet reaches 0.933. The Hybrid ViT achieves the top  480), and Tungro (376 of 386). The main weakness was in separating
score of 0.944, which is 1.1% higher than SqueezeNet and 4.7%  Healthy and Hispa leaves. In this case, 192 Healthy samples were
higher than VGGle. marked as Hispa and 53 Hispa samples were marked as Healthy. This

The F1-Score results follow a clear trend. VGG16 with Neural  shows that the two classes share close visual traits, making them hard to
Network scores 0.902, Inception V3 with Neural Network reaches  tell apart. The model still learned clear disease patterns and gave steady
0.917, and SqueezeNet with Neural Network achieves 0.928. The  results. With more training images and better handling of Healthy and
proposed Hybrid ViT-ResNet18 outperforms them all with an F1-  Hispa, it could perform better in farm use.

Score of 0.942, showing a stronger balance between precision The confusion matrix for SqueezeNet applied to the Neural
and recall. Network using test data is shown in Figure 9. The observation

Regarding Precision, VGG16 with Neural Network achieves  indicates that the dark colors in the grid represent correct
0.918, Inception V3 with Neural Network records 0.917, and  predictions, while the grids with a white background signify
SqueezeNet with Neural Network reaches 0.928, whereas the  misclassifications of this model.

Hybrid ViT-ResNetl8 attains 0.942, demonstrating an Figure 10 illustrates the confusion matrix for the proposed
approximate 1.4% enhancement over the next best model. hybrid ViT with ResNet18, utilizing the test dataset. The

For Recall, Neural Network with VGG16 marks 0.897, Neural ~ observation indicates that the dark colors in the grid represent
Network with Inception V3 marks 0.922, Neural Network with  correct predictions, while the grids with a white background signify
SqueezeNet marks 0.931, whereas Hybrid ViT-ResNetl8 marks  misclassifications of the model.
highest recall of 0.942, hence marks better ability for proper It is observed that the proposed Hybrid ViT integrated with
identification of positive instances. ResNet18 demonstrates a higher accuracy in predictions compared

Overall, if we compare the AUC values of our suggested Hybrid ~ to VGG16 with Neural Network, Inception V3 with Neural
ViT-ResNet18 to those of other models, it shows equivalent results, = Network and SqueezeNet combined with a neural network.
yet it shows steady improvement across accuracy, Fl-score,
precision, and precision, hence proving its reliability and better
performance compared to classical CNN-based architectures. 6 Analysis and discussion
Table 6 provides the efficacy evaluation of the proposed Hybrid
ViT-ResNet18 and existing models. The hybrid ViT-ResNet18 model was evaluated on the aspects

The confusion matrix illustrates how well a classification model  of the accuracy, precision, recall, F1-score, and AUC as illustrated in
performs by showing the number of correct and incorrect predictions ~ Figure 11. The results obtained 94.4% accuracy, 0.948 precision,
for each class. Figure 8 shows the confusion matrix of VGG16 with ~ 0.944 recall, 0.942 Fl-score, and 0.985 AUC, respectively. As
Neural Network. It reached high accuracy for most classes. Bacterial ~ presented, the results indicate that the model keeps a good
blight had 427 correct out of 433, Blast had 305 out of 306, Brownspot  equilibrium between sensitivity and specificity.
had 477 out of 480, and Tungro had 376 out of 386. These results show The performance of the hybrid model was better than that of
the model can recognize clear disease patterns with few errors. The  baseline models. The accuracy was better than VGG16 with Neural
main problem was between Healthy and Hispa leaves. The model =~ Network by 5% and InceptionV3, SqueezeNet by 1%. This
confused 192 Healthy samples as Hispa and 53 Hispa samples as  enhancement results from the combination of local and global
Healthy. This happened because the two look very similar. While this ~ features. The Vision Transformer are aware of overall image

TABLE 6 Efficacy evaluation of the proposed hybrid ViT-ResNet18 and existing models.

Evaluation VGG16 with neural Inception V3 with neural SqueezeNet with neural Hybrid VIiT with
metrics network network network ResNet18
AUC 0.989 0.985 0.989 0.985
Accuracy 0.897 0.931 0.933 0.944
F1-Score 0.902 0.917 0.928 0.942
Precision 0.918 0.917 0.928 0.942
Recall 0.897 0.922 0.931 0.942
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Confusion matrix of hybrid ViT-ResNet18.

patterns, while fine details, along with texture information, are
maintained by ResNet18. Combining them, feature learning, as well
as misclassification reduction, are both enhanced.

The confusion matrix supports this conclusion. There are decent
performances for all the classes of diseases, with less error for close
classes. There are still some errors, however, particularly for classes with
less number of images. This lends support for more extensive and
balanced datasets. The hybrid ViT-ResNetl8 model exhibits high
confidence and robustness than the previously suggested techniques.
Additional steps are expanding the dataset, validation with field images,
and minimizing processing expense for real-time vision implementation.

7 Conclusion and future work

Agriculture is essential for sustaining human life. Detecting rice
leaf disease is crucial for enhancing crop productivity. This work
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proposed a hybrid model that combines the Vision Transformer
(ViT) design with a pre-trained ResNetl18 to make predicting rice
leaf diseases more accurate. The input images are processed
independently using the pre-trained ViT-ResNetl8 models. The
output features of these two models are concatenated and provided
to the final Fully Connected (FC) layer, followed by a Softmax layer
for final classification. The output of rice leaf disease generated from
the FC layer. The hybrid ViT-ResNet18 model has 94.4% accuracy,
0.948 precision, 0.944 recall, 0.942 F1-Score, and 0.985 AUC. The
proposed hybrid model shows a 5%, 1%, and 1% improvement in
accuracy compared to VGG16 with Neural Network, Inception V3
with Neural Network, and SqueezeNet with Neural Network

classifier, respectively.
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In future, more disease leaf classes will be incorporated to
effectively address various rice leaf diseases. The results will be
implemented in the mobile application. The application enables
farmers to install it and automatically detect leaf diseases
independently.
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