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Combined application of biochar
and halophyte intercropping
enhances cucumber yield and
quality by ameliorating soil
properties in a continuous
cropping system
Songsong Shen1,2, Yusheng Xu1, Zhongpeng Liu3, Yating Luo1,
Ruifang Wang1, Guanlin Li4* and Yujing Liu2*

1School of tea and Coffee, Pu’er University, Puer, China, 2Nanjing Agriculture University, College of
Life Sciences, Nanjing, China, 3School of Environment and Safety Engineering, Jiangsu University,
Zhenjiang, China, 4College of Tropical Crops, Hainan University, Haikou, China
Biochar amendment and halophyte intercropping are viable strategies for

alleviating soil degradation in greenhouse systems, specifically the secondary

salinization and autotoxicity induced by continuous cropping. Nevertheless, the

potential synergistic effects of combining these practices remain poorly

understood. This study investigated their synergistic effects on soil properties,

microbial communities, and cucumber performance. A pot experiment was

conducted with the following treatments: soil without amendment (CK),

biochar (B), Paspalum vaginatum intercropping (S), and biochar combined with

Paspalum vaginatum intercropping. The results showed that BS treatment led to

the highest increases in soil organic carbon content, pH, total nitrogen content,

available phosphorus content, and available potassium content compared to CK

(p<0.05). Concurrently, BS significantly reduced available nitrogen, electrical

conductivity, Na+, SO4
2-, and Cl- levels, while total phosphorus remained

unaffected. Cucumber yield increased significantly by 11.50% and 27.12% under

B and BS treatments, respectively, whereas S showed no significant effect. BS also

achieved the highest fruit quality enhancement, followed by B and S. Notably, B

and S treatments displayed the highest and lowest K+, Ca2+and Mg2+

accumulation, respectively, whereas the BS treatment led to K+ and Ca2+

concentrations that were significantly lower than those in the B treatment. Soil

bacterial diversity was significantly enhanced under BS. The PLS-PM identified

the alleviation of soil salinity and acidity, along with improved nutrient availability,

as the primary drivers for enhanced crop performance, with soil bacterial
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1711099/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1711099/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1711099/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1711099/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1711099/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1711099/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1711099&domain=pdf&date_stamp=2025-11-20
mailto:liliguanlin@ujs.edu.cn
mailto:liuyujing@njau.edu.cn
https://doi.org/10.3389/fpls.2025.1711099
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1711099
https://www.frontiersin.org/journals/plant-science


Shen et al. 10.3389/fpls.2025.1711099

Frontiers in Plant Science
diversity playing a secondary yet significant role. These findings suggest that

biochar combined with intercropping (BS) effectively mitigates continuous

cropping obstacles in greenhouse systems by synergistically improving soil

health and microbial ecology.
KEYWORDS

biochar, phytoremediation, soil salinity, nutrient imbalance, bacterial community,
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1 Introduction

Greenhouse cultivation offers a stable environment that meets

the global demand for vegetables, making it one of the most widely

adopted agricultural systems worldwide (Li et al., 2019; Lopez-

Marin et al., 2019). Its high profitability often leads to continuous

cropping and excessive fertilization (Liu and Zhang, 2021; Lv et al.,

2019). However, continuous monoculture and excessive fertilizer

input often lead to a decline in soil quality (Wang et al., 2021b; Yang

et al., 2016), secondary soil salinization (Hu et al., 2020), soil

acidification (Song et al., 2016; Zhang et al., 2022b), autotoxicity

(Xiao et al., 2020), and the accumulation of soil-borne pathogens

(Meng et al., 2018), which limit the yield and quality of greenhouse

crops (Sun et al., 2019). Hence, implementing effective soil

management strategies is crucial to maintaining the yield and

quality of greenhouse crops, given the system’s global importance

and the numerous soil degradation processes it induces.

Owing to its strong adsorption capacity and alkaline nature,

biochar is considered a promising amendment for soil health

management (Shi et al., 2023; Spokas et al., 2012). It has been

shown to mitigate several continuous cropping obstacles

simultaneously, such as by adsorbing allelopathic phenolic

compounds (Lin et al., 2023), enhancing nutrient availability (Han

et al., 2023; Yan et al., 2022), and optimizing the microbial habitat

(Wang et al., 2020). However, a critical but often overlooked risk is

that biochar application may also introduce or exacerbate soil salinity,

primarily due to the direct input of salt ions present in the biochar

itself, especially when derived from high-salt feedstocks (Amini et al.,

2016; Wang et al., 2023b). Additionally, the aging process can

diminish biochar’s adsorption capacity, potentially causing the re-

release of previously bound salt ions (Akhtar et al., 2015; Kong et al.,

2014). This inherent limitation suggests that biochar alone might be

insufficient or even risky for managing the saline conditions often

associated with greenhouse continuous cropping.

Conversely, halophytes represent a low-cost phytoremediation

strategy widely employed in agriculture to improve saline soil

conditions (Jurado et al., 2024; Liang and Shi, 2021). For

example, intercropping with salt-tolerant species, such as lawn

grass (Paspalum vaginatum) (Hu et al., 2020), Portulaca oleracea

(Simpson et al., 2018), or legumes (Zheng et al., 2023), has been
02
demonstrated to alleviate salt stress, improve crop quality and yield,

and enhance soil nutrient availability. This approach effectively

reduces the adverse effects of salinity on crops (Aksoy et al., 2001).

Although effective for salinity control, the capacity of halophyte

intercropping alone to rapidly improve broader soil issues like

severe acidification or nutrient immobilization may be limited.

Thus, we hypothesize that integrating biochar amendment with

halophyte intercropping could create a synergistic solution for the

multifaceted challenges of continuous cropping. Biochar’s ability to

rapidly adjust pH, improve nutrient retention, and adsorb phenolics

could establish a more favorable base soil condition. This improved

environment might, in turn, enhance the establishment and salt-

uptake efficiency of the intercropped halophyte. Meanwhile, the

halophyte can continuously remove salts from the soil, mitigating

the potential salinization risk from biochar and preventing salt

rebound. While both biochar and intercropping individually

enhance soil health (Liu et al., 2024; Wang et al., 2023a), their

combined effects, particularly the potential synergy in reshaping the

soil microbial community to foster a more resilient and beneficial

microbiome under the complex stress of continuous cropping,

remain poorly understood (Jin et al., 2024). This knowledge gap

is critical given the crucial role of soil microorganisms in

maintaining soil health and suppressing soil-borne diseases (Gu

et al., 2023; Liu et al., 2023a).

Therefore, this study aimed to investigate the potential of

combined biochar amendment and intercropping with the

halophyte Paspalum vaginatum as an integrated strategy to

concurrently address multiple soil constraints (acidity, salinity,

nutrient imbalance, and autotoxicity) in a continuous cucumber

system. The specific objectives were to: (1) assess the effects of

biochar and/or Paspalum vaginatum intercropping on cucumber

growth and fruit quality; (2) evaluate the changes in key soil

physicochemical properties induced by these treatments; and (3)

investigate their collective influence on soil bacterial communities

to identify the key factors determining cucumber performance. We

hypothesized that the combined application would synergistically

ameliorate soil properties, reshape the microbial community

structure towards a more beneficial state, and consequently lead

to greater improvements in cucumber yield and quality compared

to either practice alone.
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2 Materials and methods

2.1 Experimental setup

A pot experiment was conducted in a greenhouse at the

teaching and research base of Nanjing Agricultural University,

Nanjing, China (118°51' E, 32°01' N). The experimental soil

(sandy loam) was collected from the top layer (0–20 cm) of a

greenhouse in Jurong City, Jiangsu Province, China (119°13' E, 31°

47' N), which had been under continuous cucumber monoculture

for 15 years. The soil properties were as follows: pH, 5.43; electrical

conductivity (EC), 1500 μS cm-¹; soil organic carbon (SOC), 5.91 g

kg-¹; total nitrogen (TN), 1.41 g kg-¹; total phosphorus (TP), 1.28 g

kg-¹. Biochar, supplied by Zhenjiang Zedi Biotechnology Co., Ltd.

(Zhenjiang, China), was produced by anaerobic pyrolysis of rice

straw at 600 °C. Its physicochemical characteristics were: pH, 8.85;

SOC, 620 g kg-1; TN 10.5 g kg-1; available phosphorus (AP), 1.13 g

kg-1; available potassium (AK), 23.1 g kg-1; Brunauer-Emmett-

Teller (BET) surface area, 675 m2 g-1;and elemental composition

of carbon (C), hydrogen (H), nitrogen (N), and oxygen (O) at

62.0%, 2.5%, 2.2%, and 20.6%, respectively. Cucumber seeds (cv.

Xinjin No. 4) were purchased from Luming Seed Co., Ltd. (Taian,

China). The Paspalum vaginatum was selected for intercropping

based on research reporting its salt tolerance and ability to

effectively alleviate secondary salinization in greenhouse soils (Hu

et al., 2020).

A completely randomized design with four treatments was

implemented: soil without amendment (CK), intercropping with

Paspalum vaginatum (S), soil amended with biochar at 2% (w/w)

(B), and 2% (w/w) biochar amendment combined with P.

vaginatum intercropping. The biochar was thoroughly mixed with

the soil and then placed into plastic pots (total volume of 6.5 L).

Each treatment consisted of three independent biological replicates.

To ensure robust sampling, each biological replicate comprised

three pots, which were treated as technical replicates. Cucumber

seeds were germinated in seedling trays. At the two-true-leaf stage,

uniform and vigorous seedlings were transplanted into the pots

(one seedling per pot). Concurrently, stem cuttings of Paspalum

vaginatum were planted at a density of ten cuttings per pot.

Paspalum vaginatum was trimmed to 4 cm height at 25 and 40

days after transplanting, and all trimmings were removed from the

pots. Throughout the experiment, only cucumbers and Paspalum

vaginatum were retained; weeds were manually removed. No

fertilizers, herbicides, or pesticides were applied. Pests were

managed using insect-proof nets and yellow sticky traps. All pots

were irrigated equally every three days.
2.2 Soil sampling and analysis

After harvest, rhizosphere soil was collected using the root-

shaking method (Inderjit and Mallik, 1997). The composite soil

sample from each replicate was divided into three parts: one was

stored at -80 °C for microbial DNA sequencing; one was stored at

4 °C for the measurement of available·nitrogen (sum of NH4
+-N
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and NO3
--N) and the remainder air-dried for subsequent analysis of

soil pH, EC, SOC, TN, TP, AP, AK, water-soluble ions, and phenolic

compounds. For these analyses, measurements from the three

technical pots within a biological replicate were averaged to yield

a single value representing that replicate.

Soil pH and EC were measured in a 1:5 (w/v) soil-water

suspension using a portable pH meter (FieldScout pH400,

Spectrum Technologies Inc., USA) and a conductivity meter

(DDSJ-308F, LeiCi, China), respectively. NH4
+-N and NO3

--N

were extracted with 2 M KCl at a soil-to-solution ratio of 1:5 (w/

v) and analyzed with a flow injection auto-analyzer (AutoAnalyzer

3, Seal Analytical, Norderstedt, Germany). SOC was determined by

the potassium dichromate oxidation method using a Multi N/C

2100 analyzer (Analytik Jena, Germany), after removing inorganic

carbon by fumigation with concentrated HCl. TN and TP were

determined using a flow injection autoanalyzer (AutoAnalyzer 3,

Seal Analytical, Germany) following digestion with H2SO4-HClO4.

AP was extracted with 0.5 MNaHCO3 (1:5, w/v) and analyzed using

the flow injection autoanalyzer. AK was extracted with 1 M

ammonium acetate (1:10, w/v) and quantified using a flame

photometer (BWB Technologies Ltd., UK). Water-soluble ions

were extracted with deionized water at a 1:5 (w/v) ratio. Cation

(Na+, K+, Ca²+, Mg²+) concentrations were determined by

inductively coupled plasma optical emission spectrometry (ICP-

OES; iCAP 6300, Thermo Fisher Scientific, USA), and anion (Cl-,

SO4²
-) concentrations were measured by ion chromatography (ICS-

5000, Thermo Fisher Scientific, USA). Total phenolics, complex

phenolics, and water-soluble phenolics were determined according

to the Folin-Ciocalteu method (Zhou et al., 2021).
2.3 Plant growth and fruit quality analysis

Plant height was measured 30 days after transplanting. At

harvest, three random plants per treatment were selected. The

total yield per plant was determined by harvesting all fruits from

each selected plant. The aboveground biomass and roots of the

cucumber plants were separately oven-dried at 65 °C until a

constant weight was achieved. The vitamin C content was

determined using the 2,6-dichloroindophenol titration method.

Nitrate content was measured using the salicylic acid method

(Zhang et al., 2020). Soluble sugar content was determined by

extraction with boiling water followed by analysis using the

anthrone colorimetric method (Pasin et al., 2020; Zhao et al., 2017).
2.4 DNA extraction and illumina HiSeq
sequencing

Genomic DNA was extracted from soil samples using the

E.Z.N.A. Soil DNA Kit (Omega Bio-tek, Inc., USA) according to

the manufacturer’s instructions. The quality and concentration of

the extracted DNA were confirmed using a Nanodrop 2000

(ThermoFisher Scientific, Inc., USA). Bacterial 16S rRNA gene

V3-V4 regions were amplified using the universal primers 38F
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and 806R (Caporaso et al., 2011). An 8-bp barcode sequence was

added to the 5’ end of both the forward and reverse primers to

distinguish different samples. The final barcoded primers were used

for amplification on an ABI 9700 PCR instrument (Applied

Biosystems, Inc., USA). Polymerase chain reaction (PCR) was

performed as previously reported (Yang et al., 2019b). Two

rounds of PCR amplification were conducted, and the size of the

amplified target bands was detected using 1% agarose gel

electrophoresis. PCR products were purified using the Agencourt

AMPure XP (Beckman Coulter, Inc., USA) nucleic acid

purification kit.
2.5 Microbial community analysis

The sequencing data were demultiplexed based on the barcode

sequences. The software Pear (v0.9.6) was used to filter and

assemble the sequencing data, with a minimum overlap of 10 bp

during assembly (Zhang et al., 2014). After assembly, sequences

shorter than 230 bp were removed using the Vsearch (v2.7.1)

software (Rognes et al., 2016), and chimeric sequences were

identified and removed using the uchime method against the

Gold Database (Edgar et al., 2011). The uparse algorithm in

Vsearch (v2.7.1) was used to cluster high-quality sequences into

operational taxonomic units (OTUs) with a sequence similarity

threshold of 97% (Edgar, 2013). The representative sequences of

OTUs were aligned against the Silva138 database using the BLAST

algorithm, with an e-value threshold set at 1e-5, to obtain the

taxonomic information for each OTU (Johnson et al., 2008; Pruesse

et al., 2007).

Based on the OTU and abundance results, alpha diversity

indices were calculated using the QIIME (v1.8.0) software, and

plots were generated using R (v3.6.0) software (Caporaso et al.,

2010). Bacterial community diversity was analyzed based on the

Bray-Curtis dissimilarity index, and principal coordinates analysis

(PCoA) plots were generated (Caporaso et al., 2010). For

community composition visualization, the top 10 most abundant

bacterial phyla were plotted based on their relative abundance; all

remaining phyla were grouped into an ‘Other’ category. Biomarker

features in each group were screened by Metastats and LEfSe

software. Functional profiling of the soil microbial metagenome

was predicted from the 16S rRNA gene sequencing data using

PICRUSt based on Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways.
2.6 Statistical analyses

Given the nested design, data from the three technical pots per

biological replicate were averaged, resulting in a sample size of n = 3

per treatment for all statistical tests. All data were statistically

analyzed using SPSS 22.0 (SPSS, Inc., Chicago, IL, United States).

Significant differences (p < 0.05) among treatments, based on one-
Frontiers in Plant Science 04
way ANOVA followed by Duncan’s test, are indicated by different

lowercase letters. All column charts were created using Origin

2024b (OriginLab Corporation, Northampton, MA, USA). Partial

least squares path model (PLS-PM) was used to determine the direct

and indirect effects of soil factors pH, available N, soil nutrients

index (total P, available P, available K), phenolic index (total

phenols, complex phenolic, and water-soluble phenolic),

properties (SO4
2-, Na+) and soil bacteria on cucumber growth

and quality. The reliability of the model was assessed using the

Goodness of Fit (GoF) metric. A GoF value ≥ 0.36 indicates better

model alignment (Wetzels et al., 2009).
3 Result

3.1 Effects of biochar and intercropping on
cucumber growth

The application of biochar (B), intercropping with Paspalum

vaginatum (S), and their combination promoted cucumber plant

growth compared to CK (Figure 1). Plant height was significantly

increased by treatments B and BS compared to CK, with the BS

treatment achieving the greatest height among all treatments

(Figure 1a). In contrast, above-ground biomass did not differ

significantly among treatments (Figure 1b). Total root biomass

increased by 11.19% (B), 10.92% (S), and 21.47% relative to CK

(Figure 1c). Of these, only the increase in the BS treatment was

statistically significant. Cucumber yield was also significantly

increased by all treatments relative to CK, by 11.50% (B), 8.18%

(S), and 27.12% (p < 0.05; Figure 1d).
3.2 Effects of biochar and intercropping on
cucumber quality

Continuous cropping negatively affected cucumber fruit quality,

an effect that was significantly ameliorated by biochar addition,

intercropping, and particularly their combination (Figure 2).

Compared to CK, the treatments B, S, and BS significantly

increased the average content of soluble protein in cucumber

fruits by 27.49%, 25.89%, and 37.73%, respectively (p < 0.05)

(Figure 2a). No significant differences were observed among the

three amendment treatments. Water-soluble sugar content

exhibited a similar trend, with values ranking as S < B < BS

(Figure 2b). The S and B treatments increased sugar content by

10.56% and 10.35%, respectively, compared to CK, but these

increases were not statistically significant. In contrast, the BS

treatment produced a significant 11.59% increase (Figure 2b).

Vitamin C content was significantly increased by 15.25% in the

BS treatment compared to CK (Figure 2c). All amendment

treatments significantly reduced the fruit nitrate content relative

to CK (145.45 mg kg-¹), with values decreasing to 83.65 (B), 93.32

(S), and 74.44 mg kg-¹ (p < 0.05; Figure 2d).
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3.3 Effects of biochar and intercropping on
soil phenolic

The application of biochar and intercropping significantly

reduced the content of phenolic compounds in the soil (Figure 3).

Total phenolic acid content in the cucumber rhizosphere soil was

significantly decreased in all treatments relative to CK (p < 0.05;

Figure 3a). The greatest reduction (29.66%) was observed in the BS

treatment, although this value was not statistically different from

that in the S treatment. The content of complex phenolics in

cucumber roots was significantly reduced by 41.27% (B), 36.89%

(S), and 45.73% compared to CK (Figure 3b). Similarly, the water-

soluble phenolic content was significantly reduced by 17.10% (B),

11.90% (S), and 31.04% (Figure 3c).
3.4 Effects of biochar and intercropping on
soil salinity

All amended treatments significantly reduced the electrical

conductivity (EC) of the cucumber rhizosphere soil compared to

CK. The BS treatment resulted in the greatest reduction (14.09%),

followed by B (13.41%) and S (8.86%). The concentrations of Na+,
Frontiers in Plant Science 05
SO4²
-, and Cl- were all significantly lowered by the amendments

relative to CK (p < 0.05). The reduction in SO4²
- content ranged

from 25.64% to 45.45% across treatments.For Cl- and Na+, the BS

treatment showed the greatest reductions (31.75% and 27.93%,

respectively), followed by the B treatment (21.76% and 21.61%).

The S treatment resulted in the smallest decreases (11.24% for Cl-

and 16.23% for Na+). The reductions achieved by the B and S

treatments were not significantly different from each other. In

contrast, the effects on cation concentrations (Ca²+, K+, Mg²+)

were more variable. The S treatment significantly decreased Ca²+

and K+ levels relative to CK, but had no significant effect on Mg²+.

Conversely, the B treatment significantly increased the

concentrations of all three cations. The BS combination treatment

resulted in cation concentrations that were not significantly

different from those in the CK soil.
3.5 Effects of biochar and intercropping on
soil chemical properties

The application of biochar and intercropping significantly

altered several soil chemical properties, including pH, SOC, TN,

AP, NH4
+ and NO3

- (Table 1). The rhizosphere soil pH increased
FIGURE 1

Effects of biochar and intercropping on plant height (a), above-ground biomass (b), below-ground biomass (c), and yield (d) of continuously
cropped cucumbers. Each value represents three biological replicates (± SD) (n = 3). Different lowercase letters indicate significant differences
among treatments at the p < 0.05 level.
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significantly in the B (to 7.07) and BS (to 6.85) treatments compared

to the control (CK, 5.57), with increments of 1.50 and 1.28 units,

respectively. In contrast, the increase observed in the S treatment (to

5.93, an increase of 0.36 units) was not statistically significant. The

SOC content was significantly increased by the B and BS treatments

compared to CK. In contrast, the S treatment had no significant

effect on SOC. Interestingly, TN content was significantly increased
Frontiers in Plant Science 06
by all treatments. Conversely, NO3
- content was significantly

reduced compared to CK (p < 0.05). Meanwhile, no significant

differences were observed in the TP content among all treatments.

AP increased significantly by 32.08%, 13.85%, and 34.03%

respectively compared to CK. Similarly, the AK content was

significantly higher than CK only in the B and BS treatments

(p < 0.05).
FIGURE 2

Effects of biochar and intercropping on the soluble protein (a), soluble sugar (b), vitamin C (c), and nitrate content (d) in fruits of continuously
cropped cucumbers. Each value represents three biological replicates (± SD) (n = 3). Different lowercase letters indicate significant differences
among treatments at the p < 0.05 level.
FIGURE 3

Effects of biochar and intercropping on total phenolics (a), complex phenolics (b), and water-soluble phenolics (c) in continuously cropped soils.
Each value represents three biological replicates (± SD) (n = 3). Different lowercase letters indicate significant differences among treatments at the
p < 0.05 level.
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3.6 Effects of biochar and intercropping on
soil bacterial diversity and community
structure

The CK treatment resulted in the lowest observed species

richness, which was significantly lower than that in the B and BS

treatments (p < 0.05; Figure 4a). A similar trend was observed for

phylogenetic diversity (PD), with CK also being significantly lower

than B and BS (Figure 4b). In contrast, the Chao1 index did not
Frontiers in Plant Science 07
differ significantly among treatments (Figure 4c). The Shannon

index, a measure of community diversity, was highest in the BS

treatment and was significantly greater than in all other treatments

(Figure 4d). Principal coordinates analysis (PCoA) based on OTU

profiles (97% similarity) revealed clear separation in bacterial

community structure among the treatments. The PCoA plot

showed a clear separation along PC1, with the B and BS

treatments cluster ing separately from the CK and S

treatments (Figure 5).
TABLE 1 Effects of biochar and intercropping on the chemical properties of continuously cropped soils.

Treatments
pH

(water)
SOC

(g kg-1)
TN

(g kg-1)
TP

(g kg-1)
AP

(mg kg-1)
AK

(mg kg-1)
NH4

+

(mg kg-1)
NO3

-

(mg kg-1)

CK 5.57 ± 0.11c 8.65 ± 0.57c 1.63 ± 0.02b 1.46 ± 0.06a 85.94 ± 4.07c 246.05 ± 4.14b 16.68 ± 1.15a 93.60 ± 3.33a

B 7.07 ± 0.20a 11.43 ± 1.02b 1.79 ± 0.03a 1.47 ± 0.05a 113.52 ± 4.17a 280.15 ± 13.66a 13.68 ± 0.45ab 44.71 ± 2.67c

S 5.93 ± 0.12b 9.47 ± 0.57bc 1.79 ± 0.05a 1.43 ± 0.11a 97.85 ± 1.75b 272.08 ± 3.57ab 15.23 ± 0.37ab 60.45 ± 2.18b

BS 7.28 ± 0.05a 14.52 ± 0.85a 1.85 ± 0.04a 1.48 ± 0.03a 115.19 ± 4.75a 288.30 ± 14.15a 12.92 ± 0.35b 40.95 ± 2.27c
CK, Control; B, Biochar amendment; S, Intercropping with Paspalum vaginatum; BS, Biochar amendment combined with intercropping Paspalum vaginatum. Each value represents three
biological replicates (± SD) (n = 3). Different lowercase letters indicate significant differences among treatments at the p < 0.05 level.
FIGURE 4

Effects of biochar and intercropping on soil bacterial observed species (a), PD whole tree (b), Chao1 (c), and Shannon index (d). Each value
represents three biological replicates (± SD) (n = 3). Different lowercase letters indicate significant differences among treatments at the p < 0.05
level.
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3.7 Effects of biochar and intercropping on
the composition of soil bacterial
communities

The composition of soil bacterial communities was significantly

altered by the amendments at the phylum level (Figure 6). Despite

treatment effects, the overall phylum-level profile was similar across

all samples. The dominant phyla, collectively accounting for 92.87%

of sequences, were Proteobacteria, Bacteroidota, Patescibacteria,

Gemmatimonadota, Chloroflexi, Firmicutes, Acidobacteriota,

Actinobacteriota, and Cyanobacteria. The relative abundance of

Proteobacteria was significantly higher in the CK treatment than in

the BS treatment. In contrast, the relative abundances of

Gemmatimonadota, Bacteroidota, and Chloroflexi were lower in

the CK treatment than in the amended treatments. The S treatment

was associated with the highest relative abundances of

Patescibacteria and Cyanobacteria. The relative abundance of

Actinobacteriota was significantly lower in all amended

treatments (B, S, BS) compared to the CK treatment.
3.8 Relationships between soil properties
and cucumber yield and quality

The partial least-squares path model (PLS-PM) was used to

explore the dominant factors affecting cucumber yield and quality

(Figure 6). Cucumber yield was significantly affected by soil

variables, with soil pH having a substantial positive impact, while

available N, salt properties, and phenolic acids had significant

negative effects (Figure 6a). In contrast, the influence of soil
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bacterial diversity on cucumber yield was relatively minor. Unlike

yield, soil bacterial diversity and salt properties had direct and

significant positive and negative effects on soluble sugar content,

respectively (Figure 6b). Soil pH and nutrient availability indirectly

enhanced the soluble sugar content of cucumbers, whereas available

N had the opposite effect. Similar to soluble sugar, available N, salt

properties, and phenolic acids were negatively correlated with

soluble protein and vitamin C content in cucumbers, while pH

had the opposite effect. Additionally, Vc content was significantly

influenced by positive effects from microbial diversity and soil

nutrient availability, and a negative effect from salt properties

(Figures 6c, d). However, microbial diversity was not a primary

driver of nitrate content in cucumbers. Instead, nitrate content in

cucumbers was significantly and positively influenced by available

N and phenolic acids (Figure 6e).
4 Discussion

To address the progressive degradation of greenhouse soil

health caused by continuous cropping and to promote sustainable

agricultural production, various techniques such as soil fumigation,

soil replacement, and grafting have been proposed to mitigate the

obstacles associated with continuous cropping (Ding et al., 2021).

However, these methods may increase production costs, cause

environmental damage, and reduce crop quality, whereas the use

of biochar or intercropping avoids these disadvantages (Jesus et al.,

2024; Wang et al., 2021a). Therefore, to reduce improvement costs

and minimize environmental impact, we integrated biochar with

intercropping to investigate the mechanisms through which this
FIGURE 5

Structure of soil bacterial communities affected by biochar and intercropping. Bacterial community analysis based on Bray-Curtis dissimilarity.
Different colored shapes represent different treatments. The distance between samples represents the degree of difference.
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combination alleviates soil constraints in continuous cropping

systems. In this study, the combined application of biochar and

intercropping significantly alleviated the degradation of soil quality

caused by continuous cropping obstacles. The application of

biochar, both alone and in combination with intercropping,

modified the soil’s biochemical properties, thereby directly or

indirectly enhancing the yield and quality of cucumbers in

continuously cropped soil.
4.1 Effect of biochar and intercropping on
soil physicochemical properties

Long-term continuous cropping, coupled with excessive and

imbalanced fertilizer inputs, leads to decreased soil pH, secondary

salinization, and nutrient imbalances (Gong et al., 2024; Zheng

et al., 2021). These phenomena are recognized as major factors

contributing to continuous cropping obstacles in greenhouse

production systems (Bai et al., 2020; Zhang et al., 2021).

Consequently, persistent soil degradation markedly diminishes

the productive capacity of agricultural land and threatens the
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sustainability of crop production (Li et al., 2024; Yan et al., 2024).

In this study, owing to its inherent alkalinity and high organic

carbon content, biochar application—both alone and combined

with intercropping—effectively increased soil pH and SOC content

(Table 1) (Liu et al., 2014; Zhang et al., 2010). Previous research has

demonstrated a negative correlation between soil available N

content and pH (Liu et al., 2023b). This relationship may be

attributed to enhanced ammonification, which consumes H+ ions

and consequently elevates soil pH (Xu et al., 2006). These processes

contribute to creating a more favorable soil environment for plant

growth. In continuous cropping systems, the availability of

phosphorus (AP) and potassium (AK) often declines, whereas

available N frequently accumulates, resulting in severe nutrient

imbalances (Li et al., 2017; Liu et al., 2023b). Our findings showed

that biochar amendment and intercropping can ameliorate soil

quality by enhancing AP and AK availability, a phenomenon

corroborated by previous studies (Table 1) (Wang et al., 2024c;

Zhou et al., 2021). Interestingly, both biochar application and

intercropping also significantly reduced the soil NO3
- content

(Table 1). The observed reduction in soil available N could

potentially be attributed to the strong adsorption capacity of
FIGURE 6

The partial least-squares path model (PLS-PM) showing the effects of biochar and intercropping on cucumber yield (a), soluble sugar (b), soluble
protein (c), vitamin C (Vc) (d), and nitrate (e). Green and red solid lines represent significant positive and negative effects, respectively, while dashed
lines indicate non-significant effects.
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biochar, which may immobilize mineral nitrogen, coupled with the

increased AN uptake by the intercropped plants, but may also alter

the N-cycling mediated by microbes, such as ammonia-oxidizing

bacteria (AOB) and archaea (AOA) (Lehmann et al., 2021; Xiang

et al., 2024). Further research into microbe-involved nitrogen

cycling processes is needed to reveal the mechanisms of N cycling

mediated by biochar. The reduction in available N, particularly in

the form of NO3
-, might initially appear detrimental, excessively

high levels of NO3
- are in fact phytotoxic—a common scenario in

greenhouse production systems (Zhang et al., 2021). The strong

effect of biochar or intercropping in reducing available N content

may be more effective when applied to greenhouse continuous

cropping soils degraded by excessive nitrogen fertilizer application.

Thus, both biochar and intercropping play crucial roles in

rebalancing soil nutrient dynamics (Hauggaard-Nielsen and

Jensen, 2005). Furthermore, compared to CK, the soil phenolic

acid content decreased significantly across all amendment

treatments, with the most substantial reduction observed in the

BS treatment (Figure 3). This indicates that both biochar and

intercropping directly or indirectly influence the soil micro-

ecological environment, ultimately affecting cucumber yield and

quality. The mitigation of autotoxic effects on cucumbers by biochar

may be attributed to its high porosity, substantial adsorption

capacity, and large specific surface area, which likely facilitate the

adsorption of phenolic acids. Additionally, biochar-induced

alterations in the soil microbial community might contribute to

the degradation of these autotoxic substances (Yang et al., 2019a).

Similarly, intercropping reduces phenolic acid levels,which may be

due to the root exudates from Paspalum vaginatum that enhance

nutrient availability and stimulate microbial activity, thus

alleviating their autotoxic impact on cucumbers (Li et al., 2020).

In conclusion, our results indicate that integrating biochar with

intercropping may serve as a promising strategy for improving soil

physicochemical properties and mitigating continuous cropping

obstacles in intensive cultivation systems, warranting further

validation under field conditions.
4.2 Effect of biochar and intercropping on
soil salinity

Soil properties were influenced by the application of biochar

and intercropping. As a halophyte, Paspalum vaginatum exhibits a

high degree of salt tolerance, with certain ecotypes capable of
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withstanding salt concentrations equivalent to 80% of that in

seawater (Lee et al., 2004). Consistent with its halophytic nature,

intercropping with Paspalum vaginatum significantly reduced the

levels of soluble salt ions and soil electrical conductivity (EC)

(Table 2). This reduction is likely attributable to the pronounced

capacity of Paspalum vaginatum to uptake and sequester salt ions,

accumulating them in both root and shoot tissues (Guo et al., 2016;

Hu et al., 2020). This mechanism is supported by similar findings

for other species; for instance, the high salt-absorption potential of

alfalfa has been shown to reduce soil salt accumulation and

consequently lower EC (Su et al., 2024). Similarly, biochar

ameliorates salinity through distinct mechanisms. Its surface,

characterized by both positive and negative charges and a

diversity of functional groups, facilitates the adsorption of various

salt ions, thereby reducing soil salinity (Farhangi-Abriz and

Ghassemi-Golezani, 2021; Rajapaksha et al., 2016). Our results

showed that biochar application significantly reduced the

concentrations of Na+, SO4²
-, and Cl-, while concurrently

increasing the levels of Ca²+ and Mg²+ (Table 1) (Jin et al., 2024;

Zhang et al., 2022a). These observed ionic shifts are consistent with

a potential cation exchange process, wherein the release of divalent

cations (Ca2+ and Mg2+) from biochar could promote the

displacement of Na+ from soil exchange sites into the soil

solution, perhaps facilitating its leaching from the root zone

(Agbna et al., 2017; Cui et al., 2021). Furthermore, the combined

application of biochar and intercropping elicited a more

pronounced reduction in key soil salinity indicators compared to

biochar alone, pointing to a potential synergistic effect. This

enhanced efficacy could be due to several interconnected factors.

For instance, biochar-induced improvements in soil physical

properties, such as porosity and moisture retention (Qian et al.,

2020; Wang et al., 2022a), likely create a more favorable rhizosphere

environment. This, in turn, may bolster the capacity of Paspalum

vaginatum to absorb, sequester, or tolerate salts. Additionally,

modifications to the microbial community by biochar or changes

in root exudation patterns due to intercropping might also

contribute to this synergistic salinity mitigation.
4.3 Effect of biochar and intercropping on
the yield and quality of cucumbers

Continuous cropping obstacles inhibit crop growth and severely

reduce crop yield and quality (Li and Cai, 2016; Liao et al., 2018).
TABLE 2 Effects of biochar and intercropping on propertiess of continuously cropped soils.

Treatments
EC

(mS cm-1)
Na+

(mg kg-1)
Ca2+

(mg kg-1)
K+

(mg kg-1)
Mg2+

(mg kg-1)
SO4

2-

(mg kg-1)
Cl-

(mg kg-1)

CK 1.47 ± 0.02a 189.53 ± 9.38a 150.33 ± 3.30b 89.21 ± 2.92b 51.57 ± 3.66b 495.58 ± 46.42a 159.02 ± 3.43a

B 1.27 ± 0.22c 148.76 ± 4.03bc 193.98 ± 4.84a 103.56 ± 4.20a 65.63 ± 3.07a 270.34 ± 4.12c 124.42 ± 9.52c

S 1.34 ± 0.02b 158.76 ± 10.34b 113.53 ± 7.73c 72.93 ± 5.46c 49.00 ± 4.33b 368.50 ± 25.92b 141.15 ± 7.61b

BS 1.26 ± 0.02c 136.59 ± 5.15c 167.53 ± 12.48b 85.84 ± 3.79b 54.77 ± 5.24ab 306.02 ± 14.19bc 108.53 ± 5.13bc
CK, Control; B, Biochar amendment; S, Intercropping with Paspalum vaginatum; BS, Biochar amendment combined with intercropping Paspalum vaginatum. Each value represents three
biological replicates (± SD) (n = 3). Different lowercase letters indicate significant differences among treatments at the p < 0.05 level.
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Previous studies have explored the potential of biochar application

or intercropping to alleviate continuous cropping obstacles and

thereby improve crop yield and quality (Hu et al., 2020; Zhang et al.,

2023). However, it remains unclear whether the combined

application of biochar and intercropping exerts a synergistic effect

on improving crop growth under continuous cropping systems and

on enhancing soil health. Enhancing crop yield and quality is a

major objective in agricultural production (Souza et al., 2025; Wu

et al., 2025). In this study, the combined application of biochar and

intercropping significantly enhanced cucumber growth and

increased yield (Figure 1). Studies have indicated that biochar can

alleviate soil degradation induced by continuous cropping and

excessive fertilization, while also enhancing crop yields (Cui et al.,

2021; Zhang et al., 2023). Biochar is rich in mineral elements and

possesses a large specific surface area and high adsorption capacity.

These properties can reduce NO3
- but increase AP and AK, thereby

helping to balance soil nutrient status (Li et al., 2023). Moreover,

biochar application can improve the soil microbial environment

and enhance microbial activity, thereby promoting plant growth (Li

et al., 2023; Lv et al., 2023). The positive effects of intercropping on

crop yield can be attributed to multiple mechanisms. Studies have

shown that intercropping can enhance the availability of soil

nutrients, promote leaf photosynthesis, and facilitate fruit set and

development (Wang et al., 2022b). Furthermore, intercropping with

halophytes can ameliorate soil salinity conditions, thereby

providing a more favorable low-salt environment for crop growth

(Simpson et al., 2018). Additionally, our results showed that the

combined application of biochar and intercropping increased the

contents of soluble sugars, soluble proteins, and vitamin c in

cucumber fruits, while significantly reducing fruit nitrate content

(Figure 2). This indicates that both the organic amendment

(biochar) and intercropping have positive effects on fruit quality.

Due to its high stability, biochar allows for the slow and continuous

release of nutrients, which promotes balanced nutrient uptake and

utilization by crops, ultimately enhancing fruit quality (Naeem

et al., 2018; Zhao et al., 2017). Previous studies have reported

similar findings: in cucumber continuous cropping systems, biochar

amendment improves the crop growth environment by mediating

soil nutrient balance and reducing salinity, thereby promoting

growth and increasing both yield and quality (Wang et al., 2021a;

Zhou et al., 2021). Consistent with our findings, studies have shown

that intercropping with halophytes also improves soil

physicochemical properties and reduces soil salinity, thereby

creating a more favorable growth environment for crops (Jurado

et al., 2024; Slatni et al., 2024).
4.4 Effect of biochar and intercropping on
soil bacterial communities

The application of biochar and intercropping significantly

influenced soil microbial diversity and composition (Figures 4, 5),

which are crucial for nutrient cycling and plant health in

agricultural ecosystems. Soil acidification and salinization

resulting from continuous cropping profoundly alter microbial
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community structure and suppress their metabolic activities (Ji

et al., 2022; Marcheva et al., 2024). The community of

microorganisms is primarily impacted by nutrients, pH, and

salinity (Banda et al., 2021). In this study, the combined

application of biochar and intercropping not only significantly

increased soil microbial diversity (Figures 4, 5), but also induced

a profound functional reshaping of the microbial community.

The LEfSe analysis provided tangible evidence for this structural

shift, identifying specific bacterial taxa that were significantly

enriched in the BS treatment (Supplementary Figure S1). These

biomarkers included families within the Actinobacteriota, such as

Micromonosporaceae and Nocardiopsaceae, which are renowned

for their capacity as prolific producers of antibiotics and hydrolytic

enzymes (Mitra et al., 2021). Crucially, this taxonomic shift was

directly reflected in the functional potential predicted by PICRUSt2

(Supplementary Figure S2). The BS treatment exhibited a significant

enhancement in the “Neomycin, kanamycin and gentamicin

biosynthesis” pathway. This coherent finding strongly suggests

that the BS combination does not merely increase microbial

abundance but specifically enriches for keystone taxa within the

actinobacterial community and upregulates their antibiotic

synthesis potential, thereby constructing a more robust biological

defense line against soil-borne pathogens—a core challenge in

continuous cropping systems.

Concurrently, the PICRUSt2 results revealed a significant

reduction in “Bacterial chemotaxis” under BS treatment

(Supplementary Figure S2). This functional shift holds important

ecological implications, as chemotaxis is an energy-costly behavior

for microorganisms seeking resources in oligotrophic or stressful

environments (Wadhams and Armitage, 2004). Its suppression

likely indicates that the BS-amended soil offers a more favorable

and less stressful microenvironment with improved nutrient

accessibility (Tables 2, 1), allowing microbes to allocate more

energy from motility to growth and beneficial metabolite

production. This notion is further supported by the significant

enrichment of “D-Alanine metabolism” and “D-Glutamine and D-

glutamate metabolism” pathways, which are integral to bacterial cell

wall synthesis and osmotic stress regulation (Cava et al., 2011;

Waldemar et al., 2008), indicating a microbial community with

enhanced growth activity and resilience under the BS regime. This

finding aligns with previous studies showing that while salinity

adversely affects bacterial community composition, the application

of biochar or intercropping under salt stress mitigates these effects

and exerts favorable effects on bacterial structure (Szoboszlay et al.,

2019; Xie et al., 2022). These practices likely enhance microbial

diversity by supplying nutrients and creating additional ecological

niches for beneficial microorganisms (Fu et al., 2017). Furthermore,

the increased diversity may enhance functional resilience, allowing

the microbial community to maintain activity under a wider range

of environmental conditions through niche adaptation and

functional redundancy (Garcia-Garcia et al., 2019). Therefore, by

enhancing microbial diversity, the biochar-intercropping

combination fosters a more robust soil microenvironment and

ensures the stability of ecosystem functions mediated by

microbes. PCoA shows that the microbial communities of CK
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and BS treatments are clearly separated (Figure 5). This shift in

community composition is consistent with previous findings that

plant-soil interactions can greatly alter microbial community

structures (Jin et al., 2020; Zhou et al., 2021). These community

changes are functionally significant, as rhizosphere microbes are

key agents in plant nutrient acquisition, soil structure formation,

and the production of regulatory exometabolites (Chi et al., 2023;

Tong et al., 2024). Thus, by reshaping the soil microbial

composition, biochar and intercropping indirectly promote plant

growth and health (Wang et al., 2024a). Specifically, the BS

treatment significantly increased the relative abundance of several

bacterial phyla, including Actinobacteriota, Gemmatimonadota, and

Chloroflexi (Figure 7). The proliferation of these oligotrophic taxa

may be driven by the moderated soil nitrogen availability (Wang

et al., 2024b). These phyla are integral to soil nutrient cycling,

facilitating the transformation of carbon, nitrogen, and phosphorus

through the secretion of various enzymes and metabolites, thereby

promoting plant growth (Morrissey et al., 2023; Mujakic et al., 2023;

Rao et al., 2022). The overall improvement in soil nutrient supply

capacity (Bandara et al., 2022) and the elevated pH are likely

contributing factors to the success of these bacterial groups. It is

noteworthy that Acidobacteriota, which are often considered

acidophilic, dominated the CK treatment with lower pH

(Table 1). Previous studies suggested that Acidobacteria played an

important role in biogeochemical cycling of carbon and

consequently might be adaptable to the environment of large

variety of carbon sources present in biochar (Zhong et al., 2024).

However, the soil showed a more alkaline environment after
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biochar amendment, which is not favorable for Acidobacteria, a

phylum of bacteria usually being acidophilic (Lehmann et al., 2011).

As a result, the abundance of Acidobacteria decreased with biochar

addition. Notably, Actinobacteria not only produce antibiotics to

suppress plant pathogens and decompose organic matter but also

reduce bacterial wilt in plants. They exhibit accelerated growth in

nutrient-rich environments (Lee et al., 2021), and the application of

biochar improves soil conditions, thereby stimulating the

proliferation of these beneficial microorganisms. Biochar itself

provides a physical refuge and a slow-release carbon source for

microorganisms, while the root exudates from the intercropped

Paspalum vaginatum supply easily degradable carbon sources for

specific microbial taxa. It is plausible that the release of phenolic

compounds from the aromatic carbon structures of biochar,

facilitated by Actinobacteria, may further stimulate the abundance

and activity of microbial groups capable of decomposing phenolic

acids (Kolton et al., 2017), thereby potentially alleviating their

adverse effects on plants. Furthermore, the improved treatments

reduced the relative abundance of potentially pathogenic

Proteobacteria (Tan et al., 2017), while enriching for beneficial

genera such as Gemmatimonas, which is known to suppress

Fusarium wilt and promote plant growth (Shen et al., 2024;

Zheng et al., 2024; Zhong et al., 2024). Furthermore, studies have

shown that biochar and intercropping can alleviate the inhibitory

effects of salt ions on microorganisms, promoting the growth and

metabolism of dominant salt-tolerant bacteria such as Bacteroidota

and Actinobacteriota (Wang et al., 2024d). This shift in the

microbial balance, from a community dominated by potential
FIGURE 7

Relative abundance of bacterial phyla in soils treated with biochar and intercropping.
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pathogens and acidophiles (e.g., Acidobacteriota in low-pH CK) to

one enriched with beneficial taxa identified by LEfSe (e.g.,

antibiotic-producing Actinobacteriota) and functionally equipped

for nutrient cycling and stress resistance (as per PICRUSt2), likely

contributed significantly to the observed enhancement in plant

growth by simultaneously mitigating soil-borne diseases and

improving soil fertility.

Our PLS-PM analysis identified the amelioration of soil

physicochemical properties, not bacterial diversity, as the primary

driver for enhanced cucumber yield. This can be attributed to

several factors: First, the rapid alleviation of abiotic stressors (e.g.,

Al3+ toxicity, salinity) via increased pH and adsorption provided

immediate physiological benefits, outweighing the more gradual

effects of microbial shifts (Lehmann et al., 2011). Second, biochar

and intercropping primarily improved the physicochemical

environment, which subsequently steered the microbial

community as a secondary effect (Lehmann et al., 2011). Third,

under the severe abiotic stress of the degraded soil, directly

mitigating these constraints was a prerequisite for plant growth, a

role in which physicochemical amelioration is inherently faster and

more direct than microbial mediation (Ranjbari et al., 2022).

Consequently, the direct improvement of soil physicochemical

properties emerged as the dominant mechanism in this short-

term pot study.

To identify the key drivers influencing cucumber yield and

quality, a partial least-squares path modeling (PLS-PM) analysis

was performed (Figure 6). The results indicated that soil pH and soil

nutrition play significant positive roles in enhancing cucumber yield

and quality, while they are negatively correlated with soil properties,

available N content, and phenolic acid concentrations. The PLS-PM

results suggest that biochar amendment and intercropping likely

enhance cucumber yield and quality primarily by mitigating these

soil stressors (e.g., salinity, excessive AN, and phenolic acids). This

finding is consistent with previous studies reporting that soil

amendments and intercropping systems can alleviate soil salinity

and phenolic acid toxicity, thereby promoting crop growth (Hu

et al., 2020; Zhou et al., 2021). In contrast, microorganisms have a

relatively minor impact on cucumber yield and fruit quality.

Therefore, we propose that the enhancement of cucumber yield

and quality is primarily a result of the direct improvement of soil

physicochemical properties by biochar and intercropping, rather

than being predominantly mediated through changes in the

microbial community.

While this pot experiment provides compelling evidence for the

synergistic benefits of combining biochar with halophyte

intercropping under controlled conditions, it is important to

acknowledge its limitations. The pot scale restricts the

extrapolation of our findings directly to field-scale agricultural

systems. Field environments are subject to greater heterogeneity

in soil properties, climate variability, and larger-scale management

practices, which could modulate the efficacy of the combined

treatment. Therefore, our results should be interpreted as a proof-

of-concept, demonstrating the strong potential of this integrated

strategy for mitigating continuous cropping obstacles. The

promising outcomes observed here justify and necessitate future
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long-term field trials to validate these findings, optimize application

rates (e.g., biochar dosage, intercropping density), and assess the

economic viability and large-scale practicality of this approach for

sustainable greenhouse vegetable production.
5 Conclusions

The application of biochar, both alone and in combination with

intercropping, effectively improved soil health, leading to enhanced

yield and quality of cucumbers. Both biochar and intercropping

significantly increased soil pH, SOC, TN, AP, and AK. In contrast,

these treatments significantly reduced the soil NO3
- content.

Additionally, the concentrations of phenolic acids and soil salinity

were significantly reduced. Among all treatments, the combined

application of biochar and intercropping proved to be the most

effective strategy for alleviating soil acidification and salinity,

reducing phenolic acids, regulating nutrient balance, increasing

SOC, enhancing bacterial diversity, and ultimately improving

cucumber yield and quality. Partial least-squares path modeling

(PLS-PM) results demonstrated that soil pH and nutrient

availability had direct positive effects on cucumber yield and

quality, whereas phenolic acids, salinity, and excessive available

nitrogen exerted significant negative effects. In conclusion, our pot

study provides evidence that the integrated application of biochar

and intercropping holds promise as a sustainable strategy for

mitigating continuous cropping obstacles in cucumber

production. These findings, obtained under controlled conditions,

offer a proof-of-concept demonstrating the potential of this

combined approach to synergistically improve soil health and

crop performance. To translate this potential into practical

agricultural practice, the long-term efficacy and economic viability

of this strategy must be validated through well-designed field trials.
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