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Biochar amendment and halophyte intercropping are viable strategies for
alleviating soil degradation in greenhouse systems, specifically the secondary
salinization and autotoxicity induced by continuous cropping. Nevertheless, the
potential synergistic effects of combining these practices remain poorly
understood. This study investigated their synergistic effects on soil properties,
microbial communities, and cucumber performance. A pot experiment was
conducted with the following treatments: soil without amendment (CK),
biochar (B), Paspalum vaginatum intercropping (S), and biochar combined with
Paspalum vaginatum intercropping. The results showed that BS treatment led to
the highest increases in soil organic carbon content, pH, total nitrogen content,
available phosphorus content, and available potassium content compared to CK
(p<0.05). Concurrently, BS significantly reduced available nitrogen, electrical
conductivity, Na*, $SO,42, and Cl levels, while total phosphorus remained
unaffected. Cucumber yield increased significantly by 11.50% and 27.12% under
B and BS treatments, respectively, whereas S showed no significant effect. BS also
achieved the highest fruit quality enhancement, followed by B and S. Notably, B
and S treatments displayed the highest and lowest K*, Ca?Tand Mg2*
accumulation, respectively, whereas the BS treatment led to K* and Ca®*
concentrations that were significantly lower than those in the B treatment. Soil
bacterial diversity was significantly enhanced under BS. The PLS-PM identified
the alleviation of soil salinity and acidity, along with improved nutrient availability,
as the primary drivers for enhanced crop performance, with soil bacterial
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diversity playing a secondary yet significant role. These findings suggest that
biochar combined with intercropping (BS) effectively mitigates continuous
cropping obstacles in greenhouse systems by synergistically improving soil
health and microbial ecology.

KEYWORDS

biochar, phytoremediation, soil salinity, nutrient imbalance, bacterial community,
cucumber, continuous cropping

1 Introduction

Greenhouse cultivation offers a stable environment that meets
the global demand for vegetables, making it one of the most widely
adopted agricultural systems worldwide (Li et al., 2019; Lopez-
Marin et al., 2019). Its high profitability often leads to continuous
cropping and excessive fertilization (Liu and Zhang, 2021; Lv et al,,
2019). However, continuous monoculture and excessive fertilizer
input often lead to a decline in soil quality (Wang et al., 2021b; Yang
et al., 2016), secondary soil salinization (Hu et al., 2020), soil
acidification (Song et al., 2016; Zhang et al., 2022b), autotoxicity
(Xiao et al.,, 2020), and the accumulation of soil-borne pathogens
(Meng et al., 2018), which limit the yield and quality of greenhouse
crops (Sun et al, 2019). Hence, implementing effective soil
management strategies is crucial to maintaining the yield and
quality of greenhouse crops, given the system’s global importance
and the numerous soil degradation processes it induces.

Owing to its strong adsorption capacity and alkaline nature,
biochar is considered a promising amendment for soil health
management (Shi et al, 2023; Spokas et al, 2012). It has been
shown to mitigate several continuous cropping obstacles
simultaneously, such as by adsorbing allelopathic phenolic
compounds (Lin et al., 2023), enhancing nutrient availability (Han
et al, 2023; Yan et al, 2022), and optimizing the microbial habitat
(Wang et al., 2020). However, a critical but often overlooked risk is
that biochar application may also introduce or exacerbate soil salinity,
primarily due to the direct input of salt ions present in the biochar
itself, especially when derived from high-salt feedstocks (Amini et al.,
2016; Wang et al, 2023b). Additionally, the aging process can
diminish biochar’s adsorption capacity, potentially causing the re-
release of previously bound salt ions (Akhtar et al,, 2015; Kong et al.,
2014). This inherent limitation suggests that biochar alone might be
insufficient or even risky for managing the saline conditions often
associated with greenhouse continuous cropping.

Conversely, halophytes represent a low-cost phytoremediation
strategy widely employed in agriculture to improve saline soil
conditions (Jurado et al, 2024; Liang and Shi, 2021). For
example, intercropping with salt-tolerant species, such as lawn
grass (Paspalum vaginatum) (Hu et al., 2020), Portulaca oleracea
(Simpson et al,, 2018), or legumes (Zheng et al., 2023), has been
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demonstrated to alleviate salt stress, improve crop quality and yield,
and enhance soil nutrient availability. This approach effectively
reduces the adverse effects of salinity on crops (Aksoy et al., 2001).
Although effective for salinity control, the capacity of halophyte
intercropping alone to rapidly improve broader soil issues like
severe acidification or nutrient immobilization may be limited.

Thus, we hypothesize that integrating biochar amendment with
halophyte intercropping could create a synergistic solution for the
multifaceted challenges of continuous cropping. Biochar’s ability to
rapidly adjust pH, improve nutrient retention, and adsorb phenolics
could establish a more favorable base soil condition. This improved
environment might, in turn, enhance the establishment and salt-
uptake efficiency of the intercropped halophyte. Meanwhile, the
halophyte can continuously remove salts from the soil, mitigating
the potential salinization risk from biochar and preventing salt
rebound. While both biochar and intercropping individually
enhance soil health (Liu et al, 2024; Wang et al., 2023a), their
combined effects, particularly the potential synergy in reshaping the
soil microbial community to foster a more resilient and beneficial
microbiome under the complex stress of continuous cropping,
remain poorly understood (Jin et al., 2024). This knowledge gap
is critical given the crucial role of soil microorganisms in
maintaining soil health and suppressing soil-borne diseases (Gu
et al., 2023; Liu et al., 2023a).

Therefore, this study aimed to investigate the potential of
combined biochar amendment and intercropping with the
halophyte Paspalum vaginatum as an integrated strategy to
concurrently address multiple soil constraints (acidity, salinity,
nutrient imbalance, and autotoxicity) in a continuous cucumber
system. The specific objectives were to: (1) assess the effects of
biochar and/or Paspalum vaginatum intercropping on cucumber
growth and fruit quality; (2) evaluate the changes in key soil
physicochemical properties induced by these treatments; and (3)
investigate their collective influence on soil bacterial communities
to identify the key factors determining cucumber performance. We
hypothesized that the combined application would synergistically
ameliorate soil properties, reshape the microbial community
structure towards a more beneficial state, and consequently lead
to greater improvements in cucumber yield and quality compared
to either practice alone.
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2 Materials and methods
2.1 Experimental setup

A pot experiment was conducted in a greenhouse at the
teaching and research base of Nanjing Agricultural University,
Nanjing, China (118°51' E, 32°01' N). The experimental soil
(sandy loam) was collected from the top layer (0-20 cm) of a
greenhouse in Jurong City, Jiangsu Province, China (119°13' E, 31°
47" N), which had been under continuous cucumber monoculture
for 15 years. The soil properties were as follows: pH, 5.43; electrical
conductivity (EC), 1500 uS cm™; soil organic carbon (SOC), 591 g
kg™'; total nitrogen (TN), 1.41 g kg™'; total phosphorus (TP), 1.28 g
kg™'. Biochar, supplied by Zhenjiang Zedi Biotechnology Co., Ltd.
(Zhenjiang, China), was produced by anaerobic pyrolysis of rice
straw at 600 °C. Its physicochemical characteristics were: pH, 8.85;
SOC, 620 g kg™'; TN 10.5 g kg '; available phosphorus (AP), 1.13 g
kg’l; available potassium (AK), 23.1 g kg’l; Brunauer-Emmett-
Teller (BET) surface area, 675 m? g’l;and elemental composition
of carbon (C), hydrogen (H), nitrogen (N), and oxygen (O) at
62.0%, 2.5%, 2.2%, and 20.6%, respectively. Cucumber seeds (cv.
Xinjin No. 4) were purchased from Luming Seed Co., Ltd. (Taian,
China). The Paspalum vaginatum was selected for intercropping
based on research reporting its salt tolerance and ability to
effectively alleviate secondary salinization in greenhouse soils (Hu
et al., 2020).

A completely randomized design with four treatments was
implemented: soil without amendment (CK), intercropping with
Paspalum vaginatum (S), soil amended with biochar at 2% (w/w)
(B), and 2% (w/w) biochar amendment combined with P.
vaginatum intercropping. The biochar was thoroughly mixed with
the soil and then placed into plastic pots (total volume of 6.5 L).
Each treatment consisted of three independent biological replicates.
To ensure robust sampling, each biological replicate comprised
three pots, which were treated as technical replicates. Cucumber
seeds were germinated in seedling trays. At the two-true-leaf stage,
uniform and vigorous seedlings were transplanted into the pots
(one seedling per pot). Concurrently, stem cuttings of Paspalum
vaginatum were planted at a density of ten cuttings per pot.
Paspalum vaginatum was trimmed to 4 cm height at 25 and 40
days after transplanting, and all trimmings were removed from the
pots. Throughout the experiment, only cucumbers and Paspalum
vaginatum were retained; weeds were manually removed. No
fertilizers, herbicides, or pesticides were applied. Pests were
managed using insect-proof nets and yellow sticky traps. All pots
were irrigated equally every three days.

2.2 Soil sampling and analysis

After harvest, rhizosphere soil was collected using the root-
shaking method (Inderjit and Mallik, 1997). The composite soil
sample from each replicate was divided into three parts: one was
stored at -80 °C for microbial DNA sequencing; one was stored at
4 °C for the measurement of available-nitrogen (sum of NH,"-N
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and NO5™-N) and the remainder air-dried for subsequent analysis of
soil pH, EC, SOC, TN, TP, AP, AK, water-soluble ions, and phenolic
compounds. For these analyses, measurements from the three
technical pots within a biological replicate were averaged to yield
a single value representing that replicate.

Soil pH and EC were measured in a 1:5 (w/v) soil-water
suspension using a portable pH meter (FieldScout pH400,
Spectrum Technologies Inc., USA) and a conductivity meter
(DDSJ-308F, LeiCi, China), respectively. NH,*-N and NO;-N
were extracted with 2 M KClI at a soil-to-solution ratio of 1:5 (w/
v) and analyzed with a flow injection auto-analyzer (AutoAnalyzer
3, Seal Analytical, Norderstedt, Germany). SOC was determined by
the potassium dichromate oxidation method using a Multi N/C
2100 analyzer (Analytik Jena, Germany), after removing inorganic
carbon by fumigation with concentrated HCL. TN and TP were
determined using a flow injection autoanalyzer (AutoAnalyzer 3,
Seal Analytical, Germany) following digestion with H,SO4-HCIO,.
AP was extracted with 0.5 M NaHCOj; (1:5, w/v) and analyzed using
the flow injection autoanalyzer. AK was extracted with 1 M
ammonium acetate (1:10, w/v) and quantified using a flame
photometer (BWB Technologies Ltd., UK). Water-soluble ions
were extracted with deionized water at a 1:5 (w/v) ratio. Cation
(Na™, K*, Ca®", Mg®") concentrations were determined by
inductively coupled plasma optical emission spectrometry (ICP-
OES; iCAP 6300, Thermo Fisher Scientific, USA), and anion (CI,
SO,*) concentrations were measured by ion chromatography (ICS-
5000, Thermo Fisher Scientific, USA). Total phenolics, complex
phenolics, and water-soluble phenolics were determined according
to the Folin-Ciocalteu method (Zhou et al., 2021).

2.3 Plant growth and fruit quality analysis

Plant height was measured 30 days after transplanting. At
harvest, three random plants per treatment were selected. The
total yield per plant was determined by harvesting all fruits from
each selected plant. The aboveground biomass and roots of the
cucumber plants were separately oven-dried at 65 °C until a
constant weight was achieved. The vitamin C content was
determined using the 2,6-dichloroindophenol titration method.
Nitrate content was measured using the salicylic acid method
(Zhang et al., 2020). Soluble sugar content was determined by
extraction with boiling water followed by analysis using the
anthrone colorimetric method (Pasin et al., 2020; Zhao et al., 2017).

2.4 DNA extraction and illumina HiSeq
sequencing

Genomic DNA was extracted from soil samples using the
E.ZN.A. Soil DNA Kit (Omega Bio-tek, Inc., USA) according to
the manufacturer’s instructions. The quality and concentration of
the extracted DNA were confirmed using a Nanodrop 2000
(ThermoFisher Scientific, Inc., USA). Bacterial 16S rRNA gene
V3-V4 regions were amplified using the universal primers 38F
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and 806R (Caporaso et al., 2011). An 8-bp barcode sequence was
added to the 5 end of both the forward and reverse primers to
distinguish different samples. The final barcoded primers were used
for amplification on an ABI 9700 PCR instrument (Applied
Biosystems, Inc., USA). Polymerase chain reaction (PCR) was
performed as previously reported (Yang et al, 2019b). Two
rounds of PCR amplification were conducted, and the size of the
amplified target bands was detected using 1% agarose gel
electrophoresis. PCR products were purified using the Agencourt
AMPure XP (Beckman Coulter, Inc., USA) nucleic acid
purification Kit.

2.5 Microbial community analysis

The sequencing data were demultiplexed based on the barcode
sequences. The software Pear (v0.9.6) was used to filter and
assemble the sequencing data, with a minimum overlap of 10 bp
during assembly (Zhang et al., 2014). After assembly, sequences
shorter than 230 bp were removed using the Vsearch (v2.7.1)
software (Rognes et al., 2016), and chimeric sequences were
identified and removed using the uchime method against the
Gold Database (Edgar et al, 2011). The uparse algorithm in
Vsearch (v2.7.1) was used to cluster high-quality sequences into
operational taxonomic units (OTUs) with a sequence similarity
threshold of 97% (Edgar, 2013). The representative sequences of
OTUs were aligned against the Silval38 database using the BLAST
algorithm, with an e-value threshold set at le-5, to obtain the
taxonomic information for each OTU (Johnson et al., 2008; Pruesse
et al., 2007).

Based on the OTU and abundance results, alpha diversity
indices were calculated using the QIIME (v1.8.0) software, and
plots were generated using R (v3.6.0) software (Caporaso et al,
2010). Bacterial community diversity was analyzed based on the
Bray-Curtis dissimilarity index, and principal coordinates analysis
(PCoA) plots were generated (Caporaso et al., 2010). For
community composition visualization, the top 10 most abundant
bacterial phyla were plotted based on their relative abundance; all
remaining phyla were grouped into an ‘Other’ category. Biomarker
features in each group were screened by Metastats and LEfSe
software. Functional profiling of the soil microbial metagenome
was predicted from the 16S rRNA gene sequencing data using
PICRUSt based on Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways.

2.6 Statistical analyses

Given the nested design, data from the three technical pots per
biological replicate were averaged, resulting in a sample size of n =3
per treatment for all statistical tests. All data were statistically
analyzed using SPSS 22.0 (SPSS, Inc., Chicago, IL, United States).
Significant differences (p < 0.05) among treatments, based on one-
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way ANOVA followed by Duncan’s test, are indicated by different
lowercase letters. All column charts were created using Origin
2024b (OriginLab Corporation, Northampton, MA, USA). Partial
least squares path model (PLS-PM) was used to determine the direct
and indirect effects of soil factors pH, available N, soil nutrients
index (total P, available P, available K), phenolic index (total
phenols, complex phenolic, and water-soluble phenolic),
properties (SO4>, Na*) and soil bacteria on cucumber growth
and quality. The reliability of the model was assessed using the
Goodness of Fit (GoF) metric. A GoF value > 0.36 indicates better
model alignment (Wetzels et al., 2009).

3 Result

3.1 Effects of biochar and intercropping on
cucumber growth

The application of biochar (B), intercropping with Paspalum
vaginatum (S), and their combination promoted cucumber plant
growth compared to CK (Figure 1). Plant height was significantly
increased by treatments B and BS compared to CK, with the BS
treatment achieving the greatest height among all treatments
(Figure la). In contrast, above-ground biomass did not differ
significantly among treatments (Figure 1b). Total root biomass
increased by 11.19% (B), 10.92% (S), and 21.47% relative to CK
(Figure 1c). Of these, only the increase in the BS treatment was
statistically significant. Cucumber yield was also significantly
increased by all treatments relative to CK, by 11.50% (B), 8.18%
(S), and 27.12% (p < 0.05; Figure 1d).

3.2 Effects of biochar and intercropping on
cucumber quality

Continuous cropping negatively affected cucumber fruit quality,
an effect that was significantly ameliorated by biochar addition,
intercropping, and particularly their combination (Figure 2).
Compared to CK, the treatments B, S, and BS significantly
increased the average content of soluble protein in cucumber
fruits by 27.49%, 25.89%, and 37.73%, respectively (p < 0.05)
(Figure 2a). No significant differences were observed among the
three amendment treatments. Water-soluble sugar content
exhibited a similar trend, with values ranking as S < B < BS
(Figure 2b). The S and B treatments increased sugar content by
10.56% and 10.35%, respectively, compared to CK, but these
increases were not statistically significant. In contrast, the BS
treatment produced a significant 11.59% increase (Figure 2b).
Vitamin C content was significantly increased by 15.25% in the
BS treatment compared to CK (Figure 2c). All amendment
treatments significantly reduced the fruit nitrate content relative
to CK (145.45 mg kg™), with values decreasing to 83.65 (B), 93.32
(S), and 74.44 mg kg™ (p < 0.05; Figure 2d).
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Effects of biochar and intercropping on plant height (a), above-ground biomass (b), below-ground biomass (c), and yield (d) of continuously
cropped cucumbers. Each value represents three biological replicates (+ SD) (n = 3). Different lowercase letters indicate significant differences

among treatments at the p < 0.05 level.

3.3 Effects of biochar and intercropping on
soil phenolic

The application of biochar and intercropping significantly
reduced the content of phenolic compounds in the soil (Figure 3).
Total phenolic acid content in the cucumber rhizosphere soil was
significantly decreased in all treatments relative to CK (p < 0.05;
Figure 3a). The greatest reduction (29.66%) was observed in the BS
treatment, although this value was not statistically different from
that in the S treatment. The content of complex phenolics in
cucumber roots was significantly reduced by 41.27% (B), 36.89%
(S), and 45.73% compared to CK (Figure 3b). Similarly, the water-
soluble phenolic content was significantly reduced by 17.10% (B),
11.90% (S), and 31.04% (Figure 3c).

3.4 Effects of biochar and intercropping on
soil salinity

All amended treatments significantly reduced the electrical
conductivity (EC) of the cucumber rhizosphere soil compared to
CK. The BS treatment resulted in the greatest reduction (14.09%),
followed by B (13.41%) and S (8.86%). The concentrations of Na*,
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SO,*, and CI were all significantly lowered by the amendments
relative to CK (p < 0.05). The reduction in SO4*" content ranged
from 25.64% to 45.45% across treatments.For Cl” and Na*, the BS
treatment showed the greatest reductions (31.75% and 27.93%,
respectively), followed by the B treatment (21.76% and 21.61%).
The S treatment resulted in the smallest decreases (11.24% for CI’
and 16.23% for Na"). The reductions achieved by the B and S
treatments were not significantly different from each other. In
contrast, the effects on cation concentrations (Ca**, K, Mg*")
were more variable. The S treatment significantly decreased Ca**
and K" levels relative to CK, but had no significant effect on Mg>".
Conversely, the B treatment significantly increased the
concentrations of all three cations. The BS combination treatment
resulted in cation concentrations that were not significantly
different from those in the CK soil.

3.5 Effects of biochar and intercropping on
soil chemical properties

The application of biochar and intercropping significantly
altered several soil chemical properties, including pH, SOC, TN,
AP, NH," and NO5" (Table 1). The rhizosphere soil pH increased
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significantly in the B (to 7.07) and BS (to 6.85) treatments compared
to the control (CK, 5.57), with increments of 1.50 and 1.28 units,
respectively. In contrast, the increase observed in the S treatment (to
5.93, an increase of 0.36 units) was not statistically significant. The
SOC content was significantly increased by the B and BS treatments
compared to CK. In contrast, the S treatment had no significant
effect on SOC. Interestingly, TN content was significantly increased

by all treatments. Conversely, NO;  content was significantly
reduced compared to CK (p < 0.05). Meanwhile, no significant
differences were observed in the TP content among all treatments.
AP increased significantly by 32.08%, 13.85%, and 34.03%
respectively compared to CK. Similarly, the AK content was
significantly higher than CK only in the B and BS treatments
(p < 0.05).
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TABLE 1 Effects of biochar and intercropping on the chemical properties of continuously cropped soils.

pH SOC AP NH,* NO3”
Treatments 21 1 1 1
(water) (g kg™) (mg kg™) (mg kg™) (mg kg™)
CK 557 +0.11c ‘ 8.65 = 0.57¢ 1.63 + 0.02b 1.46 + 0.06a 8594 +4.07c 24605+ 4.14b | 16.68 + 1.15a ‘ 93.60 + 3.33a
B 7.07 + 0.20a ‘ 1143 + 1.02b 1.79 + 0.03a 1.47 + 0.05a 11352+ 4.17a 28015+ 13.66a  13.68 + 0.45ab ‘ 44.71 + 2.67¢
S 593 + 0.12b ‘ 9.47 + 0.57bc 1.79 + 0.05a 143 +0.11a 97.85+ 1.75b | 272.08 +3.57ab  15.23 + 0.37ab ‘ 60.45 + 2.18b
BS 7.28 + 0.05a 14.52 + 0.85a 1.85 + 0.04a 1.48 + 0.03a 11519 + 4752 28830 + 14.15a  12.92 + 0.35b 40.95 + 2.27¢

CK, Control; B, Biochar amendment; S, Intercropping with Paspalum vaginatum; BS, Biochar amendment combined with intercropping Paspalum vaginatum. Each value represents three
biological replicates (+ SD) (n = 3). Different lowercase letters indicate significant differences among treatments at the p < 0.05 level.

3.6 Effects of biochar and intercropping on
soil bacterial diversity and community
structure

The CK treatment resulted in the lowest observed species
richness, which was significantly lower than that in the B and BS
treatments (p < 0.05; Figure 4a). A similar trend was observed for
phylogenetic diversity (PD), with CK also being significantly lower
than B and BS (Figure 4b). In contrast, the Chaol index did not

differ significantly among treatments (Figure 4c). The Shannon
index, a measure of community diversity, was highest in the BS
treatment and was significantly greater than in all other treatments
(Figure 4d). Principal coordinates analysis (PCoA) based on OTU
profiles (97% similarity) revealed clear separation in bacterial
community structure among the treatments. The PCoA plot
showed a clear separation along PCl1, with the B and BS
treatments clustering separately from the CK and S
treatments (Figure 5).
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3.7 Effects of biochar and intercropping on
the composition of soil bacterial
communities

The composition of soil bacterial communities was significantly
altered by the amendments at the phylum level (Figure 6). Despite
treatment effects, the overall phylum-level profile was similar across
all samples. The dominant phyla, collectively accounting for 92.87%
of sequences, were Proteobacteria, Bacteroidota, Patescibacteria,
Gemmatimonadota, Chloroflexi, Firmicutes, Acidobacteriota,
Actinobacteriota, and Cyanobacteria. The relative abundance of
Proteobacteria was significantly higher in the CK treatment than in
the BS treatment. In contrast, the relative abundances of
Gemmatimonadota, Bacteroidota, and Chloroflexi were lower in
the CK treatment than in the amended treatments. The S treatment
was associated with the highest relative abundances of
Patescibacteria and Cyanobacteria. The relative abundance of
Actinobacteriota was significantly lower in all amended
treatments (B, S, BS) compared to the CK treatment.

3.8 Relationships between soil properties
and cucumber yield and quality

The partial least-squares path model (PLS-PM) was used to
explore the dominant factors affecting cucumber yield and quality
(Figure 6). Cucumber yield was significantly affected by soil
variables, with soil pH having a substantial positive impact, while
available N, salt properties, and phenolic acids had significant
negative effects (Figure 6a). In contrast, the influence of soil
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bacterial diversity on cucumber yield was relatively minor. Unlike
yield, soil bacterial diversity and salt properties had direct and
significant positive and negative effects on soluble sugar content,
respectively (Figure 6b). Soil pH and nutrient availability indirectly
enhanced the soluble sugar content of cucumbers, whereas available
N had the opposite effect. Similar to soluble sugar, available N, salt
properties, and phenolic acids were negatively correlated with
soluble protein and vitamin C content in cucumbers, while pH
had the opposite effect. Additionally, Vc content was significantly
influenced by positive effects from microbial diversity and soil
nutrient availability, and a negative effect from salt properties
(Figures 6¢, d). However, microbial diversity was not a primary
driver of nitrate content in cucumbers. Instead, nitrate content in
cucumbers was significantly and positively influenced by available
N and phenolic acids (Figure 6¢).

4 Discussion

To address the progressive degradation of greenhouse soil
health caused by continuous cropping and to promote sustainable
agricultural production, various techniques such as soil fumigation,
soil replacement, and grafting have been proposed to mitigate the
obstacles associated with continuous cropping (Ding et al., 2021).
However, these methods may increase production costs, cause
environmental damage, and reduce crop quality, whereas the use
of biochar or intercropping avoids these disadvantages (Jesus et al.,
2024; Wang et al., 2021a). Therefore, to reduce improvement costs
and minimize environmental impact, we integrated biochar with
intercropping to investigate the mechanisms through which this
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combination alleviates soil constraints in continuous cropping
systems. In this study, the combined application of biochar and
intercropping significantly alleviated the degradation of soil quality
caused by continuous cropping obstacles. The application of
biochar, both alone and in combination with intercropping,
modified the soil’s biochemical properties, thereby directly or
indirectly enhancing the yield and quality of cucumbers in
continuously cropped soil.

4.1 Effect of biochar and intercropping on
soil physicochemical properties

Long-term continuous cropping, coupled with excessive and
imbalanced fertilizer inputs, leads to decreased soil pH, secondary
salinization, and nutrient imbalances (Gong et al., 2024; Zheng
et al., 2021). These phenomena are recognized as major factors
contributing to continuous cropping obstacles in greenhouse
production systems (Bai et al, 2020; Zhang et al., 2021).
Consequently, persistent soil degradation markedly diminishes
the productive capacity of agricultural land and threatens the
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sustainability of crop production (Li et al., 2024; Yan et al., 2024).
In this study, owing to its inherent alkalinity and high organic
carbon content, biochar application—both alone and combined
with intercropping—effectively increased soil pH and SOC content
(Table 1) (Liu et al., 2014; Zhang et al., 2010). Previous research has
demonstrated a negative correlation between soil available N
content and pH (Liu et al, 2023b). This relationship may be
attributed to enhanced ammonification, which consumes H" ions
and consequently elevates soil pH (Xu et al., 2006). These processes
contribute to creating a more favorable soil environment for plant
growth. In continuous cropping systems, the availability of
phosphorus (AP) and potassium (AK) often declines, whereas
available N frequently accumulates, resulting in severe nutrient
imbalances (Li et al., 2017; Liu et al., 2023b). Our findings showed
that biochar amendment and intercropping can ameliorate soil
quality by enhancing AP and AK availability, a phenomenon
corroborated by previous studies (Table 1) (Wang et al.,, 2024¢
Zhou et al, 2021). Interestingly, both biochar application and
intercropping also significantly reduced the soil NO;™ content
(Table 1). The observed reduction in soil available N could
potentially be attributed to the strong adsorption capacity of
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TABLE 2 Effects of biochar and intercropping on propertiess of continuously cropped soils.

EC
(mS cm™) =)

Treatments

K+ Mgz+
(mg kg™ (mg kg™

CK ‘ 1.47 £ 0.02a 189.53 + 9.38a 150.33 + 3.30b
B ‘ 1.27 £ 0.22¢ 148.76 + 4.03bc 193.98 + 4.84a
S ‘ 1.34 £ 0.02b 158.76 + 10.34b 113.53 + 7.73¢
BS 1.26 + 0.02¢ 136.59 + 5.15¢ 167.53 + 12.48b

89.21 £2.92b 51.57 £ 3.66b 495.58 + 46.42a 159.02 + 3.43a
103.56 + 4.20a 65.63 + 3.07a 270.34 + 4.12¢ 124.42 + 9.52¢
72.93 + 5.46¢ 49.00 + 4.33b 368.50 + 25.92b 141.15 + 7.61b
85.84 + 3.79b 54.77 + 5.24ab 306.02 + 14.19bc 108.53 + 5.13bc

CK, Control; B, Biochar amendment; S, Intercropping with Paspalum vaginatum; BS, Biochar amendment combined with intercropping Paspalum vaginatum. Each value represents three
biological replicates (+ SD) (n = 3). Different lowercase letters indicate significant differences among treatments at the p < 0.05 level.

biochar, which may immobilize mineral nitrogen, coupled with the
increased AN uptake by the intercropped plants, but may also alter
the N-cycling mediated by microbes, such as ammonia-oxidizing
bacteria (AOB) and archaea (AOA) (Lehmann et al., 2021; Xiang
et al, 2024). Further research into microbe-involved nitrogen
cycling processes is needed to reveal the mechanisms of N cycling
mediated by biochar. The reduction in available N, particularly in
the form of NOj’, might initially appear detrimental, excessively
high levels of NO; are in fact phytotoxic—a common scenario in
greenhouse production systems (Zhang et al., 2021). The strong
effect of biochar or intercropping in reducing available N content
may be more effective when applied to greenhouse continuous
cropping soils degraded by excessive nitrogen fertilizer application.
Thus, both biochar and intercropping play crucial roles in
rebalancing soil nutrient dynamics (Hauggaard-Nielsen and
Jensen, 2005). Furthermore, compared to CK, the soil phenolic
acid content decreased significantly across all amendment
treatments, with the most substantial reduction observed in the
BS treatment (Figure 3). This indicates that both biochar and
intercropping directly or indirectly influence the soil micro-
ecological environment, ultimately affecting cucumber yield and
quality. The mitigation of autotoxic effects on cucumbers by biochar
may be attributed to its high porosity, substantial adsorption
capacity, and large specific surface area, which likely facilitate the
adsorption of phenolic acids. Additionally, biochar-induced
alterations in the soil microbial community might contribute to
the degradation of these autotoxic substances (Yang et al., 2019a).
Similarly, intercropping reduces phenolic acid levels,which may be
due to the root exudates from Paspalum vaginatum that enhance
nutrient availability and stimulate microbial activity, thus
alleviating their autotoxic impact on cucumbers (Li et al., 2020).
In conclusion, our results indicate that integrating biochar with
intercropping may serve as a promising strategy for improving soil
physicochemical properties and mitigating continuous cropping
obstacles in intensive cultivation systems, warranting further
validation under field conditions.

4.2 Effect of biochar and intercropping on
soil salinity

Soil properties were influenced by the application of biochar

and intercropping. As a halophyte, Paspalum vaginatum exhibits a
high degree of salt tolerance, with certain ecotypes capable of
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withstanding salt concentrations equivalent to 80% of that in
seawater (Lee et al., 2004). Consistent with its halophytic nature,
intercropping with Paspalum vaginatum significantly reduced the
levels of soluble salt ions and soil electrical conductivity (EC)
(Table 2). This reduction is likely attributable to the pronounced
capacity of Paspalum vaginatum to uptake and sequester salt ions,
accumulating them in both root and shoot tissues (Guo et al., 20165
Hu et al,, 2020). This mechanism is supported by similar findings
for other species; for instance, the high salt-absorption potential of
alfalfa has been shown to reduce soil salt accumulation and
consequently lower EC (Su et al, 2024). Similarly, biochar
ameliorates salinity through distinct mechanisms. Its surface,
characterized by both positive and negative charges and a
diversity of functional groups, facilitates the adsorption of various
salt ions, thereby reducing soil salinity (Farhangi-Abriz and
Ghassemi-Golezani, 2021; Rajapaksha et al, 2016). Our results
showed that biochar application significantly reduced the
concentrations of Na*, SO,*, and CI’, while concurrently
increasing the levels of Ca** and Mg>* (Table 1) (Jin et al., 2024;
Zhang et al., 2022a). These observed ionic shifts are consistent with
a potential cation exchange process, wherein the release of divalent
cations (Ca*" and Mg®*) from biochar could promote the
displacement of Na® from soil exchange sites into the soil
solution, perhaps facilitating its leaching from the root zone
(Agbna et al, 2017; Cui et al,, 2021). Furthermore, the combined
application of biochar and intercropping elicited a more
pronounced reduction in key soil salinity indicators compared to
biochar alone, pointing to a potential synergistic effect. This
enhanced efficacy could be due to several interconnected factors.
For instance, biochar-induced improvements in soil physical
properties, such as porosity and moisture retention (Qian et al,
2020; Wang et al., 2022a), likely create a more favorable rhizosphere
environment. This, in turn, may bolster the capacity of Paspalum
vaginatum to absorb, sequester, or tolerate salts. Additionally,
modifications to the microbial community by biochar or changes
in root exudation patterns due to intercropping might also
contribute to this synergistic salinity mitigation.

4.3 Effect of biochar and intercropping on
the yield and quality of cucumbers

Continuous cropping obstacles inhibit crop growth and severely
reduce crop yield and quality (Li and Cai, 2016; Liao et al,, 2018).

frontiersin.org


https://doi.org/10.3389/fpls.2025.1711099
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Shen et al.

Previous studies have explored the potential of biochar application
or intercropping to alleviate continuous cropping obstacles and
thereby improve crop yield and quality (Hu et al., 2020; Zhang et al.,
2023). However, it remains unclear whether the combined
application of biochar and intercropping exerts a synergistic effect
on improving crop growth under continuous cropping systems and
on enhancing soil health. Enhancing crop yield and quality is a
major objective in agricultural production (Souza et al., 2025; Wu
et al,, 2025). In this study, the combined application of biochar and
intercropping significantly enhanced cucumber growth and
increased yield (Figure 1). Studies have indicated that biochar can
alleviate soil degradation induced by continuous cropping and
excessive fertilization, while also enhancing crop yields (Cui et al.,
2021; Zhang et al., 2023). Biochar is rich in mineral elements and
possesses a large specific surface area and high adsorption capacity.
These properties can reduce NO;™ but increase AP and AK, thereby
helping to balance soil nutrient status (Li et al., 2023). Moreover,
biochar application can improve the soil microbial environment
and enhance microbial activity, thereby promoting plant growth (Li
etal., 2023; Lv et al., 2023). The positive effects of intercropping on
crop yield can be attributed to multiple mechanisms. Studies have
shown that intercropping can enhance the availability of soil
nutrients, promote leaf photosynthesis, and facilitate fruit set and
development (Wang et al., 2022b). Furthermore, intercropping with
halophytes can ameliorate soil salinity conditions, thereby
providing a more favorable low-salt environment for crop growth
(Simpson et al., 2018). Additionally, our results showed that the
combined application of biochar and intercropping increased the
contents of soluble sugars, soluble proteins, and vitamin ¢ in
cucumber fruits, while significantly reducing fruit nitrate content
(Figure 2). This indicates that both the organic amendment
(biochar) and intercropping have positive effects on fruit quality.
Due to its high stability, biochar allows for the slow and continuous
release of nutrients, which promotes balanced nutrient uptake and
utilization by crops, ultimately enhancing fruit quality (Naecem
et al, 2018; Zhao et al,, 2017). Previous studies have reported
similar findings: in cucumber continuous cropping systems, biochar
amendment improves the crop growth environment by mediating
soil nutrient balance and reducing salinity, thereby promoting
growth and increasing both yield and quality (Wang et al., 2021a;
Zhou et al,, 2021). Consistent with our findings, studies have shown
that intercropping with halophytes also improves soil
physicochemical properties and reduces soil salinity, thereby
creating a more favorable growth environment for crops (Jurado
et al., 2024; Slatni et al., 2024).

4.4 Effect of biochar and intercropping on
soil bacterial communities

The application of biochar and intercropping significantly
influenced soil microbial diversity and composition (Figures 4, 5),
which are crucial for nutrient cycling and plant health in
agricultural ecosystems. Soil acidification and salinization
resulting from continuous cropping profoundly alter microbial
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community structure and suppress their metabolic activities (Ji
et al., 2022; Marcheva et al., 2024). The community of
microorganisms is primarily impacted by nutrients, pH, and
salinity (Banda et al., 2021). In this study, the combined
application of biochar and intercropping not only significantly
increased soil microbial diversity (Figures 4, 5), but also induced
a profound functional reshaping of the microbial community.

The LEfSe analysis provided tangible evidence for this structural
shift, identifying specific bacterial taxa that were significantly
enriched in the BS treatment (Supplementary Figure SI). These
biomarkers included families within the Actinobacteriota, such as
Micromonosporaceae and Nocardiopsaceae, which are renowned
for their capacity as prolific producers of antibiotics and hydrolytic
enzymes (Mitra et al., 2021). Crucially, this taxonomic shift was
directly reflected in the functional potential predicted by PICRUSt2
(Supplementary Figure S2). The BS treatment exhibited a significant
enhancement in the “Neomycin, kanamycin and gentamicin
biosynthesis” pathway. This coherent finding strongly suggests
that the BS combination does not merely increase microbial
abundance but specifically enriches for keystone taxa within the
actinobacterial community and upregulates their antibiotic
synthesis potential, thereby constructing a more robust biological
defense line against soil-borne pathogens—a core challenge in
continuous cropping systems.

Concurrently, the PICRUSt2 results revealed a significant
reduction in “Bacterial chemotaxis” under BS treatment
(Supplementary Figure S2). This functional shift holds important
ecological implications, as chemotaxis is an energy-costly behavior
for microorganisms seeking resources in oligotrophic or stressful
environments (Wadhams and Armitage, 2004). Its suppression
likely indicates that the BS-amended soil offers a more favorable
and less stressful microenvironment with improved nutrient
accessibility (Tables 2, 1), allowing microbes to allocate more
energy from motility to growth and beneficial metabolite
production. This notion is further supported by the significant
enrichment of “D-Alanine metabolism” and “D-Glutamine and D-
glutamate metabolism” pathways, which are integral to bacterial cell
wall synthesis and osmotic stress regulation (Cava et al., 2011;
Waldemar et al., 2008), indicating a microbial community with
enhanced growth activity and resilience under the BS regime. This
finding aligns with previous studies showing that while salinity
adversely affects bacterial community composition, the application
of biochar or intercropping under salt stress mitigates these effects
and exerts favorable effects on bacterial structure (Szoboszlay et al,,
2019; Xie et al, 2022). These practices likely enhance microbial
diversity by supplying nutrients and creating additional ecological
niches for beneficial microorganisms (Fu et al., 2017). Furthermore,
the increased diversity may enhance functional resilience, allowing
the microbial community to maintain activity under a wider range
of environmental conditions through niche adaptation and
functional redundancy (Garcia-Garcia et al., 2019). Therefore, by
enhancing microbial diversity, the biochar-intercropping
combination fosters a more robust soil microenvironment and
ensures the stability of ecosystem functions mediated by
microbes. PCoA shows that the microbial communities of CK
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Relative abundance of bacterial phyla in soils treated with biochar and intercropping.

and BS treatments are clearly separated (Figure 5). This shift in
community composition is consistent with previous findings that
plant-soil interactions can greatly alter microbial community
structures (Jin et al., 2020; Zhou et al,, 2021). These community
changes are functionally significant, as rhizosphere microbes are
key agents in plant nutrient acquisition, soil structure formation,
and the production of regulatory exometabolites (Chi et al., 2023;
Tong et al, 2024). Thus, by reshaping the soil microbial
composition, biochar and intercropping indirectly promote plant
growth and health (Wang et al., 2024a). Specifically, the BS
treatment significantly increased the relative abundance of several
bacterial phyla, including Actinobacteriota, Gemmatimonadota, and
Chloroflexi (Figure 7). The proliferation of these oligotrophic taxa
may be driven by the moderated soil nitrogen availability (Wang
et al., 2024b). These phyla are integral to soil nutrient cycling,
facilitating the transformation of carbon, nitrogen, and phosphorus
through the secretion of various enzymes and metabolites, thereby
promoting plant growth (Morrissey et al., 2023; Mujakic et al., 2023;
Rao et al,, 2022). The overall improvement in soil nutrient supply
capacity (Bandara et al, 2022) and the elevated pH are likely
contributing factors to the success of these bacterial groups. It is
noteworthy that Acidobacteriota, which are often considered
acidophilic, dominated the CK treatment with lower pH
(Table 1). Previous studies suggested that Acidobacteria played an
important role in biogeochemical cycling of carbon and
consequently might be adaptable to the environment of large
variety of carbon sources present in biochar (Zhong et al., 2024).
However, the soil showed a more alkaline environment after

Frontiers in Plant Science

biochar amendment, which is not favorable for Acidobacteria, a
phylum of bacteria usually being acidophilic (Lehmann et al., 2011).
As a result, the abundance of Acidobacteria decreased with biochar
addition. Notably, Actinobacteria not only produce antibiotics to
suppress plant pathogens and decompose organic matter but also
reduce bacterial wilt in plants. They exhibit accelerated growth in
nutrient-rich environments (Lee et al., 2021), and the application of
biochar improves soil conditions, thereby stimulating the
proliferation of these beneficial microorganisms. Biochar itself
provides a physical refuge and a slow-release carbon source for
microorganisms, while the root exudates from the intercropped
Paspalum vaginatum supply easily degradable carbon sources for
specific microbial taxa. It is plausible that the release of phenolic
compounds from the aromatic carbon structures of biochar,
facilitated by Actinobacteria, may further stimulate the abundance
and activity of microbial groups capable of decomposing phenolic
acids (Kolton et al, 2017), thereby potentially alleviating their
adverse effects on plants. Furthermore, the improved treatments
reduced the relative abundance of potentially pathogenic
Proteobacteria (Tan et al, 2017), while enriching for beneficial
genera such as Gemmatimonas, which is known to suppress
Fusarium wilt and promote plant growth (Shen et al., 2024;
Zheng et al., 2024; Zhong et al., 2024). Furthermore, studies have
shown that biochar and intercropping can alleviate the inhibitory
effects of salt ions on microorganisms, promoting the growth and
metabolism of dominant salt-tolerant bacteria such as Bacteroidota
and Actinobacteriota (Wang et al., 2024d). This shift in the
microbial balance, from a community dominated by potential
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pathogens and acidophiles (e.g., Acidobacteriota in low-pH CK) to
one enriched with beneficial taxa identified by LEfSe (e.g.,
antibiotic-producing Actinobacteriota) and functionally equipped
for nutrient cycling and stress resistance (as per PICRUSt2), likely
contributed significantly to the observed enhancement in plant
growth by simultaneously mitigating soil-borne diseases and
improving soil fertility.

Our PLS-PM analysis identified the amelioration of soil
physicochemical properties, not bacterial diversity, as the primary
driver for enhanced cucumber yield. This can be attributed to
several factors: First, the rapid alleviation of abiotic stressors (e.g.,
AP+
immediate physiological benefits, outweighing the more gradual

toxicity, salinity) via increased pH and adsorption provided

effects of microbial shifts (Lehmann et al., 2011). Second, biochar
and intercropping primarily improved the physicochemical
environment, which subsequently steered the microbial
community as a secondary effect (Lehmann et al., 2011). Third,
under the severe abiotic stress of the degraded soil, directly
mitigating these constraints was a prerequisite for plant growth, a
role in which physicochemical amelioration is inherently faster and
more direct than microbial mediation (Ranjbari et al., 2022).
Consequently, the direct improvement of soil physicochemical
properties emerged as the dominant mechanism in this short-
term pot study.

To identify the key drivers influencing cucumber yield and
quality, a partial least-squares path modeling (PLS-PM) analysis
was performed (Figure 6). The results indicated that soil pH and soil
nutrition play significant positive roles in enhancing cucumber yield
and quality, while they are negatively correlated with soil properties,
available N content, and phenolic acid concentrations. The PLS-PM
results suggest that biochar amendment and intercropping likely
enhance cucumber yield and quality primarily by mitigating these
soil stressors (e.g., salinity, excessive AN, and phenolic acids). This
finding is consistent with previous studies reporting that soil
amendments and intercropping systems can alleviate soil salinity
and phenolic acid toxicity, thereby promoting crop growth (Hu
et al., 2020; Zhou et al., 2021). In contrast, microorganisms have a
relatively minor impact on cucumber yield and fruit quality.
Therefore, we propose that the enhancement of cucumber yield
and quality is primarily a result of the direct improvement of soil
physicochemical properties by biochar and intercropping, rather
than being predominantly mediated through changes in the
microbial community.

While this pot experiment provides compelling evidence for the
synergistic benefits of combining biochar with halophyte
intercropping under controlled conditions, it is important to
acknowledge its limitations. The pot scale restricts the
extrapolation of our findings directly to field-scale agricultural
systems. Field environments are subject to greater heterogeneity
in soil properties, climate variability, and larger-scale management
practices, which could modulate the efficacy of the combined
treatment. Therefore, our results should be interpreted as a proof-
of-concept, demonstrating the strong potential of this integrated
strategy for mitigating continuous cropping obstacles. The
promising outcomes observed here justify and necessitate future
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long-term field trials to validate these findings, optimize application
rates (e.g., biochar dosage, intercropping density), and assess the
economic viability and large-scale practicality of this approach for
sustainable greenhouse vegetable production.

5 Conclusions

The application of biochar, both alone and in combination with
intercropping, effectively improved soil health, leading to enhanced
yield and quality of cucumbers. Both biochar and intercropping
significantly increased soil pH, SOC, TN, AP, and AK. In contrast,
these treatments significantly reduced the soil NO; content.
Additionally, the concentrations of phenolic acids and soil salinity
were significantly reduced. Among all treatments, the combined
application of biochar and intercropping proved to be the most
effective strategy for alleviating soil acidification and salinity,
reducing phenolic acids, regulating nutrient balance, increasing
SOC, enhancing bacterial diversity, and ultimately improving
cucumber yield and quality. Partial least-squares path modeling
(PLS-PM) results demonstrated that soil pH and nutrient
availability had direct positive effects on cucumber yield and
quality, whereas phenolic acids, salinity, and excessive available
nitrogen exerted significant negative effects. In conclusion, our pot
study provides evidence that the integrated application of biochar
and intercropping holds promise as a sustainable strategy for
mitigating continuous cropping obstacles in cucumber
production. These findings, obtained under controlled conditions,
offer a proof-of-concept demonstrating the potential of this
combined approach to synergistically improve soil health and
crop performance. To translate this potential into practical
agricultural practice, the long-term efficacy and economic viability
of this strategy must be validated through well-designed field trials.
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