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Introduction: A high-yielding rice variety (HYV), Kitagenki, in the Hokkaido region
has a high yield potential owing to its large sink capacity, high source ability, and
grain-filling ability. However, the detailed mechanisms underlying high biomass
productivity, a major component of source ability, and stable high yields remain
elusive. Thus, we aimed to elucidate the canopy morphological and physiological
traits that improve the biomass productivity of Kitagenki and how they contribute
to a stably high yield.

Methods: We conducted field experiments over 8 years using three rice varieties
(Nanatsuboshi: standard-yielding variety, Kita-aoba, and Kitagenki: HYV) with
three replicates.

Results and discussion: Kitagenki stably produced higher gross hulled grain yield
than Kita-aoba by 4.9-14.9% (8.9% on average) because of higher filled-grain
percentage. During 0-20 days after the full-heading stage (DAH), Kitagenki
revealed a markedly higher crop growth rate by 29.7% than Kita-aoba because of
a higher net assimilation rate while maintaining leaf area index. During these stages,
Kitagenki showed a better canopy architecture, characterized by substantially higher
leaf inclination angles of the upper two leaves and narrower leaf blades, which
facilitated better light interception inside the canopy and higher *C assimilation of
the third and whole leaves than in Kita-aoba. At the single-leaf level, Kitagenki
showed a higher photosynthetic rate in the third leaf and higher stomatal
conductance. Consequently, adequate carbohydrate supply during the early grain-
filing stages in Kitagenki enabled faster translocation into the inferior spikelet,
resulting in a higher grain-filling ability than that in Kita-aoba. This further
contributed to the higher grain yield per cumulative solar radiation during 0-40
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DAH in Kitagenki than in Kita-aoba under fluctuating air temperature. These findings
indicate that superior canopy architecture, better light interception inside the
canopy, and higher carbon assimilation of lower leaves contribute to high biomass
productivity during the early grain-filling stage, leading to high grain-filling ability and
a stable high yield in Kitagenki compared to Kita-aoba. These results provide key
canopy morphological and physiological traits for breeding future HYV that can
break the yield ceiling in cold regions.

KEYWORDS

biomass productivity, carbon assimilation, canopy architecture, grain-filling ability, light
interception, photosynthesis, stable high yield

1 Introduction

Increasing rice production is necessary because rice is a staple
food that feeds more than half of the world’s population (Khush,
2005). In Japan, in contrast to the reduced demand for rice as a
staple food by approximately 100 thousand t annually, rice
production for animal feed has increased from 109 thousand t in
2013 to 803 thousand t in 2022 (Ministry of Agriculture, Forestry
and Fisheries, 2025). Increasing rice grain yield by breeding high-
yielding rice varieties (HYV) is a promising agronomic strategy to
meet this increasing demand.

In Japan, several HYVs have been released, and high grain
yields have been reported. For instance, indica-type HYVs:
Hokurikul93 (Goto et al., 2009) and Takanari (Imbe et al., 2004)
' in the

central and southwestern parts of Japan, where the air temperature

produced a high gross hulled grain yield of over 11 t ha™

during the rice cultivation period exceeds 20°C (Okamura et al,
2022; Kobayashi et al, 2014; Nagata et al, 2016). In contrast,
japonica-type HYV: Kitagenki (Ikegaya et al., 2017) showed
extremely high yield potentials of 12 t ha™' (14.5 t ha™' of rough
grain yield) in the Hokkaido region, the northernmost part of Japan,
where the air temperature during their rice cultivation period is
<20°C (Yagioka et al., 2022). This yield potential exceeded those of
previous japonica-type HYV in the same region (>10 t ha™;
Hayashi et al., 2012; Hayashi, 2015) or large grain japonica-type
HYV in the Tohoku region, the north-eastern parts of Japan
(>9 t ha™!; Fukushima et al., 2011; Mae et al., 2006). Despite
extensive research on high-yielding traits and/or plant types of
indica-type HYV in the warmer regions of Japan (Katsura et al,
2008; Kobayashi et al., 2014; Nagata et al.,, 2001; Okamura et al,,
2018, 2021, 2022; Saitoh et al., 2002; Takai et al., 2006; Taylaran
et al, 2009; Yoshinaga et al., 2013), relatively little information is
available on japonica-type HYV in the Hokkaido region (Hayashi
et al., 2012; Hayashi, 2015; Yagioka et al, 2021). Anzoua et al.
(2010) elucidated the historical alterations in plant type along with
yield improvement in the Hokkaido region using older rice varieties
released from 1905 to 1988. However, the plant types of recent HYV
in this region have not been assessed.
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From a global perspective, the Hokkaido region (41°2°-45°3’N
latitude) is one of the northernmost limits of rice cultivation
(Fujino et al., 2019). Similarly, Heilongjiang province in China (43°
26’-53°33'N latitude) is considered the northernmost region of rice
cultivation in the world (Wang et al, 2024). The simulated yield
potentials (rough grain yield) of northeast China including
Heilongjiang province is estimated to be 12.3-13.6 t ha™' (Wang
et al, 2018). To narrow the yield gap in Heilongjiang province, Jia
etal. (2023) evaluated several crop management practices using single
variety (japonica-type variety DN427) and achieved the maximum
rough grain yield of approximately 11 t ha™' under 200 kgN ha™" at
45°52’ N latitude. Shahbaz Farooq et al. (2021) also compared the
growth and grain yield of four japonica rice cultivars in two regions of
Heilongjiang province and reported the maximum rough grain yield
of 13.4 t ha™" (adjusted to 15% moisture content) using Longdao-18.
However, to date, a rough grain yield exceeding 14 t ha™" has not been
achieved in the region. Furthermore, although Shahbaz Farooq et al.
(2021) analyzed grain yield response in terms of yield components,
grain-filling traits, and dry matter production, canopy morphological
and physiological traits have not been fully characterized. Therefore,
elucidating the plant types of the japonica-type HYV with high yield
potentials of 12 t ha™' (14.5 t ha™' of rough grain yield) in the
Hokkaido region can provide novel insights on breeding future HYV
that can break the yield ceiling in cold regions worldwide.

Sink capacity (total spikelet number x one-grain weight) and
grain-filling ability determine grain yield (Yoshinaga et al., 2013;
Yagioka et al,, 2021). Sink-source relationships influence grain-
filling ability (Yagioka et al,, 2021). Source can be expressed as
source ability, that is, available carbohydrate, which is calculated as
non-structural carbohydrate (NSC) at full-heading stage (FH) plus
dry matter production (AW) during the grain-filling stages (Morita
and Nakano, 2011). In the Hokkaido region, our previous study
showed that Kitagenki produced 24.6% higher grain yields than the
standard yielding variety (SYV): Nanatsuboshi, because of its larger
sink capacity. Moreover, the grain yield of Kitagenki was higher
than that of the previous HYV: Kita-aoba, owing to the higher
grain-filing ability at a large sink capacity, supported by a higher
source ability per spikelet and spikelet fertility (Yagioka et al., 2021).
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Kitagenki showed higher NSC and AW during the early grain-filling
stages than Kita-aoba, which can partly explain the high grain-
filling ability. However, the mechanism by which canopy
morphological and physiological traits (e.g., leaf area index [LAI],
canopy architecture, leaf morphological traits, light and leaf N
distribution inside the canopy, and/or photosynthetic rate)
contribute to high biomass productivity in Kitagenki and to a
stable high yield remain elusive.

To bridge these knowledge gaps, this study aimed to elucidate
the morphological and physiological traits that contribute to high
biomass productivity in Kitagenki, and how they contribute to a
stably high yield. We compared two HYV, Kitagenki and Kita-aoba,
which have varying grain-filling abilities at a large sink capacity
(Yagioka et al., 2021). SYV: Nanatsuboshi, a leading rice variety in
the Hokkaido region, was compared as a reference variety with a
smaller sink capacity than Kitagenki (Yagioka et al., 2021). Through
field experiments, we observed a better canopy structure in
Kitagenki, characterized by more erect and narrower upper leaves
and shorter culm lengths than Kita-aoba (Supplementary Figure
S1), which might benefit canopy photosynthesis via better light
interception and higher photosynthetic performance in lower
leaves. From these observations, we hypothesized that the
superior canopy architecture and carbon assimilation of the lower
leaves improve biomass productivity in Kitagenki.

2 Material and methods

2.1 Site description and experimental
design

Eight years (2014-2021) of field experiments were conducted in an
irrigated paddy field at the Hokkaido Agricultural Research Center,
NARO, Sapporo, Hokkaido, Japan (43° 0’ N, 141° 25" E). A
randomized complete block design was used with three replicates.
Three rice varieties were used: Nanatsuboshi, Kita-aoba, and Kitagenki.
The fertilizer application rate was 105 kg N ha™" of ammonium sulfate,
80 kg P05 ha™! of superphosphate, and 80 kg K,O ha™" of potassium
chloride, which were applied as the basal fertilizer. The plot size was
15.9-63.6 m”. All plots were tilled by chisel plowing, followed by rotary
tillage immediately after basal fertilizer application, at a tillage depth of
approximately 0-15 cm. Following rotary tillage, puddling was
performed several days following submergence.

Rice seeds were sown in nursery pods between April 11 and 22,
and mature seedlings (28-40 d) were transplanted into fields
between May 18 and 22, depending on the year. The planting
density was 20.8-23.1 hills m™> (row spacing of 33 cm and hill
spacing of 13.1-14.6 cm).

2.2 Measurement of climate conditions
Solar radiation and air temperature were monitored at the

meteorological station of the Hokkaido Agricultural Research
Center, located approximately 1km away from the experimental
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fields. Specifically, air temperature was measured with a platinum
resistance thermometer (Pt100) installed in a ventilated shield.
Solar radiation was measured with a pyranometer (CMP-21F,
Kipp & Zonen, The Netherlands).

2.3 Measurement of lodging score and
culm length

At maturity stage (M), lodging score was measured on a scale
from zero (no lodging) to five (complete lodging) (Yagioka et al,
2022). At the middle grain-filling stages, the culm length (length
from the ground surface to the panicle base) of the longest culm on
five continuous hills were measured by ruler (Yagioka et al., 2022).

2.4 Measurement of grain yield, sink
capacity, and filled-grain percentage

At M, rice plants in the 3.0 m? plot were harvested. After total
spikelet number was measured as described in Yagioka et al. (2021),
the rough grain was weight as “rough grain yield”. Thereafter the
rough grain was hulled and weighed as “gross hulled grain yield”.
The sub-samples of hulled grain were screened to 1.8 mm,
thereafter thousand grain weight were calculated using the grain
thicker than 1.8 mm. Sink capacity was calculated using the
following Equation 1 (Akita, 1989; Yoshinaga et al., 2013):

Sink capacity = total spikelet number
x thousand grain weight/1000 (1)

Using the above sample from 3.0 m® plot, filled-grain
percentage was calculated using the following Equation 2
(Yagioka et al., 2022):

Spikelet number thicker than 1.8 mm
x 100/total spikelet number 2

GY/R (Nagata et al., 2016) and filled grain percentages/R were
also calculated using the following Equation 3, 4:

GY/R = gross hulled grain yield/ (3)
cumulative solar radiation from 0 to 40 DAH
Filled grain percentage/R
= filled grain percentage/ (4)

cumulative solar radiation from 0 to 40 DAH

2.5 Measurement of shoot dry matter,
panicle dry matter, LAl, and specific leaf N
in rice plant

To determine shoot dry matter (SDM), panicle dry weight, LAI,
and specific leaf N in rice plant, eight continuous hills in canopy
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condition were sampled at FH and 20 and 40 DAH. Among the
eight hills, the two representative hills with averaged stem number
were separated into seven parts: panicle, culm plus leaf sheath, leaf
blade at different positions (first, second, third, and fourth plus the
remaining leaves counted from the flag leaf), and dead leaf blade.
The LAI of the leaf blades was measured using a leaf area meter (LI-
3100 C, Meiwa, Tokyo, Japan). At M, rice plants in the 3.0 m* plot
were harvested as described in sub-section 2.4, thereafter separated
into two parts (rough grains and rice straw). Additionally, the two
representative hills with averaged stem number were also sampled
at M and separated into seven parts in the same manner as reported
above, and LAI was measured. The seven plant parts from the two
hills, whole shoots from the remaining six hills, and two plant parts
(grain and rice straw) separated in M were oven-dried at 80°C for
>48 h, weighed, and summed as the shoot dry matter (Yagioka
et al., 2022).

The N concentrations in the leaf blades were measured using a
CN analyzer (Vario MAX CNS, Elementar, Hanau, Germany). LAI
(Breda, 2003), crop growth rate (CGR; Zhu et al., 2020; Zhang et al.,
2025), net assimilation rate (NAR; Zhu et al., 2020; Zhang et al.,
2025), mean LAI panicle growth rate (Okamura et al., 2018), and
specific leaf N were calculated using the following Equation 5-10:

LAI = specific leaf area

x leaf blade’ s dry weight per land area (5)
CGR1 1) = (SDM, - SDM,)/(t, - t;) (6)

NAR(; ) = ([SDM, - SDM;]/[t; - t;])

« (InLAL -InLAL]/[LAL -LAL])  (7)
Mean — LAL 1) = CGR¢ _12)/NAR (4 12 (8)

Panicle growth rate _ )

= (panicle dry weight, - panicle dry weight,)/(t, -t,)  (9)

Specific leaf N = leaf N concentration/(specific leaf area x 100) (10)

(t; and t,: the first and second sampling time, SDM,; and SDM,:
SDM at the first and second sampling time, LAI; and LAL: LAI at
the first and second sampling time; panicle dry weight; and panicle
dry weight,: panicle dry weight at the first and second
sampling time).

2.6 Measurement of leaf inclination angle,
leaf blade length, and leaf blade width

The leaf inclination angles of the upper two leaves were assessed
during the early grain-filling stages (0-20 DAH) over 5 years (2016-
2020). Fifteen representative hills with averaged stem number were
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randomly selected, and one representative stem with average leaf
size per hill was chosen. Thereafter, the leaf inclination angles
(defined as angle from the horizon to the tangent line at the center
of the leaf blades) of the first and second leaf blades from flag leaf
were measured using a digital angle meter (Shinwa, Niigata, Japan).

The leaf blade length and width of the upper three leaves were
measured during the middle grain-filling stages over 3 years (2016
2018). Ten representative leaves per plot with average leaf size were
chosen and leaf blade length and width were measured using a ruler
and the values were averaged.

2.7 Measurement of relative light
interception rate

During the early grain-filling stages, the relative light
interception rate inside the canopy was measured using
solarimeter films (Y-1W, Taisei, Tokyo, Japan) over 3 years
(2016-2018). As this film fades as solar radiation is absorbed
(Kawamura et al., 2005), the relationship between the fading rate
of the film (F) and the cumulative solar radiation were considered in
the preliminary experiment. Totally 130 films were attached to a
wooden board at 10 c¢m intervals and subsequently placed
horizontally on the soil surface near the meteorological station of
the Hokkaido Agricultural Research Center. During 10-day periods,
each 10 film samples were taken at totally 13 times, and the
absorbance of the films at the initial (D) and the sampling times
after exposure (D) were measured using a spectrophotometer (D-
Meter, RYO-470, Taisei, Tokyo, Japan), and F was calculated using
the following Equation 11 (Kawamura et al., 2005):

F =100 x D/D, (11)

Hourly mean solar radiation was also monitored by the method
written in sub-section 2.2, and cumulative intercepted solar
radiation between the initial and sampling times was calculated.
Thereafter, the quadratic relationship between F and the cumulative
intercepted solar radiation were determined and expressed by the
following Equation 12:

Cumulative intercepted solar radiation(M] m~?)

=-0.0098 x F>-0.2351 x F + 118.63 (12)

In the main experiment, ten films per plot were attached to a
wooden board at 10 cm intervals and subsequently placed
horizontally on the inter-row space inside the canopy at three
different heights from the ground (60, 35, and 10 cm) for 7-10 days.
Furthermore, 20 films were placed outside the canopy (in an open
space without shading) in the same field.

After Dy and D were measured by the above method, the
cumulative intercepted solar radiation was calculated based on
the Equation 12. The relative light interception rate was
calculated using the following Equation 13:
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Relative light interception rate( % )

= cumulative intercepted solar radiation at

each height inside the canopy

x 100/cumulative intercepted solar (13)

radiation outside the canopy

2.8 Measurement of leaf photosynthetic
rate and stomatal conductance

The leaf photosynthesis rate and stomatal conductance of the
upper three leaves were measured during the early grain-filling
stages (0-20 DAH) over 2 years (2017-2018). Approximately five
leaves of the main stem or equivalent stem, with average leaf color
determined by Soil and Plant Analyzer Development values, were
selected for each leaf position per plot. A LI6400 (Meiwa, Tokyo,
Japan) was used for the measurement during 9:00-12:00 at a
temperature of 25°C inside the chamber, 2000 PAR, CO,
concentrations of 400 ppm, and a VPD of approximately <1.5
kPa. The measurement was conducted under adequate sunlight on
sunny days. Each measurement was conducted when the
photosynthetic rate saturated.

2.9 *°C tracer experiment

In 2020, °C tracer experiment was conducted to compare
varietal differences in the carbon assimilation of leaf blades at
various positions and their translocation into different parts of
rice plants. '*CO, was supplied at two different stages: early (12
DAH) and middle (27 DAH) grain-filling stages. The '*CO, was
generated by adding 10 ml of 7.3M H;PO, to 99 atom% Ba;3CO;
inside a canopy frame (60 cm x 30 cm X 105 cm) equipped with a
fan. Rice plants on four continuous hills were enclosed within each
frame per plot. ">C was fed for an hour with gas circulation, based
on Sasaki et al. (2005), who reported that ">C was completely
assimilated after 1 h. At 1 h and 25 h after initiating the *C feeding,
rice plant on one hill was sampled at each stage and cut into leaf
blades at different positions (first, second, third, and fourth plus the
remaining leaf), dead leaf blade, stem (culm and leaf sheath),
spikelet on different parts of the panicle (primary rachis branch
[PRB] on upper parts [PRB upper], PRB on lower parts [PRB
lower], secondary rachis branch [SRB] on upper parts [SRB upper],
and SRB on lower parts [SRB lower]), as well as the remaining parts
of the panicles. The rice plants were dried at 80°C for >48 h, and
their dry weights were measured. The >C concentrations were
measured using an ANCA-SL elemental analyzer coupled to a 20-
20 mass spectrometer (Europa Scientific, Crewe, UK), and the C
concentration was measured using an NC analyzer (Vario MAX
CNS, Elementar, Hanau, Germany). The number of spikelets at
each position in the panicle was counted to calculate the "C
per spikelet.
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2.10 Grain-filling of the spikelet on various
positions in the panicle

To determine the grain-filling pattern of spikelets, the increase
of single grain weight at various positions in the panicles were
assessed during the grain-filling stages over 2 years (2016-2017).
First, panicles whose spikelets on the top flowered at the FH were
tagged. Thereafter, three (2017) to four (2016) panicles per plot
were sampled at FH, 10, 20, 30, and 40 DAH, as well as M. The
panicles were separated into four different parts: (1) PRB upper, (2)
PRB lower, (3) SRB upper, and (4) SRB lower, according to the
method described by Yagioka et al. (2021). After counting the
number of spikelets, they were oven-dried at 80°C for >48 h,
weighed, and the single grain weight was calculated.

To determine the contribution of the grain-filling ability at
various positions in the panicles to the final grain yield, the filled
spikelet number and filled grain weight at M were evaluated over 5
years (2016-2020). The panicle sample at M separated from the two
hills with averaged stem number (the method described in
subsection 2.5) was further separated into four different parts
(PRB upper, PRB lower, SRB upper, and SRB lower), as
mentioned above. The spikelet samples were soaked in tap water
with a specific gravity of 1.0 to separate filled and unfilled spikelets
(Komatsu et al.,, 1984). After the number of filled spikelets was
counted, they were oven-dried at 80°C for >48 h, weighed, and the
filled grain weight was calculated.

2.11 Statistical analysis

Statistical analysis was conducted using SPSS version 30 (IBM,
New York, USA). After the Shapiro-Wilk test was performed to
validate normality for three varieties separately, parameters that
have non-normal distribution (p < 0.05) for at least one variety were
square root transformed. Thereafter, analysis of variance (ANOVA)
for the randomized complete block design was conducted using a
general linear model. Replication was considered a random factor,
whereas year (Y) and variety (V) were considered fixed factors. All
data except for '>C were analyzed using an ANOVA model, which
included Y, replications within Y, V, and Y x V. Tukey’s multiple
comparison analysis was performed for the three varieties if
significant effects of V were observed in the initial two-way
ANOVA. The data of *C was analyzed using an ANOVA model,
which included replications and V.

3 Results

3.1 Mean solar radiation and air
temperature

The mean solar radiation and mean air temperature fluctuated

over 8 years (Supplementary Figure S2). Across three varieties used,
the mean solar radiation ranged from 16.9 to 21.0 MJ m* during
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transplantation stage (T)-FH, 13.4-19.8 MJ m ™ during 0-40 DAH,
10.0-17.2 MJ m™* during 40 DAH-M, and 15.6-20.1 MJ m>
during whole growth stages (T-M). Mean air temperature ranged
from 16.5 to 17.9°C during T-FH, 19.1 to 21.7°C during 0-40 DAH,
15.8 to 18.6°C during 40 DAH-M, and 17.6 to 18.9°C during the
whole growth stages (T-M).

3.2 Growth durations, lodging score, and
culm length

Over the 8 years, the three rice varieties had similar full-heading
dates and days from T to FH. The harvest day and grain-filling
duration of Kitagenki were approximately 5 days later and longer
than Nanatsuboshi and comparable with Kita-aoba, except for
2021, when severe lodging urged early Kita-aoba harvest
(Supplementary Table S1). Lodging score and culm length were
markedly lower in Kitagenki than in Kita-aoba and Nanatsuboshi.

3.3 Grain yield, sink capacity, and filled-
grain percentage

In all years, gross hulled grain yield was consistently higher in
Kitagenki than in Kita-aoba by 4.9-14.9% (8.9% on average) and
Nanatsuboshi by 10.1-36.0% (21.8% on average) (Figure 1). Rough
grain yield was also consistently higher in Kitagenki than in Kita-aoba
by 3.7-11.9% (6.8% on average) and Nanatsuboshi by 12.6-37.9%
(24.0% on average) (Supplementary Table S1). Kitagenki produced
gross hulled grain yield of >10 t ha™" in three out of 8 years and rough

10.3389/fpls.2025.1710830

grain yield of >11 t ha " in six out of 8 years. For an average of 8 years,
grain yield was the highest in Kitagenki, followed by Kita-aoba, and
was lowest in Nanatsuboshi. The sink capacity of Kitagenki was
comparable to that of Kita-aoba but markedly higher than that of
Nanatsuboshi over the 8 years (Supplementary Figure S3A). The
filled-grain percentage was consistently higher in Kitagenki than in
Kita-aoba over the 8 years (Supplementary Figure S3B).

3.4 CGR, mean-LAl, NAR, panicle growth
rate, LAl, and specific leaf N

Compared with Kita-aoba, Kitagenki exhibited significantly
higher CGR, NAR, and panicle growth rates at 0-20 DAH by
29.7%, 33.8%, and 17.2%, respectively, with comparable mean-LA],
averaged across 5 years (Figure 2). From 20 to 40 DAH, no
substantial differences in the CGR, mean LAIL, NAR, or panicle
growth rates were noted between Kitagenki and Kita-aoba.
Compared to Nanatsuboshi, Kitagenki revealed markedly higher
mean LAI and panicle growth rates at 0-20 and 20-40 DAH,
respectively. Although there exists yearly variation in CGR and
NAR at 0-20 DAH; similar varietal differences were observed in all
5 years, which were stable higher in Kitagenki than in Kita-aoba
(Supplementary Figures S5A, C). In contrast, varietal difference in
mean-LAI fluctuated over 5 years (Supplementary Figure S5B).

The LAI was not significantly different between Kitagenki and
Kita-aoba on any leaf position at FH and 20 DAH (Figures 3A, B).
Specific leaf N was not significantly different between Kitagenki and
Kita-aoba at FH (Figure 3C), whereas Kitagenki revealed markedly
lower specific leaf N in the first leaf than Kita-aoba at 20 DAH
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(Figure 3D). Compared with Nanatsuboshi, Kitagenki exhibited a
significantly higher LAI on the fourth leaf at FH and the second and
third leaves at 20 DAH, whereas no substantial differences were
noted in specific leaf N.

3.5 Leaf inclination angle, leaf blade length,
and leaf blade width

The leaf inclination angles of the first and second leaves were
the highest in Kitagenki among the three varieties (Figure 4). The
leaf blade length of Kitagenki was comparable to that of Kita-aoba
and markedly higher than that of Nanatsuboshi at all three leaf
positions (Supplementary Table S2). The upper three leaves of
Kitagenki were significantly narrower than those of Kita-aoba.

3.6 Relative light interception rate
Relative light interception rate was significantly higher in

Kitagenki than in Kita-aoba, by 45.4% at 60 cm and 22.4% at 35
cm, respectively (Figure 5).

Frontiers in Plant Science

07

3.7 Leaf photosynthetic rate and stomatal
conductance

During early grain-filling stages, leaf photosynthetic rate of
Kitagenki was markedly higher than that of Kita-aoba by 17.7%
on the third leaf and tended to be higher than that of Kita-aoba by
8.3% and 6.5% in the first and second leaves, respectively
(Figure 6A). Stomatal conductance was markedly higher in
Kitagenki than in Kita-aoba by 46.4% and 32.9% in the first and
second leaves, respectively, and tended to be higher in Kitagenki by
25.4% in the third leaf (p < 0.10, Figure 6B).

3.8 13C distribution

Kitagenki revealed markedly higher "*C distribution by 92%
and 8.1% on the third and whole leaves, respectively, at 1 h
following feeding than Kita-aoba (Figure 7).

As for the C distribution in various parts 25 h following
feeding, °C fed at 12 and 27 DAH was not markedly different
between Kitagenki and Kita-aoba on the leaf blades, dead leaf
blades, stems, and panicles (Figures 8A, C). However, >C per
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Leaf area index (LAI) measured at FH (A) and 20 DAH (B) and specific leaf N measured at FH (C) and 20 DAH (D). The data are averaged over 5 years
(2016-2020). Different lowercase letters among the three varieties at each leaf position indicate statistically significant differences (p < 0.05) based
on Tukey's multiple comparison analysis following two-way analysis of variance (ANOVA); ns, not significant by two-way ANOVA. DAH, days after the
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FIGURE 4

Leaf inclination angles from the horizon of the upper two leaves (1
and 2) of the rice plants were measured during the early grain-filling
stages. Data are averaged over 5 years (2016-2020). Horizontal bars
indicate the standard error. Different lowercase letters among the
three varieties at each leaf position indicate statistically significant
differences (p < 0.05) based on Tukey’'s multiple comparison analysis
following two-way analysis of variance (ANOVA).
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spikelet fed at 12 DAH was substantially higher in Kitagenki than in
Kita-aoba, by 21.2% and 35.1% in the SRB upper and lower parts,
respectively, and tended to be higher in Kita-aoba by 22.8% in the
PRB lower parts (Figure 8B). Contrastingly, '>C per spikelet fed at
27 DAH was significantly lower in Kitagenki than in Kita-aoba by
7.9% in the PRB lower parts and tended to be lower in Kitagenki
than in Kita-aoba by 22.5% in the PRB upper parts. Contrastingly, it
was comparable between Kitagenki and Kita-aoba in the SRB upper
and lower parts (Figure 8D).

3.9 Grain-filling of the spikelet on various
positions in the panicle

During the entire grain-filling stage, the weight of single grain
weight in the upper parts of the PRB was not markedly different
between Kitagenki and Kita-aoba (Figure 9A). In contrast,
Kitagenki had markedly heavier single grain weight than Kita-
aoba from 20 DAH to M in the upper parts of the PRB, and upper
and lower parts of the SRB (Figures 9B-D).

At M, filled spikelet number in Kitagenki was markedly lower
by 10.7% in the PRB upper parts and significantly higher by 25.9%
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FIGURE 5

Relative light interception rates among rice plant rows sampled
during the early grain-filling stage. The data are averaged over 3
years (2016-2018). Horizontal bars indicate standard errors.
Different lowercase letters among the three varieties at each height
indicate statistically significant differences (p < 0.05) based on
Tukey's multiple comparison analysis following two-way analysis of
variance (ANOVA); ns, not significant by two-way ANOVA.

in the SRB upper parts than that of Kita-aoba (Supplementary Table
S3). Similarly, filled grain weight of Kitagenki was substantially
lower by 8.4% in the PRB upper parts and markedly higher by
31.7% in the SRB upper parts than that of Kita-aoba
(Supplementary Table S3).

3.10 Relationship between traits

A significant and positive linear relationship was observed
between the leaf inclination angle of the upper two leaves and the
relative light interception rate at 60 and 35 cm (Figures 10A, B),
relative light interception rate at 60 cm, and CGR and NAR at 0-20
DAH (Figures 10C, D). A significant and positive linear relationship
was observed between: CGR at 0-20 DAH and filled grain weight
and filled spikelet number in the SRB upper and lower parts
(Figures 10E, F), filled grain weight and filled spikelet number in
the SRB upper and lower parts and gross hulled grain yield
(Figures 10G, H).

A significant negative linear relationship was observed between
the mean air temperature at 0-40 DAH and GY/R for Kitagenki and
Kita-aoba, and a flat but weak relationship for Nanatsuboshi
(Figure 11). However, GY/R was greater in Kitagenki than in
Kita-aoba and Nanatsuboshi under fluctuated air temperature
(approximately within 19-22°C) in the 8-year field experiments.
GR/R was the highest in Kitagenki, followed by Kita-aoba, and the
lowest in Nanatsuboshi at lower mean air temperature at
approximately 19°C, whereas it was higher in Kitagenki than in
Kita-aoba and Nanatsuboshi at higher mean air temperature of
approximately 22°C.

Additionally, a significant negative linear relationship was
noted between the mean air temperature at 0-40 DAH and the
filled-grain percentage/R for all three varieties (Supplementary
Figure S4). However, filled-grain percentage/R was greater in
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FIGURE 6

Leaf photosynthetic rate (A) and stomatal conductance (B) of rice
plants during the early grain-filling stage. The data are averaged over
2 years (2017-2018). Horizontal bars indicate standard errors.
Different lowercase letters among the three varieties at each leaf
position indicate statistically significant differences (p < 0.05) based
on Tukey's multiple comparison analysis following two-way analysis
of variance (ANOVA); ns, not significant by two-way ANOVA.

Kitagenki than in Kita-aoba under fluctuated air temperature
(approximately within 19-22°C) in the 8-year field experiments.

4 Discussion

Our findings support the hypothesis that superior canopy
architecture and carbon assimilation of the lower leaves improve
biomass productivity in Kitagenki. Regarding canopy
morphological and physiological traits, our results showed that
the superior canopy architecture of Kitagenki, characterized by
more erect and narrower upper leaves (Figure 4, Supplementary
Table S2), facilitated greater light transmission inside the canopy
than that of Kita-aoba (Figures 10A, B). The shorter culm length in
Kitagenki is a superior canopy structure that could mitigate lodging
(Supplementary Table SI). Therefore, Kitagenki demonstrated
greater light availability in the lower parts of the canopy than
Kita-aoba (Figure 5). This contributed to the increase in NAR and

frontiersin.org


https://doi.org/10.3389/fpls.2025.1710830
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Yagioka et al.

10.3389/fpls.2025.1710830

80 r
m Kita-aoba

60

40 r ns

3.0

13C (mg hill'!)

2.0

1.0

0.0

FIGURE 7

3¢ distribution at each position of the rice leaf blade sampled 1 h after **C feeding in 2020. **C was applied 12 days after the full heading stage
(DAH). Vertical bars indicate standard errors. t and ** in each part indicate statistically significant differences at p < 0.10 and p < 0.01, respectively; ns,

not significant by one-way analysis of variance (ANOVA).

m Kitagenki

3
Leaf position

Hk

ns

4 all

CGR during the early grain-filling stage (Figures 2A, C, 10C, D).
Our findings are consistent with those of previous studies on the

close relationship between leaf inclination angle and canopy light
distribution (Ouyang et al., 2021) and between relative light

I
=

(A) 1C fed at 12 DAH and
| sampled at 25 h ater feeding

e
=3

mKita-aoba W Kitagenki

13C (mg hill ™)
o »
(=} (=3

Py
=)

ns

ns

Lnd
=)

ns

e
o

Leaf blade  Dead leaf blade Stem

(C) 13C fed at 27 DAH and
sampled at 25 h ater feeding = Kita-aoba

13C (mg hill ")
& o xS B
=1 (=3 (=] (=] o

g
=

ns

Panicle

= Kitagenki

ns

Leaf blade Dead leaf blade Stem

FIGURE 8

3¢ distribution in each part of rice plants sampled 25 h after feeding in 2020. 3C was applied at 12 (A, B) and 27 DAH (C, D). Vertical bars indicate
standard errors. 1, *, and ** in each part at each feeding time indicate significant differences at p < 0.10, p < 0.05, and p < 0.01, respectively; ns, not
significant by one-way analysis of variance (ANOVA). DAH, days after the full-heading stage; PRB, primary rachis branch; SRB, secondary rachis

branch.

Frontiers in Plant Science

Panicle

intensity and NAR (Murata, 1975). NAR is influenced by the
canopy architecture and light interception characteristics and the

photosynthesis of each leaf in the canopy (San-oh et al., 2004). In
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interception, Kitagenki demonstrated a higher photosynthetic
capacity for the third leaf than Kita-aoba (Figure 6A), which
contributed to its high NAR (Figure 2C). Additionally, the
findings of >C assimilation by leaves (Figure 7) provided direct
evidence that higher carbon assimilation by lower leaves markedly
contributed to increased whole-canopy carbon assimilation in
Kitagenki. Our result of >C assimilation by leaves is different
those reported by Saitoh et al. (2002) who reported that flag leaf
contributes more to canopy photosynthesis in indica-type HYV
Takanari than standard variety Nipponbare in warmer region in
Japan. One possible cause of the discrepancy is lower LAI observed
in the present study than those reported by Saitoh et al. (2002),
which may have allowed greater light transmission to the lower
parts of the canopy. Similar to our results, Cheng et al. (2024)
revealed that a high-yielding ideal plant type variety exhibited better
light interception within canopy and higher canopy photosynthesis
than conventional variety in the subtropical region of China.
However, the contribution of carbon assimilation of lower leaves
have not been quantitatively evaluated in cold region. Therefore,
our results provided the novel insight on the importance of lower
leaves for canopy photosynthesis in cold region.

Gu et al. (2017) reported that canopy light and N distribution
were closely associated with canopy photosynthesis. In the current
study, Kitagenki and Kita-aoba exhibited no considerable variations
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in specific leaf N at FH (Figure 3C), whereas light distribution was
better in Kitagenki than in Kita-aoba in the lower canopy layers
(Figure 5). Thus, better light distribution inside canopy and not leaf
N distribution is responsible for the high canopy photosynthesis in
Kitagenki during the early grain-filing stages. Leaf photosynthetic
potential is mostly explained by stomatal conductance and leaf N
content (Takai et al., 2010). At the single-leaf level, higher stomatal
conductance (Figure 6B), not leaf N content (Figure 3C) may
contribute to the high carbon assimilation (Figure 7) and
photosynthetic rate of Kitagenki (Figure 6A). Consequently,
Kitagenki showed stably high biomass productivity during the
early grain-filling stages by improving the NAR while
maintaining an LAI comparable to that of Kita-aoba (Figures 2A-
C, Supplementary Figure S5). Our results were generally in
accordance with that of Anzoua et al. (2010), who used rice
varieties released during 1905-1988. They stated that modern rice
varieties in the Hokkaido region have improved canopy structure
and light capture while having a high LAI compared with older
varieties, leading to yield improvement. However, our study used
more recent HYV with higher yield potentials (gross hulled grain
yield of 12 t ha!in Yagioka et al., 2022 versus 7.5 t ha!in Anzoua
et al,, 2010). The yield potential (rough grain yield of 14.5 t ha™"
Yagioka et al, 2022) were also higher than that of Longdao-18
achieved in the northernmost limit of rice cultivation in

in
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Relationships between the leaf inclination angles of the upper two leaves and the relative light interception rate at 60 cm (A), leaf inclination angle of
the upper two leaves and relative light interception rate at 35 cm (B), relative light interception rate at 60 cm and CGR at 0-20 DAH (C), and relative
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Heilongjiang province in China (13.4 t ha™'; Shahbaz Farooq et al.,
2021). Therefore, our study emphasizes the criticality of superior
canopy architecture and light interception with a high LAI for
breeding future HYV to break the yield ceiling in cold region.

An adequate carbohydrate supply during the early grain-filing
stages in Kitagenki (Figure 2A) led to a high grain-filing ability
(Supplementary Figure S3B) and a stably high yield (Figure 1)
compared to Kita-aoba. The '>C distribution results at 25 h after
feeding (Figure 8B) indicated that assimilated carbon during the
early grain-filling stages (12 DAH) was more preferentially
distributed into spikelets on SRB in Kitagenki than in Kita-aoba,
which helped in faster panicle growth (Figure 2D) and grain-filling
of the inferior spikelet from the early grain-filling to maturity stages
(Figure 9, Supplementary Table S3). The results of regression
analysis (Figures 10E-H) also supported this conclusion. Our
results were consistent with those of Shahbaz Farooq et al. (2021)
who reported the importance of grain-filling in inferior spikelet for
achieving high yield in cold environment in Heilongjiang province
in China. In contrast, the less assimilated carbon was distributed
into superior spikelets (PRB) in Kitagenki as compared with Kita-
aoba (Figure 8D, Supplementary Table S3). This suggests that
superior spikelets has completed the grain-filling at the earlier
growth stages in Kitagenki compared to Kita-aoba (Figure 9),
which were primarily caused by adequate carbohydrate supply
during the early grain-filling stages (Figure 2A, Supplementary
Figure S5).

The current study confirmed a consistently higher Kitagenki
yield than HYV: Kita-aoba and SYV: Nanatsuboshi in an 8-year
field experiment (Figure 1, Supplementary Table S1), which is
consistent with our previous findings from the first 5 years of
field experiments (2014-2018; Yagioka et al., 2021). The yield level
in the present study is lower than our previous study (Yagioka et al.,
2022), due to the lower N application rate in the present study (105
kgN ha™'; 105-225 kgN ha™" in Yagioka et al., 2022). This indicates
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the potential of further increasing yield potential of Kitagenki by
optimizing crop management practices. The maximum grain yield
of Kitagenki in the present study (13.1 t ha™*

S1) is comparable with that of Longdao-18 cultivated in
-1

, Supplementary Table
Heilongjiang province in China (13.4 t ha '; Shahbaz Farooq
et al,, 2021). However, grain yield was stably higher in Kitagenki
(9.8-13.1 t ha™!, Supplementary Table S1) than Longdao-18 (7.4-
13.4 t ha™'; Shahbaz Farooq et al., 2021). In the present study,
adding an additional 3 years of field data enabled further analysis of
the grain yield response to different climatic conditions. The
analysis results (Figure 11) suggest that Kitagenki has superior
yield performance and adaptability to fluctuating air temperature
during the grain-filing stages compared to Kita-aoba and
Nanatsuboshi. Similar varietal variations between Kitagenki and
Kita-aoba were noted in the relationship between filled-grain
percentage/R and mean air temperature (Supplementary Figure
S4), suggesting that the higher grain-filling ability of Kitagenki
contributes to a higher yield stability than that of Kita-aoba. As
already discussed, stably superior biomass productivity of Kitagenki
during the early grain-filing stages (Supplementary Figure S5A),
also contributes to stabilize the grain yield by enhancing grain-
filling ability in inferior spikelet (Figures 10E-H). As a results,
Kitagenki showed higher yield performance under higher air
temperature during grain-filing stages than Kita-aoba (Figure 11).
Although this study did not elucidate the detailed mechanisms of
the adaptability, the higher stomatal conductance of Kitagenki
(Figure 6B) may possibly contribute to adaptation to higher air
temperatures by lowering the canopy temperature (Takai
et al., 2010).

Developing HYV with a large sink capacity is the most
important trait to achieve a high grain yield in the Hokkaido
region as breeding strategies for future HYV, whereas improving
grain-filling ability by source improvement is required to satisfy the
enlarged sink capacity (Hayashi et al., 2012; Yagioka et al., 2021).
Between two source components, AW during grain-filling stages is
quantitatively more important than NSC at FH in the Hokkaido
region (Kusutani, 1988; Yagioka et al., 2021) because NSC at FH
was smaller in colder than in warmer regions. The current study
further showed that high source ability during the early grain-filling
stage, supported by superior canopy architecture (e.g., more erect
and narrower upper leaves and shorter culm length), higher light
interception, and carbon assimilation of lower leaves, contributes to
the high grain-filling ability and stable high yield. Furthermore, the
high yield performance under fluctuating air temperatures during
the grain-filling stages is beneficial because increasing the air
temperature negatively influences rice grain yield (Song et al,
2022). These superior traits of the recent HYV could be used as
indicators for breeding future HYV that can break the yield ceiling
in cold regions.

Our study had certain limitations. First, the sink strength was
not assessed. Given that sink strength is one of the limiting factors
for poor grain filling in HYV (Okamura et al., 2021) and super rice
(Fu et al, 2011), low sink strength might be another cause of the
lower grain-filling ability of Kita-aoba. Slower C translocation to the
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inferior spikelet (Figures 8, 9) suggests this possibility. Second, it is
unknown on the GY/R response of Kitagenki to mean air
temperature outside our experimental range (<19°C and/or
>22°C). Third, the detailed mechanisms of high radiation use
efficiency (e.g., GY/R) and/or higher adaptability to fluctuating air
temperatures in Kitagenki should be elucidated. Further emphasis
should be placed on the adaptability of future HYV to higher air
temperatures, considering that the global surface temperature is
predicted to continue to increase until at least the mid-century
(IPCC, 2021). Cross-locational analysis that compares HYV in the
Hokkaido region and warmer regions, such as the Honsyu region,
the main island of Japan, can further provide the key traits for
developing future HYV that have high yield stability under
increasing air temperatures.

5 Conclusion

The grain yield of Kitagenki was consistently higher than that of
Kita-aoba, owing to its higher percentage of filled grains. Kitagenki
had higher biomass productivity than Kita-aoba during the early
grain-filling stages (0-20 DAH) due to a higher NAR while
maintaining LAL The superior canopy architecture (e.g., more
erect and narrower upper leaves and shorter culm length), higher
light interception inside the canopy, and higher photosynthetic
performance and carbon assimilation of the lower leaves of
Kitagenki contributed to its higher canopy productivity compared
with Kita-aoba. The elevated carbohydrate supply during the early
grain-filling stages in Kitagenki facilitated its faster translocation
into the inferior spikelet, resulting in a higher grain-filling ability
than that in Kita-aoba. This further contributed to the consistently
higher GY/R of Kitagenki under fluctuating air temperatures during
the grain-filling stages compared with Kita-aoba. These superior
canopy morphological and physiological traits could be used as
indicators for breeding future HYV that could break the yield
ceiling in cold regions.
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