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Karst ecosystems, recognized as ecologically fragile systems, are characterized

by vegetation-soil interaction mechanisms particularly vulnerable to wildfire

disturbances. Understanding the post-fire coupling dynamics between

vegetation and soil is crucial for guiding restoration in these vulnerable

landscapes. This study investigated post-fire areas across five disturbance

intensities (unburned, light, moderate, severe, extreme) in Jianshui County,

Yunnan Province, China. We conducted a systematic analysis of soil

physicochemical properties and herb diversity, and quantified the vegetation-

soil coupling relationship using grey relational modeling. Key results reveal: (1) 21

herbaceous species were documented, with Asteraceae, Poaceae, and Fabaceae

collectively constituting 76.2% of the flora. (2) Across the fire severity gradient,

herbaceous diversity demonstrated an initial increase followed by a subsequent

decline. (3) Grey correlation analysis identified soil pH, total potassium, and

phosphatase activity as primary drivers of herb community variation. (4)

Vegetation-soil coupling coordination followed a U-shaped trajectory,

achieving optimal synergy (0.84, Higher coordination) under extreme-severity

burns and minimal coordination (0.71, Medium coordination) in severe burns.

These findings underscore that moderate fire regimes can play a positive role in

enhancing the vegetation-soil coupling effect. Furthermore, the strategic

regulation of soil pH and potassium availability during restoration emerges as a

critical lever for optimizing ecosystem recovery and enhancing resilience. This

study provides valuable insights for developing targeted post-fire management

strategies in karst regions.
KEYWORDS

karst ecosystems, post-fire disturbances, grey relational analysis, vegetationrestoration,
soil drivers, coupling coordination, environmental stress
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1 Introduction

Karst regions are recognized as one of the world’s most

representative fragile ecosystems. Their unique geological

structure and hydrological conditions—such as shallow soil layers

and fractured bedrock—underlie a pronounced ecological

vulnerability and complex recovery dynamics (Wang et al., 2004;

Chen et al., 2021). Characterized by shallow soil layers, high

bedrock exposure rates, and vegetation degradation, these areas

form distinctive vegetation-soil-rock structures (Li et al., 2009;

Zhang and Huisingh, 2018; Jiang et al., 2024), rendering them

highly susceptible to ecological degradation under natural or

anthropogenic disturbances (D’Ettorre et al., 2024; Jing et al.,

2025). Among these disturbances, wildfire stands out as a

particularly acute and transformative agent. In recent years,

superimposed impacts of climate change and intensified human

activities have maintained elevated forest fire frequencies in these

regions, posing persistent ecological risks (Tian et al., 2014; Zhang

et al., 2021). As a natural disturbance agent, wildfires rapidly alter

biogeochemical cycles of carbon, nitrogen, and phosphorus,

abruptly restructuring vegetation communities and soil properties

(Keeley, 2009; Alcañiz et al., 2016; González-De Vega et al., 2018;

Fernández-Garcıá et al., 2019), thereby disrupting pre-existing

vegetation-soil equilibria (MacDougall et al., 2013; Toberman

et al., 2014). Such perturbations are amplified in fragile karst

ecosystems, where calcareous substrates and fissured bedrock may

exacerbate post-fire ecological consequences (Keeley, 2009;

Bradstock et al., 2010; Kardol et al., 2023; Luo et al., 2024),

underscoring the critical need to investigate post-fire recovery

mechanisms in these regions.

The soil and vegetation form a dynamic, interconnected system

governed by intrinsic coupling mechanisms. Soil provides the

essential material foundation for vegetation, directly shaping plant

community structure and functionality (Lange et al., 2015; Wu

et al., 2018; Hou et al., 2021). Plants modify soil physicochemical

properties through processes such as nutrient absorption,

stabilization, accumulation, and decomposition (Coradini et al.,

2022; Chen et al., 2024; Da et al., 2024).Wildfire disturbance,

mediated through thermal effects on surface soils and vegetation

(Reinhart et al., 2016), induces spatiotemporally heterogeneous

ecological responses. Flames alter soil organic carbon (SOC), pH,

and microbial communities, thereby steering vegetation succession

(Qiang et al., 2021; Agbeshie et al., 2022; Li X. et al., 2024), whereas

plants adapt via nutrient resorption, serotinous cone strategies, and

other regenerative mechanisms (Vallejo et al., 2012). These

interconnected processes collectively regulate post-fire soil quality

rehabilitation and vegetation community assembly (Moya et al.,

2018a; Quigley et al., 2020). Nevertheless, systematic understanding

of vegetation-soil interactions in burned karst ecosystems remains

limited, particularly regarding feedback mechanisms governing

ecological restoration (De Long et al., 2019).

The coupling relationship between soil and vegetation reflects

the dynamic equilibrium between material cycling and energy flows

within ecosystems. Current research has extensively documented

fire impacts on isolated ecosystem components. For instance, Moya
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et al (Moya et al., 2018b). demonstrated that fire severity acutely

affects soil phosphorus concentration, conductivity, and enzyme

activity in Iberian burned areas, with gradual stabilization occurring

over ≥15-year recovery periods. Li Z. et al. (2024) reported that

Tibetan Plateau wildfires initially (<15 years) reduce soil pH while

enriching nutrients to drive pioneer species succession, followed by

synergistic improvements in enzyme activity and biodiversity

enhancing community stability in later stages (>15 years). Mayor

et al. (2016) identified positive correlations between vegetation

cover and soil enzyme activities in fire-prone shrublands.

However , prevai l ing studies predominantly focus on

unidirectional fire effects on either soil or vegetation (Stancic and

Repe, 2018; Wang et al., 2022; Cahojová et al., 2024; Rebi et al.,

2025), with insufficient attention to their coupling dynamics. This

knowledge gap is particularly acute in karst regions, where

calcareous soils and fractured bedrock may engender unique

post-fire feedback mechanisms.

We investigated understory herbaceous communities and soils

across a fire severity gradient (light, moderate, severe, extreme) in

Jianshui County, Yunnan Province. By characterizing herb

composition and diversity patterns along this gradient and

applying grey relational coupling modeling to quantify

vegetation-soil interdependencies, this research aims to provide

scientific guidance for post-fire ecological restoration in

karst ecosystems.
2 Materials and methods

2.1 Overview of the study area

The research area is situated in a Pinus massoniana plantation

(102°55′E, 23°40′N) at Yanbasi Village, Jianshui County, Yunnan
Province, China (Figure 1). Key climatic parameters include an

annual precipitation of 685 mm, mean annual air temperature of

19.8 °C, mean soil temperature of 20.8 °C, relative humidity of 72%,

2,322 annual sunshine hours, and a 307-day frost-free period. The

region exhibits extensive karst topography dominated by limestone

bedrock, with bedrock exposure rates ranging from 30% to 70%.

The plantation comprises a tree layer dominated by Pinus

massoniana, a shrub layer primarily consisting of Dodonaea

viscosa and Indigofera tinctoria, and an herbaceous layer mainly

including Panicum virgatum, Carex lanceolata, Eleusine indica,

Bidens pilosa, Euphorbia esula, Cymbopogon citratus, and

Arthraxon prionodes. The soil type of the studied site is

calcareous soil (Calcaric Cambisols, more than 15% calcium

carbonate (CaCO3) and are commonly found in arid, semi-arid,

humid, and semi-humid regions.), developed from a limestone base

and characterized by a red color (Pang et al., 2018).
2.2 Plot setting and sample collection

A wildfire occurred in the study area in April 2024, with data

collection and field surveys conducted in July 2024 following the
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event. Based on vegetation change parameters and fire

characteristics (Xie et al., 2005; Eidenshink et al., 2007; Keeley,

2009), a total of five experimental plots were established, each

representing one of the following fire severity categories: light burn

(tree mortality ≤30%), moderate burn (30% < tree mortality ≤60%),

severe burn (60% < tree mortality ≤90%), and complete burn (100%

tree mortality), using adjacent unburned Pinus massoniana forest as

control (Figure 1 and Table 1). To ensure pre-fire homogeneity, all

plots shared comparable elevation, topography, soil type (calcareous

soil), dominant vegetation composition, and vegetation coverage

(Table 2). Within each of the five main plots, three 10 m × 10 m

subplots were randomly established as spatial replicates for

sampling the understory herbaceous community. Five 1 m × 1 m

herbaceous quadrats were systematically positioned in each subplot
FIGURE 1

Research area overview. In Figure 1, (a) Light-severity fire, (b) Moderate-severity fire, (c) High-severity fire, (d) Extreme-severity fire, (e) Unburned control.
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TABLE 1 Characteristics of the burned area.

Sample
plot

Plot type
Tree mortality

rate (%)
Fire height

(m)

CK Unburned 0 0

LF
Light-severity

fire
15 0.5

MF
Moderate-
severity fire

40 2.1

SF
High-severity

fire
85 3.1

EF
Extreme-severity

fire
100 3.8
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using a five-point sampling method. Vegetation parameters,

including species composition, abundance, coverage, and biomass,

were recorded within the quadrats. After removing surface ash,

triplicate soil samples were collected diagonally from each plot in

both control and burned areas at a depth of 0–15 cm (Wang et al.,

2022). The collected soils were stored in sealed bags as air-dried

samples (for chemical analysis) and fresh samples (preserved at −4 °

C) for subsequent laboratory assays. Detailed plot characteristics are

provided in Table 1.
2.3 Soil analysis

Soil water content (SWC) was determined by the drying

method. Bulk density (BD) was determined using the core

method (State Forestry Administration, 1999a). Soil pH was

measured from a 1: 2.5 soil-to-water ratio using a pH meter (PB-

10 pH meter) and electrical conductivity (5:1 water-soil ratio) using

a conductivity meter(CT-3030). SOC was measured by the

potassium dichromate external heating method (State Forestry

Administration, 1999b). Available nitrogen (AN) was assessed via

alkaline hydrolysis-diffusion (State Forestry Administration,

1999c), available phosphorus (AP) by molybdenum-antimony

colorimetry (Olsen, 1954), total nitrogen (TN) by sulfuric

acid digestion (Liu et al., 2013), total phosphorus (TP) by

molybdenum-blue method (Sciences, C.A.O.A, 1988), and total

potassium (TK) by sodium hydroxide fusion (State Forestry

Administration, 1999d). Microbial biomass carbon (MBC) and

nitrogen (MBN) were quantified using chloroform fumigation.

Enzyme activities were determined via microplate fluorescence

assays (Guan, 1986).
2.4 Vegetation diversity metrics

Herbaceous diversity was assessed using Equations 1–4

Shannon-Wiener index (H’)

H 0 = −o
s

i=1
(Pi � lnPi) (1)
Frontiers in Plant Science 04
Simpson index (D)

D = 1 −o
s

i=1
(Pi)

2
(2)

Margalef index (D’)

D0 = S−1
lnN (3)

Pielou index (E)

E = H0
lnS (4)

where S is the number of species; Pi represents the relative

abundance of the i species, calculated as Pi=Ni/N, with N denoting

the total number of individuals of all species within the quadrat, and

Ni indicating the number of individuals of the i species.
2.5 Grey relational coupling modeling

Owing to the interlaced complexity of vegetation-soil coupling

dynamics and the inherent interdependencies between these systems,

this study adopts the Grey Relational Analysis (GRA) (Equations 4–12).

This approach facilitates a quantitative assessment of the coupling

relationships and coordination levels between vegetation and soil

across varying fire severity levels. Compared to traditional statistical

methods (e.g., regression analysis, ANOVA, principal component

analysis), the GRA method is applicable regardless of sample size or

distribution patterns. Moreover, it requires minimal computational

effort and does not suffer from inconsistencies between quantitative

outcomes and qualitative interpretations, thereby addressing the

limitations inherent in conventional statistical approaches for systemic

analysis. We integrated four diversity indices with 17 soil variables

through grey relational analysis. In this model, the composite vegetation

system, represented by the four diversity indices, was defined as the

parent sequence (reference sequence). The soil system, characterized by

the 17 physicochemical and biological variables, was treated as the child

sequences (comparison sequences). Data were normalized to eliminate

unit effects prior to calculating relational coefficients (Liu et al., 2005).

Utilizing the study by Gao et al. (2022), the coupling degree (C) was

categorized into the following 7 levels (Table 3): 0 ≤ C < 0.4 (Serious
TABLE 2 Basic information of the sample plot.

Sample
plot

Plot type
Bedrock bare

rate (%)
Geographic
coordinates

Altitude (m) Slope(°)
Slope
aspect

Dominant species

CK Unburned 45
102°55′57.18″E, 23°40′

21.73″N
1364 18 Southeast

Pinus massoniana-
Dodonaea viscosa

LF
Light-severity

fire
43

102°55′50.64″E, 23°40′
28.46″N

1378 15 Southeast
Pinus massoniana-
Dodonaea viscosa

MF
Moderate-
severity fire

40
102°55′50.40″E, 23°40′

26.58″N
1386 14 Southeast

Pinus massoniana-
Dodonaea viscosa

SF
High-severity

fire
39

102°55′48.16″E, 23°40′
27.00″N

1390 14 Southeast
Pinus massoniana-
Dodonaea viscosa

EF
Extreme-
severity fire

41
102°55′46.56″E, 23°40′

27.62″N
1398 17 Southeast

Pinus massoniana-
Dodonaea viscosa
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incoordination), 0.4 ≤ C < 0.5 (Medium incoordination), 0.5 ≤ C < 0.6

(Light incoordination), 0.6 ≤ C < 0.7 (Light coordination), 0.7 ≤ C < 0.8

(Medium coordination), 0.8 ≤ C < 0.9 (Higher coordination), and 0.9 ≤

C ≤ 1.0 (Superior coordination).

1.Data standardization:

x0(k) =
xi(k)

1
n ∑

n

i=1
xi(k)

(5)

2. Incidence coefficient:

D xmax = max
∀ jei

max
∀k

x00(k) − x0j(k)
�� �� (6)

D xmin = min
∀ jei

min
∀k

x00(k) − x0j(k)
�� �� (7)

Dx0i (k) = x00(k) − x0i(k)j j (8)

g (x00(k), x0j(k)) =
Dxmin+eDxmax
Dx0i

(k)+eDxmax
(9)

g (x00(k), x0j(k)) represents the grey relational coefficient of x00(k)
to x0i(k), and e is the resolution coefficient, the general value is

e= 0.5.

3. Calculate the Grey Relational Grade:

Gij =
1
no

n

k=1

g (x00(k), x
0
j(k)) (10)

di =
1
l o

l

j=1
Gij(i = 1, 2, 3⋯ l; j = 1, 2, 3⋯m)

dj =
1
mo

l

i=1
Gij(i = 1, 2, 3⋯ l; j = 1, 2, 3⋯m)

8>>>><
>>>>:

(11)

When 0 < Gij ≤ 0.35, the correlation degree is weak; when 0.35 <

Gij ≤ 0.65, the correlation degree is medium; when 0.65 < Gij ≤ 0.85,

the correlation degree is strong; when 0.85 < Gij ≤ 1.0, the

correlation degree is significantly strong.

4. Coupling analysis:

C(k) = 1
m�lo

m

i=1
o
l

j=1
g x00(k), x

0
j(k)

� �
(12)

m is the number of soil indicators, and l is the quantity of

diversity indicators.
2.6 Data analysis

Species diversity indices, grey relational grade, and system

coupling degree were calculated using Microsoft Excel 2019
Frontiers in Plant Science 05
(version 2019). Geospatial distribution maps of sampling areas

were generated with ArcGIS 10.3. Statistical analyses, including

one-way analysis of variance (ANOVA) with LSD post hoc test, were

performed using IBM SPSS Statistics 27. Data visualization and

graphical representations were conducted using Origin 2024.
3 Results

3.1 Variations in soil properties and
understory herb composition with fire
severity

Post-fire soil pH in the study area transitioned from alkaline to

acidic(pH 7.24-6.31,Table 4). SWC and SOC increased with fire

severity, while BD decreased. Soil electrical conductivity (EC), TN,

TP, TK, AN, and AP showed an initial decline followed by

subsequent increases. Soil enzyme activities displayed differential

responses across fire intensity gradients: b-1,4-glucosidase activity

significantly decreased (p < 0.05) but increased under extreme

burning conditions. Cellobiohydrolase, leucine aminopeptidase, b-
1,4-N-acetylglucosaminidase, and phosphatase activities showed

significant variation(P<0.05) without distinct directional trends.

A total of 21 herbaceous plant species were recorded in the

study area (Table 5), predominantly belonging to Asteraceae

(33.3%), Poaceae (33.3%), Fabaceae (9.6%), Cyperaceae (4.8%),

Euphorbiaceae (4.8%), Asparagaceae (4.8%), Orchidaceae (4.8%),

and Liliaceae (4.8%). Compared to the unburned control areas, the

plant community in fire-disturbed regions transitioned to pioneer

species characterized by high adaptability and rapid growth,

including typical taxa such as Eleusine indica (Poaceae),

Cymbopogon citratus (Poaceae), Arthraxon prionodes (Poaceae),

and Lespedeza cuneata (Fabaceae).
3.2 Diversity characteristics of herbaceous
communities

With increasing fire intensity, the Shannon-Wiener diversity

index (H’) and Margalef’s richness index (D’) of herbaceous

communities exhibited a unimodal response (Figure 2). The

Shannon-Wiener index peaked under high-severity fire conditions,

while Margalef’s richness index reached its maximum under

moderate-severity fire. Pielou’s evenness index (E) did not vary

significantly across fire severity levels(ANOVA, P>0.05), with the

lowest value (0.74) observed in unburned control plots. Simpson’s

dominance index (D) displayed the most pronounced fire-induced

changes, demonstrating an initial decrease followed by an increase

with escalating fire severity, though all burned plots maintained lower

values (D < 0.42) compared to unburned controls.
TABLE 3 System of ecosystem coupling coordination.

Coupling degree (C) 0≤C<0.4 0.4≤C<0.5 0.5≤C<0.6 0.6≤C<0.7 0.7≤C<0.8 0.8≤C<0.9 0.9≤C<1.0

Type of coordination
Serious
incoordination

Medium
incoordination

Light
incoordination

Light
coordination

Medium
coordination

Higher
coordination

Superior
coordination
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3.3 Grey relational analysis of vegetation-
soil system factors

Grey relational analysis indicated strong overall coupling

between the plant and soil systems, with relational coefficients

ranging from 0.61 to 0.87 (mean = 0.75) (Figure 3). Pielou’s

evenness index (E) exhibited the strongest overall correlation with

the soil factor suite (mean G = 0.79). Its dynamics were most closely

linked to soil pH and soil water content. Shannon-Wiener index

(H’) was primarily driven by extracellular enzyme activities,

showing the highest correlations with phosphatase and leucine

aminopeptidase. Simpson’s index (D) was most strongly

associated with soil electrical conductivity, but had the weakest

correlation with leucine aminopeptidase activity. Margalef’s

richness index (D’) had the weakest overall coupling (mean G =

0.69), with leucine aminopeptidase activity being its most influential

soil factor.
3.4 Coupling coordination analysis of the
vegetation-soil system

As shown in Table 6, the coupling degree of the vegetation-soil

system across fire severity gradients in the study area ranged from

0.71 to 0.84, exhibiting a U-shaped trajectory (initially decreasing
Frontiers in Plant Science 06
then increasing) with escalating fire intensity. The maximum

coupling degree (0.84, Higher coordination) was observed in

extreme-severity burned plots, while the minimum value (0.71,

Medium coordination) occurred in severe burns.
4 Discussion

4.1 Effects of wildfire on soil properties

Our results demonstrate that forest fires exert a significant

influence on soil pH. Several studies have documented marked

post-fire pH elevation, which is primarily attributed to the release of

alkaline elements from residual ash, the deacidifying effects of base

cations on surface soil, and elevated soluble salt levels (SMITH,

1970; Xu et al., 2012; Bridges et al., 2019; Li et al., 2020). Contrary to

the typical fire-induced increase in soil pH (Bárcenas-Moreno et al.,

2022; Oliva et al., 2025), our study observed de-creased pH levels in

the karst region. In calcareous soils (e.g., SW China karst), this

acidification intensifies because wind and water erosion rapidly

leach base cation-rich ash (K+, Ca²+, Mg²+), transporting soluble

ions via runoff or percolation (Raison, 1979; Neary et al., 1999).

Furthermore, fire-induced vegetation loss and soil structure

degradation intensified erosion (Hamman et al., 2007),

accelerating the leaching of base cations. This led to an increased
TABLE 4 Soil physical and chemical properties.

Soil indicators CK LF MF SF EF

BD(g/cm³) 1.23±0.17a 1.03±0.01b 0.88±0.05bc 0.95±0.03bc 0.83±0.08c

SWC (%) 20.66±0.48d 20.53±0.65d 23.23±0.52c 24.81±0.28b 29.95±0.98a

pH 7.24±0.03a 6.37±0.01d 6.31±0.04e 6.46±0.02c 6.76±0.01b

EC (us/cm) 204.83±1.22a 190.06±1.19b 158.69±2.05d 127.69±0.42e 187.38±1.30c

SOC (g/kg) 48.86±5.38ab 42.2±4.47b 43.96±4.90b 41.72±3.56b 52.86±2.66a

TN (g/kg) 4.31±0.60a 2.83±1.03b 2.71±0.64b 2.47±0.40b 3.61±0.42ab

TP (g/kg) 0.85±0.25a 0.74±0.11a 0.63±0.03a 0.64±0.09a 0.78±0.04a

TK (g/kg) 5.22±0.43a 4.46±0.39a 3.89±0.31a 5.21±1.27a 4.52±1.12a

AN (mg/kg) 295.05±5.02b 328.83±7.19a 262.5±4.30c 239.05±6.72c 296.8±10.85b

AP (mg/kg) 39.52±1.31a 36.01±0.91b 32.81±0.53c 35.26±0.30b 40.43±0.75a

MBC (mg/kg) 129.6±4.97a 85.87±5.48c 92.36±3.16bc 64.18±3.85d 97.69±7.35b

MBN (mg/kg) 15.42±0.79a 9.49±0.66c 9.95±0.84bc 7.87±0.80d 11.02±0.19b

bG (nmol/g/h) 599.36±9.75c 684.56±5.77a 618.66±6.16b 466.76±5.65e 577.27±6.9d

CBH (nmol/g/h) 164.83±6.69c 156.8±3.25d 266.18±4.95a 160.32±2.73cd 211.7±2.53b

LAP (nmol/g/h) 184.11±4.68d 122.61±4.72e 237.3±3.84a 202.74±4.98c 222.73±3.94b

ANG (nmol/g/h) 665.07±7.7b 635.43±6.29c 847.39±4.95a 501.95±6.27e 603.41±9.55d

AKP (nmol/g/h) 376.26±5.24b 337.41±6.36c 441.47±9.58a 308.31±8.06d 376.3±8.12b
BD, Bulk density; SWC, Soil water content; EC, Electric conductivity; SOC, Soil organic carbon; TN, Total nitrogen; TP, Total phosphorus; AN, Available nitrogen; AP, Available phosphorus;
MBC, Microbial biomass carbon; MBN, Microbial biomass nitrogen; bG, b-1,4-Glucosidase; CBH, Cellobiohydrolase; LAP, Leucine Aminopeptidase; ANG, b-1,4-N-Acetylglucosaminidase;
AKP, Phosphatase. CK, Unburned; LF, Light-severity fire; MF, Moderate-severity fire; SF, High-severity fire; EF, Extreme-severity fire. Different lowercase letters indicated that there were
significant differences in soil physical and chemical properties between different plots (P< 0.05).
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relative proportion of H+ and Al³+ ions in the soil cation exchange

capacity (CEC) (Neary et al., 1999; Salgado et al., 2024), driving the

soil towards acidification.

Numerous studies confirm that fire disturbance alters soil

physicochemical properties. Our investigation found that fires

(low, moderate, and high severity) reduced SOC content, closely

aligning with previous research (Li et al., 2020; Pellegrini et al., 2021;

Pacaldo et al., 2025). Furthermore, fire reduced soil nitrogen (N)

content. The decline in both organic carbon and total nitrogen is

attributed to the combustion of surface soil organic matter,

resulting in losses primarily via CO₂, nitrogenous gases, and

particulate matter in smoke (Verma et al., 2019). Fire reduced

total phosphorus (P) content, though not significantly—a finding

attributable to phosphorus’s high volatilization threshold, resulting

in non-significant differences (Neary et al., 2005).Generally, forest

fires significantly impact TK. Some studies observed an initial

increase in soil K immediately post-fire (Kennard and Gholz,

2001). However, high temperatures can volatilize total potassium,

or its solubility, combined with leaching in specific karst regions

with high drainage, may subsequently reduce its content (Verma

and Jayakumar, 2012).

Fire not only modifies soil physicochemical properties but also

profoundly influences soil enzyme activity. This study revealed that

enzyme activities under moderate-severity fire were consistently

higher than in control plots. While fire-induced high temperatures

can directly denature enzymes or indirectly alter activity by

modifying soil environmental conditions (Pei et al., 2023),

moderate-severity fire enhanced plant diversity. This strengthened
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microbial community functionality, and increased root exudates

provided energy for microbes, collectively improving the soil

chemical environment and thereby regulating enzyme activity

(López-Poma and Bautista, 2014).

It is important to note that our soil sampling strategy integrated

the entire 0–15 cm depth layer. While this approach provides a

standardized measure of the root zone environment relevant to

herbaceous communities, it may also integrate contrasting signals

from different horizons. Future studies employing horizon-specific

sampling could yield more granular insights into the vertical

redistribution of elements and post-fire biogeochemical cycling

within the soil profile.
4.2 Analysis of herbaceous communities
and diversity

The naturally regenerated herbaceous communities in post-fire

areas of the study region were predominantly composed of species

from Asteraceae, Poaceae, and Fabaceae (76.2% of total species).

These taxa, characterized by broad ecological niches, drought

tolerance, and adaptability to barren soils, exhibited a competitive

advantage in early successional stages following fire (Gao et al.,

2022; Geng et al., 2022). For instance, Holmes et al. (2000)

documented a dramatic increase in Poaceae relative coverage

following fire disturbance. Similarly, Kazanis and Arianoutsou

(1996) observed absolute dominance of Fabaceae species in post-

fire Pinus nigra forests in Greece, with Poaceae and Asteraceae
TABLE 5 Overview of herbaceous plant communities with different degrees of fire in the study area.

Sample plot
Aboveground
Biomass(g/m2)

Herbaceous plant types

CK 63.02

Carex lanceolata Bidens pilosa Praxelis clematidea Ixeris polycephala

Panicum virgatum Laggera alata Senecio scandens Carpesium abrotanoides

Ischaemum ciliare Euphorbia esula

LF 52.22

Carex lanceolata Bidens pilosa Sonchus asper Praxelis clematidea

Lespedeza cuneata Panicum virgatum Cymbopogon citratus Eleusine indica

Euphorbia esula

MF 48.84

Bothriochloa ischaemum Carex lanceolata Boott Bidens pilosa Epipactis helleborine

Lespedeza cuneata Ixeris polycephala Cass Panicum virgatum Arthraxon prionodes

Lilium regale Eleusine indica Asparagus 0fficinalis Ischaemum ciliare

Euphorbia esula

SF 188.40

Imperata cylindrica Carex lanceolata Bidens pilosa Lespedeza cuneata

Panicum virgatum Arthraxon prionodes Eleusine indica Asparagus 0fficinalis

Euphorbia esula

EF 93.76

Carex lanceolata Bidens pilosa Epipactis helleborine Lespedeza cuneata

Ixeris polycephala Alysicarpus vaginalis Panicum virgatum Arthraxon prionodes

Euphorbia esula Eleusine indica Cymbopogon citratus
CK, Unburned; LF, Light-severity fire; MF, Moderate-severity fire; SF, High-severity fire; EF, Extreme-severity fire.
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serving as key indicator families. Georgiadis and Georgiadis (2002)

further confirmed Asteraceae and Fabaceae as dominant annual

herbs during initial post-fire recovery. These findings collectively

demonstrate the cross-regional adaptability of pioneer species

within these botanical families.

As a natural ecological factor in ecosystems, wildfire plays a

significant role in maintaining biodiversity (He et al., 2019). Among

nutrient limitations for vegetation growth, nitrogen (N) constitutes

a key controlling element (2020). Karst ecosystems exhibit unique
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nitrogen cycling patterns: despite their calcareous soils

demonstrating high inorganic N supply capacity and rapid N

turnover (Garousi et al., 2021), post-fire reductions in total

nitrogen content and N turnover rates inhibit vegetation recovery

(Wang et al., 2022). This response contrasts sharply with certain

non-karst ecosystems—for instance, Mediterranean pine forests

show increased soil organic matter and nitrogen content after fire

(Knicker et al., 2005), while fire disturbances in North American

grasslands positively enhance nitrogen and phosphorus cycling

(Reinhart et al., 2016). The distinctive post-disturbance response

in karst regions primarily stems from their fragile geological

context: shallow soil layers and fractured bedrock structures

exacerbate post-fire soil-water loss, leading to nutrient depletion

(D’Ettorre et al., 2024). This stressed environment favors drought-

tolerant, oligotrophic species such as Asteraceae and Poaceae, which

dominate herbaceous communities (66.6%). Notably, these taxa

generally show lower proportions in post-fire successional

communities of non-karst ecosystems (Abedi et al., 2023;

Blinkova et al., 2024; Wieczorkowski et al., 2024).

Species diversity, a fundamental attribute of biological

communities, underpins ecosystem stability (Nie et al., 2020).

Following fire disturbance in the study area, both the Shannon-
TABLE 6 The coupling and coordination degree between the diversity of
herbaceous communities and soil systems.

Sample plot Coupling Coordination type

CK 0.72 Medium coordination

LF 0.76 Medium coordination

MF 0.73 Medium coordination

SF 0.71 Medium coordination

EF 0.84 Higher coordination
CK, Unburned; LF, Light-severity fire; MF, Moderate-severity fire; SF, High-severity fire; EF,
Extreme-severity fire.
FIGURE 2

Diversity Indices of Herbaceous Communities. CK, Unburned; LF, Light-severity fire; MF, Moderate-severity fire; SF, High-severity fire; EF, Extreme-
severity fire. Different lowercase letters in the figure indicate significant differences between groups (P< 0.05). (a) Shannon-Wiener index. (b) Pielou
index. (c) Simpson index. (d) Margalef index.
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Wiener index (reflecting the combined effect of species richness and

evenness) and the Margalef index (representing species richness)

exhibited a unimodal pattern in response to fire intensity, indicating

that species diversity peaked at moderate to high fire severity. This

aligns with the Intermediate Disturbance Hypothesis (Connell,

1978), which posits that a certain level of disturbance promotes

the development of species diversity. Specifically, the Margalef

richness index reached its maximum under moderate fire severity,

signifying the highest number of species present. Conversely, the

Shannon-Wiener diversity index peaked under high fire severity,

suggesting a species composition characterized by both relatively

high richness and evenness at this level. This divergence may be

linked to soil nitrogen dynamics, as excessive nitrogen availability

can suppress species richness, particularly in the herb layer

(Gilliam, 2006; McClean et al., 2011). The Pielou evenness index

showed no significant differences across fire severity levels,

indicating stable distribution uniformity of individuals within the

community, a finding consistent with studies by Mahood and Balch

(2019) and Neri et al. (2023). In contrast, the Simpson index,

representing dominance, displayed an initial decrease followed by

an increase, and was consistently lower in burned plots compared to

the control. This suggests that fire suppressed the original dominant

species and facilitated the establishment of new species. This finding

provides complementary insights to the unchanged Pielou

evenness, collectively indicating that fire primarily influences

community structure by altering dominant species rather than

overall evenness (Zhang et al., 2012; Wang et al., 2024).
4.3 Coupling analysis of the vegetation-soil
system

Vegetation-soil interactions exhibit dynamic feedback

mechanisms during ecosystem recovery. Vegetation growth and

distribution significantly influence soil properties, while edaphic

alterations reciprocally drive species-specific vegetation responses,

ultimately shaping plant community structure and spatial patterns.

Grey relational analysis identified soil pH, TK, and phosphatase

activity as pivotal regulators of herbaceous diversity (Figure 3). Soil

pH serves as a master variable influencing plant growth (Neina,

2019), while TK, as an essential element, is directly involved in key

physiological processes such as osmoregulation, stomatal

movement, and enzyme activation (Zhou et al., 2025).

Phosphatase activity directly regulates the mineralization of

organic phosphorus, determining plant access to phosphorus—a

commonly limiting nutrient. During post-fire ecological recovery,

soil pH modulates vegetation distribution by affecting root growth,

metabolism, and enzyme activity. For instance, Zhang et al. (2012)

noted that most understory plant roots grow optimally in slightly

acidic environments (pH 5.5–6.5). A close functional relationship

exists between phosphatase activity and soil pH, as confirmed by

Acosta-Martinez and Tabatabai (2000). Post-fire changes in total

potassium reveal the driving role of plants in nutrient cycling:

although fire can cause potassium volatilization losses (Johnson

et al., 2005), plants accelerate potassium cycle recovery by returning
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potassium to the soi l through biomass turnover and

litter decomposition.

Herbaceous communities and soil systems in post-fire karst

ecosystems of Southwest China exhibited limited coupling

coordination variation, generally maintaining coordinated

developmental patterns. Consistent with the Intermediate

Disturbance Hypothesis (Waldrop and Brose, 1999), Disturbance

of a certain intensity can promote the renewal of forest ecosystems,

improve the undergrowth environment of the region and increase

species diversity. However, intensified interspecific competition for

spatial resources, soil moisture, and nutrients subsequently reduced

vegetation-soil coupling. Additional factors including species

elimination and mortality (Gao et al., 2022; Lin et al., 2022)

further diminished system coordination. Critically, the highest

level of coordination (0.84) was observed under extreme-severity

burn conditions. This unsustainable transient state reflects a

drastically simplified ecosystem condition immediately following

complete vegetation removal, where the abrupt elimination of

biological complexity and competition temporarily creates a state

of low resistance to soil-driven influences. However, this short-lived

synergy is a direct consequence of ecosystem degradation and is

unlikely to persist as succession proceeds. In contrast, unburned

herbaceous communities exhibited prolonged natural succession

with intense competition, resulting in persistently low coupling

degree. These findings suggest that optimal post-fire restoration in

karst regions requires strategic vegetation density control and

selection of stress-adapted species to balance competitive

interactions. The temporary window of high coordination

following extreme fires should be regarded as a critical, brief

opportunity to initiate restoration through the introduction of

pioneer species, before more competit ive interactions

become reestablished.
5 Conclusions

This study investigated short-term vegetation-soil coupling

relationships in post-fire karst ecosystems of southwestern China.

Results demonstrated that fire severity critically influenced

herbaceous community composition and soil properties during

the early recovery stage (three months post-fire). Pioneer species

from Asteraceae, Poaceae, and Fabaceae dominated community

regeneration across the fire severity gradient. The vegetation-soil

system exhibited a U-shaped coupling coordination response across

the fire severity gradient, peaking under extreme burns due to

reduced competition, while minimal coordination in severe burns

reflected intensified resource competition. Notably, regulating soil

pH, potassium availability, and phosphatase activity emerged as

critical levers for optimizing restoration, indirectly driving

community reassembly through nutrient cycl ing and

enzymatic activity.

This research provides practical guidance for post-fire

management in karst regions:(1) Introduce pioneer species during

periods of high vegetation-soil coupling following fire disturbance;

(2) Implement targeted soil nutrient management, such as pH
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adjustment and potassium supplementation, to enhance ecosystem

resilience. It should be noted that these findings and management

implications are constrained by the single post-fire sampling event,

which captured only a transient ecosystem state. Future studies

should prioritize integrated long-term monitoring to elucidate

vegetation-soil dynamics across full recovery trajectories—

essential for developing robust, multi-scale ecological

rehabilitation strategies.
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Knicker, H., González-Vila, F. J., Polvillo, O., González, J. A., and Almendros, G.
(2005). Fire-induced transformation of c- and n-forms in different organic soil fractions
from a dystric cambisol under a mediterranean pine forest (pinus pinaster). Soil Biol.
Biochem. 37, 701–718. doi: 10.1016/j.soilbio.2004.09.008

Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., et al.
(2015). Plant diversity increases soil microbial activity and soil carbon storage. Nat.
Commun. 6, 6707. doi: 10.1038/ncomms7707

Li, X., Han, Y., Zhang, Y., Shao, Q., Dong, C., Li, J., et al. (2024). Effects of wildfire on
soil microbial communities in karst forest ecosystems of southern guizhou province,
China. Appl. Environ. Microbiol. 90, e01224–e01245. doi: 10.1128/aem.01245-24

Li, X. Y., Jin, H. J., Wang, H. W., Wu, X. D., Huang, Y. D., He, R. X., et al. (2020).
Distributive features of soil carbon and nutrients in permafrost regions affected by
forest fires in northern da xing’anling (hinggan) mountains, ne China. Catena 185,
104304. doi: 10.1016/j.catena.2019.104304

Li, Z., Wei, J., He, W., Cao, X., Zhou, X., and Tian, Q. (2024). Effect of plant-soil
system on the restoration of community stability after wildfire in the northeast margin
of qinghai-tibet plateau. Sci. Rep. 14, 10706. doi: 10.1038/s41598-024-61621-2

Li, S., Wei, X. H., Huang, J. G., Wang, X. Z., Lu, G. Y., and Li, H. X. (2009). The causes
and processes responsible for rocky desertification in karst areas of southern China. Sci.
Cold Arid Regions 1, 80–90.

Lin, X. Y., Zhang, M., Guo, Y. N., Li, D. D., and Lu, Z. H. (2022). Relationship
between understory plant diversity and soil factors in coal mining subsidence area. J.
Soil Water Conserv. 36, 268–276. doi: 10.13870/j.cnki.stbcxb.2022.01.035

Liu, Y. B., Li, R. D., and Song, X. F. (2005). Correlation analysis of the coupling
between regional urbanization and ecological environment in China. Acta Geographica
Sin. 2, 237–247. doi: 10.3321/j.issn:0375-5444.2005.02.007

Liu, W. J., Zeng, F. X., and Jiang, H. (2013). Determination of total nitrogen in solid
samples by two-step digestionultraviolet spectrophotometry method. Commun. Soil
Sci. Plant Anal. 44, 1080–1091. doi: 10.1080/00103624.2012.750330
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