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Climate change, shrinking arable land, urbanization, and labor shortages

increasingly threaten stable crop production, attracting growing attention

toward AI-based indoor farming technologies. Accurate growth stage

classification is essential for nutrient management, harvest scheduling, and

quality improvement; however, conventional studies rely on time-based

criteria, which do not adequately capture physiological changes and lack

reproducibility. This study proposes a phenotyping-based and physiologically

grounded growth stage classification pipeline for basil. Among various

morphological traits, the number of leaf pairs emerging from the shoot apex

was identified as a robust indicator, as it can be consistently observed regardless

of environmental variations or leaf overlap. This trait enables non-destructive,

real-time monitoring using only low-cost fixed cameras. The research employed

top-view images captured under various artificial lighting conditions across

seven growth chambers. YOLO automatically detected multiple plants,

followed by K-means clustering to align positions and generate an individual

dataset of crop images–leaf pairs. A regression model was then trained to predict

leaf pair counts, which were subsequently converted into growth stages.

Experimental results demonstrated that the YOLO model achieved high

detection accuracy with mAP@0.5 = 0.995, while the A convolutional neural

network regression model reached MAE of 0.13 and R² of 0.96 for leaf pair

prediction. Final growth stage classification accuracy exceeded 98%, maintaining

consistent performance in cross-validation. In conclusion, the proposed pipeline

enables automated and precise growth monitoring in multi-plant environments

such as plant factories. By relying on low-cost equipment, the pipeline provides a

technological foundation for precision environmental control, labor reduction,

and sustainable smart agriculture.
KEYWORDS

smart agriculture, controlled environment agriculture (CEA), vision-based phenotyping,
automated decision pipeline, BBCH scale
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1 Introduction

Climate change, shrinking arable land, urbanization, and labor

shortages in agriculture have emerged as major threats to the

stability of crop production (Lehman et al., 2015; Rathor et al.,

2024; Van Delden et al., 2021). In response, indoor farming systems

that combine artificial lighting with environmental control

technologies are increasingly recognized worldwide as next-

generation agricultural solutions (Avgoustaki and Xydis, 2020;

Sowmya et al., 2024). The integration of artificial intelligence

(AI)-driven control approaches, including machine learning, the

Internet of Things (IoT), and computer vision, has substantially

enhanced the efficiency of crop monitoring, nutrient management,

disease detection, and environmental regulation (Duguma and Bai,

2024; Lovat et al., 2025; Rathor et al., 2024).

Accurate growth stage classification plays a critical role in crop

management, including nutrient management, harvest scheduling,

and quality improvement (Darlan et al., 2025; Ober et al., 2020).

However, most previous studies have relied on time-based criteria

such as days after sowing (DAS) or transplanting (DAT), which fail

to capture physiological changes and often yield inconsistent results

across environments and cultivars (Kim et al., 2025; Loresco et al.,

2018; Nadeem et al., 2022; Su et al., 2021). Such arbitrary time

divisions reduce reproducibility and may cause discrepancies

between actual plant status and assigned growth stages, ultimately

leading to suboptimal decisions (Onogi et al., 2021; Rauschkolb

et al., 2024).

In contrast, growth stage classification based on phenotypic

traits offers a physiologically meaningful and reproducible

alternative. However, most vision-based approaches developed to

complement time-based staging have relied on predicting biomass

or leaf area. In particular, data acquisition has been constrained by

approaches that photograph or physically measure individual pots

(Elangovan et al., 2023; Singh et al., 2023), which are labor-intensive

and potentially damaging to plants (Boros et al., 2023; Golzarian

et al., 2011). To address these issues, fixed rail systems have been

introduced to capture top-view images automatically (Kim et al.,

2024); however, they require substantial installation costs, large

physical space, and continuous maintenance under humid

conditions, limiting their scalability in compact plant factory

environments. Moreover, most prior research has ultimately

depended on single-plant images or simplified multi-plant data by

reducing them to single-plant representations, such as selecting

only the largest contour for analysis (Bashyam et al., 2021; Teimouri

et al., 2018; Yang et al., 2025).

Therefore, for practical application in large-scale cultivation, it

is essential to develop vision-based predictive models that can

automatically determine growth stages without relying on direct

human observation (Jin et al., 2020). Such approaches enable real-

time acquisition of growth information while remaining non-

destructive to the plants (Buxbaum et al., 2022). Indicators such

as biomass or leaf area are highly sensitive to lighting conditions,

camera installation height, and viewing angle, which can lead to

discrepancies between measured values and the actual

developmental stage (Adedeji et al., 2024). For instance, under
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red-light conditions, plants often exhibit excessive elongation,

making them appear larger and more developed in images, even

though their true growth stage has not advanced. Consequently,

vision-based metrics are prone to distortion and have proven

unreliable as robust indicators for stage classification. On the

other hand, the Biologische Bundesanstalt, Bundessortenamt, and

Chemical Industry (BBCH) scale provides a standardized

framework for describing crop development, from germination

through senescence, using discrete morphological indicators such

as leaf number (Bleiholder et al., 2001). Adaptations of the BBCH

scale have been successfully applied to Arabidopsis, tomato, and

basil (Boyes et al., 2001; Cardoso et al., 2021; Stoian et al., 2022). Yet,

these studies primarily focused on manual observation, which is

labor-intensive, prone to observer bias, and unsuitable for

integration into automated environmental control systems. Leaf-

pair number at the shoot apex represents a more stable and discrete

trait for growth stage classification. It can be consistently observed

under diverse environmental conditions and is robust against

overlapping leaves or shading. Moreover, fixed cameras capturing

top-view multi-plant images provide a cost-effective and scalable

means for continuous monitoring, yet such data have not been

e ff e c t i v e l y exp l o i t ed f o r au toma t ed in s t anc e - l e v e l

stage classification.

In this study, we propose a novel framework for automated,

instance-level growth stage classification in multi-plant

environments, thereby enabling physiology-based instance-level

monitoring from top-view images in fixed-bed cultivation

systems. Specifically, we propose: (i) an automated pipeline for

large-scale dataset construction using You Only Look Once version

8 (YOLOv8)-based object detection and coordinate ordering in a

consistent sequence, (ii) a phenotype-based classification model

aligned with the BBCH scale, and (iii) validation of its accuracy and

reproducibility across diverse cultivation environments. By

anchoring growth stage determination to a physiologically stable

trait and integrating it into a scalable detection–ordering–regression

pipeline, this study enables non-destructive, real-time stage

classification and establishes a foundation for precision control,

labor reduction, and sustainable smart agriculture.
2 Materials and methods

2.1 Top-view image dataset from growth
chambers

As shown in Figure 1, a total of nine growth chambers were

used in this study, and the distance between the bed and the camera

of each cultivator was fixed at 30 cm. A single humidifier was placed

at the center of each cultivation bed, and eight pots were arranged

around it. Cultivation was conducted under different light

conditions depending on the growth stage, and each chamber was

set with varying combinations of wavelength. The images captured

under these conditions reflect diverse growth environments.

Data was collected from April 20 to May 31, 2024. A total of

8,519 images were collected from nine growth chambers under
frontiersin.org
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varying light conditions (Table 1). The differences in the number of

images among chambers were attributed to variations in the start

and end times of operation for each device.

All captured images were stored at a resolution of 3280 ×

2464 pixels.
2.2 Target crop and growth stage
definition

In this study, sweet basil (Ocimum basilicum L.) was selected as

the model crop due to its high economic value and widespread

cultivation in indoor and controlled-environment farming systems

(Liaros et al., 2016). As a dicotyledonous species, basil exhibits a

clear opposite phyllotaxy, producing paired leaves sequentially from
Frontiers in Plant Science 03
the shoot apex (Dudai et al., 2020). Although overlapping foliage

can hinder precise measurement of total leaf area as growth

progresses, the shoot apex remains consistently visible, enabling

reliable determination of developmental progress based on the

number of newly emerged leaf pairs (Figure 2A). The leaf-pair

number represents not only a morphological trait but also a

physiologically meaningful indicator of growth. Each newly

emerged leaf pair corresponds to a discrete developmental event

accompanied by increased photosynthetic capacity, biomass

accumulation, and overall plant vigor. Thus, this feature

inherently reflects physiological growth dynamics without the

need for direct measurement of chlorophyll content or stress

indices. Furthermore, because basil continuously produces new

leaf pairs at the upper apex, this trait effectively captures

variations in individual growth rate that arise from environmental

differences such as light intensity, temperature, or nutrient

availability. Consequently, leaf-pair number provides a

reproducible and environment-independent criterion for growth

stage classification, offering a more physiologically grounded

alternative to time-based approaches [e.g., days after sowing

(DAS)]. Accordingly, top-view imaging was employed to non-

destructively monitor basil growth status and detect leaf-pair

development in multi-plant environments.

The Biologische Bundesanstalt, Bundessortenamt, and

Chemical Industry (BBCH) scale is a standardized system

designed to consistently encode phenologically similar growth

stages across all monocotyledonous and dicotyledonous crop

species. The principal growth stages are numerically represented

from 0 to 9 in ascending order, enabling direct comparison among

different plant species. In describing phenological development, the

BBCH scale relies on clear and easily observable external traits that

represent distinct physiological phases. Specifically, it defines early

developmental stages of crops—particularly in dicotyledonous
TABLE 1 Number of collected images per growth chamber (April 20–
May 31, 2024).

Growth chamber no. Number of images

1 945

2 947

3 945

4 945

5 943

6 946

7 957

8 954

9 937

Total 8,519
FIGURE 1

Overview of the top-view image collection system in growth chambers.
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species—based on leaf number (Bleiholder et al., 2001). Building on

this standard, the present study adopted the number of visible leaf

pairs as a physiologically meaningful criterion for basil growth stage

classification. This discrete trait is readily identifiable in top-view

images and remains robust against visual distortions caused by

overlapping or shading leaves.

For practical applicability, the growth process was subdivided

into three levels: Level 1 (≤ 2 leaf pairs), Level 2 (3–4 leaf pairs), and

Level 3 (≥ 5 leaf pairs) (Figure 2). This simplified classification

framework facilitates efficient monitoring in cultivation

environments, supports improved management and yield

optimization, and provides a foundation for data-driven crop

monitoring and automation.
2.3 Leaf-pair annotation and data
preprocessing

To train the model on accurate leaf-pair counts, a preliminary

manual labeling process was conducted for each basil plant. Labels

were assigned sequentially from the top left to the top right and then

from the bottom left to the bottom right within each image. All

labeling was performed by a single researcher and verified three

times to ensure consistency.

During this process, several problematic cases were identified

and excluded (Figure 3). These included: (i) multiple seedlings
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germinating in a single pot (Figure 3A), where individuals

completely overlapped and could not be separated, corresponding

to images obtained before thinning; (ii) images captured during the

dark period, producing entirely black frames (Figure 3B); (iii) plants

extending more than half outside the field of view or obscuring the

shoot apex (Figure 3C); and (iv) pots in which germination failed,

yielding fewer than the expected eight individuals. Such cases were

removed to maintain label reliability and avoid inconsistencies in

ordering (Figure 3D). Another case was (v) plants with leaf

abscission or removal, which were not excluded but instead

handled during the counting process: if only one leaf of a pair

was missing, the pair was still considered intact, whereas if both

leaves were absent, the pair was counted as reduced by

one (Figure 3E).

After this filtering process, the final training dataset comprised

2,169 images, including 334 from chamber 1, 310 from chamber 4,

237 from chamber 5, 294 from chamber 6, 357 from chamber 7, 330

from chamber 8, and 307 from chamber 9. No valid images

remained from chambers 2 and 3 (Table 2).
2.4 YOLOv8-based plant detection and
dataset preparation

All experiments were conducted in a Windows 11 environment

equipped with an AMD64 Family 26 Model 68 Stepping 0 CPU (8
FIGURE 3

Examples of excluded images during preprocessing. (A) Multiple plants within a single pot; (B) Images captured during the dark period; (C) Plants
more than half out of frame; (D) Non-germinated pots; (E) Plants with leaf removal history.
FIGURE 2

Representative examples of basil (Ocimum basilicum L.) growth stages based on the number of visible leaf pairs from top-view images: (A) Level 1 (≤
2 pairs), (B) Level 2 (3–4 pairs), and (C) Level 3 (≥ 5 pairs). Arrows indicate the apical bud with emerging leaf primordia used as reference points for
stage classification.
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cores, 16 threads), 32 GB RAM, and an NVIDIA GeForce RTX 5070

GPU. The experimental codes were developed using Python 3.11

and PyTorch 2.7.1 (with CUDA Toolkit 12.8 support). We

additionally utilized standard Python libraries for data processing

and visualization, including NumPy, pandas, Pillow, scikit-learn,

and OpenCV.

For automated recognition of individual plants within

cultivation bed images, YOLOv8 was adopted to replace manual

cropping, which is impractical for thousands of samples. Previous

studies have demonstrated the effectiveness of YOLOv8 in

mitigating complex background interference and improving

downstream accuracy (Yang et al., 2023).

To train the detector, 217 images (approximately 10% of the

dataset, evenly sampled across seven growth chambers) were

annotated with bounding boxes indicating plant locations. To

further reduce false positives, a small number of background-only

images were included as negative samples, comprising ~1% of the

dataset (Ultralytics, 2023). The final training set consisted of 219
Frontiers in Plant Science 05
images, which were divided into training, validation, and test

subsets in a 70:20:10 ratio (153:44:22).
2.5 Preprocessing strategies to reduce
YOLO skip rate

Images were retained as training data only when YOLO

successfully detected exactly eight plants; otherwise, the images

were discarded to avoid mismatched labels. However, this strict

criterion initially resulted in a high skip rate, leading to substantial

data loss and potential performance decline (Tables 3A, B).

Analysis of skipped cases revealed two main issues: (i) single

plants were occasionally recognized as multiple objects, and (ii)

background regions were misidentified as plants. To mitigate these

errors, two preprocessing strategies were introduced. First, based on

the F1–confidence curve, a threshold of 0.706 was applied, retaining

only bounding boxes above this value. Second, when a bounding

box was nested within another, the smaller box was removed using a

10-pixel tolerance to resolve overlapping detections.

These steps substantially reduced the skip rate (Tables 3C, D),

enabling construction of a more accurate and stable training dataset.
2.6 Automated labeling and dataset
construction pipeline

If eight bounding boxes were successfully detected through the

above process (Figure 4A), each object had to be arranged according

to a predefined labeling order. To achieve this, the center

coordinates of each bounding box were calculated from the

YOLO output coordinates (x1,   y1, x2, y2):

cx =
x1 + x2

2 
,     cy =

y1 + y2
2 

First, based on the vertical position (cy) of the center

coordinates, K-means clustering (k=3) was applied to classify

plants into three rows: top, middle, and bottom (Figure 4B).
TABLE 3 Number of skipped images under different preprocessing conditions for each growth chamber.

Growth
chamber

no.

(a) Skips without negative
samples and
preprocessing

(b) Skips
without

preprocessing

(c) Skips after applying
F1 confidence

threshold

(d) Skips after applying F1
confidence threshold + nested

box removal

1 2 2 1 1

4 4 2 1 0

5 22 13 12 12

6 24 12 3 3

7 34 23 11 9

8 49 20 3 1

9 38 1 1 1

Total 173 73 32 27
TABLE 2 Number of collected images before and after filtering for each
growth chamber.

Growth
chamber

no.

Number of images
before filtering

Number of images
after filtering

1 945 334

2 947 0

3 945 0

4 945 310

5 943 237

6 946 294

7 957 357

8 954 330

9 937 307

Total 8,519 2,169
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Within each row, plants were then sorted from left to right

according to their horizontal positions (cx) (Figure 4C). The final

labeling sequence was thus defined as: top row (left → right) →

middle row (left→ right)→ bottom row (left→ right) (Figure 4D).

After labeling, each bounding box region was cropped and

paired with the corresponding leaf-pair count to generate image–

label datasets in CSV format for Convolutional Neural Network

(CNN) training (Figure 5).

An alternative approach would be to assign labels based on

predefined coordinates; however, this method is highly sensitive to

variations in camera angle or tray placement, limiting its

applicability. In contrast, the YOLO–K-means strategy employed

here ensured consistent ordering, demonstrated robustness to

environmental variation, and provided flexibility for extension to

large-scale cultivation systems such as plant factories.
Frontiers in Plant Science 06
2.7 Regression-based convolutional neural
network for leaf-pair estimation

Through the YOLO-based automated labeling pipeline, 12,871

cropped image–leaf pair samples were constructed from 1,952 valid

images, excluding those used for YOLO training or containing

occluded individuals with invisible shoot apices. The dataset was

split into training, validation, and test sets in a 70:20:10 ratio,

comprising 9,009, 2,574, and 1,288 samples, respectively, with a

fixed random seed to ensure reproducibility.

A custom CNN model was developed based on the ResNet-18

architecture pre-trained on ImageNet. The classification head was

replaced with a fully connected layer, and dropout and activation

functions were added to enable continuous leaf-pair prediction. A

regression approach was selected over categorical classification
FIGURE 5

Automated pipeline for generating cropped plant images with matched leaf count labels for CNN model training, using YOLOv8 detection and
preprocessing.
FIGURE 4

Automated labeling pipeline for basil plants: (A) YOLOv8 detects individual plants, (B) the detected plants are grouped into rows using K-means
clustering, (C) plants within each row are sorted from left to right, and (D) sequential numbering is assigned for consistent labeling.
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because it penalizes errors proportionally to their magnitude,

thereby supporting more precise convergence (Wang et al., 2022;

Widrow and Lehr, 2002). Predicted values were then post-processed

by rounding to the nearest integer and mapping to predefined

growth stages.
2.8 Hyperparameter optimization with
Optuna

Hyperparameter optimization was performed using Optuna to

improve model performance. Previously, researchers had to adjust

hyperparameters in a cumbersome manner manually, and such

manual and static search approaches were inefficient and limited in

terms of objectivity and resource efficiency (Akiba et al., 2019). In this

study, these limitations were addressed by applying Optuna-based

automated hyperparameter optimization, thereby aiming to achieve

efficient and systematic optimization. The search space included key

parameters across data preprocessing, model architecture, and training.

For data augmentation, variations in brightness, contrast, saturation,

hue (ColorJitter), flipping, and rotation were optimized to simulate

changes in lighting and viewing conditions. For the architecture,

activation functions (ReLU, LeakyReLU, GELU) and dropout rates

were explored, while the training process considered learning rate,

optimizer type, weight decay, early stopping patience, loss function, and

scheduler settings. Image augmentation is used to enhance the

performance of deep learning models and prevent data overfitting by

increasing the quantity, diversity, and quality of images (Boissard et al.,

2008; Li et al., 2020). In agricultural research, the most common and

cost-effective techniques for expanding dataset size are flipping and

rotation, while brightness/color adjustments, blurring, and sharpening

are additionally applied to improve the generalization performance of

models under complex backgrounds or varying illumination

conditions (Antwi et al., 2024).

Optimization was carried out using Optuna’s Tree-structured

Parzen Estimator (TPE) sampler with MedianPruner for early

stopping of low-performing trials. A total of 30 trials were

conducted, yielding an optimized configuration based on

empirical performance rather than manual selection.
2.9 Huber loss function for robust
regression

The Huber loss function is a combination of the advantages of r.

For small errors, it applies a squared loss to promote precise

convergence and enhance fine-grained predictions, while for large

errors, it applies an absolute loss to mitigate the instability in

training caused by outliers (Huber, 1964). The Huber loss

function is defined as follows:

Huber Loss =oN
n=1ln,   where

ln   =  
  12 (x _ n  −   y _ n)

2                     if   xn −  ynj j <   d  

d xn −  ynj j − 1
2 d

� �
              otherwise  

(
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Here,   xn denotes the predicted value, yn the actual value, and d
the threshold that determines the transition between the squared

loss and the absolute loss. Since the dataset in this study employed

manually counted leaf pair numbers as labels, a certain level of noise

could have been introduced during the labeling process. In

particular, the emergence of leaf pairs is characterized by a

gradual rather than strictly discrete formation, making it prone to

errors caused by subjective judgment. Under such conditions, the

Huber loss function is advantageous because it is robust to outliers

and helps mitigate training instability arising from noisy data

(Meyer, 2021).

The Huber loss function has also been widely applied in the

agricultural domain. Dwaram and Madapuri (2022) employed

Huber loss for training an LSTM-based crop yield prediction

model and achieved the best performance among the tested

settings with an accuracy of 98.02% and an F1-score of 98.97%

(Dwaram and Madapuri, 2022). Guo et al. (2023) found that, in

estimating carbon content using remote sensing, the Huber loss

function outperformed MAE, MSE, and Smooth L1 by providing

robustness to outliers and higher inference accuracy (Guo

et al., 2023).
2.10 Integrated inference pipeline for
growth stage classification

An integrated inference pipeline was developed to automatically

determine the growth stage of individual plants from growth

chamber images (Figure 6). The pipeline comprised three steps:

(i) detection of individual plants using YOLOv8, followed by

preprocessing with overlapping box removal and coordinate-

based ordering; (ii) prediction of leaf-pair counts from cropped

regions with a ResNet-18 regression model; and (iii) conversion of

continuous predictions into integer values and classification into

growth stages (Levels 1–3).

Final outputs included visualization images, with bounding

boxes annotated by predicted stages and leaf-pair counts, as well

as CSV files for quantitative analysis. By integrating the proposed

detection, preprocessing, and regression steps, this pipeline

provides a practical framework for automated growth monitoring

in controlled cultivation environments.
3 Results and discussion

3.1 Detection performance of the YOLOv8
model

The confusion matrix (Figure 7A) summarizes detection

outcomes for the 20% validation set (44 images with

approximately eight plants per image), which contained 353

annotated plant instances. The model correctly detected 352

instances with no false positives and only one missed plant,

corresponding to Precision = 1.000 and Recall = 0.997.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1707985
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kim et al. 10.3389/fpls.2025.1707985
FIGURE 6

Integrated inference pipeline for plant growth stage classification. YOLOv8 detects individual plants, ResNet-18 regression estimates leaf-pair counts,
and predictions are converted into discrete growth stages.
FIGURE 7

(A) Confusion matrix for the validation set, showing 352 true positives, 0 false positives, and 1 false negative. (B) F1–confidence curve illustrating the
optimal confidence threshold that maximizes the F1-score. (C) Training and validation curves for box loss, classification loss, distribution focal loss,
precision, recall, and mAP@0.5/0.5–0.95 over 100 epochs (x-axis: epoch, y-axis: corresponding loss or metric value).
Frontiers in Plant Science frontiersin.org08
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The YOLOv8 detector was trained on the training subset

derived from 219 annotated images for 100 epochs, during which

all loss terms (box_loss, cls_loss, and dfl_loss) steadily decreased

and converged, while precision, recall, and mean Average Precision

(mAP) metrics consistently improved (Figure 7C). This indicates

that the model was well-optimized without signs of overfitting. The

F1–confidence curve confirmed stable performance, maintaining an

F1-score of 1.000 up to a confidence threshold of 0.706, beyond

which the score declined (Figure 7B). On the final validation set, the

detector achieved an mAP@0.5 of 0.995 and an mAP@0.5:0.95 of

0.905, with both precision and recall reaching 1.000. Figures 7A-C

demonstrate that YOLOv8 achieved stable convergence without

overfitting and maintained perfect detection accuracy across a wide

confidence range.

These results suggest that the model could detect all plants in

the growth chamber without false positives or false negatives,

thereby providing highly reliable cropped images for subsequent

leaf-pair regression and growth stage classification. The absence of

misdetections at this stage is particularly critical, since errors in

detection would directly propagate to later stages of the pipeline and

undermine stage classification accuracy.

These improvements were supported by systematic

preprocessing strategies, including negative sample incorporation

and nested box removal, which reduced skip rates and enhanced

detection stability. The determination of an optimal confidence

threshold also highlights the practical utility of the model, as it

allows fine-tuning of detection sensitivity according to cultivation

needs—for example, prioritizing recall in early growth monitoring

versus precision in harvest-stage assessments. From an application

perspective, this robustness is particularly important in dense

multi-plant images, where even minor misdetections could

propagate errors to later stages of classification. Nevertheless,

further validation under more heterogeneous conditions, such as

variable lighting or field environments, will be essential to confirm

the broader generalizability of the detector.
3.2 Hyperparameter optimization results
for CNN regression

The optimal combination of hyperparameters automatically

selected through the Optuna framework was as follows. The

learning rate was set to a very small value of 3.67×10-5, and the

AdamW optimizer was used together with a weight decay of

4.81×10-4 to prevent overfitting and ensure stable convergence.

The dropout rate was set to 13.4%, which was relatively low, thereby

maintaining sufficient training flexibility without excessive

regularization. The early stopping condition was configured with

a patience of 7 epochs, reducing unnecessary iterations while

allowing convergence without performance degradation.

For data augmentation, variations were applied using

ColorJitter, including brightness (± 10.6%), contrast (± 24.5%),

saturation (± 36.6%), and hue (± 5.6%). In addition, horizontal

flipping was applied with a probability of 26.3%, and random

rotations were allowed up to ±10°. In this study, the selected
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augmentation strategy was particularly effective because it

realistically simulated lighting fluctuations and viewpoint changes

that frequently occur in indoor cultivation systems, thereby

reinforcing the robustness of the model under practical

farming conditions.

This augmentation strategy effectively enhanced both the

diversity of the experimental data and the generalization

capability of the model. The activation function selected was

LeakyReLU, which alleviates the dead neuron problem of ReLU

by maintaining a small gradient for negative input values, thereby

preventing learning stagnation. No learning rate scheduler was

used, indicating that the learning rate itself was sufficiently small

and stable throughout training.

These results underscore the importance of systematic

hyperparameter tuning in agricultural vision applications.

Whereas prior studies often relied on heuristic parameter choices,

automated optimization enabled a configuration that balanced

convergence speed, generalization, and robustness to noisy labels.

In practice, this approach supports reliable deployment in diverse

cultivation settings, where environmental variability can otherwise

degrade model performance. Moreover, the automated search

process improved reproducibility by reducing dependence on

subjective trial-and-error, ensuring that the derived configuration

reflected data-driven evidence rather than manual intuition. From

an application perspective, such optimized settings are highly

advantageous for large-scale deployment in plant factories or

smart farms, where environmental variability and computational

constraints demand models that are both accurate and efficient.
3.3 Performance evaluation of the
proposed growth stage model

The regression model demonstrated stable convergence, with

both training and validation losses decreasing smoothly and early

stopping triggered at the 27th epoch (Figure 8A). This stability

reflects effective regularization, and the use of the Huber loss

function likely contributed to reducing the influence of noisy

labels while preserving sensitivity to fine-grained leaf-count

differences. The normalized confusion matrix confirmed high

predictive accuracy across all growth stages, with Level 2—

representing a transitional phase of leaf development—achieving

the highest accuracy at 98.4% (Figure 8B).

Quantitative evaluation further demonstrated the reliability of

the proposed approach. On the fixed test set, the model achieved a

Mean Absolute Error (MAE) of 0.13, a Mean Squared Error (MSE)

of 0.04, a Root Mean Squared Error (RMSE) of 0.20, and a

Coefficient of determination (R²) of 0.96, while stage classification

accuracy and weighted F1-score reached 98.1% and 0.98,

respectively. These values substantially outperform those of earlier

studies. For example, Yang et al. (2025) employed U-Net–based

segmentation to extract individual plants from multi-plant images

and performed BBCH stage classification. However, the model

performance based solely on images remained around 73%. To

improve accuracy, they incorporated additional features such as
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area, perimeter, pixel count, and inter-image similarity derived

from the segmented masks. Nevertheless, such trait-based features

are highly sensitive to changes in camera height or imaging

conditions and were limited to images captured under white light,

thereby reducing reproducibility and generalizability. Furthermore,

the pipeline involved excessive complexity and multiple modules,

with segmentation and classification operating separately, which

limits its applicability for real-time field deployment (Yang

et al., 2025).

The robustness of the framework was further validated through

5-fold cross-validation, which yielded consistent results (MAE 0.12

± 0.01, R² 0.97 ± 0.004). This consistency indicates that the model is

not overly dependent on specific data subsets and can generalize

well to unseen samples. In addition, the consistently high

performance across folds demonstrates that the model is resilient

to data imbalance and noise, further reinforcing its robustness.
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Importantly, the ability to detect and classify multiple individuals

within a single frame directly overcomes the scalability limitations

of prior single-plant approaches. Representative examples are

shown in Figure 9, where the pipeline accurately identified and

classified basil plants under both natural and artificial lighting

conditions, demonstrating resilience to variation in imaging

environments. In Figure 9A, all eight individuals in the

cultivation bed were correctly detected and assigned growth

stages, with shoot apices clearly visible and minimal occlusion,

allowing stable classification at early growth stages. In contrast,

Figure 9B illustrates more complex conditions, including

overlapping leaves, partial occlusion, and strong color distortion

caused by LED lighting; nevertheless, the pipeline successfully

recognized individual plants and determined leaf-pair numbers

and growth stages with high reliability. These results highlight the

robustness of the framework in dense cultivation environments,
FIGURE 8

Model training and classification performance. (A) Training and validation loss curves showing stable convergence, with early stopping triggered at
the 27th epoch to prevent overfitting; (B) Normalized confusion matrix for Level 1–3 classification on the test set, indicating high prediction
accuracy across all levels.
FIGURE 9

Automated growth stage classification of basil plants. (A) Cultivation bed 1, showing detection and classification of individual plants based on leaf-
pair counts; (B) Cultivation bed 4, demonstrating stable multi-plant detection and classification under artificial lighting. Bounding boxes denote
individual plants, and labels indicate the predicted growth stage (Level 1–3) and leaf-pair number.
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where visual interference is common, and underscore its practical

applicability in smart farming systems. Unlike prior studies that

often relied on single-plant images or used only the largest contour

from multi-plant frames, the present approach enables instance-

level detection and classification of all individuals simultaneously,

ensuring scalability for real cultivation settings.

From an application standpoint, achieving over 98% accuracy

in growth stage classification highlights the potential of this

framework as a core component of precision agriculture systems.

Reliable and automated stage detection could support fine-tuned

scheduling of nutrient delivery, adaptive control of lighting and

climate, and optimization of harvest timing. By grounding stage

classification in physiologically meaningful traits—namely leaf-pair

number—the proposed method strengthens the reproducibility of

plant research while advancing the practicality of smart farming

technologies. Nevertheless, as the current experiments were

conducted in controlled environments, future validation under

larger datasets, diverse crop species, and field conditions will be

necessary to confirm broader applicability and generalizability.
3.4 Future directions and potential
applications

Future research should prioritize the development of

lightweight models and the validation of inference performance in

real cultivation systems. Although the current framework achieved

high accuracy under controlled conditions, its computational

demands may limit scalability in commercial applications. By

reducing inference time, lightweight architecture can facilitate

real-time integration with automated crop monitoring and

environmental control systems, which is essential for the

commercialization of smart agriculture. Previous approaches,

such as complex multi-stage pipelines, also suffered from slow

processing speeds, making them unsuitable for large-scale field

monitoring or real-time control. Therefore, for applications in

controlled environments such as plant growth chambers or plant

factories, the development of lightweight models capable of

operating reliably and efficiently even on low-power devices

is indispensable.

Another promising direction is the incorporation of temporal

modeling. While the proposed model effectively captures

instantaneous growth states, it is limited in reflecting the

continuous progression of growth and stage transitions that are

critical in real cultivation environments. Integrating sequence-based

architectures such as LSTM would enable dynamic tracking of these

transitions and provide richer temporal information, thereby

improving predictive accuracy for tasks such as nutrient

scheduling and harvest timing.

Extension to other dicotyledonous leafy vegetables and herbs,

such as lettuce and kale, will also be critical for broad applicability.

While basil served as a representative model in this study, crop-

specific growth traits may require tailored optimization before

integration into a generalized multi-crop framework. Likewise,

scaling the approach to diverse cultivation environments—
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including plant factories, smart farms, and systems with larger

plant populations—will test the robustness of the pipeline under

heterogeneous conditions.

Finally, integrating image-based phenotypic data with

environmental information such as light spectra, temperature,

and humidity will be essential to further improve accuracy and

stability. A unified data-driven framework that links growth stage

detection directly to environmental control would enable precise,

stage-specific interventions, advancing both the scientific

reproducibility of crop growth studies and the practical

realization of sustainable smart farming.
4 Conclusion

This study introduced a novel pipeline for instance-level growth

stage classification of basil using top-view multi-plant images,

addressing fundamental limitations of previous research that

relied on time-based staging or single-plant imaging. By

integrating YOLOv8-based object detection, K-means–based

coordinate ordering, and a ResNet-18 regression model, the

proposed “detection–ordering–regression–staging” framework

achieved state-of-the-art performance. The YOLOv8 detection

module achieved mAP@0.5 = 0.995, mAP@0.5:0.95 = 0.905,

Precision = 1.000, and Recall = 0.997, confirming near-perfect

instance-level localization across all plants in the validation set

and providing reliable cropped inputs for subsequent regression

and classification. As a result, the overall framework attained MAE

= 0.13, RMSE = 0.20, and R² = 0.96, with a growth stage

classification accuracy of 98.1% (F1 = 0.98).

The novelty of this work lies in its ability to perform automated,

non-destructive, and physiology-based stage classification that

captures the developmental progression of individual plants

directly from multi-plant images, a task that prior approaches

could not reliably accomplish. Unlike conventional indices such

as biomass or leaf area, which are highly sensitive to imaging

conditions, traits such as total leaf area or canopy coverage

require multi-angle imaging and are easily distorted by leaf

drooping, occlusion, or camera perspective differences. In

contrast, the number of leaf pairs at the shoot apex provides a

discrete, BBCH-aligned, and physiologically meaningful criterion

that remains clearly visible from top-view images regardless of

growth density or camera placement. This trait inherently reflects

photosynthetic capacity, biomass accumulation, and overall growth

dynamics, enabling reproducible classification under realistic

cultivation environments without the need for labor-intensive

manual observation or controlled image preprocessing.

Notably, the framework demonstrated scalability: although

developed in an eight-pot fixed-bed system, the flexible

detection–ordering logic can be adapted to different layouts

without retraining, ensuring applicability to diverse cultivation

facilities. Because the framework relies on a visually stable and

physiologically grounded trait rather than time-dependent or angle-

sensitive measures, it can robustly accommodate environmental

variability such as light intensity, temperature, or nutrient
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differences, ensuring consistent performance even under

heterogeneous imaging conditions. Cross-validation confirmed

consistent performance, underscoring the robustness of the

pipeline for large-scale deployment.

In summary, this study is the first to establish an integrated and

fully automated workflow that couples object detection with

physiology-driven regression modeling for growth stage

determination in multi-plant settings. Beyond reducing labor

requirements, the framework has strong potential as a core

technology for precision agriculture, enabling stage-specific

environmental control, adaptive nutrient and water management,

yield forecasting, and early stress detection. By providing a simple

yet reliable visual indicator optimized for camera-based

automation, the proposed system bridges morphological

observation with physiological interpretation, offering both

scientific insight and operational practicality for intelligent

cultivation systems. Future research should extend this approach

to other leafy vegetables and diverse cultivation systems, while

incorporating lightweight and temporal modeling strategies to

further advance commercial adoption in smart farming.
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