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Climate change, shrinking arable land, urbanization, and labor shortages
increasingly threaten stable crop production, attracting growing attention
toward Al-based indoor farming technologies. Accurate growth stage
classification is essential for nutrient management, harvest scheduling, and
quality improvement; however, conventional studies rely on time-based
criteria, which do not adequately capture physiological changes and lack
reproducibility. This study proposes a phenotyping-based and physiologically
grounded growth stage classification pipeline for basil. Among various
morphological traits, the number of leaf pairs emerging from the shoot apex
was identified as a robust indicator, as it can be consistently observed regardless
of environmental variations or leaf overlap. This trait enables non-destructive,
real-time monitoring using only low-cost fixed cameras. The research employed
top-view images captured under various artificial lighting conditions across
seven growth chambers. YOLO automatically detected multiple plants,
followed by K-means clustering to align positions and generate an individual
dataset of crop images—leaf pairs. A regression model was then trained to predict
leaf pair counts, which were subsequently converted into growth stages.
Experimental results demonstrated that the YOLO model achieved high
detection accuracy with mAP@0.5 = 0.995, while the A convolutional neural
network regression model reached MAE of 0.13 and R? of 0.96 for leaf pair
prediction. Final growth stage classification accuracy exceeded 98%, maintaining
consistent performance in cross-validation. In conclusion, the proposed pipeline
enables automated and precise growth monitoring in multi-plant environments
such as plant factories. By relying on low-cost equipment, the pipeline provides a
technological foundation for precision environmental control, labor reduction,
and sustainable smart agriculture.
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smart agriculture, controlled environment agriculture (CEA), vision-based phenotyping,
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1 Introduction

Climate change, shrinking arable land, urbanization, and labor
shortages in agriculture have emerged as major threats to the
stability of crop production (Lehman et al, 2015; Rathor et al,
2024; Van Delden et al,, 2021). In response, indoor farming systems
that combine artificial lighting with environmental control
technologies are increasingly recognized worldwide as next-
generation agricultural solutions (Avgoustaki and Xydis, 2020;
Sowmya et al, 2024). The integration of artificial intelligence
(AI)-driven control approaches, including machine learning, the
Internet of Things (IoT), and computer vision, has substantially
enhanced the efficiency of crop monitoring, nutrient management,
disease detection, and environmental regulation (Duguma and Bai,
2024; Lovat et al., 2025; Rathor et al., 2024).

Accurate growth stage classification plays a critical role in crop
management, including nutrient management, harvest scheduling,
and quality improvement (Darlan et al., 2025; Ober et al,, 2020).
However, most previous studies have relied on time-based criteria
such as days after sowing (DAS) or transplanting (DAT), which fail
to capture physiological changes and often yield inconsistent results
across environments and cultivars (Kim et al., 2025; Loresco et al.,
2018; Nadeem et al., 2022; Su et al, 2021). Such arbitrary time
divisions reduce reproducibility and may cause discrepancies
between actual plant status and assigned growth stages, ultimately
leading to suboptimal decisions (Onogi et al., 2021; Rauschkolb
et al., 2024).

In contrast, growth stage classification based on phenotypic
traits offers a physiologically meaningful and reproducible
alternative. However, most vision-based approaches developed to
complement time-based staging have relied on predicting biomass
or leaf area. In particular, data acquisition has been constrained by
approaches that photograph or physically measure individual pots
(Elangovan et al., 2023; Singh et al., 2023), which are labor-intensive
and potentially damaging to plants (Boros et al., 2023; Golzarian
et al,, 2011). To address these issues, fixed rail systems have been
introduced to capture top-view images automatically (Kim et al,
2024); however, they require substantial installation costs, large
physical space, and continuous maintenance under humid
conditions, limiting their scalability in compact plant factory
environments. Moreover, most prior research has ultimately
depended on single-plant images or simplified multi-plant data by
reducing them to single-plant representations, such as selecting
only the largest contour for analysis (Bashyam et al., 2021; Teimouri
et al,, 2018; Yang et al., 2025).

Therefore, for practical application in large-scale cultivation, it
is essential to develop vision-based predictive models that can
automatically determine growth stages without relying on direct
human observation (Jin et al., 2020). Such approaches enable real-
time acquisition of growth information while remaining non-
destructive to the plants (Buxbaum et al., 2022). Indicators such
as biomass or leaf area are highly sensitive to lighting conditions,
camera installation height, and viewing angle, which can lead to
discrepancies between measured values and the actual
developmental stage (Adedeji et al, 2024). For instance, under
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red-light conditions, plants often exhibit excessive elongation,
making them appear larger and more developed in images, even
though their true growth stage has not advanced. Consequently,
vision-based metrics are prone to distortion and have proven
unreliable as robust indicators for stage classification. On the
other hand, the Biologische Bundesanstalt, Bundessortenamt, and
Chemical Industry (BBCH) scale provides a standardized
framework for describing crop development, from germination
through senescence, using discrete morphological indicators such
as leaf number (Bleiholder et al., 2001). Adaptations of the BBCH
scale have been successfully applied to Arabidopsis, tomato, and
basil (Boyes et al., 2001; Cardoso et al., 2021; Stoian et al., 2022). Yet,
these studies primarily focused on manual observation, which is
labor-intensive, prone to observer bias, and unsuitable for
integration into automated environmental control systems. Leaf-
pair number at the shoot apex represents a more stable and discrete
trait for growth stage classification. It can be consistently observed
under diverse environmental conditions and is robust against
overlapping leaves or shading. Moreover, fixed cameras capturing
top-view multi-plant images provide a cost-effective and scalable
means for continuous monitoring, yet such data have not been
effectively exploited for automated instance-level
stage classification.

In this study, we propose a novel framework for automated,
instance-level growth stage classification in multi-plant
environments, thereby enabling physiology-based instance-level
monitoring from top-view images in fixed-bed cultivation
systems. Specifically, we propose: (i) an automated pipeline for
large-scale dataset construction using You Only Look Once version
8 (YOLOV8)-based object detection and coordinate ordering in a
consistent sequence, (ii) a phenotype-based classification model
aligned with the BBCH scale, and (iii) validation of its accuracy and
reproducibility across diverse cultivation environments. By
anchoring growth stage determination to a physiologically stable
trait and integrating it into a scalable detection-ordering-regression
pipeline, this study enables non-destructive, real-time stage
classification and establishes a foundation for precision control,
labor reduction, and sustainable smart agriculture.

2 Materials and methods

2.1 Top-view image dataset from growth
chambers

As shown in Figure 1, a total of nine growth chambers were
used in this study, and the distance between the bed and the camera
of each cultivator was fixed at 30 cm. A single humidifier was placed
at the center of each cultivation bed, and eight pots were arranged
around it. Cultivation was conducted under different light
conditions depending on the growth stage, and each chamber was
set with varying combinations of wavelength. The images captured
under these conditions reflect diverse growth environments.

Data was collected from April 20 to May 31, 2024. A total of
8,519 images were collected from nine growth chambers under
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TABLE 1 Number of collected images per growth chamber (April 20—
May 31, 2024).

Growth chamber no. Number of images

1 945
2 947
3 945
4 945
5 943
6 946
7 957
8 954
9 937
Total 8,519

varying light conditions (Table 1). The differences in the number of
images among chambers were attributed to variations in the start
and end times of operation for each device.

All captured images were stored at a resolution of 3280 x
2464 pixels.

2.2 Target crop and growth stage
definition

In this study, sweet basil (Ocimum basilicum L.) was selected as
the model crop due to its high economic value and widespread
cultivation in indoor and controlled-environment farming systems
(Liaros et al., 2016). As a dicotyledonous species, basil exhibits a
clear opposite phyllotaxy, producing paired leaves sequentially from

10.3389/fpls.2025.1707985

the shoot apex (Dudai et al., 2020). Although overlapping foliage
can hinder precise measurement of total leaf area as growth
progresses, the shoot apex remains consistently visible, enabling
reliable determination of developmental progress based on the
number of newly emerged leaf pairs (Figure 2A). The leaf-pair
number represents not only a morphological trait but also a
physiologically meaningful indicator of growth. Each newly
emerged leaf pair corresponds to a discrete developmental event
accompanied by increased photosynthetic capacity, biomass
accumulation, and overall plant vigor. Thus, this feature
inherently reflects physiological growth dynamics without the
need for direct measurement of chlorophyll content or stress
indices. Furthermore, because basil continuously produces new
leaf pairs at the upper apex, this trait effectively captures
variations in individual growth rate that arise from environmental
differences such as light intensity, temperature, or nutrient
availability. Consequently, leaf-pair number provides a
reproducible and environment-independent criterion for growth
stage classification, offering a more physiologically grounded
alternative to time-based approaches [e.g., days after sowing
(DAS)]. Accordingly, top-view imaging was employed to non-
destructively monitor basil growth status and detect leaf-pair
development in multi-plant environments.

The Biologische Bundesanstalt, Bundessortenamt, and
Chemical Industry (BBCH) scale is a standardized system
designed to consistently encode phenologically similar growth
stages across all monocotyledonous and dicotyledonous crop
species. The principal growth stages are numerically represented
from 0 to 9 in ascending order, enabling direct comparison among
different plant species. In describing phenological development, the
BBCH scale relies on clear and easily observable external traits that
represent distinct physiological phases. Specifically, it defines early
developmental stages of crops—particularly in dicotyledonous

Growth chamber

Cultivation bed

humidifier

pot

pot

FIGURE 1
Overview of the top-view image collection system in growth chambers.
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Apical bud with emerging leaf primordia ‘

Level 1: <2 pairs

FIGURE 2

Level 2: 3-4 pairs

Levél 3: 2 5 pairs

Representative examples of basil (Ocimum basilicum L.) growth stages based on the number of visible leaf pairs from top-view images: (A) Level 1 (<
2 pairs), (B) Level 2 (3—4 pairs), and (C) Level 3 (> 5 pairs). Arrows indicate the apical bud with emerging leaf primordia used as reference points for

stage classification.

species—based on leaf number (Bleiholder et al., 2001). Building on
this standard, the present study adopted the number of visible leaf
pairs as a physiologically meaningful criterion for basil growth stage
classification. This discrete trait is readily identifiable in top-view
images and remains robust against visual distortions caused by
overlapping or shading leaves.

For practical applicability, the growth process was subdivided
into three levels: Level 1 (< 2 leaf pairs), Level 2 (3-4 leaf pairs), and
Level 3 (= 5 leaf pairs) (Figure 2). This simplified classification
framework facilitates efficient monitoring in cultivation
environments, supports improved management and yield
optimization, and provides a foundation for data-driven crop
monitoring and automation.

2.3 Leaf-pair annotation and data
preprocessing

To train the model on accurate leaf-pair counts, a preliminary
manual labeling process was conducted for each basil plant. Labels
were assigned sequentially from the top left to the top right and then
from the bottom left to the bottom right within each image. All
labeling was performed by a single researcher and verified three
times to ensure consistency.

During this process, several problematic cases were identified
and excluded (Figure 3). These included: (i) multiple seedlings

FIGURE 3

germinating in a single pot (Figure 3A), where individuals
completely overlapped and could not be separated, corresponding
to images obtained before thinning; (ii) images captured during the
dark period, producing entirely black frames (Figure 3B); (iii) plants
extending more than half outside the field of view or obscuring the
shoot apex (Figure 3C); and (iv) pots in which germination failed,
yielding fewer than the expected eight individuals. Such cases were
removed to maintain label reliability and avoid inconsistencies in
ordering (Figure 3D). Another case was (v) plants with leaf
abscission or removal, which were not excluded but instead
handled during the counting process: if only one leaf of a pair
was missing, the pair was still considered intact, whereas if both
leaves were absent, the pair was counted as reduced by
one (Figure 3E).

After this filtering process, the final training dataset comprised
2,169 images, including 334 from chamber 1, 310 from chamber 4,
237 from chamber 5, 294 from chamber 6, 357 from chamber 7, 330
from chamber 8, and 307 from chamber 9. No valid images
remained from chambers 2 and 3 (Table 2).

2.4 YOLOV8-based plant detection and
dataset preparation

All experiments were conducted in a Windows 11 environment
equipped with an AMD64 Family 26 Model 68 Stepping 0 CPU (8

E —

Examples of excluded images during preprocessing. (A) Multiple plants within a single pot; (B) Images captured during the dark period; (C) Plants
more than half out of frame; (D) Non-germinated pots; (E) Plants with leaf removal history.
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TABLE 2 Number of collected images before and after filtering for each
growth chamber.

ci;?:\vgzr Number of images ~ Number of images
- before filtering after filtering
2 947 0
3 945 0
4 945 310
5 943 237
6 946 294
7 957 357
8 954 330
9 937 307
Total 8,519 2,169

cores, 16 threads), 32 GB RAM, and an NVIDIA GeForce RTX 5070
GPU. The experimental codes were developed using Python 3.11
and PyTorch 2.7.1 (with CUDA Toolkit 12.8 support). We
additionally utilized standard Python libraries for data processing
and visualization, including NumPy, pandas, Pillow, scikit-learn,
and OpenCV.

For automated recognition of individual plants within
cultivation bed images, YOLOv8 was adopted to replace manual
cropping, which is impractical for thousands of samples. Previous
studies have demonstrated the effectiveness of YOLOVS in
mitigating complex background interference and improving
downstream accuracy (Yang et al., 2023).

To train the detector, 217 images (approximately 10% of the
dataset, evenly sampled across seven growth chambers) were
annotated with bounding boxes indicating plant locations. To
further reduce false positives, a small number of background-only
images were included as negative samples, comprising ~1% of the
dataset (Ultralytics, 2023). The final training set consisted of 219

10.3389/fpls.2025.1707985

images, which were divided into training, validation, and test
subsets in a 70:20:10 ratio (153:44:22).

2.5 Preprocessing strategies to reduce
YOLO skip rate

Images were retained as training data only when YOLO
successfully detected exactly eight plants; otherwise, the images
were discarded to avoid mismatched labels. However, this strict
criterion initially resulted in a high skip rate, leading to substantial
data loss and potential performance decline (Tables 3A, B).

Analysis of skipped cases revealed two main issues: (i) single
plants were occasionally recognized as multiple objects, and (ii)
background regions were misidentified as plants. To mitigate these
errors, two preprocessing strategies were introduced. First, based on
the F1-confidence curve, a threshold of 0.706 was applied, retaining
only bounding boxes above this value. Second, when a bounding
box was nested within another, the smaller box was removed using a
10-pixel tolerance to resolve overlapping detections.

These steps substantially reduced the skip rate (Tables 3C, D),
enabling construction of a more accurate and stable training dataset.

2.6 Automated labeling and dataset
construction pipeline

If eight bounding boxes were successfully detected through the
above process (Figure 4A), each object had to be arranged according
to a predefined labeling order. To achieve this, the center
coordinates of each bounding box were calculated from the
YOLO output coordinates (x;, y;,%y,¥,):

X1+ X
Cy = 5

Nty
> 6 =
b4 2
First, based on the vertical position (c},) of the center
coordinates, K-means clustering (k=3) was applied to classify
plants into three rows: top, middle, and bottom (Figure 4B).

TABLE 3 Number of skipped images under different preprocessing conditions for each growth chamber.

Growth  (a) Skips without negative (b) Skips (c) Skips after applying (d) Skips after applying F1
chamber samples and without F1 confidence confidence threshold + nested
preprocessing preprocessing threshold box removal
1 2 2 1 1
4 4 2 1 0
5 22 13 12 12
6 24 12 3 3
7 34 23 11 9
8 49 20 3 1
9 38 1 1 1
Total 173 73 32 27
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A YOLO Detection

B K-means Row Clustering

C Left-to-Right Sorting

10.3389/fpls.2025.1707985

D Final Labeling

I.ﬁl

L. .1.

FIGURE 4

°_99e o
es ?s 00

Automated labeling pipeline for basil plants: (A) YOLOV8 detects individual plants, (B) the detected plants are grouped into rows using K-means
clustering, (C) plants within each row are sorted from left to right, and (D) sequential numbering is assigned for consistent labeling.

Within each row, plants were then sorted from left to right
according to their horizontal positions (c,) (Figure 4C). The final
labeling sequence was thus defined as: top row (left — right) —
middle row (left — right) — bottom row (left — right) (Figure 4D).

After labeling, each bounding box region was cropped and
paired with the corresponding leaf-pair count to generate image-
label datasets in CSV format for Convolutional Neural Network
(CNN) training (Figure 5).

An alternative approach would be to assign labels based on
predefined coordinates; however, this method is highly sensitive to
variations in camera angle or tray placement, limiting its
applicability. In contrast, the YOLO-K-means strategy employed
here ensured consistent ordering, demonstrated robustness to
environmental variation, and provided flexibility for extension to
large-scale cultivation systems such as plant factories.

2.7 Regression-based convolutional neural
network for leaf-pair estimation

Through the YOLO-based automated labeling pipeline, 12,871
cropped image-leaf pair samples were constructed from 1,952 valid
images, excluding those used for YOLO training or containing
occluded individuals with invisible shoot apices. The dataset was
split into training, validation, and test sets in a 70:20:10 ratio,
comprising 9,009, 2,574, and 1,288 samples, respectively, with a
fixed random seed to ensure reproducibility.

A custom CNN model was developed based on the ResNet-18
architecture pre-trained on ImageNet. The classification head was
replaced with a fully connected layer, and dropout and activation
functions were added to enable continuous leaf-pair prediction. A
regression approach was selected over categorical classification

Plant Tray Image

YOLOV8 Detection
(Confidence > 0.706)
!

Enclosed Box Filtering
(remove smaller boxes nested in
larger ones, 10-pixel margin)

'

Detected Objects
=87
Yes No
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Position-Based Sorting
(K-means clustering into 3 rows
— left-to-right labeling)

v

Cropping and Leaf Count Matching
(sequentially cropped images aligned
with leaf count data for CSV creation)

v

Image—Leaf Count Dataset
Generated for CNN Training

Discard Image

FIGURE 5
Automated pipeline for generating cropped plant images with matched leaf count labels for CNN model training, using YOLOV8 detection and
preprocessing.
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because it penalizes errors proportionally to their magnitude,
thereby supporting more precise convergence (Wang et al., 2022;
Widrow and Lehr, 2002). Predicted values were then post-processed
by rounding to the nearest integer and mapping to predefined
growth stages.

2.8 Hyperparameter optimization with
Optuna

Hyperparameter optimization was performed using Optuna to
improve model performance. Previously, researchers had to adjust
hyperparameters in a cumbersome manner manually, and such
manual and static search approaches were inefficient and limited in
terms of objectivity and resource efficiency (Akiba et al., 2019). In this
study, these limitations were addressed by applying Optuna-based
automated hyperparameter optimization, thereby aiming to achieve
efficient and systematic optimization. The search space included key
parameters across data preprocessing, model architecture, and training.
For data augmentation, variations in brightness, contrast, saturation,
hue (ColorlJitter), flipping, and rotation were optimized to simulate
changes in lighting and viewing conditions. For the architecture,
activation functions (ReLU, LeakyReLU, GELU) and dropout rates
were explored, while the training process considered learning rate,
optimizer type, weight decay, early stopping patience, loss function, and
scheduler settings. Image augmentation is used to enhance the
performance of deep learning models and prevent data overfitting by
increasing the quantity, diversity, and quality of images (Boissard et al.,
2008; Li et al,, 2020). In agricultural research, the most common and
cost-effective techniques for expanding dataset size are flipping and
rotation, while brightness/color adjustments, blurring, and sharpening
are additionally applied to improve the generalization performance of
models under complex backgrounds or varying illumination
conditions (Antwi et al., 2024).

Optimization was carried out using Optuna’s Tree-structured
Parzen Estimator (TPE) sampler with MedianPruner for early
stopping of low-performing trials. A total of 30 trials were
conducted, yielding an optimized configuration based on
empirical performance rather than manual selection.

2.9 Huber loss function for robust
regression

The Huber loss function is a combination of the advantages of r.
For small errors, it applies a squared loss to promote precise
convergence and enhance fine-grained predictions, while for large
errors, it applies an absolute loss to mitigate the instability in
training caused by outliers (Huber, 1964). The Huber loss
function is defined as follows:

Huber Loss = S\ 1,, where
L= %(x—n - y—n)z if|xn_Yn|< 6
! 5(|xn — ynl - 18) otherwise
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Here, x, denotes the predicted value, y, the actual value, and &
the threshold that determines the transition between the squared
loss and the absolute loss. Since the dataset in this study employed
manually counted leaf pair numbers as labels, a certain level of noise
could have been introduced during the labeling process. In
particular, the emergence of leaf pairs is characterized by a
gradual rather than strictly discrete formation, making it prone to
errors caused by subjective judgment. Under such conditions, the
Huber loss function is advantageous because it is robust to outliers
and helps mitigate training instability arising from noisy data
(Meyer, 2021).

The Huber loss function has also been widely applied in the
agricultural domain. Dwaram and Madapuri (2022) employed
Huber loss for training an LSTM-based crop yield prediction
model and achieved the best performance among the tested
settings with an accuracy of 98.02% and an Fl-score of 98.97%
(Dwaram and Madapuri, 2022). Guo et al. (2023) found that, in
estimating carbon content using remote sensing, the Huber loss
function outperformed MAE, MSE, and Smooth L1 by providing
robustness to outliers and higher inference accuracy (Guo
et al., 2023).

2.10 Integrated inference pipeline for
growth stage classification

An integrated inference pipeline was developed to automatically
determine the growth stage of individual plants from growth
chamber images (Figure 6). The pipeline comprised three steps:
(i) detection of individual plants using YOLOVS, followed by
preprocessing with overlapping box removal and coordinate-
based ordering; (ii) prediction of leaf-pair counts from cropped
regions with a ResNet-18 regression model; and (iii) conversion of
continuous predictions into integer values and classification into
growth stages (Levels 1-3).

Final outputs included visualization images, with bounding
boxes annotated by predicted stages and leaf-pair counts, as well
as CSV files for quantitative analysis. By integrating the proposed
detection, preprocessing, and regression steps, this pipeline
provides a practical framework for automated growth monitoring
in controlled cultivation environments.

3 Results and discussion

3.1 Detection performance of the YOLOv8
model

The confusion matrix (Figure 7A) summarizes detection
outcomes for the 20% validation set (44 images with
approximately eight plants per image), which contained 353
annotated plant instances. The model correctly detected 352
instances with no false positives and only one missed plant,
corresponding to Precision = 1.000 and Recall = 0.997.
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YOLO-based Object Post-processing
Input Image —» | Detection (Bounding | = | (Confidence Filtering
Box Extraction) & Ordering)
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T:ig};’iznzll?nz%ngg —> NPOr"emra(I)'g:;'gig & —» | Regression Model | —» | (Leaf Pair Count —
9 P 9 (Leaf Pair Prediction) Growth Stage)
FIGURE 6

Integrated inference pipeline for plant growth stage classification. YOLOv8 detects individual plants, ResNet-18 regression estimates leaf-pair counts,
and predictions are converted into discrete growth stages.
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FIGURE 7

(A) Confusion matrix for the validation set, showing 352 true positives, O false positives, and 1 false negative. (B) F1-confidence curve illustrating the
optimal confidence threshold that maximizes the F1-score. (C) Training and validation curves for box loss, classification loss, distribution focal loss,
precision, recall, and mAP@0.5/0.5-0.95 over 100 epochs (x-axis: epoch, y-axis: corresponding loss or metric value).
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The YOLOV8 detector was trained on the training subset
derived from 219 annotated images for 100 epochs, during which
all loss terms (box_loss, cls_loss, and dfl_loss) steadily decreased
and converged, while precision, recall, and mean Average Precision
(mAP) metrics consistently improved (Figure 7C). This indicates
that the model was well-optimized without signs of overfitting. The
Fl-confidence curve confirmed stable performance, maintaining an
Fl-score of 1.000 up to a confidence threshold of 0.706, beyond
which the score declined (Figure 7B). On the final validation set, the
detector achieved an mAP@0.5 of 0.995 and an mAP@0.5:0.95 of
0.905, with both precision and recall reaching 1.000. Figures 7A-C
demonstrate that YOLOvV8 achieved stable convergence without
overfitting and maintained perfect detection accuracy across a wide
confidence range.

These results suggest that the model could detect all plants in
the growth chamber without false positives or false negatives,
thereby providing highly reliable cropped images for subsequent
leaf-pair regression and growth stage classification. The absence of
misdetections at this stage is particularly critical, since errors in
detection would directly propagate to later stages of the pipeline and
undermine stage classification accuracy.

These improvements were supported by systematic
preprocessing strategies, including negative sample incorporation
and nested box removal, which reduced skip rates and enhanced
detection stability. The determination of an optimal confidence
threshold also highlights the practical utility of the model, as it
allows fine-tuning of detection sensitivity according to cultivation
needs—for example, prioritizing recall in early growth monitoring
versus precision in harvest-stage assessments. From an application
perspective, this robustness is particularly important in dense
multi-plant images, where even minor misdetections could
propagate errors to later stages of classification. Nevertheless,
further validation under more heterogeneous conditions, such as
variable lighting or field environments, will be essential to confirm
the broader generalizability of the detector.

3.2 Hyperparameter optimization results
for CNN regression

The optimal combination of hyperparameters automatically
selected through the Optuna framework was as follows. The
learning rate was set to a very small value of 3.67x107%, and the
AdamW optimizer was used together with a weight decay of
4.81x10™* to prevent overfitting and ensure stable convergence.
The dropout rate was set to 13.4%, which was relatively low, thereby
maintaining sufficient training flexibility without excessive
regularization. The early stopping condition was configured with
a patience of 7 epochs, reducing unnecessary iterations while
allowing convergence without performance degradation.

For data augmentation, variations were applied using
ColorJitter, including brightness (+ 10.6%), contrast (+ 24.5%),
saturation (+ 36.6%), and hue (+ 5.6%). In addition, horizontal
flipping was applied with a probability of 26.3%, and random
rotations were allowed up to +10° In this study, the selected
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augmentation strategy was particularly effective because it
realistically simulated lighting fluctuations and viewpoint changes
that frequently occur in indoor cultivation systems, thereby
reinforcing the robustness of the model under practical
farming conditions.

This augmentation strategy effectively enhanced both the
diversity of the experimental data and the generalization
capability of the model. The activation function selected was
LeakyReLU, which alleviates the dead neuron problem of ReLU
by maintaining a small gradient for negative input values, thereby
preventing learning stagnation. No learning rate scheduler was
used, indicating that the learning rate itself was sufficiently small
and stable throughout training.

These results underscore the importance of systematic
hyperparameter tuning in agricultural vision applications.
Whereas prior studies often relied on heuristic parameter choices,
automated optimization enabled a configuration that balanced
convergence speed, generalization, and robustness to noisy labels.
In practice, this approach supports reliable deployment in diverse
cultivation settings, where environmental variability can otherwise
degrade model performance. Moreover, the automated search
process improved reproducibility by reducing dependence on
subjective trial-and-error, ensuring that the derived configuration
reflected data-driven evidence rather than manual intuition. From
an application perspective, such optimized settings are highly
advantageous for large-scale deployment in plant factories or
smart farms, where environmental variability and computational
constraints demand models that are both accurate and efficient.

3.3 Performance evaluation of the
proposed growth stage model

The regression model demonstrated stable convergence, with
both training and validation losses decreasing smoothly and early
stopping triggered at the 27th epoch (Figure 8A). This stability
reflects effective regularization, and the use of the Huber loss
function likely contributed to reducing the influence of noisy
labels while preserving sensitivity to fine-grained leaf-count
differences. The normalized confusion matrix confirmed high
predictive accuracy across all growth stages, with Level 2—
representing a transitional phase of leaf development—achieving
the highest accuracy at 98.4% (Figure 8B).

Quantitative evaluation further demonstrated the reliability of
the proposed approach. On the fixed test set, the model achieved a
Mean Absolute Error (MAE) of 0.13, a Mean Squared Error (MSE)
of 0.04, a Root Mean Squared Error (RMSE) of 0.20, and a
Coefficient of determination (R?) of 0.96, while stage classification
accuracy and weighted Fl-score reached 98.1% and 0.98,
respectively. These values substantially outperform those of earlier
studies. For example, Yang et al. (2025) employed U-Net-based
segmentation to extract individual plants from multi-plant images
and performed BBCH stage classification. However, the model
performance based solely on images remained around 73%. To
improve accuracy, they incorporated additional features such as
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area, perimeter, pixel count, and inter-image similarity derived
from the segmented masks. Nevertheless, such trait-based features
are highly sensitive to changes in camera height or imaging
conditions and were limited to images captured under white light,
thereby reducing reproducibility and generalizability. Furthermore,
the pipeline involved excessive complexity and multiple modules,
with segmentation and classification operating separately, which
limits its applicability for real-time field deployment (Yang
et al., 2025).

The robustness of the framework was further validated through
5-fold cross-validation, which yielded consistent results (MAE 0.12
+0.01, R* 0.97 £ 0.004). This consistency indicates that the model is
not overly dependent on specific data subsets and can generalize
well to unseen samples. In addition, the consistently high
performance across folds demonstrates that the model is resilient
to data imbalance and noise, further reinforcing its robustness.

FIGURE 9

Importantly, the ability to detect and classify multiple individuals
within a single frame directly overcomes the scalability limitations
of prior single-plant approaches. Representative examples are
shown in Figure 9, where the pipeline accurately identified and
classified basil plants under both natural and artificial lighting
conditions, demonstrating resilience to variation in imaging
environments. In Figure 9A, all eight individuals in the
cultivation bed were correctly detected and assigned growth
stages, with shoot apices clearly visible and minimal occlusion,
allowing stable classification at early growth stages. In contrast,
Figure 9B illustrates more complex conditions, including
overlapping leaves, partial occlusion, and strong color distortion
caused by LED lighting; nevertheless, the pipeline successfully
recognized individual plants and determined leaf-pair numbers
and growth stages with high reliability. These results highlight the
robustness of the framework in dense cultivation environments,

‘ | 5. Level 3|5 pairs
Rl ‘

4. Level 27| 4 pairs

8. Level 315 pairs

6. Level 21 4 pairs

7. Level 2[] 3 pairs

Automated growth stage classification of basil plants. (A) Cultivation bed 1, showing detection and classification of individual plants based on leaf-
pair counts; (B) Cultivation bed 4, demonstrating stable multi-plant detection and classification under artificial lighting. Bounding boxes denote
individual plants, and labels indicate the predicted growth stage (Level 1-3) and leaf-pair number.
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where visual interference is common, and underscore its practical
applicability in smart farming systems. Unlike prior studies that
often relied on single-plant images or used only the largest contour
from multi-plant frames, the present approach enables instance-
level detection and classification of all individuals simultaneously,
ensuring scalability for real cultivation settings.

From an application standpoint, achieving over 98% accuracy
in growth stage classification highlights the potential of this
framework as a core component of precision agriculture systems.
Reliable and automated stage detection could support fine-tuned
scheduling of nutrient delivery, adaptive control of lighting and
climate, and optimization of harvest timing. By grounding stage
classification in physiologically meaningful traits—namely leaf-pair
number—the proposed method strengthens the reproducibility of
plant research while advancing the practicality of smart farming
technologies. Nevertheless, as the current experiments were
conducted in controlled environments, future validation under
larger datasets, diverse crop species, and field conditions will be
necessary to confirm broader applicability and generalizability.

3.4 Future directions and potential
applications

Future research should prioritize the development of
lightweight models and the validation of inference performance in
real cultivation systems. Although the current framework achieved
high accuracy under controlled conditions, its computational
demands may limit scalability in commercial applications. By
reducing inference time, lightweight architecture can facilitate
real-time integration with automated crop monitoring and
environmental control systems, which is essential for the
commercialization of smart agriculture. Previous approaches,
such as complex multi-stage pipelines, also suffered from slow
processing speeds, making them unsuitable for large-scale field
monitoring or real-time control. Therefore, for applications in
controlled environments such as plant growth chambers or plant
factories, the development of lightweight models capable of
operating reliably and efficiently even on low-power devices
is indispensable.

Another promising direction is the incorporation of temporal
modeling. While the proposed model effectively captures
instantaneous growth states, it is limited in reflecting the
continuous progression of growth and stage transitions that are
critical in real cultivation environments. Integrating sequence-based
architectures such as LSTM would enable dynamic tracking of these
transitions and provide richer temporal information, thereby
improving predictive accuracy for tasks such as nutrient
scheduling and harvest timing.

Extension to other dicotyledonous leafy vegetables and herbs,
such as lettuce and kale, will also be critical for broad applicability.
While basil served as a representative model in this study, crop-
specific growth traits may require tailored optimization before
integration into a generalized multi-crop framework. Likewise,
scaling the approach to diverse cultivation environments—
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including plant factories, smart farms, and systems with larger
plant populations—will test the robustness of the pipeline under
heterogeneous conditions.

Finally, integrating image-based phenotypic data with
environmental information such as light spectra, temperature,
and humidity will be essential to further improve accuracy and
stability. A unified data-driven framework that links growth stage
detection directly to environmental control would enable precise,
stage-specific interventions, advancing both the scientific
reproducibility of crop growth studies and the practical
realization of sustainable smart farming.

4 Conclusion

This study introduced a novel pipeline for instance-level growth
stage classification of basil using top-view multi-plant images,
addressing fundamental limitations of previous research that
relied on time-based staging or single-plant imaging. By
integrating YOLOv8-based object detection, K-means-based
coordinate ordering, and a ResNet-18 regression model, the
proposed “detection-ordering-regression-staging” framework
achieved state-of-the-art performance. The YOLOv8 detection
module achieved mAP@0.5 = 0.995, mAP@0.5:0.95 = 0.905,
Precision = 1.000, and Recall = 0.997, confirming near-perfect
instance-level localization across all plants in the validation set
and providing reliable cropped inputs for subsequent regression
and classification. As a result, the overall framework attained MAE
= 0.13, RMSE = 0.20, and R> = 0.96, with a growth stage
classification accuracy of 98.1% (F1 = 0.98).

The novelty of this work lies in its ability to perform automated,
non-destructive, and physiology-based stage classification that
captures the developmental progression of individual plants
directly from multi-plant images, a task that prior approaches
could not reliably accomplish. Unlike conventional indices such
as biomass or leaf area, which are highly sensitive to imaging
conditions, traits such as total leaf area or canopy coverage
require multi-angle imaging and are easily distorted by leaf
drooping, occlusion, or camera perspective differences. In
contrast, the number of leaf pairs at the shoot apex provides a
discrete, BBCH-aligned, and physiologically meaningful criterion
that remains clearly visible from top-view images regardless of
growth density or camera placement. This trait inherently reflects
photosynthetic capacity, biomass accumulation, and overall growth
dynamics, enabling reproducible classification under realistic
cultivation environments without the need for labor-intensive
manual observation or controlled image preprocessing.

Notably, the framework demonstrated scalability: although
developed in an eight-pot fixed-bed system, the flexible
detection-ordering logic can be adapted to different layouts
without retraining, ensuring applicability to diverse cultivation
facilities. Because the framework relies on a visually stable and
physiologically grounded trait rather than time-dependent or angle-
sensitive measures, it can robustly accommodate environmental
variability such as light intensity, temperature, or nutrient
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differences, ensuring consistent performance even under
heterogeneous imaging conditions. Cross-validation confirmed
consistent performance, underscoring the robustness of the
pipeline for large-scale deployment.

In summary, this study is the first to establish an integrated and
fully automated workflow that couples object detection with
physiology-driven regression modeling for growth stage
determination in multi-plant settings. Beyond reducing labor
requirements, the framework has strong potential as a core
technology for precision agriculture, enabling stage-specific
environmental control, adaptive nutrient and water management,
yield forecasting, and early stress detection. By providing a simple
yet reliable visual indicator optimized for camera-based
automation, the proposed system bridges morphological
observation with physiological interpretation, offering both
scientific insight and operational practicality for intelligent
cultivation systems. Future research should extend this approach
to other leafy vegetables and diverse cultivation systems, while
incorporating lightweight and temporal modeling strategies to
further advance commercial adoption in smart farming.
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