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Genome-wide identification
and functional characterization
of the CP12 gene family in
cotton reveals its critical role
In heat stress response

Chao Li, Shuguang Li, Juan Xu, Ziling Han, Wenlong Li,
Yanhai Zhao* and Yanqgin Wang*

Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological
Resources in Tarim Basin, College of Life Science and Technology, Tarim University, Alar,
Xinjiang, China

Introduction: Calvin Cycle Protein 12 (CP12) is a key regulator of the Calvin-
Benson-Bassham (CBB) cycle that mediates CO, assimilation through dark/light
modulation. Beyond its canonical role, emerging evidence indicates that CP12
may also function as a molecular chaperone and participate in plant stress
responses. However, its gene family characteristics and roles under heat stress
remain unclear in cotton.

Methods: We performed a genome-wide identification and characterization of
the CP12 gene family in four cotton species (Gossypium hirsutum, G.
barbadense, G. arboreum, and G. raimondii). Phylogenetic classification,
conserved motif analysis, gene structure, synteny, and promoter cis-element
analyses were conducted. Transcriptome datasets from flowers, leaves, and buds
under heat stress were analyzed to determine expression patterns, and these
were further correlated with physiological indicators.

Results: A total of 11, 10, 5, and 4 CP12 genes were identified in G. hirsutum, G.
barbadense, G. arboreum, and G. raimondii, respectively. Phylogenetic analysis
grouped them into three clades (I-Ill), supported by conserved motif and
structural features. Synteny analysis indicated that whole-genome and
segmental duplications were the primary drivers of expansion. Promoter
analysis revealed enrichment of stress-responsive elements. Expression
profiling showed clade-specific divergence: Clade | genes were strongly
induced by heat stress, with Ghir_CP12_10 displaying ~10-fold upregulation in
flowers, while Clade Il genes were generally downregulated. These expression
trends were associated with physiological changes, including reduced net
photosynthetic rate and elevated malondialdehyde, catalase, and
peroxidase levels.

Discussion: Our findings demonstrate that the cotton CP12 gene family has
undergone functional divergence. Clade | members act as positive regulators of
thermotolerance, potentially stabilizing photosynthetic complexes and
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protecting enzymes from oxidative damage under heat stress. This study
provides new insights into the evolution and function of CP12 genes and
establishes a foundation for future functional validation and breeding of heat-
tolerant cotton varieties.
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1 Introduction

Cotton (Gossypium spp.) is a globally important economic crop
and a significant source of natural fiber. However, with changing
climatic conditions, its yield is increasingly threatened by heat stress
(Sheri et al., 2023). High temperatures during flowering and boll
development can reduce pollen viability and increase boll
abscission, ultimately leading to substantial yield loss (Li et al.,
2024). Moreover, heat stress adversely affects multiple physiological
processes, particularly photosynthesis. Elevated temperatures
hinder the repair of Photosystem II (PSII), disrupt the CBB cycle,
and promote the accumulation of reactive oxygen species (ROS),
which cause oxidative damage to chloroplast membranes and
photosynthetic enzymes (Marri et al., 2014; Gururani et al., 2015).

CP12 is an intrinsically disordered protein (IDP) (Geérard et al.,
2022a). It is found widely across photosynthetic organisms and
primarily resides within chloroplasts. It acts as a key regulator of
photosynthetic carbon metabolism, particularly in modulating the
activity of Calvin cycle enzymes (Gontero and Maberly, 2012). In its
reduced state, CP12 maintains a flexible, unfolded conformation,
whereas oxidation induces the formation of disulfide bonds between
its N- and C-termini, resulting in a partially ordered structure (Del
Giudice et al,, 2023). The C-terminal domain mediates the assembly
of a ternary complex of approximately 640 kDa, composed of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), CP12, and
phosphoribulokinase (PRK) (Marri et al., 2005). This reaction is
exothermic and thermodynamically favorable, producing a compact
“hollow rhombus” structure that prevents protein aggregation and
protects catalytic sites from inactivation (Marri et al., 2008).

Beyond its regulatory role in the CBB cycle, CP12 also exhibits
cytoprotective effects under abiotic stress conditions. In its oxidized
state, CP12 can directly protect GAPDH from oxidative damage
(Erales et al., 2009). In Arabidopsis thaliana, knocking out the CP12
gene reduces PRK protein abundance without affecting transcript
levels, indicating post-transcriptional regulation (Elena Lopez-
Calcagno et al,, 2017). Under cold stress, low temperatures inhibit
entirely the dissociation of the CP12/GAPDH/PRK complex,
thereby suppressing the enzymatic activities of both PRK and
GAPDH (Teh et al,, 2023). Conversely, overexpression of CP12 in
the tropical legume Stylosanthes guianensis increases biomass by
approximately 30% under low temperatures (Gérard et al., 2022b).
At the same time, the total loss of CP12 in Chlamydomonas
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reinhardtii leads to the up-regulation of 13 ROS-scavenging
proteins and six molecular chaperones, underscoring its
multifaceted role in stress protection (Gérard et al., 2022a).

Extensive research in model organisms has elucidated the
canonical functions of CP12; however, its evolutionary
adaptations are likely to vary across lineages. In diatoms, for
example, CP12 lacks the conserved C-terminal cysteine pair
(Groben et al., 2010). In cyanobacteria, it does not form the
traditional ternary complex with GAPDH and PRK. Instead, it
interacts with a cystathionine B-synthase (CBS) domain-containing
protein, suggesting an alternative role in sulfur metabolism
(Hackenberg et al., 2018). Compared to Chlamydomonas
reinhardtii, A. thaliana CP12 exhibits greater structural disorder
in its oxidized state, which may enhance its flexibility and redox
responsiveness (Del Giudice et al., 2023). However, CP12 remains
poorly studied in non-model plant species, particularly in
allotetraploid cotton, where gene duplication and subgenome
divergence may have promoted functional diversification.

In this study, we conducted a comprehensive genome-wide
identification and characterization of the CPI12 gene family across
four Gossypium species. We analyzed their phylogenetic
relationships, structural conservation, cis-regulatory elements, and
expression profiles under field-based heat stress. By integrating
transcriptomic and physiological data, we aimed to elucidate the
evolutionary divergence and potential functional specialization of
CP12 genes in cotton’s response to heat stress. Our findings provide
novel insights into the molecular basis of thermotolerance, laying
the groundwork for future functional validation and the
development of heat-resilient cotton cultivars.

2 Materials and methods

2.1 Genome-wide identification of the CP12
gene family

The reference genome sequences, along with their
corresponding protein sequences and annotation files (GFF3
format), for four cotton species, the allotetraploids G. hirsutum
(AD1, ZM113’ T2T genome CRI_v1.0) (Hu et al, 2025) and G.
barbadense (AD2, 3-79” genome HAU_v2_al) (Wang et al,, 2019),
and their diploid progenitors G. arboreum (Al, ‘SXY1’ genome
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HAU_v2) (Wang et al., 2022) and G. raimondii (D5, ‘Grai D502
genome HAU_vl) (Wang et al, 2021), were obtained from the
CottonGen database (https://www.cottongen.org/).

To comprehensively identify all members of the CPI12 gene
family, an integrated strategy employing both BLAST and Hidden
Markov Model (HMM) searches was implemented. For the
BLASTP approach, protein sequences of three previously
characterized AtCP12 genes (AT1G76560.1, AT2G47400.1,
AT3G62410.1) sourced from TAIR (https://www.arabidopsis.org/)
were used as queries to search against the Gossypium proteomes
with an E-value cutoff of le-10 (Chen et al., 2017). Concurrently,
an HMMER search was conducted using the PF02672 (CP12
domain) profile obtained from InterPro (https://www.ebi.ac.uk/
interpro/entry/pfam/PF02672/) to scan the same proteomes
via the HMMER package embedded in TBtools software
(v2.333) with an E-value cutoff of le-10 (Chen et al., 2023).
Candidate sequences identified from both methods were
merged, and the intersection was retained to enhance reliability.
Finalized genes were systematically renamed according to their
ascending chromosomal coordinates. Molecular weights and
theoretical isoelectric points (pI) were predicted using the
ExPASy ProtParam tool (https://www.expasy.org/). WoLF
PSORT was used for subcellular localization prediction (https://
wolfpsort.hgc.jp/).

2.2 Phylogenetic analysis

In this study, all protein sequences of the CP12 gene family were
aligned using the MEGA software (version 11.0) (Tamura et al,
2021), with alignment parameters using the default values. Based on
the alignment results, a maximum likelihood (ML) method was
used to construct a phylogenetic tree with 1000 bootstraps (Tayyab
et al., 2025). The online tool iTOL (https://itol.embl.de/) was then
used to beautify the phylogenetic tree.

2.3 Integrated visualization of domain,
motif, and phylogenetic analyses

The conserved CP12 domain was further verified using the
Conserved Domain Database (CDD) via the NCBI CD-Search tool
(Marchler-Bauer et al., 2017). Conserved motifs were identified
with the Meme Suite (v5.5.8) (Bailey et al,, 2015). Together with the
phylogenetic tree generated in MEGA, these results were integrated
and visualized using TBtools.

2.4 Synteny analysis

To understand the evolutionary pattern of the CP12 gene
family, this study performed collinearity analysis between G.
hirsutum and three other cotton species, along with analysis
within the four species. The protein sequences, coding sequences,
and genome annotation files for all four species were renamed.
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Collinearity analysis was conducted using the One Step MCScanX
function in TBtools-II software (Wang et al., 2012). Visualization
included the Dual Synteny Plot for comparisons between two
species, the Multiple Synteny Plot for multi-species comparisons,
and the Advanced Circos function for within-species collinearity.
The Ka/Ks ratio is often used to identify the type of selective
pressure a gene is subject to during evolution. Ka/Ks > 1 indicates
positive selection, Ka/Ks = 1 indicates neutral evolution, and Ka/Ks
< 1 indicates purifying selection (Zhang, 2022). In this study, we
used the Nei-Gojobori method (Jukes-Cantor correction method)
built into the “Simple Ka/Ks Calculator” in the TBtools-II tool to
calculate Ka and Ks values.

2.5 Analysis of Cis-acting regulatory
elements

Members of the CP12 protein gene family were identified and
extracted from the genomes of the study species to identify key
targets for subsequent analysis. Using the PlantCARE (http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/) online
database, predictive analysis of cis-acting elements within the
2000 base pair upstream regions of these family member genes
was conducted to identify potential regulatory elements. A
systematic statistical analysis of the type, number, and
distribution of cis-acting elements within each CP12 family
member was performed to establish a comprehensive element
information dataset. The statistical results were visualized using
RStudio and TBtools, visualizing the overall distribution of different
cis-acting elements within the CPI12 family members and the
differences in element composition between different members.

2.6 Transcriptome sequencing and data
analysis

To fully reflect real-world field data, this experiment used the G.
hirsutum variety ‘Jinmian 202, planted in a standard experimental
field in the spring of 2024. Regular irrigation was used to minimize
the impact of other abiotic stresses. Experimental samples were
collected on July 30, 2024, when the maximum temperature reached
38 °C or above for three consecutive days. Tissues collected included
flowers, leaves, and buds, and were divided into a high-temperature
treatment group (GW) and a normal-temperature control group
(CK). The high-temperature group refers to samples collected at
17:00 on the same day when the temperature was 38 °C, while the
normal-temperature group refers to samples collected at 9:00 on the
same day when the temperature was 28 °C. The cumulative
duration of natural heat stress was greater than 6 hours. Flower,
bud, and leaf tissues were collected under both conditions, resulting
in six treatment combinations. Three independent biological
replicates were performed for each treatment combination,
resulting in a total of 18 samples. All samples were immediately
snap-frozen in liquid nitrogen to maintain RNA integrity. Total
RNA was extracted from all 18 samples and submitted to the
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company for transcriptome sequencing. The sequencing results
were quality controlled using FASTQC and trimmed using
Trimmomatic (Bolger et al., 2014). The trimmed fragments were
then aligned to the reference genome using Hisat2 (Kim et al,
2019). The aligned reads were assigned to genes using
featureCounts (Liao et al, 2014) to generate a raw count matrix.
Differential expression analysis between GW and CK groups for
each tissue was performed using the DESeq2 package (Love et al,
2014) in R.Genes with an adjusted p-value (padj) < 0.05 and
absolute log2 fold change |log2FC| > 1 were identified as
differentially expressed. For visualization of expression patterns,
the FPKM indicator was used to quantify gene expression levels,
and the pheatmap package in R was used to generate a heat map of
gene expression. All transcriptome sequencing data are available
from the corresponding author.

2.7 Quantitative real-time PCR analysis

To validate the transcriptome sequencing results, quantitative
real-time PCR (qQRT-PCR) was performed on selected CP12 genes.
Each sample comprises three technical replicates. Total RNA was
extracted from all 18 samples using the RNAprep Pure Plant Kit
(Tiangen, China) according to the manufacturer’s instructions.
RNA quality and concentration were verified using a NanoDrop
spectrophotometer. First-strand cDNA was synthesized from 1 pug
of total RNA using the PrimeScript RT reagent Kit with gDNA
Eraser (TaKaRa, Japan) to eliminate genomic DNA contamination.

Gene-specific primers for target CP12 genes were designed
using Primer Premier 5.0 software, with the cotton UBQ7 gene
serving as the internal reference control (Tu et al., 2007). gRT-PCR
reactions were carried out using TB Green Premix Ex Taq II
(TaKaRa, Japan) on a QuantStudio 5 Real-Time PCR System
(Applied Biosystems, USA). Each 10 puL reaction mixture
contained 5 UL of TB Green Premix Ex Taq II, 0.3 uL of each
primer (10 uM), and 4.4 uL of cDNA template (diluted 100-fold).
The thermal cycling protocol included initial denaturation at 95 °C
for 120 s, followed by 40 cycles of 95 °C for 15 s and 60 °C for 30 s. A
melting curve analysis was performed at the end of each
amplification to verify reaction specificity. The presence of a
single, sharp peak for all primer pairs confirmed the amplification
of specific targets and the absence of primer-dimers or other non-
specific products. Relative expression levels were calculated using
the 2A(-AACt) method (Livak and Schmittgen, 2001).

2.8 Analysis of physiological and
biochemical indices

To assess the effects of heat stress on cotton physiology, we
measured a series of key physiological and biochemical indicators.
First, we used the LI-6400/XT Portable Photosynthesis System to
measure net photosynthetic rate (Pn), stomatal conductance
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(Cond), transpiration rate (Tr), and intercellular carbon dioxide
concentration (Ci) from 9:00 to 17:00 (https://www.licor.com/
support/LI-6400/home.html). Antioxidant enzyme activity and
oxidative damage markers were measured using commercially
available kits provided by Beijing solarbio science & Technology
co, Ltd., including the catalase (CAT) activity assay kit (BC0205),
the peroxidase (POD) activity assay kit (BC0095), and the
malondialdehyde (MDA) content assay kit (BC0025) (Afiyanti
and Chen, 2014; Wahid and Khalig, 2015; Hao et al., 2023).
Tissue samples were collected from flowers, leaves, and buds, and
procedures were performed according to the kit instructions. Three
technical replicates were performed for each sample.

3 Result

3.1 Genome-wide identification and basic
characterization of the CP12 gene family in
Gossypium species

After blastp comparison and HMMER search, a total of 30 CP12
genes were screened out in the four cotton species, of which 11, 10,
5, and 4 CPI12 genes were screened out in G. hirsutum, G.
barbadense, G. arboreum, and G. raimondii, respectively. The
number of CPI12 genes contained in the two tetraploid cottons is
about twice that of their diploid ancestors.

Prediction results indicated that all CP12 proteins are located in
the chloroplast, confirming their role in photosynthesis. Further
analysis showed considerable diversity in protein traits. Protein
lengths ranged from 87 to 187 amino acids, with molecular weights
between 10.05 and 20.90 kDa. Most proteins had acidic isoelectric
points (pI 4.41-5.78). Based on instability index values (40), most
were classified as unstable, which is typical for regulatory proteins
that are rapidly turned over. Aliphatic indices (54.56-80.56)
suggested moderate stability at higher temperatures, and negative
GRAVY values (-0.994 to -0.41) indicated that all proteins are
hydrophilic and likely soluble in cell environments (Table 1). All
genes were renamed based on their chromosomal locations (e.g.,
Ghir_CP12_1 to Ghir_CP12_11) for easier reference in later
studies (Figure 1).

3.2 Phylogenetic analysis and evolutionary
relationships of CP12 proteins

After obtaining the results of multiple sequence alignment,
phylogenetic tree analysis was performed (Figure 2). The results of
phylogenetic analysis showed that the 30 CPI12 genes of the four
cotton species can be divided into three subfamilies, of which Clade I
contains 15 genes, Clade II contains 10 genes, and Clade III contains
five genes. The three AtCP12 genes form an outgroup alone, which
indicates that the CP12 genes of cotton and Arabidopsis thaliana may
have undergone significant differentiation.
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TABLE 1 Physicochemical properties and subcellular localization of CP12 proteins in four Gossypium species and Arabidopsis thaliana.
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AT1G76560.1 AT_cpl2_1 NP_565134.1 134 15448.53 493 64.51 69.85 -0.688 chlo
AT2GA47400.1 AT _cpl2_2 NP_566100.2 124 13487.13 4.86 37.21 70 0.5 chlo
AT3G62410.1 AT_cpl2_3 NP_191800.1 131 14166.75 4.82 39.8 67.1 -0.592 chlo
Garb_01G007500.1  Garb_cp12_1 XP_012447237.1 87 10047.47 5.08 4524 62.76 -0.897 chlo
Garb_05G027640.1  Garb_cp12_2 XP_012447237.1 136 15747.82 5.28 48.02 54.56 -0.902 chlo
Garb_07G012430.1 | Garb_cp12_3 MBA0749801.1 87 10128.41 4.86 49.89 62.76 -0.994 chlo
Garb_07G014360.1  Garb_cp12_4 KAK5818774.1 126 14091.65 4.64 54.27 71.35 -0.752 chlo
Garb_12G016480.1  Garb_cpl2_5 XP_016729496.1 122 13413.07 4.82 35.98 67.95 -0.707 chlo
Gbar_A05G022230.1  Gbar_cp12_1 XP_012447237.1 94 10897.2 441 55.05 64.26 -0.901 chlo
Gbar_A05G027890.1  Gbar_cp12_2 XP_012447237.1 136 15695.74 526 438 54.56 -0.892 chlo
Gbar_A07G013580.1  Gbar_cp12_3 KAK5818774.1 126 14049.61 4.64 52,92 70.56 -0.75 chlo
Gbar_A10G020140.1 =~ Gbar_cpl2_4 XP_016677020.1 126 14172.1 5.78 55.52 63.49 -0.733 chlo
Gbar_A12G013550.1 = Gbar_cpl2_5 XP_016729496.1 122 13387.03 4.82 32.99 68.77 -0.679 chlo
Gbar_D05G028770.1 = Gbar_cpl2_6 XP_012447237.1 136 15629.62 527 43.26 54.56 -0.949 chlo
Gbar_D07G014030.1 = Gbar_cpl2_7 MBA0790727.1 126 14006.56 473 51.62 64.37 -0.774 chlo
Gbar_D10G020350.1 = Gbar_cp12_8 MBA0749801.1 135 15302.32 5.35 59.27 65.7 -0.73 chlo
Gbar_D11G011980.1 = Gbar_cp12_9 XP_016709017.2 128 14053.66 55 52.34 62.5 -0.82 chlo
Gbar_D12G013560.1 = Gbar_cp12_10 XP_016729496.1 161 17812.39 5.74 37.72 80.56 -0.41 chlo
Ghir_A05_G02374.t1 =~ Ghir_cp12_1 XP_012447237.1 94 10979.35 453 49.23 65.32 -0.924 chlo
Ghir_A05_G02987.t1 | Ghir_cp12_2 XP_012447237.1 136 15695.74 526 43.8 54.56 -0.892 chlo
Ghir_A07_G01533.t1 | Ghir_cp12_3 KAK5818774.1 186 20798.52 5.45 51.29 76.13 -0.579 chlo
Ghir_A07_GO1721.t1 = Ghir_cpl2_4 TYI128419.1 94 10907.2 4.64 4521 61.17 -0.965 chlo
Ghir_A10_G02220.t1 | Ghir_cp12_5 XP_016677020.1 126 14172.1 5.78 55.52 63.49 -0.733 chlo
Ghir_A12_G01525.t1 = Ghir_cp12_6 XP_016729496.1 122 13413.07 4.82 35.98 67.95 -0.707 chlo
Ghir_D05_G02994.t1 | Ghir_cp12_7 XP_012447237.1 136 15629.62 527 43.26 54.56 -0.949 chlo
Ghir_D07_G01532.t1 = Ghir_cpl2_8 MBA0790727.1 187 20897.56 5.64 50.44 71.02 -0.612 chlo
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3.3 Conserved motif and gene structure
analysis

After a comprehensive analysis of conserved motifs and gene
structure (Figure 3), phylogenetic classification was further
supported (Figure 2). Meme analysis showed that all Clade I
members contained conserved motifs 1, 2, 3, 5, and 6. All Clade
IT members contained conserved motifs 1, 3, 4, and 6, while all
Clade III members contained conserved motifs 1, 2, and 3. In
addition, all Clade I members contained at least one CDS region, all
Clade II members contained only one CDS region, and all Clade IIT
members contained two CDS regions and lacked UTR regions.

3.4 Synteny analysis of CP12 genes in
Gossypium species

Results from interspecific synteny analysis (Figure 4, left, A-D)
showed that the CPI2 gene family contains 24 orthologous pairs
between G. hirsutum and G. raimondii, with 12 pairs in the At
subgenome and 12 in the Dt subgenome, displaying a relatively
uniform distribution. Between G. hirsutum and G. arboreum, there
are 25 orthologous pairs, including 12 in the At subgenome and 13
in the Dt subgenome. The highest number of orthologous pairs
occurs between G. hirsutum and the tetraploid G. barbadense (sea
island cotton), totaling 45 pairs with 24 in the At subgenome and 21
in the Dt subgenome. Additionally, CPI2 genes located on
chromosome 7 (At and Dt subgenomes) of G. hirsutum were
found to be syntenic with multiple genes in the other three cotton
species, a pattern that may have contributed to the evolution of the
cotton CPI12 gene family. Variation was observed in intraspecific
gene duplication of CP12 genes (Figure 4, right, a-d). Each of the
two diploid cotton species contains only three pairs of paralogous
genes. In contrast, tetraploid cotton species exhibit significantly
more intraspecific and intra-subgenomic paralogous synteny, with
G. barbadense containing 16 pairs and G. hirsutum 21 pairs.
Consistent with the pattern seen in interspecific synteny, the most
abundant CP12 genes are also localized on chromosome 7.

3.5 Selection pressure analysis of CP12
genes

To assess the evolutionary constraints on the CP12 gene family, a
selection pressure analysis was conducted (Figure 5). All Ka/Ks ratios
were found to be below 1.0, indicating that the CP12 gene family has
undergone strong purifying selection in the genus Gossypium.
Specifically, the maximum Ka/Ks ratio was 0.45, while the minimum
was 0. Further comparison of the protein sequences of genes with a Ka/
Ks ratio of 0 revealed that they share identical amino acid sequences.
From these observations, it can be inferred that the CP12 gene family in
Gossypium is a gene family with highly conserved functions and subject
to strong purifying selection, playing an irreplaceable role in the
biological processes of cotton species.
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3.6 Analysis of Cis-acting regulatory
elements

Analysis of cis-acting elements in the promoter regions of the
CP12 gene family revealed a total of 30 predicted cis-acting
elements across all family members (Figure 6). Of these 30
elements, light-responsive elements were the most numerous,
with eight, followed by plant hormone and transcription factor
binding site elements, with six, and then abiotic stress-related
elements, with five. The distribution of these elements across
species exhibited specific characteristics (Supplementary Figure 1):
20 cis-acting elements were shared by the four cotton species; one
unique element, a cis-acting regulatory element involved in seed-
specific regulation, was found in G.arboreum; one unique element, a
cis-acting regulatory element involved in cell cycle regulation, was
found in G.raimondii; no unique cis-acting elements were detected
in G.hirsutum and G.barbaadense.

3.7 Expression profiling of G. hirsutum
CP12 genes under heat stress

Analysis of the expression patterns of different CP12 subfamily
genes in various tissues of G. hirsutum, combined with FPKM
expression levels, revealed a noteworthy pattern (Supplementary
Table 3). We defined significantly differentially expressed genes
using a threshold of |log2FC| > 1 and padj < 0.05 (Figure 7). Under
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heat stress, genes from Clade I showed an upregulated expression
trend in flowers, leaves, and buds. The Ghir_CP12_10 gene
exhibited a particularly significant increase, with expression levels
approximately 10-fold higher in flowers, leaves, and buds after heat
treatment. The expression levels of the other four Ghir genes
belonging to Clade I also increased significantly.

Genes from Clade II exhibited the opposite trend, a significant
down-regulation under heat stress. For example, Ghir CP12_2
showed an approximately 5-fold decrease in expression in flowers,
leaves, and buds after heat treatment. Clade III genes, on the other
hand, exhibited relatively stable expression, with slight fluctuations
in expression levels under heat stress.

3.8 Validation of RNA-seq expression
patterns by gRT-PCR

To validate the transcriptome results, we randomly selected six
G. hirsutum CPI2 genes for qPCR validation in three tissues:
flowers, leaves, and buds (Supplementary Table 2). These analyses
were performed under both normal temperature (28 °C) and heat
stress (38 °C) conditions, ensuring consistency with the
transcriptome analysis (Figure 8).

The results showed that the gPCR results were highly consistent
with the expression trends in the transcriptome data. Under heat
stress conditions, the expression of Ghir_CP12_10 increased
significantly in flowers, and the expression of Ghir_CP12_6 in
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buds was also significantly higher than in the control group.
Ghir_CP12_11 also showed a significant increase in expression.
Conversely, the expression of Ghir_CP12_5 and Ghir_CP12_9 was
significantly downregulated in flowers, leaves, and buds.

3.9 Photosynthetic characteristics and
antioxidant physiological responses of
cotton

Measurements of photosynthetic parameters revealed a single-
peaked curve for Pn, rising continuously from 9:00 AM to 2:00 PM,
reaching a maximum of 22.4 pmol-m™s™ at 2:00 PM. A significant
decrease in photosynthetic rate occurred between 2:00 PM and 3:00
PM, before reaching a minimum of 7.4 at 5:00 PM. Gs and Pn
showed highly similar trends, as did Tr and Gs, but Ci showed some
differences, exhibiting a brief decline followed by a steady increase
(Figure 9, left, A-D). Furthermore, under high temperatures, CAT
activity increased in all plant species, with a particularly pronounced
increase in leaves. POD activity responded strongly to high
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temperatures, showing a highly significant change in leaves. MDA
content generally increased after high-temperature stress (Figure 9,
right, a-c).

4 Discussion

Our study addresses the prior knowledge gap regarding CP12 in
allotetraploid cotton by revealing significant expansion and
functional divergence of the CPI2 gene family. Overall, our
research findings are as follows.

Whole-genome analysis of the CP12 gene family across four
Gossypium species revealed significant expansion and
diversification, forming three well-supported phylogenetic clades.
This pattern is comparable to the three CP12 clades identified in
Arabidopsis thaliana (Groben et al., 2010). Unlike the high
functional redundancy in AtCP12 isoforms, their cotton
counterparts exhibited clear divergence under heat stress, with
Clade I being upregulated, Clade II being down-regulated, and
Clade IIT remaining stable. Such expression divergence suggests
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Synteny analysis of CP12 genes in Gossypium species. Left panel: Inter-genomic synteny analysis between G. hirsutum and related species. (A) G.
hirsutum vs. G. raimondii, (B) G. hirsutum vs. G. arboreum, (C) G. hirsutum vs. G. barbadense, and (D) summary of syntenic relationships among the
four species. Gray lines indicate collinearity among all genes, and colored lines highlight syntenic CP12 pairs. Right panel: Intra-genomic synteny
analysis. Circos plots illustrate collinear relationships within (a) G. raimondii, (b) G. arboreum, (c) G. barbadense, and (d) G. hirsutum. Red lines indicate
homologous CP12 gene pairs. Tetraploid cottons possess more syntenic pairs (G. barbadense: 16; G. hirsutum: 21) than diploid ancestors (3 pairs each).
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Analysis of cis-regulatory elements in the promoters of G.hirsutum CP12 genes. (A) Distribution and composition of cis-acting elements within the
2000 bp upstream promoter regions. (B) Heatmap showing the abundance of stress-responsive elements.
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aggregation of GAPDH, maintaining approximately 80% enzyme
activity at 43 °C, whereas the absence of CP12 results in complete
loss of activity (Lopez-Calcagno et al., 2014). In cyanobacteria, salt
and osmotic stress induce the up-regulation of CP12-C, while dark
aerobic conditions drive a fourfold increase in CP12-N-CBS
expression (Stanley et al., 2013). Moreover, overexpression of
CP12 in the tropical legume Stylosanthes guianensis enhances
biomass accumulation by 30% under low temperatures (Geérard
etal,, 2022a). Collectively, these findings suggest that cotton Clade I
genes have retained an ancestral protective role for photosynthetic
enzymes and redox balance, with possible specialization for
heat adaptation.

In contrast, Clade IT genes were generally down-regulated under
heat stress, implying an alternative role in carbon partitioning and
energy conservation during adverse conditions. Previous research
in tobacco demonstrated that suppressing CP12 expression disrupts
carbon allocation. This suppression triggered a shift in carbon flow,
enhancing its diversion toward cell wall components and malate
while reducing starch and soluble carbohydrate synthesis.
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Expression of APS reductase and sulfate transporters also
increased, indicating metabolic reprogramming in response to
stress (Howard et al., 2011). Similarly, in cotton, the repression of
Clade IT genes may represent an adaptive mechanism that redirects
carbon flux from growth to stress mitigation and cellular protection.

In contrast, Clade III genes maintain relatively stable expression
levels under heat stress, suggesting that they may only have a basic
maintenance function in the three parts of the flower, leaf, and bud.
This view is supported by their streamlined gene structure, which is
characterized by the lack of untranslated regions (UTRs) and the
presence of only core conserved motifs. This is consistent with
observations in Arabidopsis thaliana, where Clade III genes are
expressed only in non-photosynthetic tissues such as roots, rather
than in photosynthetic tissues (Sun et al., 2009).

Physiological data from this study further support the
molecular findings. Heat stress resulted in a decline in
photosynthetic rate and a concomitant increase in antioxidant
enzyme activity. The up-regulation of Clade I CPI12 genes
correlated with enhanced peroxidase activity and elevated
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FIGURE 8

Validation ofG hirsutum CP12 gene expression patterns under heat stress by gRT-PCR. Relative expression levels of six selected CP12 genes
representing different clades in flowers, leaves, and buds under control (28 °C) and heat stress (38 °C) conditions. Each value represents the mean +
SE of three biological replicates. (a) Ghir_CP12_2 (b) Ghir_CP12_5 (c) Ghir_CP12_6 (d) Ghir_CP12_9 (e) GhirCP_12_10 (f) Ghir_CP12_11 The
relatively low expression levels of some genes in specific tissues resulted in small variation among replicates, making error bars less apparent. For
instance, Ghir_CP12_2 exhibited very weak expression in flowers and leaves under heat stress conditions.
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Frontiers in Plant Science 12 frontiersin.org


https://doi.org/10.3389/fpls.2025.1707567
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al.

malondialdehyde (MDA) levels, consistent with their involvement
in mitigating oxidative stress. In tobacco, the inhibition of CP12
expression resulted in a significant increase in polyphenol oxidase
(PPO) transcription. CP12-deficient cyanobacteria accumulated 1.7
times higher levels of ROS compared with the wild type (Howard
et al, 2011). Similarly, CP12 knockout mutants exhibited
upregulation of ROS-scavenging proteins and six heat shock
proteins (HSPs), suggesting that an enhanced antioxidant defense
system compensates for oxidative stress caused by CP12 deficiency
(Geérard et al., 2022a).

While the correlations between gene expression and
physiological parameters are compelling, this study remains
primarily descriptive in nature. Future functional validation is
required to establish causality, particularly through gene
manipulation approaches such as virus-induced gene silencing
(VIGS) or CRISPR-Cas9 knockout of CPI2 genes. Although
Clade III genes were described as housekeeping in this study,
their potential roles under stress remain unexplored and warrant
further investigation. We hypothesize that knockdown of heat-
induced Clade I genes would increase plant sensitivity to heat stress,
leading to stronger photoinhibition, greater oxidative damage, and
potential yield penalties. Additionally, since heat stress treatments
were conducted under natural field conditions, environmental
variability may have influenced the results. Therefore, future
studies should combine controlled-environment experiments with
metabolomic and proteomic analyses to clarify the mechanistic
basis of CP12-mediated stress responses.

5 Conclusion

In this study, we identified and characterized the CPI12 gene
family in four Gossypium species, revealing its expansion into three
clades mainly driven by genome duplications. Expression analyses
revealed clade-specific heat stress responses, with Clade I genes
being strongly upregulated and most Clade II genes repressed,
suggesting functional divergence. Physiological data supported
these transcriptional trends. Our findings highlight Clade I of
CP12 genes as key regulators of thermotolerance, providing
potential targets for improving heat resilience in cotton.
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SUPPLEMENTARY DATA SHEET 1
Protein sequences of the CP12 gene family.

SUPPLEMENTARY TABLE 1
Protein sequences of the CP12 gene family.

SUPPLEMENTARY TABLE 2

Primer sequences used for qRT-PCR analysis of CP12. The table includes
gene identifiers, primer forward and reverse sequences, amplicon size (bp),
and melting temperature (Tm).
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