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YOLO-PLNet: a lightweight
real-time detection model for
peanut leaf diseases based on
edge deployment

Jinti Sun, Zhihui Feng, Jiagi Han, Fulei Xu, Hui Zhang*
and Yufeng Guo*

College of Information and Management Science, Henan Agricultural University, Zhengzhou, China

As an important economic crop, peanut is frequently affected by leaf diseases
during its growth period, which severely threaten its yield and quality. Therefore,
early and accurate disease detection is critical. However, existing lightweight
deep learning methods often struggle to balance model size, real-time detection
accuracy, and edge device deployment, limiting their widespread application in
large-scale agricultural scenarios. This study proposes a lightweight real-time
detection model, YOLO-PLNet, designed for edge deployment. The model is
based on YOLO11n, with lightweight improvements to the backbone network
and Neck structure. It introduces a Lightweight Attention-Enhanced (LAE)
convolution module to reduce computational overhead and incorporates a
Channel-Spatial Attention Mechanism (CBAM) to enhance feature
representation for small lesions and edge-blurred targets. Additionally, the
detection head adopts an Asymptotic Feature Pyramid Network (AFPN),
leveraging staged cross-level fusion to improve detection performance across
multiple scales. These improvements significantly enhance the detection
accuracy of peanut leaf diseases under complex backgrounds while improving
adaptability for edge device deployment. Experimental results show that YOLO-
PLNet achieves a parameter count, computational complexity, and model size of
2.13M, 5.4G, and 4.51MB, respectively, representing reductions of 18.07%,
16.92%, and 15.70% compared to the baseline YOLO1ln. The mAP@0.5 and
mMAP@0.5:0.95 reach 98.1% and 94.7%, respectively, improving by 1.4% and 1.7%
over YOLO11n. When deployed on the Jetson Orin NX platform with real-time
video input from a CSI camera, the model achieves a latency of 19.1 ms and 28.2
FPS at FP16 precision. At INT8 precision, latency is reduced to 11.8 ms, with real-
time detection speed increasing to 41.3 FPS, while GPU usage and power
consumption are significantly reduced with only a slight decrease in detection
accuracy. In summary, YOLO-PLNet achieves high detection accuracy and
robust edge deployment performance, providing an efficient and feasible
solution for intelligent monitoring of multiple categories of peanut leaf diseases.

peanut leaf disease, real-time detection, edge computing, Jetson platform,
lightweight model
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1 Introduction

Peanut (Arachis hypogaea L.) (Asif et al., 2025) is a critical
oilseed and economic crop, playing a pivotal role in agricultural
production. However, peanut plants are highly susceptible to
various diseases, such as leaf spot and rust, during their growth,
which can lead to severe defoliation and yield losse (Duffeck et al.,
2025). Currently, disease management in peanuts faces two major
challenges: firstly, the long-term reliance on chemical control has
resulted in increased pathogen resistance, pesticide residue
accumulation, and growing concerns regarding environmental
and food safety issues (Munir et al., 2024); secondly, traditional
diagnostic methods, such as field visual inspection and laboratory
testing, are inefficient, costly, and time-consuming, failing to meet
the demands of modern agriculture for early warning and large-
scale, real-time disease monitoring (Reddy et al., 2024).

With the advancement of smart agriculture, plant disease
detection technology based on computer vision has emerged as a
mainstream solution due to its non-contact, automated, and highly
efficient characteristics (Ghazal et al., 2024). Researchers have
extensively explored the application of deep learning models in
crop disease identification. For instance, Miao et al. proposed the
SerpensGate-YOLOvV8 model, which incorporates DySnakeConv,
SPPELAN, and STA attention mechanisms, achieving a precision of
71.9% on the publicly available PlantDoc dataset t (Miao et al,
2025). Similarly, Ayon et al. conducted a systematic comparison of
four deep learning models—VGG16, ViT, EfficientNetB3, and
Xception—using a tea leaf image dataset, validating the
effectiveness of Transformer architectures and traditional CNNs
in tea disease identification (Ayon et al., 2024).

However, such models often rely on high-performance servers
or desktop-grade GPU platforms, making stable operation on
resource-constrained embedded edge devices challenging due to
limitations in storage and power consumption (Cajas Ordonez
et al,, 2025). In peanut cultivation scenarios, diseases are widely
distributed with high density, and single-frame image detection
cannot adequately cover continuous areas. Consequently, real-time
video detection using low-power, compact edge AI devices has
emerged as a promising development direction. By deploying
inference on edge platforms with computational capabilities (e.g.,
Jetson Orin NX, Jetson Orin Nano), on-site inference in the field
can be achieved, significantly reducing uplink bandwidth and
transmission latency while ensuring continuous monitoring under
weak network conditions. Additionally, these devices can synergize
with field operation units such as drones and autonomous
agricultural machinery, reducing labor costs and enhancing the
efficiency of pesticide application or irrigation.

To address these challenges, researchers have increasingly
focused on designing lightweight network architectures, such as
YOLO, MobileNet, ShuffleNet, and EfficientNet, to enable efficient
deployment of disease detection models on edge AI devices. Zhang
et al. proposed the GVC-YOLO model, tailored for real-time
detection of cotton aphid leaf diseases on edge devices. Built upon
YOLOV8n, the model integrates GSConv, VoVGSCSP, SimSPPF,
and a coordinate attention mechanism, achieving a compact model
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size of 5.4 MB while maintaining a detection accuracy of 97.9% and
a real-time inference speed of 48 FPS on the Jetson Xavier NX
platform (Zhang et al., 2024). Similarly, Xie et al. introduced
YOLOvV5s-BiPCNeXt, which incorporates a MobileNeXt
backbone, C3-BiPC structure, EMA attention mechanism, and
CARAFE upsampling operation. This model achieves high-
precision eggplant disease detection at 26 FPS on the Jetson Orin
Nano, effectively balancing deployment efficiency and recognition
performance (Xie et al, 2024b). Additionally, a comprehensive
review systematically outlined key technologies and architectures
for edge Al and IoT in real-time crop disease detection, categorizing
them into four types: edge sensing and processing frameworks,
lightweight models for resource-constrained devices, data-driven
approaches, and communication protocols tailored for agricultural
scenarios. The review highlighted that CNNs based on MobileNet/
EfficientNet, combined with techniques such as pruning and
quantization, have enabled effective detection on hardware like
Raspberry Pi and Jetson Nano (Madiwal et al., 2025).

Building on these research directions, we developed an efficient
peanut leaf disease detection model, YOLO-PLnet, and deployed it
on the Jetson Orin NX edge device. Based on YOLOIlln, we
integrated the Lightweight Attention-Enhanced convolution
module, which enhances the model’s ability to represent edge
details and target regions. Additionally, we leveraged the cross-
stage feature fusion capabilities of the Asymptotic Feature Pyramid
Network to improve detection accuracy. During the deployment
phase, we employed TensorRT for precision optimization and
inference acceleration, deploying the model on a Jetson Orin NX
edge platform equipped with an industrial-grade CSI camera. Real-
time detection was performed using field-captured video streams,
and the model’s performance was systematically evaluated in terms
of latency, frame rate, memory usage, and power consumption
under FP16, INTS8, and multi-resolution settings. Overall, this study
provides a viable technical solution for the precise identification and
intelligent management of peanut leaf diseases.

2 Materials and methods
2.1 Data acquisition and description

Deep learning has demonstrated significant potential in plant
disease detection, but its performance heavily relies on high-quality
and large-scale datasets. Existing studies, particularly those focused
on peanut leaf diseases, often utilize public datasets that cover only a
limited range of disease categories, such as early leaf spot and rust,
resulting in incomplete category coverage and dataset imbalance.
This leads to the neglect of critical conditions, such as nutrient
deficiencies (Ridoy et al., 2024). To address this issue, we
constructed a novel peanut leaf disease dataset encompassing six
major disease categories, significantly enhancing the dataset’s
comprehensiveness and representativeness. This provides a richer
and more balanced sample set for model training.

Data collection was conducted from late June to mid-September
2024 in over 20 representative peanut fields in Zhengzhou City,
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TABLE 1 Classification criteria for the peanut leaf disease dataset.

Label Name Description
Early Leaf Small, round, reddish-brown lesions appearing
Spot primarily on the lower leaf surface
1 Early Rust Tiny orange or yellowi.sh pustulfs on ‘the upper leaf
surface during early infection
N Late-leaf- Large dark brown or black lesions with concentric
spot rings, often coalescing on leaves
5 Nutrition- General yellowing, stunted growth, or vein chlorosis
Deficiency not associated with pathogens
Numerous rust-colored pustules forming dense
4 Rust
clusters on both leaf surfaces
5 Healthy Leaves with uniff)ltm gr?en color, intact texture, and
no visible disease symptoms

Henan Province, China, covering the typical disease stages of major
leaf diseases throughout the peanut growth cycle. Image data were
primarily captured using a Fuji FinePix $4500 digital camera, with
an image resolution of 2017x2155 pixels, and saved in JPG format.
The distance between the camera and the leaves was controlled
within 20-35 cm. Image acquisition was mainly performed at three
time slots—7:00 AM, 1:00 PM, and 5:00 PM—to simulate different
lighting conditions in natural environments.

During the data collection process, various shooting
angles (including eye-level, top-down, and side views) and

10.3389/fpls.2025.1707501

diverse natural lighting conditions (such as sunny, cloudy, and
backlit scenarios) were fully considered to capture typical field scene
characteristics. The dataset covers all stages of disease progression,
from initial onset to severe development. The dataset comprises six
categories: early leaf spot disease, early rust disease, late leaf spot
disease, late rust disease, nutrient deficiency, and healthy leaves.
Through a rigorous image quality screening process, a total of 2,132
high-quality original image samples were retained, providing a solid
data foundation for subsequent model training and evaluation. The
dataset classification standards are presented in Table 1, and
samples from the peanut leaf disease dataset are shown in Figure 1.

2.2 Data analysis and preprocessing

To achieve precise detection and identification of peanut leaf
disease regions, under the guidance of plant protection experts, we
employed the Labellmg (Pande et al., 2022) tool for manual
annotation of disease targets in the collected images. Annotations
were based on the minimum bounding rectangle for each target,
ensuring that the bounding box closely fits the disease region to
minimize background interference, thereby enhancing the
localization accuracy of subsequent models.

Considering the limited number of original images and the
complex, variable nature of field environments, training models
directly with raw data may lead to overfitting and poor

(d)

FIGURE 1

Sample images from the peanut leaf disease dataset. (A) Early Leaf Spot. (B) Early Rust. (C) Late-leaf-spot. (D) Rust.(E) Nutrition-Deficiency.

(F) Healthy.
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Original
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FIGURE 2
Data augmentation example diagram.

generalization to broader application scenarios. To enhance the
model’s robustness and generalization ability, we applied multiple
data augmentation techniques to 2,132 annotated images,
including: horizontal and vertical flipping (50% probability), 90-
degree rotation (randomly selected from no rotation, clockwise
rotation, counterclockwise rotation, or vertical flipping), brightness
and contrast perturbation (randomly adjusting the original
brightness by +5% to 10%), and random cropping (randomly
cropping in horizontal and vertical directions within a range of
-15° to +15°). Examples of these augmentations are shown in
Figure 2. These techniques effectively simulate diverse target
appearances under varying poses, lighting conditions, and
occlusions, thereby increasing the diversity of training samples.
After augmentation, the total number of images expanded to 7,363.

TABLE 2 Sample distribution after data augmentation.

Random shear

The dataset was then split into training, validation, and test sets in
an 8:1:1 ratio, using a stratified random sampling strategy to ensure
consistent class distribution and representativeness. Detailed
information about the augmented dataset is provided in Table 2.

2.3 YOLOL11 object detection model

YOLOI11 (Khanam and Hussain, 2024), released by the
Ultralytics team in 2024, represents another major breakthrough
in the YOLO (You Only Look Once) series, particularly in terms of
architectural design and performance optimization. Building on the
end-to-end, single-stage detection framework advantages inherent
to the YOLO series, this model further integrates multiple

Number of labels

Type Number of images
3
Training set 5890 1020 990 980 975 970 955
Validation set 736 128 125 122 120 120 ‘ 121
Test set 737 129 ‘ 126 123 ‘ 119 ‘ 122 ‘ 118
Total 7363 1277 ‘ 1241 1225 ‘ 1214 ‘ 1212 ‘ 1194
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innovative structural modules, achieving a superior balance among
detection accuracy, inference speed, and deployment flexibility.
Depending on network depth and model complexity, YOLO11 is
available in five variants—N, S, L, M, and X—to accommodate
diverse application requirements ranging from resource-
constrained edge devices to high-performance computing
platforms. To evaluate the performance-efficiency trade-offs
across these variants, we compared key metrics, including
parameter count, mAP@50-95 accuracy, ONNX CPU and T4
TensorRT inference latency, and FLOPs, as detailed in Table 3.

As shown in Table 3, the YOLO11n variant achieves reasonable
detection accuracy (39.5% mAP) with the lowest parameter count
(2.6M) and computational complexity (6.5G FLOPs), reducing the
parameter count by approximately 24 times and FLOPs by over 30
times compared to the largest variant, X. This efficiency advantage
makes it an ideal baseline model for resource-constrained scenarios.

And this efficiency advantage, in turn, stems from the several key
architectural improvements that YOLOL11 introduces to enhance
feature representation and computational efficiency. First, the
prediction head adopts the optimized C3k2 module, replacing the
traditional C2f structure. This module uses two smaller convolutional
kernels instead of a large one, reducing computational overhead and
parameter count while allowing flexible switching between
lightweight C2f and deeper C3 structures to meet diverse modeling
requirements. Second, the Spatial Pyramid Pooling Fast (SPPF) (He
et al,, 2015) module is retained to enhance the receptive field, and a
new C2PSA (Channel-to-Pixel Spatial Attention) mechanism is
introduced to focus on critical spatial regions, improving detection
performance for small and occluded targets.

Finally, the detection head employs Depthwise Convolution
(DWConv) (Chollet, 2017) instead of standard convolution, further
reducing computational complexity and making it well-suited for
deployment in resource-constrained environments.

2.4 Improved model YOLO-PLnet

To enable efficient deployment of a peanut leaf disease detection
model on edge devices, lightweight improvements were made based
on the YOLOI11n model. First, the Lightweight Adaptive Feature
Extraction (LAE) module was used to replace certain standard
convolutions in the backbone and neck networks. This module

TABLE 3 Performance comparison of five variants of the YOLO11 model.

Inference speed ONNX CPU

10.3389/fpls.2025.1707501

achieves multi-scale feature fusion with lower computational
complexity, enhancing the model’s perception of disease spot
regions. Second, a Convolutional Block Attention Module
(CBAM) was embedded in the multi-scale paths of the neck
network to further strengthen feature responses in critical regions,
improving the representation capability of high-resolution feature
maps for small disease spots and targets with blurred edges.
Additionally, the detection head was replaced with an Asymptotic
Feature Pyramid Network (AFPN), which employs a staged cross-
layer fusion strategy to effectively mitigate information
inconsistencies caused by semantic differences, thereby improving
the model’s adaptability and robustness in multi-scale disease
detection tasks. The overall structure of the improved lightweight
model, named YOLO-PLNet, is shown in Figure 3.

2.4.1 LAE module

Traditional convolution operations, due to their local
perception characteristics, tend to lose high-frequency
information in image edges and corners during downsampling.
These regions contain rich fine-grained features critical for object
detection tasks. In peanut leaf disease detection, disease spots often
appear at leaf edges or tips, and if edge information is weakened
during downsampling, it can lead to inaccurate target responses,
degrading the model’s detection performance. Moreover,
standard convolutions fail to fully exploit information differences
between adjacent pixels, often overlooking regions with high
information entropy, which reduces the discriminability of
feature representations.

The Lightweight Adaptive Extraction (LAE) module (Yin et al,
2024) employs a dual-branch structure, utilizing group convolution
and an adaptive weighting mechanism to construct parallel paths,
thereby enhancing the representation of edge details and target
regions. The structure of the LAE module is illustrated in Figure 4.
Compared to standard convolution, the LAE module reduces the
parameter count to 1/N of the original and compresses spatial
information into the channel dimension, thereby lowering
computational complexity. The specific design of the LAE module
is detailed as follows:

First, the input feature map X & RE¥©H*Wig processed by
group convolution (GroupConv), in which the channel dimension
is divided into 16 groups (G = C/16). Each group performs an
independent 3 x 3 onvolution operation to further enhance the

Inference speed T4 TensorRT

. Parameters mAP@50-95 FLOPs

Variant o

(M) (VA (G)
YOLOIl1n 26 39.5 6.5
YOLO11s 9.4 47 215
YOLOllm 20.1 515 68
YOLO111 437 534 86.9
YOLO11x 62.1 547 194.9
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(ms) (ms)
56.1 £ 0.8 1.5+ 0.0
90.0 £ 1.2 25100
183.2 £ 2.0 4.7 +0.1
2386 + 1.4 6.2 +0.1
462.8 + 6.7 11.3+0.2
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FIGURE 3
YOLO-PLnet model architecture.

local feature representation capability. The process can be Then, a dimension rearrangement operation converts the
formulated as Equation 1: feature map into RT*W*C4 forming four parallel multi-scale
branches. A Channel Attention Mechanism (CAM) is applied to
optimize the feature representation through global contextual

C
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FIGURE 4
Module architecture of LAE.
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spatial information to generate global contextual descriptors,
followed by a Softmax normalization to obtain the attention
weights A. The process can be formulated as Equation 2:

A = Softmax(Conv 1 (AvgPool;, ;(X))) 2)

Finally, the attended feature Y is obtained by a weighted
summation of all branches as Equation 3:

4
Y = DX, - A € RTC 3)

i=1

where X/ and A; denote the feature map and the corresponding
attention weight of the i-th branch, respectively. For the final
detection head, a Depthwise Separable Convolution (DSConv) is
applied for spatial down-sampling, which reduces the spatial
resolution from H x Wto H/2 x W /2while keeping the channel
dimension unchanged. The operation can be expressed as Equation
4.

Output = DSConv(Y) € RH/2*(W/2xC @

2.4.2 CBAM module

The self-attention mechanism originated in natural language
processing (NLP) (Tsirmpas et al., 2024) and has found widespread
application in computer vision. By establishing global dependencies
between feature positions, it effectively enhances a model’s ability to
capture contextual information, making it particularly suitable for
visual tasks with complex spatial structures.

Considering the computational efficiency requirements of
lightweight detection models, this study opted for the
Convolutional Block Attention Module (CBAM) (Woo et al,
2018)—a structurally simpler and more adaptable alternative to

10.3389/fpls.2025.1707501

the computationally intensive global self-attention mechanism.
Specifically, CBAM is integrated into the Path Aggregation
Network (PAN) multi-scale pathways of the YOLO-PLnet neck,
positioned after the Concat and Upsample operations, targeting the
fusion stage of multi-scale feature maps (P3, P4, P5). This placement
enables precise optimization of channel dependencies and spatial
attention foci during feature aggregation, enhancing the high-
resolution feature maps’ ability to detect small targets while
minimizing global computational overhead, aligning with the
design goals of a lightweight model. To optimize CBAM
performance, we employed Optuna for automated hyperparameter
tuning, focusing on adjusting parameters such as the reduction ratio
(channel compression rate), learning rate, and weight decay.

The CBAM module consists of a Channel Attention Module
and a Spatial Attention Module (SAM) connected in series, with its
model structure illustrated Figure 5. The computational processes
for the CAM and SAM modules are described by Equations 5 and 6,
respectively, while the feature fusion process is represented by
Equation 7.

M_(F) = o(MLP(AvgPool(F)) + MLP(MaxPool(F))) (5)
M,(F) = o(f”" ([AvgPool(F); MaxPool(F)])) (6)
F =M, (F)®F, F'=M(F)®F (7)

Here, o represents the Sigmoid activation function, and ®
denotes element-wise multiplication. Through the combination of
these two-level attention mechanisms, CBAM effectively enhances
the response strength of salient regions while suppressing
redundant background information. Its lightweight structure
makes it suitable for integration into lightweight detection models.

| Channel Attention Module |
| — Maxpool |
- ~ A —
| /V AvgPool |
| 'Y — |
Ch: 1 Af i
| Input feature F Shared MLP annel Attention
L e e e e e e e e e e e e e e e e e e = |
_— e e e e e o e o o Em e e o = o = = = o
1 Spatial Attention Module |
I I
| // /
conv 1
| layer
I s =, >» © = 1
I |
|
1 Channel-refined [Maxpool, AvgPool] Spatial Attention |

feature F

L e e e e e e e e e e e e e e e e — s

FIGURE 5
Diagram of each attention sub-module.
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2.4.3 AFPN module

To further enhance the detection performance for multi-scale
disease spot regions, we integrated an Asymptotic Feature Pyramid
Network (AFPN) into the original YOLO11n architecture, with its
model structure depicted in Figure 6. AFPN employs a progressive
feature fusion strategy from shallow to deep layers, aiming to
mitigate the semantic misalignment issues caused by direct fusion
of features at different scales in the traditional Feature Pyramid
Network (FPN) (Yang et al., 2023). This module starts with adjacent
shallow features (e.g., C2 and C3), gradually incorporating higher-
level semantic features (e.g., C4 and C5), enabling layer-by-layer
injection of cross-level information while maintaining semantic
continuity. AFPN introduces lateral connections and cross-scale
fusion paths between adjacent features across multiple stages,
allowing low-level details and high-level semantics to align and
collaborate effectively in a progressive manner.

Unlike the top-down information flow of traditional FPN,
AFPN enables more flexible bidirectional communication and
introduces low-level semantic information early through staged
shallow prediction branches, enhancing the detection capability
for small targets and edge regions. Additionally, the Adaptive
Spatial Fusion (ASF) mechanism introduced by AFPN further
strengthens the information coupling between multi-scale
features. ASF dynamically allocates weights at each fusion stage
based on the response intensity of feature positions, achieving finer
spatial feature integration, effectively mitigating multi-scale
information conflicts, and improving fusion consistency. This
adaptive approach ensures robust performance across diverse field
conditions. The integration of ASF also reduces computational
redundancy, making it suitable for real-time applications.
Furthermore, the enhanced feature alignment supports better
generalization to unseen disease patterns. The cross-stage fusion
process of AFPN is detailed in Algorithm 1.

Input: Backbone features {C2, C3, C4, C5}
Output: Fused features {P2, P3, P4, P5}
//Stage 1. Bottom-Up Detail Fusion

10.3389/fpls.2025.1707501

: C2_align « Conv1x1(C2, out_channels=128)
1 C3_align « Conv1x1(C3, out_channels=128)
1 C4_align « Conv1x1(C4, out_channels=128)

)

1 C5_align « Conv1x1(C5, out_channels=128

o~ W =

. F2_stagel « C2_align//Preserve raw edge details of
small lesions in C2

6: F3_stagel « AdaptiveFusion(C3_align, Upsample
(F2_stagel, scale=2))

7: F4_stagel « AdaptiveFusion(C4_align, Upsample
(F3_stagel, scale=2))

8: F5_stagel « AdaptiveFusion(C5_align, Upsample
(F4_stagel, scale=2))

//Stage 2: Top-Down Semantic Fusion

9: F5_stage? « F5_stagel//Preserve global semantics
10: F4_stage2 «—AdaptiveFusion(F4_stagel, Downsample
(F5_stage2, scale=0.5))

11: F3_stage2 «—AdaptiveFusion(F3_stagel, Downsample
(F4_stage2, scale=0.5))

12: F2_stage2 «—AdaptiveFusion(F2_stagel, Downsample
(F3_stage2, scale=0.5))

//Stage 3: Adaptive Weight Calibration

13: P2 «+ WeightCalib(F2_stage?, focus=small_lesion)
14: P3 < WeightCalib(F3_stage2, focus=small_lesion)
15: P4 «— WeightCalib(F4_stage?, focus=small_lesion)
16: P5 « WeightCalib(F5_stage2, focus=small_lesion)
17: return {P2, P3, P4, P5}

Algorithm 1. AFPN staged cross-level fusion.

2.5 Edge deployment platform

To meet the requirements for real-time detection of peanut leaf
diseases in field conditions, along with low latency and low power
consumption, the study selected the NVIDIA Jetson Orin NX as the
edge deployment platform. This device integrates 1,024 CUDA
cores and 32 Tensor Cores, delivering an Al inference performance
of up to 100 TOPS at INT8 precision. It can efficiently run deep

Backbone

FIGURE 6
AFPN model architecture diagram.
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neural networks locally, avoiding the delays and instability
associated with network transmission. Additionally, the Jetson
Orin NX supports the development of end-to-end accelerated Al
applications through the JetPack SDK, facilitating model
optimization, deployment, and on-site integration. As shown in
Figure 7, this platform offers advantages such as miniaturization,
high performance, and low power consumption, making it suitable
for edge devices like agricultural robots and plant protection drones.
This supports on-site localization and rapid response to peanut
disease spots. Detailed hardware specifications are provided
in Table 4.

3 Results
3.1 Experimental setup

To ensure the fairness and reproducibility of model training, all
experiments were conducted on a unified laboratory server. The
server operates on Ubuntu 20.04 LTS, with a configuration
including a 16-core Intel(R) Xeon(R) Platinum 8352V CPU @
2.10GHz, 120 GB of RAM, and an NVIDIA GeForce RTX 4090
(24 GB VRAM). The software environment consists of Python 3.8 +
PyTorch 1.11, with CUDA version 11.3 and the cuDNN
acceleration library integrated to enhance GPU inference
efficiency. All models were trained on this platform using
consistent hyperparameter settings to ensure result comparability,
with training parameter configurations detailed in Table 5.

3.2 Evaluation metrics

To comprehensively evaluate the model’s performance in object
detection tasks, multiple evaluation metrics were used to assess the
detection results, including Precision, Recall, and Mean Average
Precision (mAP). Among these, mAP is a key metric for measuring

FIGURE 7
Jetson Orin NX developer kit for edge deployment.
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detection accuracy and is widely used to evaluate a model’s ability to
recognize targets across different IoU thresholds.

To assess the model’s robustness and generalization capability
under varying detection conditions, two additional metrics, mAP@
0.5 and mAP@0.5:0.95, were introduced. mAP@0.5 represents the
average detection accuracy at an IoU threshold of 0.5, primarily
measuring the model’s basic detection capability. mAP@0.5:0.95, on
the other hand, calculates the average precision across IoU
thresholds ranging from 0.5 to 0.95 (with a step size of 0.05),
providing a more comprehensive reflection of the model’s detection
stability and generalization performance across multi-scale and
multi-class scenarios. The calculation formulas for the relevant
evaluation metrics are shown in Equations 8-11.

Precisi TP ®)
recision = ————
SO = p L Fp
TP
Recall= ——— 9
= TIPyEN ©)
1
AP = / P(R)dR (10)
0
1 N
mAP = — S AP, (11)
Ni:l

Here, TP represents the number of samples correctly detected as
positive, FP denotes the number of samples incorrectly detected as
positive, FN indicates the number of positive samples missed, and
AP; refers to the average precision for the i-th class.

In practical deployment, the model must not only achieve high
detection accuracy but also ensure operational efficiency in
resource-constrained scenarios, particularly in agricultural
contexts like peanut leaf disease detection, where models are often
deployed on edge devices such as agricultural robots or field
stations. To address this, four additional lightweight evaluation
metrics were introduced: parameter count (Params), computational
complexity (GFLOPs), model size (Model Size), and average
detection frames per second (FPS), to quantify the model’s
resource consumption and deployment performance.

Among these, the parameter count reflects the structural
complexity of the model and serves as a core indicator of model
compression, with its calculation method shown in Equation 12.
GFLOPs represent the number of floating-point operations
performed per second, indicating the model’s inference efficiency
and computational load, with the formula provided in Equation 13.
Model size indicates the storage space occupied by the model,
calculated as shown in Equation 14. FPS measures the model’s
ability to process images per unit time, reflecting its real-time
inference performance, with the formula given in Equation 15. To
further characterize resource consumption during deployment,
three additional metrics—inference latency (Latency), power
consumption (Power Consumption), and memory usage
(Memory Usage)—were introduced. These metrics respectively
reflect the time required for the model to process a single frame
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TABLE 4 Jetson Orin NX parameters.

Parameter Description

Al
100 TOPS (INT8)
Performance
GPU NVIDIA Ampere architecture with 1024 CUDA cores and 32
Tensor Cores
CPU 8-core Arm® Cortex®-A78AE v8.2 64-bit, 2 MB L2 +
4 MB L3

Memory 16 GB 128-bit LPDDRS, 102.4 GB/s
Storage Supports M.2 NVMe SSD

1x 4K60 (H.265), 3x 4K30 (H.265), 6x 1080p60 (H.265),

Video Encode
12x 1080p30 (H.265)

Ix 8K30 (H.265), 2x 4K60 (H.265), 4x 4K30 (H.265),

Video Decode
9% 1080p60, 18x 1080p30 (H.265)

Power Configurable 10W, 15W, 25W
Camera
2x MIPI CSI-2 D-PHY camera connectors
Interface
USB 4x USB 3.2 Gen2 (Type-A), 1x USB Type-C (UFP)

on edge devices, the level of energy consumption, and the utilization
of memory resources.

Params = O<EM,2 ‘K?-Co, -C,v) (12)
i=1

GFLOPs = o(zK,? Gl G+ SM- Ci> (13)

i=1 i=1

P b

Model Size (MB) = — o -7 (14)

810
Fps = (15)

T

TABLE 5 Training parameter settings.

Hyperparameter Value

Epochs 200
Image size 640 x 640
Batch size 16
Optimizer SGD

Workers 16

1Ir0 0.005

Irf 0.01
momentum 0.937
Mosaic False

Cross-Validation 5-fold stratified
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Among them, M; represents the total number of samples
correctly detected as positive in the i-th class; C;denotes the total
number of positive samples in the i-th class, with C;_; representing
the cumulative sum of positive samples up to the (i — 1)-th class; N,
refers to the total number of positive samples across all classes; b
and indicate the batch size (set to 32).

3.3 YOLO-PLnet performance detection

To comprehensively compare the detection performance of the
improved model with the baseline model, Figure 8 illustrates the
comparison of Precision, Recall, mAP@0.5, and mAP@0.5:0.95 for
YOLO-PLNet and YOLO11n during the training process. It can be
observed that within the first 110 epochs, the Precision and Recall
curves of YOLO-PLNet still exhibit some fluctuations, reflecting the
model’s adaptation and adjustment process to multi-scale target
features in the early stages. As training progresses, the curves
gradually stabilize and eventually converge. The final Precision
and Recall reach 97.1% and 94.2%, respectively, representing
improvements of 1.8% and 1.7% over YOLOvlln. Regarding
accuracy metrics, mAP@0.5 stabilizes after the 80th epoch, while
mAP@0.5:0.95 fluctuates and converges around the 155th epoch,
ultimately achieving 98.1% and 94.7%, respectively.

The improvements in the aforementioned detection results are
primarily attributed to the lightweight enhancements made to the
baseline model in YOLO-PLNet. By introducing the LAE module
with its parallel dual-branch convolution structure, the model
enhances feature response capabilities across different scales and
spatial distributions, enabling robust target perception even when
dealing with unevenly distributed and blurred boundary disease
spots on peanut leaves. This is particularly evident in disease types
such as leaf spot and rust, where edge transitions are fuzzy and color
changes are subtle; the module significantly elevates the model’s
fine-grained discrimination level. Additionally, the integrated
CBAM attention mechanism in the feature fusion paths effectively
suppresses non-target interferences in complex field backgrounds,
such as water stains and reflective spots, further strengthening the
model’s focus distribution and representational stability on disease
areas. The cross-scale information fusion strategy based on AFPN
ensures higher representational consistency when integrating
shallow texture features with deep semantic features, enhancing
the model’s generalization capability for multi-scale disease regions
on peanut leaves. This makes it well-suited for practical detection
needs in natural field scenarios characterized by strong lighting
variations, cluttered backgrounds, and unclear disease
spot boundaries.

Figure 9 presents a visual comparison of the improved model
YOLO-PLNet and the baseline model YOLO11n in the task of
peanut leaf disease detection. Overall, YOLO-PLNet significantly
outperforms the original model in terms of target localization
accuracy and semantic focus capability. In the visualization of
detection boxes, YOLO-PLNet more accurately covers disease
spot regions, maintaining stable and reliable detection
performance even in samples with densely distributed spots,
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FIGURE 8

Performance comparison curves of YOLO-PLNet and YOLO11n.

blurred edges, or faint-colored mild lesions. In contrast, the
YOLOv11ln model exhibits issues such as missed detections,
detection box offsets, and inaccurate edge judgments in some
samples, indicating limitations in its perceptual ability under
complex disease representations. To further analyze the model’s
focus area distribution during inference, the study employed the
Grad-CAM (Selvaraju et al., 2017) method to visualize the
intermediate features of the YOLO-PLNet model. The heatmap
results, shown in Figure 9d, clearly reveal that the activation regions
are highly concentrated on the core areas of the disease spots,
exhibiting a distinct hotspot response distribution. This
demonstrates that the model can effectively extract discriminative
features in complex backgrounds while maintaining stable attention
on key regions.

Since peanut leaf diseases in the field typically exhibit a “one
leaf, one disease” or “single-point outbreak” characteristic, a single
image often contains only 1-2 disease targets, resulting in a
relatively low number of bounding boxes in the detection results.
However, during the data construction phase, class balance was
carefully considered to ensure an even distribution of the six classes
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across the training and test sets (as detailed in Table 2), preventing
model training bias. As shown in Figure 10, analysis via the
Precision-Recall Curve reveals that YOLO-PLNet performs
excellently across most categories. Notably, in the Early Rust
category, the model achieves an AP of 0.994, nearly perfect,
indicating extremely accurate target recognition for this class in
images. In contrast, the AP for the Late-Leaf Spot category is 0.927,
suggesting some challenges in recognizing this class, possibly due to
similar disease spot features or complex backgrounds that make
differentiation difficult for the model. Overall, YOLO-PLNet
demonstrates stable and reliable comprehensive performance,
achieving excellent AP results across most categories.

To further analyze the detection performance and
distinguishability of the YOLO-PLNet model across the six classes
of peanut leaf disease targets, Figure 11 presents the normalized
confusion matrix for YOLO-PLNet on the test set. As shown in the
figure, the prediction results for the Early Rust (1.00), Late-Leaf-
Spot (0.94), Rust (0.94), and Healthy (0.94) categories are highly
accurate, indicating strong stability in the model’s recognition of
mainstream disease spots and healthy leaves. In contrast, the Early
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FIGURE 9
Visualization comparison of YOLO11n and YOLO-PLNet on peanut leaf disease detection.

Leaf Spot (0.89) and Nutrition-Deficiency (0.91) categories exhibit  the Early Leaf Spot category has a background misclassification rate
some degree of confusion, with certain samples being misclassified ~ as high as 28%, suggesting that the blurred boundaries or colors
as other disease categories or background. This may be attributed to  resembling the background of this disease type pose challenges for
similar disease spot features or background interference. Notably,  the model during recognition.
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Precision-recall curve for peanut leaf disease detection.
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FIGURE 11
Confusion matrix of YOLO-PLNet on the test set.

3.4 Lightweight performance comparison

To further evaluate the comprehensive performance of YOLO-
PLNet in terms of accuracy retention and adaptability to edge
deployment, this study conducted a comparative analysis with
current mainstream lightweight detection models, including
NanoDet-Plus (Sun and Zhuang, 2025), PP-YOLOE-s (Wang
et al., 2025b), and RT-DETRv2 (Lv et al, 2024). As shown in
Table 6, YOLO-PLNet achieves a superior balance among model
complexity, inference speed, and detection accuracy.

Experimental results demonstrate that YOLO-PLNet achieves
excellent detection accuracy (mAP@0.5: 98.1%) while maintaining
extremely low complexity (2.13 M parameters, 4.51 MB model size),
showcasing a remarkable balance between precision and efficiency.
Compared to similar lightweight models, YOLO11n and YOLOvS8n,
its detection accuracy improved by 1.6% and 3.3%, respectively. In
deployment tests on the Jetson Orin NX platform using TensorRT-
FP16, the inference latency was reduced by approximately 27%
compared to the baseline model.

Further analysis from the perspective of inference efficiency
reveals varying performance tendencies among the compared
models on edge devices. NanoDet-Plus achieves the lowest

TABLE 6 Comparison of YOLO-PLNet and lightweight detectors on edge.

Model mAP@O0.5 (%) Params (M)
NanoDet-Plus 89.7 1.18
PP-YOLOE-s 93.1 7.9
RT-DETRv2 89.6 16.5

YOLOvSn 94.8 3.6

YOLO11n 96.5 26
YOLO-PLNet 98.1 2.13

Bold values indicate the results of the proposed YOLO-PLNet detector.
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inference latency (8.2 ms), but its detection accuracy is
significantly lower, failing to meet the accuracy requirements of
practical applications. PP-YOLOE-s, YOLOl1n, and YOLOv8n
exhibit inference times of 18.4 ms, 21.3 ms, and 22.6 ms,
respectively, all meeting the basic frame rate requirements for
real-time detection, yet their overall performance remains inferior
to YOLO-PLNet. Conversely, RT-DETRv2, due to its complex
architecture, has the highest inference latency (28.0 ms), limiting
its applicability in edge warning scenarios that emphasize
rapid response.

3.5 Ablation experiment

To systematically assess the actual contribution of the improved
modules to the overall model performance, this study designed an
ablation experiment as outlined in Table 7. Using YOLO11n as the
baseline model, the lightweight feature enhancement module LAE,
attention module CBAM, and multi-scale fusion structure AFPN
were gradually introduced, with a comparative analysis conducted
on their individual and combined configurations. Evaluation
metrics, including mAP@0.5, mAP@0.5:0.95, parameter count,
computational complexity, and model size, were used to quantify
the trade-offs of each component in terms of performance and
resource overhead.

From the perspective of detection performance, the baseline
model YOLO11 achieves mAP@0.5 and mAP@0.5:0.95 values of
96.7% and 93.0%, respectively. After introducing the LAE module,
mAP@0.5 increases to 97.5%, mAP@0.5:0.95 rises to 93.5%, and the
parameter count and computational complexity decrease to 2.52M
and 6.0G, respectively. This demonstrates that the LAE module can
maintain effective information perception while significantly
reducing parameter redundancy and computational burden,
thereby improving the model’s overall computational efficiency.
The subsequent addition of CBAM further boosts mAP@0.5 to
97.7% and mAP@0.5:0.95 to 93.9%, confirming that the attention
mechanism enhances the model’s response to key disease spot
regions and improves its recognition of complex backgrounds and
fine-grained features. The introduction of AFPN in the detection
head, through adaptive weighting, enables dynamic fusion of multi-
scale features, enhancing the model’s ability to detect disease targets
of varying scales—especially small-scale spots—while effectively
suppressing interference from low-quality features and

FLOPs (G) Size (MB) Inference Time(ms)
1.5 2.3 8.2
18.2 15.6 18.4
32 58 28
7.2 5.6 22.6
6.5 5.35 21.3
5.4 4.51 15.6
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TABLE 7 Ablation experiments of different modules.

10.3389/fpls.2025.1707501

YOLO11 LAE CBAM AFPN  mAP @05 @0";’_"; o5 Params(M) FLOPs(G) Size (MB)
v X X X 96.70% 93.00% 2.6 ‘ 6.5 5.35
v v X X 97.50% 93.50% 2.52 ‘ 6 5.23
v v v X 97.70% 93.90% 2.45 ‘ 5.6 495
v v v v 98.10% 94.70% 2.13 ‘ 5.4 4.51

Bold values indicate the results of the proposed YOLO-PLNet detector.

maintaining low computational overhead. When all three modules
(LAE, CBAM, and AFPN) are integrated simultaneously, YOLO-
PLNet achieves optimal detection accuracy while effectively
reducing model parameter count and weight size, providing
strong support for the efficient detection of peanut leaf diseases
and deployment on edge devices.

3.6 Comparison with baseline models

To further validate the comprehensive performance of the
YOLO-PLNet model in object detection applications, a systematic
comparison was conducted with eight representative detection
models, including the classic two-stage detector (Faster R-CNN)
(Ren et al,, 2016), the lightweight single-stage detector SSD, and
several mainstream lightweight versions of the YOLO series:
YOLOvV5n, YOLOv6n (Li et al, 2022), YOLOv7-tiny, YOLOv9t
(Wang et al, 2025a), and YOLOv1On (Wang et al, 2024). The
relevant results are presented in Table 8.

From the comparison results, the lightweight YOLO-PLNet
model demonstrates clear advantages over mainstream object
detectors in terms of detection accuracy and model complexity.
YOLO-PLNet achieves an mAP@0.5 of 98.1% and an mAP@
0.5:0.95 of 94.7%. Compared to the benchmark models
YOLOvV5n, YOLOv6n, YOLOvV7-tiny, YOLOvV9t, and YOLOvV10n,
YOLO-PLNet shows improvements in mAP@0.5 by 13.8%, 9.7%,
7.8%, 4.6%, and 5.3%, respectively, and in mAP@0.5:0.95 by 15.5%,
12.0%, 11.6%, 6.1%, and 6.8%, respectively. The largest
improvement is 13.8% (relative to YOLOv5n), and the smallest is
5.3% (relative to YOLOv10n). Compared to the classic detectors

TABLE 8 Performance comparison of different object detection models.

SSD and Faster R-CNN, YOLO-PLNet also achieves significant
enhancements in both accuracy metrics. In terms of lightweight
metrics, YOLO-PLNet’s parameter count, FLOPs, and model file
size are 2.13M, 5.4G, and 4.51MB, respectively, making it the best-
performing among all compared models. This fully demonstrates
that the improved YOLO-PLNet model offers high detection
accuracy while providing effective support for real-time detection
tasks in resource-constrained scenarios.

3.7 Edge deployment and inference
evaluation

With the advancement of edge computing technology, the
deployment of deep learning models not only prioritizes high
accuracy but also requires balancing runtime speed and resource
usage. To verify the deployment adaptability and real-time
inference capability of the improved model YOLO-PLNet on edge
devices, we established a complete inference pipeline covering real-
world peanut field scenarios, as shown in Figure 12. This pipeline
builds directly on the Jetson Orin NX Developer Kit (Figure 7),
which serves as the hardware foundation.On the platform, the
trained YOLO-PLNet model was first exported from the.pt
format to an ONNX intermediate representation and then
optimized into an.engine inference engine file using the TensorRT
toolchain. To simulate the dynamic monitoring needs in the field,
an industrial-grade CSI (Camera Serial Interface) camera was
introduced, capable of capturing real video streams that include
natural lighting variations and leaf movement interference. By
deserializing and loading the.engine file with the TensorRT

mAP@O0.5 (%) mMAP@O0.5:0.95 (%) Params (M) FLOPs (G) Size (MB)
Faster R-CNN 557 203 40.1 347 339.7
SSD 51.2 29.4 29.51 30.1 169.72
YOLOv5n 843 79.2 323 7.6 7.81
YOLOv6n 88.4 82.7 482 122 832
YOLOV7-tiny 90.3 83.1 621 117 10.81
YOLOV9t 935 88.6 3.14 12.1 51
YOLOv10n 92.8 87.9 2.81 8.1 571
YOLO-PLNet (Ours) 98.1 94.7 2.13 5.4 4.51

Bold values indicate the results of the proposed YOLO-PLNet detector.
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FIGURE 12
Edge deployment and inference process.

runtime, combined with the input of real field video streams from
the camera, frame-by-frame real-time inference and visualization
were performed, validating the model’s deployment performance in
dynamic and complex edge scenarios.

To verify the inference efficiency of the model on edge devices,
this study conducted experiments based on the edge deployment
inference pipeline shown in Figure 12, utilizing the mainstream
inference framework TensorRT (Xia et al., 2022). TensorRT offers
various precision optimization methods, including FP16 half-
precision and INT8 integer quantization deployment modes. The
FP16 precision uses half-precision floating-point representation,
offering significant advantages such as fast computation speed and
low memory usage, making it widely used in efficient inference
scenarios on edge devices. In contrast, INT8 precision quantizes
weights and activation values into 8-bit integers, enabling further
reduction in model size and device power consumption while
maintaining a certain level of accuracy, which aligns well with the
needs of resource-constrained edge devices.

After completing model training, the Post-Training
Quantization (PTQ) (Li et al, 2021) toolchain provided by
TensorRT was used to directly convert the original ONNX model

Edge device
Jetson Orin NX

(-

=

—

Inference
framework

Optimization

(FP32 precision) into FP16 and INT8 precision versions, avoiding
the high cost of retraining. These were then deployed on the Jetson
Orin NX platform to verify the impact of different quantization
strategies on deployment performance, with the detailed results
presented in Table 9.

The results indicate that differences in detection accuracy under
varying quantization precisions during edge deployment are
minimal, while the improvements in inference efficiency and
resource utilization are significant. The INT8 quantized model
reduces inference latency by 38.21% and increases frame rate by
46.45% compared to FP16, while also featuring lower memory
usage and power consumption. Compared to the original FP32
precision, the inference efficiency is substantially enhanced, directly
supporting resource-constrained, real-time detection scenarios such
as peanut field agricultural machinery patrols, particularly for
battery-powered agricultural drones.

Although the YOLO-PLNet model was trained with a fixed
input size of 640x640, the industrial CSI camera in actual
deployment may differ from the model input size due to
variations in field of view and video resolution. To assess the
model’s adaptability to real-field data, tests were conducted with

TABLE 9 Deployment performance comparison under FP16 and INT8 precision configurations.

Quantization Precision (Ir_‘r?:/eirr]\:g) (fraFrlr:‘)li/s) GPU Memory Usage (%) Power Consumption(W) mAP@O0.5 (%)
FP32 ‘ 325 15.4 623 52 98.1
FP16 ‘ 19.1 282 521 41 98
INTS ‘ 11.8 413 486 34 975
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TABLE 10 Deployment performance of YOLO-PLNet under different
input sizes.

Input Latency FPS HOUTED .
; . Consumption
Resolution = (ms/img)  (frame/s) (W)
320x320 16.7 52.4 3
640x640 19.1 28.2 4.1
1280x1280 32,6 134 6

three input sizes: 320x320, 640x640, and 1280x1280, with the
relevant results presented in Table 10.

The experimental results show that higher resolutions lead to
increased inference latency and power consumption. While higher
resolutions can retain more information about leaf disease spots, the
focus of this experiment was to evaluate inference performance
across multiple resolutions. After consideration, 640x640 was
selected as the recommended input size. In actual deployment,
the field video streams captured by the camera will be preprocessed
to this size for input into the model, with inference results output
directly to the agricultural machinery cab display via a visualization
interface, providing operators with intuitive disease warnings.

10.3389/fpls.2025.1707501

Figure 13 displays the keyframe detection results obtained from
video stream inference, covering six classes of peanut leaf diseases
(categories 0-5), represented by bounding boxes in different colors.
The inference process was conducted on the Jetson Orin NX
platform, and the results visually demonstrate the model’s ability
to detect and recognize real peanut leaf images in the field on edge
devices, verifying its feasibility and practical value in actual
deployment environments.

4 Discussion

In recent years, crop disease detection methods based on deep
learning have emerged as a focal point in the research of intelligent
agricultural monitoring (Khan et al., 2025). Numerous studies have
attempted to enhance the identification capability and detection
accuracy of disease spot regions by optimizing target detection
network architectures. Liu et al. proposed the A-Net model, an
improvement on YOLOVS5, incorporating attention mechanisms,
Wise-IoU loss function, and RepVGG modules, effectively boosting
apple leaf disease detection accuracy to an mAP@0.5 of 92.7% (Liu
and Li, 2024). Xie et al. developed a strawberry disease detection

Frame 17

Frame 162

Frame 230 Frame 309 Frame 550
Box Color:
Class: 0 1 9 3 4 5

FIGURE 13
Detection results of YOLO-PLNet on key frames from video stream.

Frontiers in Plant Science

frontiersin.org


https://doi.org/10.3389/fpls.2025.1707501
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sun et al.

model based on YOLOVS, integrating CBAM, DySample, and
ODConv, achieving an accuracy of 98.0% (Xie et al., 2024a).
However, these approaches predominantly focus on improving
algorithmic precision while overlooking various challenges in
practical agricultural applications, particularly the limitations of
computational resource constraints and high real-time
requirements when deploying disease detection models on edge
computing devices, which hinder their widespread adoption in real-
world scenarios.

To address these challenges, this study proposes an improved
target detection model, YOLO-PLNet, based on YOLO11n. One of
the most significant findings is the substantial enhancement in the
model’s ability to detect small disease spots through the introduction
of the AFPN. In the early stages of peanut diseases, leaf spot and rust
often manifest as tiny features spanning only a few pixels. Traditional
feature pyramid networks tend to lose these details during multiple
downsampling steps. In contrast, our fusion strategy, by reinforcing
the shallow feature flow in the top-down pathway, effectively
integrates high-resolution features rich in detail with low-resolution
features rich in semantics. This enables the model to retain the overall
context of the leaf while accurately identifying and locating these
minute early-stage spots, thereby providing a technical foundation for
early warning and intervention.

Furthermore, accurately classifying visually similar diseases is
crucial. For peanut leaf spot and rust, their distinct biophysical
characteristics are key: leaf spot manifests as dark necrotic patches
with noticeable texture changes, while rust is characterized by
yellowish-brown urediniospore pustules and distinct spectral
features, such as a reflection peak at 520-600 nm (Lin et al,
2025). YOLO-PLNet integrates lightweight channel and spatial
attention mechanisms, enabling adaptive calibration of feature
maps. For instance, when processing suspected rust areas, it
enhances responses to specific color channels; when analyzing leaf
spot, it prioritizes edge and texture variations. This targeted
learning of disease-specific biophysical features aligns closely with
recent research using attention mechanisms to decode subtle plant
phenotypic patterns (Tang et al., 2025). Comparative evaluations
demonstrate that YOLO-PLNet achieves mAP@0.5 of 98.1% and
mAP@0.5:0.95 of 94.7%, surpassing existing benchmarks. Its edge
deployment on the Jetson Orin NX further validates its practicality.
At INTS8 precision, it delivers a real-time detection speed of 41.3
FPS, offering a critical advantage for resource-constrained
platforms. Although INT8 quantization results in a slight
accuracy drop, the resulting reductions in power consumption
and speed improvements are vital for battery-powered mobile
platforms, such as agricultural drones and inspection robots. This
efficiency is supported by the Orin NX’s approximately 100 TOPS
INTS8 performance, enabling uninterrupted field operations and
meeting the growing demand for sustainable edge Al in agriculture.

Although this study constructed a high-quality peanut leaf
disease dataset and developed a lightweight detection model
tailored for edge devices, certain limitations remain. First, the
model’s generalization ability requires further improvement. Its
performance has not been fully validated across diverse regional
peanut varieties, unknown disease types, or cross-crop scenarios
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(e.g., corn, soybean), which may limit its adaptability in varied
agricultural environments. Second, there are potential risks related
to data privacy and commercial confidentiality. The current
centralized training approach, when deployed across multiple
farms, may lead to the leakage of sensitive agricultural
information, such as planting layouts and variety characteristics,
posing ethical and security concerns.

To address these limitations, future research can pursue the
following directions: First, to enhance cross-scenario adaptability,
advanced techniques such as domain adaptation and open-set
recognition should be explored to improve the model’s
compatibility with diverse crops, unknown diseases, and complex
field conditions. Second, a privacy-preserving collaborative training
framework should be developed, leveraging federated learning to
enable distributed training across farms, integrating multi-source
farm data for iterative optimization.

5 Conclusion

This study proposes a lightweight object detection model for
peanut leaf disease, YOLO-PLNet, designed for edge deployment.
Built on the foundation of YOLOvI1I, the model incorporates
structural improvements such as LAE, CBAM, and AFPN to
enhance feature representation capability and detection accuracy.

The main research conclusions are as follows:

1. The YOLO-PLNet model achieved an mAP@0.5 of 98.1%
and an mAP@0.5:0.95 of 94.7% on the peanut disease
dataset. Additionally, its parameter count, FLOPs, and
model size were reduced by 18.07%, 16.92%, and 15.70%,
respectively, compared to the baseline model YOLOv11n,
effectively achieving model lightweighting and providing
favorable conditions for edge deployment.

. Deployed on the Jetson Orin NX edge device, the INT8
precision quantization, compared to FP16, reduced
inference latency by 38.21%, increased FPS by 46.45%,
and significantly lowered memory usage and power
consumption, while detection accuracy slightly decreased
to 97.5%. This enables the model to perform efficient real-
time disease detection on low-power embedded platforms.

. Under multi-resolution inputs, 640x640 delivered optimal
inference results on the edge device, making it suitable for
moderately resolved image streams in farmland scenarios.
Combined with CSI camera video input, it enabled end-side
automatic detection and visualized feedback.

In summary, the proposed YOLO-PLNet model offers high
accuracy, low resource consumption, and excellent engineering
deployability, making it suitable for peanut leaf disease
monitoring tasks on agricultural edge intelligent terminals. In the
context of sustainable agricultural development, this model can
provide farmers with precise disease warning information, enabling
targeted disease management, reducing unnecessary pesticide use,
and promoting green agriculture. Future research could integrate
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the model with IoT sensors to further enhance its real-time
performance and adaptability in practical agricultural scenarios,
contributing to the widespread adoption of agricultural automation
and intelligent management.
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