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YOLO-PLNet: a lightweight
real-time detection model for
peanut leaf diseases based on
edge deployment
Jinti Sun, Zhihui Feng, Jiaqi Han, Fulei Xu, Hui Zhang*

and Yufeng Guo*

College of Information and Management Science, Henan Agricultural University, Zhengzhou, China
As an important economic crop, peanut is frequently affected by leaf diseases

during its growth period, which severely threaten its yield and quality. Therefore,

early and accurate disease detection is critical. However, existing lightweight

deep learning methods often struggle to balance model size, real-time detection

accuracy, and edge device deployment, limiting their widespread application in

large-scale agricultural scenarios. This study proposes a lightweight real-time

detection model, YOLO-PLNet, designed for edge deployment. The model is

based on YOLO11n, with lightweight improvements to the backbone network

and Neck structure. It introduces a Lightweight Attention-Enhanced (LAE)

convolution module to reduce computational overhead and incorporates a

Channel-Spatial Attention Mechanism (CBAM) to enhance feature

representation for small lesions and edge-blurred targets. Additionally, the

detection head adopts an Asymptotic Feature Pyramid Network (AFPN),

leveraging staged cross-level fusion to improve detection performance across

multiple scales. These improvements significantly enhance the detection

accuracy of peanut leaf diseases under complex backgrounds while improving

adaptability for edge device deployment. Experimental results show that YOLO-

PLNet achieves a parameter count, computational complexity, and model size of

2.13M, 5.4G, and 4.51MB, respectively, representing reductions of 18.07%,

16.92%, and 15.70% compared to the baseline YOLO11n. The mAP@0.5 and

mAP@0.5:0.95 reach 98.1% and 94.7%, respectively, improving by 1.4% and 1.7%

over YOLO11n. When deployed on the Jetson Orin NX platform with real-time

video input from a CSI camera, the model achieves a latency of 19.1 ms and 28.2

FPS at FP16 precision. At INT8 precision, latency is reduced to 11.8 ms, with real-

time detection speed increasing to 41.3 FPS, while GPU usage and power

consumption are significantly reduced with only a slight decrease in detection

accuracy. In summary, YOLO-PLNet achieves high detection accuracy and

robust edge deployment performance, providing an efficient and feasible

solution for intelligent monitoring of multiple categories of peanut leaf diseases.
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1 Introduction

Peanut (Arachis hypogaea L.) (Asif et al., 2025) is a critical

oilseed and economic crop, playing a pivotal role in agricultural

production. However, peanut plants are highly susceptible to

various diseases, such as leaf spot and rust, during their growth,

which can lead to severe defoliation and yield losse (Duffeck et al.,

2025). Currently, disease management in peanuts faces two major

challenges: firstly, the long-term reliance on chemical control has

resulted in increased pathogen resistance, pesticide residue

accumulation, and growing concerns regarding environmental

and food safety issues (Munir et al., 2024); secondly, traditional

diagnostic methods, such as field visual inspection and laboratory

testing, are inefficient, costly, and time-consuming, failing to meet

the demands of modern agriculture for early warning and large-

scale, real-time disease monitoring (Reddy et al., 2024).

With the advancement of smart agriculture, plant disease

detection technology based on computer vision has emerged as a

mainstream solution due to its non-contact, automated, and highly

efficient characteristics (Ghazal et al., 2024). Researchers have

extensively explored the application of deep learning models in

crop disease identification. For instance, Miao et al. proposed the

SerpensGate-YOLOv8 model, which incorporates DySnakeConv,

SPPELAN, and STA attention mechanisms, achieving a precision of

71.9% on the publicly available PlantDoc dataset t (Miao et al.,

2025). Similarly, Ayon et al. conducted a systematic comparison of

four deep learning models—VGG16, ViT, EfficientNetB3, and

Xception—using a tea leaf image dataset, validating the

effectiveness of Transformer architectures and traditional CNNs

in tea disease identification (Ayon et al., 2024).

However, such models often rely on high-performance servers

or desktop-grade GPU platforms, making stable operation on

resource-constrained embedded edge devices challenging due to

limitations in storage and power consumption (Cajas Ordóñez

et al., 2025). In peanut cultivation scenarios, diseases are widely

distributed with high density, and single-frame image detection

cannot adequately cover continuous areas. Consequently, real-time

video detection using low-power, compact edge AI devices has

emerged as a promising development direction. By deploying

inference on edge platforms with computational capabilities (e.g.,

Jetson Orin NX, Jetson Orin Nano), on-site inference in the field

can be achieved, significantly reducing uplink bandwidth and

transmission latency while ensuring continuous monitoring under

weak network conditions. Additionally, these devices can synergize

with field operation units such as drones and autonomous

agricultural machinery, reducing labor costs and enhancing the

efficiency of pesticide application or irrigation.

To address these challenges, researchers have increasingly

focused on designing lightweight network architectures, such as

YOLO, MobileNet, ShuffleNet, and EfficientNet, to enable efficient

deployment of disease detection models on edge AI devices. Zhang

et al. proposed the GVC-YOLO model, tailored for real-time

detection of cotton aphid leaf diseases on edge devices. Built upon

YOLOv8n, the model integrates GSConv, VoVGSCSP, SimSPPF,

and a coordinate attention mechanism, achieving a compact model
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size of 5.4 MB while maintaining a detection accuracy of 97.9% and

a real-time inference speed of 48 FPS on the Jetson Xavier NX

platform (Zhang et al., 2024). Similarly, Xie et al. introduced

YOLOv5s-BiPCNeXt, which incorporates a MobileNeXt

backbone, C3-BiPC structure, EMA attention mechanism, and

CARAFE upsampling operation. This model achieves high-

precision eggplant disease detection at 26 FPS on the Jetson Orin

Nano, effectively balancing deployment efficiency and recognition

performance (Xie et al., 2024b). Additionally, a comprehensive

review systematically outlined key technologies and architectures

for edge AI and IoT in real-time crop disease detection, categorizing

them into four types: edge sensing and processing frameworks,

lightweight models for resource-constrained devices, data-driven

approaches, and communication protocols tailored for agricultural

scenarios. The review highlighted that CNNs based on MobileNet/

EfficientNet, combined with techniques such as pruning and

quantization, have enabled effective detection on hardware like

Raspberry Pi and Jetson Nano (Madiwal et al., 2025).

Building on these research directions, we developed an efficient

peanut leaf disease detection model, YOLO-PLnet, and deployed it

on the Jetson Orin NX edge device. Based on YOLO11n, we

integrated the Lightweight Attention-Enhanced convolution

module, which enhances the model’s ability to represent edge

details and target regions. Additionally, we leveraged the cross-

stage feature fusion capabilities of the Asymptotic Feature Pyramid

Network to improve detection accuracy. During the deployment

phase, we employed TensorRT for precision optimization and

inference acceleration, deploying the model on a Jetson Orin NX

edge platform equipped with an industrial-grade CSI camera. Real-

time detection was performed using field-captured video streams,

and the model’s performance was systematically evaluated in terms

of latency, frame rate, memory usage, and power consumption

under FP16, INT8, and multi-resolution settings. Overall, this study

provides a viable technical solution for the precise identification and

intelligent management of peanut leaf diseases.
2 Materials and methods

2.1 Data acquisition and description

Deep learning has demonstrated significant potential in plant

disease detection, but its performance heavily relies on high-quality

and large-scale datasets. Existing studies, particularly those focused

on peanut leaf diseases, often utilize public datasets that cover only a

limited range of disease categories, such as early leaf spot and rust,

resulting in incomplete category coverage and dataset imbalance.

This leads to the neglect of critical conditions, such as nutrient

deficiencies (Ridoy et al., 2024). To address this issue, we

constructed a novel peanut leaf disease dataset encompassing six

major disease categories, significantly enhancing the dataset’s

comprehensiveness and representativeness. This provides a richer

and more balanced sample set for model training.

Data collection was conducted from late June to mid-September

2024 in over 20 representative peanut fields in Zhengzhou City,
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Henan Province, China, covering the typical disease stages of major

leaf diseases throughout the peanut growth cycle. Image data were

primarily captured using a Fuji FinePix S4500 digital camera, with

an image resolution of 2017×2155 pixels, and saved in JPG format.

The distance between the camera and the leaves was controlled

within 20–35 cm. Image acquisition was mainly performed at three

time slots—7:00 AM, 1:00 PM, and 5:00 PM—to simulate different

lighting conditions in natural environments.

During the data collection process, various shooting

angles (including eye-level, top-down, and side views) and
Frontiers in Plant Science 03
diverse natural lighting conditions (such as sunny, cloudy, and

backlit scenarios) were fully considered to capture typical field scene

characteristics. The dataset covers all stages of disease progression,

from initial onset to severe development. The dataset comprises six

categories: early leaf spot disease, early rust disease, late leaf spot

disease, late rust disease, nutrient deficiency, and healthy leaves.

Through a rigorous image quality screening process, a total of 2,132

high-quality original image samples were retained, providing a solid

data foundation for subsequent model training and evaluation. The

dataset classification standards are presented in Table 1, and

samples from the peanut leaf disease dataset are shown in Figure 1.
2.2 Data analysis and preprocessing

To achieve precise detection and identification of peanut leaf

disease regions, under the guidance of plant protection experts, we

employed the LabelImg (Pande et al., 2022) tool for manual

annotation of disease targets in the collected images. Annotations

were based on the minimum bounding rectangle for each target,

ensuring that the bounding box closely fits the disease region to

minimize background interference, thereby enhancing the

localization accuracy of subsequent models.

Considering the limited number of original images and the

complex, variable nature of field environments, training models

directly with raw data may lead to overfitting and poor
TABLE 1 Classification criteria for the peanut leaf disease dataset.

Label Name Description

0
Early Leaf

Spot
Small, round, reddish-brown lesions appearing

primarily on the lower leaf surface

1 Early Rust
Tiny orange or yellowish pustules on the upper leaf

surface during early infection

2
Late-leaf-

spot
Large dark brown or black lesions with concentric

rings, often coalescing on leaves

3
Nutrition-
Deficiency

General yellowing, stunted growth, or vein chlorosis
not associated with pathogens

4 Rust
Numerous rust-colored pustules forming dense

clusters on both leaf surfaces

5 Healthy
Leaves with uniform green color, intact texture, and

no visible disease symptoms
FIGURE 1

Sample images from the peanut leaf disease dataset. (A) Early Leaf Spot. (B) Early Rust. (C) Late-leaf-spot. (D) Rust.(E) Nutrition-Deficiency.
(F) Healthy.
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generalization to broader application scenarios. To enhance the

model’s robustness and generalization ability, we applied multiple

data augmentation techniques to 2,132 annotated images,

including: horizontal and vertical flipping (50% probability), 90-

degree rotation (randomly selected from no rotation, clockwise

rotation, counterclockwise rotation, or vertical flipping), brightness

and contrast perturbation (randomly adjusting the original

brightness by ±5% to 10%), and random cropping (randomly

cropping in horizontal and vertical directions within a range of

-15° to +15°). Examples of these augmentations are shown in

Figure 2. These techniques effectively simulate diverse target

appearances under varying poses, lighting conditions, and

occlusions, thereby increasing the diversity of training samples.

After augmentation, the total number of images expanded to 7,363.
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The dataset was then split into training, validation, and test sets in

an 8:1:1 ratio, using a stratified random sampling strategy to ensure

consistent class distribution and representativeness. Detailed

information about the augmented dataset is provided in Table 2.
2.3 YOLO11 object detection model

YOLO11 (Khanam and Hussain, 2024), released by the

Ultralytics team in 2024, represents another major breakthrough

in the YOLO (You Only Look Once) series, particularly in terms of

architectural design and performance optimization. Building on the

end-to-end, single-stage detection framework advantages inherent

to the YOLO series, this model further integrates multiple
FIGURE 2

Data augmentation example diagram.
TABLE 2 Sample distribution after data augmentation.

Type Number of images
Number of labels

0 1 2 3 4 5

Training set 5890 1020 990 980 975 970 955

Validation set 736 128 125 122 120 120 121

Test set 737 129 126 123 119 122 118

Total 7363 1277 1241 1225 1214 1212 1194
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innovative structural modules, achieving a superior balance among

detection accuracy, inference speed, and deployment flexibility.

Depending on network depth and model complexity, YOLO11 is

available in five variants—N, S, L, M, and X—to accommodate

diverse application requirements ranging from resource-

constrained edge devices to high-performance computing

platforms. To evaluate the performance-efficiency trade-offs

across these variants, we compared key metrics, including

parameter count, mAP@50–95 accuracy, ONNX CPU and T4

TensorRT inference latency, and FLOPs, as detailed in Table 3.

As shown in Table 3, the YOLO11n variant achieves reasonable

detection accuracy (39.5% mAP) with the lowest parameter count

(2.6M) and computational complexity (6.5G FLOPs), reducing the

parameter count by approximately 24 times and FLOPs by over 30

times compared to the largest variant, X. This efficiency advantage

makes it an ideal baseline model for resource-constrained scenarios.

And this efficiency advantage, in turn, stems from the several key

architectural improvements that YOLO11 introduces to enhance

feature representation and computational efficiency. First, the

prediction head adopts the optimized C3k2 module, replacing the

traditional C2f structure. This module uses two smaller convolutional

kernels instead of a large one, reducing computational overhead and

parameter count while allowing flexible switching between

lightweight C2f and deeper C3 structures to meet diverse modeling

requirements. Second, the Spatial Pyramid Pooling Fast (SPPF) (He

et al., 2015) module is retained to enhance the receptive field, and a

new C2PSA (Channel-to-Pixel Spatial Attention) mechanism is

introduced to focus on critical spatial regions, improving detection

performance for small and occluded targets.

Finally, the detection head employs Depthwise Convolution

(DWConv) (Chollet, 2017) instead of standard convolution, further

reducing computational complexity and making it well-suited for

deployment in resource-constrained environments.
2.4 Improved model YOLO-PLnet

To enable efficient deployment of a peanut leaf disease detection

model on edge devices, lightweight improvements were made based

on the YOLO11n model. First, the Lightweight Adaptive Feature

Extraction (LAE) module was used to replace certain standard

convolutions in the backbone and neck networks. This module
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achieves multi-scale feature fusion with lower computational

complexity, enhancing the model’s perception of disease spot

regions. Second, a Convolutional Block Attention Module

(CBAM) was embedded in the multi-scale paths of the neck

network to further strengthen feature responses in critical regions,

improving the representation capability of high-resolution feature

maps for small disease spots and targets with blurred edges.

Additionally, the detection head was replaced with an Asymptotic

Feature Pyramid Network (AFPN), which employs a staged cross-

layer fusion strategy to effectively mitigate information

inconsistencies caused by semantic differences, thereby improving

the model’s adaptability and robustness in multi-scale disease

detection tasks. The overall structure of the improved lightweight

model, named YOLO-PLNet, is shown in Figure 3.

2.4.1 LAE module
Traditional convolution operations, due to their local

perception characteristics, tend to lose high-frequency

information in image edges and corners during downsampling.

These regions contain rich fine-grained features critical for object

detection tasks. In peanut leaf disease detection, disease spots often

appear at leaf edges or tips, and if edge information is weakened

during downsampling, it can lead to inaccurate target responses,

degrading the model’s detection performance. Moreover,

standard convolutions fail to fully exploit information differences

between adjacent pixels, often overlooking regions with high

information entropy, which reduces the discriminability of

feature representations.

The Lightweight Adaptive Extraction (LAE) module (Yin et al.,

2024) employs a dual-branch structure, utilizing group convolution

and an adaptive weighting mechanism to construct parallel paths,

thereby enhancing the representation of edge details and target

regions. The structure of the LAE module is illustrated in Figure 4.

Compared to standard convolution, the LAE module reduces the

parameter count to 1/N of the original and compresses spatial

information into the channel dimension, thereby lowering

computational complexity. The specific design of the LAE module

is detailed as follows:

First, the input feature map X ∈ RB�C�H�W is processed by

group convolution (GroupConv), in which the channel dimension

is divided into 16 groups (G = C=16). Each group performs an

independent 3� 3 onvolution operation to further enhance the
TABLE 3 Performance comparison of five variants of the YOLO11 model.

Variant
Parameters

(M)
mAP@50-95

(%)
FLOPs
(G)

Inference speed ONNX CPU
(ms)

Inference speed T4 TensorRT
(ms)

YOLO11n 2.6 39.5 6.5 56.1 ± 0.8 1.5 ± 0.0

YOLO11s 9.4 47 21.5 90.0 ± 1.2 2.5 ± 0.0

YOLO11m 20.1 51.5 68 183.2 ± 2.0 4.7 ± 0.1

YOLO11l 43.7 53.4 86.9 238.6 ± 1.4 6.2 ± 0.1

YOLO11x 62.1 54.7 194.9 462.8 ± 6.7 11.3 ± 0.2
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local feature representation capability. The process can be

formulated as Equation 1:

X0 = GroupConv3�3(X;G =
C
16

) ∈ RH�W�C (1)
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Then, a dimension rearrangement operation converts the

feature map into RH�W�C�4, forming four parallel multi-scale

branches. A Channel Attention Mechanism (CAM) is applied to

optimize the feature representation through global contextual

recalibration. Specifically, a Global Average Pooling aggregates
FIGURE 4

Module architecture of LAE.
FIGURE 3

YOLO-PLnet model architecture.
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spatial information to generate global contextual descriptors,

followed by a Softmax normalization to obtain the attention

weights A. The process can be formulated as Equation 2:

A = Softmax(Conv1�1(AvgPool3�3(X))) (2)

Finally, the attended feature Y is obtained by a weighted

summation of all branches as Equation 3:

Y =o
4

i=1
X0
i · Ai ∈ RH�W�C (3)

where X0
i and Ai denote the feature map and the corresponding

attention weight of the i-th branch, respectively. For the final

detection head, a Depthwise Separable Convolution (DSConv) is

applied for spatial down-sampling, which reduces the spatial

resolution from H �Wto H=2�W=2while keeping the channel

dimension unchanged. The operation can be expressed as Equation

4.

Output = DSConv(Y) ∈ R(H=2)�(W=2)�C (4)
2.4.2 CBAM module
The self-attention mechanism originated in natural language

processing (NLP) (Tsirmpas et al., 2024) and has found widespread

application in computer vision. By establishing global dependencies

between feature positions, it effectively enhances a model’s ability to

capture contextual information, making it particularly suitable for

visual tasks with complex spatial structures.

Considering the computational efficiency requirements of

lightweight detection models, this study opted for the

Convolutional Block Attention Module (CBAM) (Woo et al.,

2018)—a structurally simpler and more adaptable alternative to
Frontiers in Plant Science 07
the computationally intensive global self-attention mechanism.

Specifically, CBAM is integrated into the Path Aggregation

Network (PAN) multi-scale pathways of the YOLO-PLnet neck,

positioned after the Concat and Upsample operations, targeting the

fusion stage of multi-scale feature maps (P3, P4, P5). This placement

enables precise optimization of channel dependencies and spatial

attention foci during feature aggregation, enhancing the high-

resolution feature maps’ ability to detect small targets while

minimizing global computational overhead, aligning with the

design goals of a lightweight model. To optimize CBAM

performance, we employed Optuna for automated hyperparameter

tuning, focusing on adjusting parameters such as the reduction ratio

(channel compression rate), learning rate, and weight decay.

The CBAM module consists of a Channel Attention Module

and a Spatial Attention Module (SAM) connected in series, with its

model structure illustrated Figure 5. The computational processes

for the CAM and SAMmodules are described by Equations 5 and 6,

respectively, while the feature fusion process is represented by

Equation 7.

Mc(F) = s (MLP(AvgPool(F)) + MLP(MaxPool(F))) (5)

Ms(F) = s (f 7�7(½AvgPool(F);MaxPool(F)�)) (6)

F0 = Mc(F)⊗ F,  F00 = Ms(F
0)⊗ F0 (7)

Here, s represents the Sigmoid activation function, and ⊗
denotes element-wise multiplication. Through the combination of

these two-level attention mechanisms, CBAM effectively enhances

the response strength of salient regions while suppressing

redundant background information. Its lightweight structure

makes it suitable for integration into lightweight detection models.
FIGURE 5

Diagram of each attention sub-module.
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2.4.3 AFPN module
To further enhance the detection performance for multi-scale

disease spot regions, we integrated an Asymptotic Feature Pyramid

Network (AFPN) into the original YOLO11n architecture, with its

model structure depicted in Figure 6. AFPN employs a progressive

feature fusion strategy from shallow to deep layers, aiming to

mitigate the semantic misalignment issues caused by direct fusion

of features at different scales in the traditional Feature Pyramid

Network (FPN) (Yang et al., 2023). This module starts with adjacent

shallow features (e.g., C2 and C3), gradually incorporating higher-

level semantic features (e.g., C4 and C5), enabling layer-by-layer

injection of cross-level information while maintaining semantic

continuity. AFPN introduces lateral connections and cross-scale

fusion paths between adjacent features across multiple stages,

allowing low-level details and high-level semantics to align and

collaborate effectively in a progressive manner.

Unlike the top-down information flow of traditional FPN,

AFPN enables more flexible bidirectional communication and

introduces low-level semantic information early through staged

shallow prediction branches, enhancing the detection capability

for small targets and edge regions. Additionally, the Adaptive

Spatial Fusion (ASF) mechanism introduced by AFPN further

strengthens the information coupling between multi-scale

features. ASF dynamically allocates weights at each fusion stage

based on the response intensity of feature positions, achieving finer

spatial feature integration, effectively mitigating multi-scale

information conflicts, and improving fusion consistency. This

adaptive approach ensures robust performance across diverse field

conditions. The integration of ASF also reduces computational

redundancy, making it suitable for real-time applications.

Furthermore, the enhanced feature alignment supports better

generalization to unseen disease patterns. The cross-stage fusion

process of AFPN is detailed in Algorithm 1.
Fron
Input: Backbone features {C2, C3, C4, C5}

Output: Fused features {P2, P3, P4, P5}

//Stage 1. Bottom-Up Detail Fusion
tiers in Plant Science 08
1: C2_align ← Conv1×1(C2, out_channels=128)

2: C3_align ← Conv1×1(C3, out_channels=128)

3: C4_align ← Conv1×1(C4, out_channels=128)

4: C5_align ← Conv1×1(C5, out_channels=128)

5: F2_stage1 ← C2_align//Preserve raw edge details of

small lesions in C2

6: F3_stage1 ← AdaptiveFusion(C3_align, Upsample

(F2_stage1, scale=2))

7: F4_stage1 ← AdaptiveFusion(C4_align, Upsample

(F3_stage1, scale=2))

8: F5_stage1 ← AdaptiveFusion(C5_align, Upsample

(F4_stage1, scale=2))

//Stage 2: Top-Down Semantic Fusion

9: F5_stage2 ← F5_stage1//Preserve global semantics

10: F4_stage2 ←AdaptiveFusion(F4_stage1, Downsample

(F5_stage2, scale=0.5))

11: F3_stage2 ←AdaptiveFusion(F3_stage1, Downsample

(F4_stage2, scale=0.5))

12: F2_stage2 ←AdaptiveFusion(F2_stage1, Downsample

(F3_stage2, scale=0.5))

//Stage 3: Adaptive Weight Calibration

13: P2 ← WeightCalib(F2_stage2, focus=small_lesion)

14: P3 ← WeightCalib(F3_stage2, focus=small_lesion)

15: P4 ← WeightCalib(F4_stage2, focus=small_lesion)

16: P5 ← WeightCalib(F5_stage2, focus=small_lesion)

17: return {P2, P3, P4, P5}
Algorithm 1. AFPN staged cross-level fusion.
2.5 Edge deployment platform

To meet the requirements for real-time detection of peanut leaf

diseases in field conditions, along with low latency and low power

consumption, the study selected the NVIDIA Jetson Orin NX as the

edge deployment platform. This device integrates 1,024 CUDA

cores and 32 Tensor Cores, delivering an AI inference performance

of up to 100 TOPS at INT8 precision. It can efficiently run deep
FIGURE 6

AFPN model architecture diagram.
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neural networks locally, avoiding the delays and instability

associated with network transmission. Additionally, the Jetson

Orin NX supports the development of end-to-end accelerated AI

applications through the JetPack SDK, facilitating model

optimization, deployment, and on-site integration. As shown in

Figure 7, this platform offers advantages such as miniaturization,

high performance, and low power consumption, making it suitable

for edge devices like agricultural robots and plant protection drones.

This supports on-site localization and rapid response to peanut

disease spots. Detailed hardware specifications are provided

in Table 4.
3 Results

3.1 Experimental setup

To ensure the fairness and reproducibility of model training, all

experiments were conducted on a unified laboratory server. The

server operates on Ubuntu 20.04 LTS, with a configuration

including a 16-core Intel(R) Xeon(R) Platinum 8352V CPU @

2.10GHz, 120 GB of RAM, and an NVIDIA GeForce RTX 4090

(24 GB VRAM). The software environment consists of Python 3.8 +

PyTorch 1.11, with CUDA version 11.3 and the cuDNN

acceleration library integrated to enhance GPU inference

efficiency. All models were trained on this platform using

consistent hyperparameter settings to ensure result comparability,

with training parameter configurations detailed in Table 5.
3.2 Evaluation metrics

To comprehensively evaluate the model’s performance in object

detection tasks, multiple evaluation metrics were used to assess the

detection results, including Precision, Recall, and Mean Average

Precision (mAP). Among these, mAP is a key metric for measuring
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detection accuracy and is widely used to evaluate a model’s ability to

recognize targets across different IoU thresholds.

To assess the model’s robustness and generalization capability

under varying detection conditions, two additional metrics, mAP@

0.5 and mAP@0.5:0.95, were introduced. mAP@0.5 represents the

average detection accuracy at an IoU threshold of 0.5, primarily

measuring the model’s basic detection capability. mAP@0.5:0.95, on

the other hand, calculates the average precision across IoU

thresholds ranging from 0.5 to 0.95 (with a step size of 0.05),

providing a more comprehensive reflection of the model’s detection

stability and generalization performance across multi-scale and

multi-class scenarios. The calculation formulas for the relevant

evaluation metrics are shown in Equations 8-11.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

AP =
Z 1

0
P(R)dR (10)

mAP =
1
No

N

i=1
APi (11)

Here, TP represents the number of samples correctly detected as

positive, FP denotes the number of samples incorrectly detected as

positive, FN indicates the number of positive samples missed, and

APi refers to the average precision for the i-th class.

In practical deployment, the model must not only achieve high

detection accuracy but also ensure operational efficiency in

resource-constrained scenarios, particularly in agricultural

contexts like peanut leaf disease detection, where models are often

deployed on edge devices such as agricultural robots or field

stations. To address this, four additional lightweight evaluation

metrics were introduced: parameter count (Params), computational

complexity (GFLOPs), model size (Model Size), and average

detection frames per second (FPS), to quantify the model’s

resource consumption and deployment performance.

Among these, the parameter count reflects the structural

complexity of the model and serves as a core indicator of model

compression, with its calculation method shown in Equation 12.

GFLOPs represent the number of floating-point operations

performed per second, indicating the model’s inference efficiency

and computational load, with the formula provided in Equation 13.

Model size indicates the storage space occupied by the model,

calculated as shown in Equation 14. FPS measures the model’s

ability to process images per unit time, reflecting its real-time

inference performance, with the formula given in Equation 15. To

further characterize resource consumption during deployment,

three additional metrics—inference latency (Latency), power

consumption (Power Consumption), and memory usage

(Memory Usage)—were introduced. These metrics respectively

reflect the time required for the model to process a single frame
FIGURE 7

Jetson Orin NX developer kit for edge deployment.
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on edge devices, the level of energy consumption, and the utilization

of memory resources.

Params = O o
n

i=1
M2

i · K
2
i · Ci−1 · Ci

 !
(12)

GFLOPs = O o
n

i=1
K2
i · C

2
i−1 · Ci +o

n

i=1
M2 · Ci

 !
(13)

Model Size ðMBÞ = Params · b
8 · 106

(14)

FPS =
Np

T
(15)
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Among them, Mi represents the total number of samples

correctly detected as positive in the i-th class; Cidenotes the total

number of positive samples in the i-th class, with Ci−1 representing

the cumulative sum of positive samples up to the (i − 1)-th class; Np

refers to the total number of positive samples across all classes; b

and indicate the batch size (set to 32).
3.3 YOLO-PLnet performance detection

To comprehensively compare the detection performance of the

improved model with the baseline model, Figure 8 illustrates the

comparison of Precision, Recall, mAP@0.5, and mAP@0.5:0.95 for

YOLO-PLNet and YOLO11n during the training process. It can be

observed that within the first 110 epochs, the Precision and Recall

curves of YOLO-PLNet still exhibit some fluctuations, reflecting the

model’s adaptation and adjustment process to multi-scale target

features in the early stages. As training progresses, the curves

gradually stabilize and eventually converge. The final Precision

and Recall reach 97.1% and 94.2%, respectively, representing

improvements of 1.8% and 1.7% over YOLOv11n. Regarding

accuracy metrics, mAP@0.5 stabilizes after the 80th epoch, while

mAP@0.5:0.95 fluctuates and converges around the 155th epoch,

ultimately achieving 98.1% and 94.7%, respectively.

The improvements in the aforementioned detection results are

primarily attributed to the lightweight enhancements made to the

baseline model in YOLO-PLNet. By introducing the LAE module

with its parallel dual-branch convolution structure, the model

enhances feature response capabilities across different scales and

spatial distributions, enabling robust target perception even when

dealing with unevenly distributed and blurred boundary disease

spots on peanut leaves. This is particularly evident in disease types

such as leaf spot and rust, where edge transitions are fuzzy and color

changes are subtle; the module significantly elevates the model’s

fine-grained discrimination level. Additionally, the integrated

CBAM attention mechanism in the feature fusion paths effectively

suppresses non-target interferences in complex field backgrounds,

such as water stains and reflective spots, further strengthening the

model’s focus distribution and representational stability on disease

areas. The cross-scale information fusion strategy based on AFPN

ensures higher representational consistency when integrating

shallow texture features with deep semantic features, enhancing

the model’s generalization capability for multi-scale disease regions

on peanut leaves. This makes it well-suited for practical detection

needs in natural field scenarios characterized by strong lighting

variations, cluttered backgrounds, and unclear disease

spot boundaries.

Figure 9 presents a visual comparison of the improved model

YOLO-PLNet and the baseline model YOLO11n in the task of

peanut leaf disease detection. Overall, YOLO-PLNet significantly

outperforms the original model in terms of target localization

accuracy and semantic focus capability. In the visualization of

detection boxes, YOLO-PLNet more accurately covers disease

spot regions, maintaining stable and reliable detection

performance even in samples with densely distributed spots,
TABLE 4 Jetson Orin NX parameters.

Parameter Description

AI
Performance

100 TOPS (INT8)

GPU
NVIDIA Ampere architecture with 1024 CUDA cores and 32

Tensor Cores

CPU
8-core Arm® Cortex®-A78AE v8.2 64-bit, 2 MB L2 +

4 MB L3

Memory 16 GB 128-bit LPDDR5, 102.4 GB/s

Storage Supports M.2 NVMe SSD

Video Encode
1× 4K60 (H.265), 3× 4K30 (H.265), 6× 1080p60 (H.265),

12× 1080p30 (H.265)

Video Decode
1× 8K30 (H.265), 2× 4K60 (H.265), 4× 4K30 (H.265),

9× 1080p60, 18× 1080p30 (H.265)

Power Configurable 10W, 15W, 25W

Camera
Interface

2× MIPI CSI-2 D-PHY camera connectors

USB 4× USB 3.2 Gen2 (Type-A), 1× USB Type-C (UFP)
TABLE 5 Training parameter settings.

Hyperparameter Value

Epochs 200

Image size 640 × 640

Batch size 16

Optimizer SGD

Workers 16

lr0 0.005

lrf 0.01

momentum 0.937

Mosaic False

Cross-Validation 5-fold stratified
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blurred edges, or faint-colored mild lesions. In contrast, the

YOLOv11n model exhibits issues such as missed detections,

detection box offsets, and inaccurate edge judgments in some

samples, indicating limitations in its perceptual ability under

complex disease representations. To further analyze the model’s

focus area distribution during inference, the study employed the

Grad-CAM (Selvaraju et al., 2017) method to visualize the

intermediate features of the YOLO-PLNet model. The heatmap

results, shown in Figure 9d, clearly reveal that the activation regions

are highly concentrated on the core areas of the disease spots,

exhibiting a distinct hotspot response distribution. This

demonstrates that the model can effectively extract discriminative

features in complex backgrounds while maintaining stable attention

on key regions.

Since peanut leaf diseases in the field typically exhibit a “one

leaf, one disease” or “single-point outbreak” characteristic, a single

image often contains only 1–2 disease targets, resulting in a

relatively low number of bounding boxes in the detection results.

However, during the data construction phase, class balance was

carefully considered to ensure an even distribution of the six classes
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across the training and test sets (as detailed in Table 2), preventing

model training bias. As shown in Figure 10, analysis via the

Precision-Recall Curve reveals that YOLO-PLNet performs

excellently across most categories. Notably, in the Early Rust

category, the model achieves an AP of 0.994, nearly perfect,

indicating extremely accurate target recognition for this class in

images. In contrast, the AP for the Late-Leaf Spot category is 0.927,

suggesting some challenges in recognizing this class, possibly due to

similar disease spot features or complex backgrounds that make

differentiation difficult for the model. Overall, YOLO-PLNet

demonstrates stable and reliable comprehensive performance,

achieving excellent AP results across most categories.

To further analyze the detection performance and

distinguishability of the YOLO-PLNet model across the six classes

of peanut leaf disease targets, Figure 11 presents the normalized

confusion matrix for YOLO-PLNet on the test set. As shown in the

figure, the prediction results for the Early Rust (1.00), Late-Leaf-

Spot (0.94), Rust (0.94), and Healthy (0.94) categories are highly

accurate, indicating strong stability in the model’s recognition of

mainstream disease spots and healthy leaves. In contrast, the Early
FIGURE 8

Performance comparison curves of YOLO-PLNet and YOLO11n.
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Leaf Spot (0.89) and Nutrition-Deficiency (0.91) categories exhibit

some degree of confusion, with certain samples being misclassified

as other disease categories or background. This may be attributed to

similar disease spot features or background interference. Notably,
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the Early Leaf Spot category has a background misclassification rate

as high as 28%, suggesting that the blurred boundaries or colors

resembling the background of this disease type pose challenges for

the model during recognition.
FIGURE 9

Visualization comparison of YOLO11n and YOLO-PLNet on peanut leaf disease detection.
0FIGURE 1

Precision-recall curve for peanut leaf disease detection.
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3.4 Lightweight performance comparison

To further evaluate the comprehensive performance of YOLO-

PLNet in terms of accuracy retention and adaptability to edge

deployment, this study conducted a comparative analysis with

current mainstream lightweight detection models, including

NanoDet-Plus (Sun and Zhuang, 2025), PP-YOLOE-s (Wang

et al., 2025b), and RT-DETRv2 (Lv et al., 2024). As shown in

Table 6, YOLO-PLNet achieves a superior balance among model

complexity, inference speed, and detection accuracy.

Experimental results demonstrate that YOLO-PLNet achieves

excellent detection accuracy (mAP@0.5: 98.1%) while maintaining

extremely low complexity (2.13 M parameters, 4.51 MBmodel size),

showcasing a remarkable balance between precision and efficiency.

Compared to similar lightweight models, YOLO11n and YOLOv8n,

its detection accuracy improved by 1.6% and 3.3%, respectively. In

deployment tests on the Jetson Orin NX platform using TensorRT-

FP16, the inference latency was reduced by approximately 27%

compared to the baseline model.

Further analysis from the perspective of inference efficiency

reveals varying performance tendencies among the compared

models on edge devices. NanoDet-Plus achieves the lowest
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inference latency (8.2 ms), but its detection accuracy is

significantly lower, failing to meet the accuracy requirements of

practical applications. PP-YOLOE-s, YOLO11n, and YOLOv8n

exhibit inference times of 18.4 ms, 21.3 ms, and 22.6 ms,

respectively, all meeting the basic frame rate requirements for

real-time detection, yet their overall performance remains inferior

to YOLO-PLNet. Conversely, RT-DETRv2, due to its complex

architecture, has the highest inference latency (28.0 ms), limiting

its applicability in edge warning scenarios that emphasize

rapid response.
3.5 Ablation experiment

To systematically assess the actual contribution of the improved

modules to the overall model performance, this study designed an

ablation experiment as outlined in Table 7. Using YOLO11n as the

baseline model, the lightweight feature enhancement module LAE,

attention module CBAM, and multi-scale fusion structure AFPN

were gradually introduced, with a comparative analysis conducted

on their individual and combined configurations. Evaluation

metrics, including mAP@0.5, mAP@0.5:0.95, parameter count,

computational complexity, and model size, were used to quantify

the trade-offs of each component in terms of performance and

resource overhead.

From the perspective of detection performance, the baseline

model YOLO11 achieves mAP@0.5 and mAP@0.5:0.95 values of

96.7% and 93.0%, respectively. After introducing the LAE module,

mAP@0.5 increases to 97.5%, mAP@0.5:0.95 rises to 93.5%, and the

parameter count and computational complexity decrease to 2.52M

and 6.0G, respectively. This demonstrates that the LAE module can

maintain effective information perception while significantly

reducing parameter redundancy and computational burden,

thereby improving the model’s overall computational efficiency.

The subsequent addition of CBAM further boosts mAP@0.5 to

97.7% and mAP@0.5:0.95 to 93.9%, confirming that the attention

mechanism enhances the model’s response to key disease spot

regions and improves its recognition of complex backgrounds and

fine-grained features. The introduction of AFPN in the detection

head, through adaptive weighting, enables dynamic fusion of multi-

scale features, enhancing the model’s ability to detect disease targets

of varying scales—especially small-scale spots—while effectively

suppressing interference from low-quality features and
TABLE 6 Comparison of YOLO-PLNet and lightweight detectors on edge.

Model mAP@0.5 (%) Params (M) FLOPs (G) Size (MB) Inference Time(ms)

NanoDet-Plus 89.7 1.18 1.5 2.3 8.2

PP-YOLOE-s 93.1 7.9 18.2 15.6 18.4

RT-DETRv2 89.6 16.5 32 58 28

YOLOv8n 94.8 3.6 7.2 5.6 22.6

YOLO11n 96.5 2.6 6.5 5.35 21.3

YOLO-PLNet 98.1 2.13 5.4 4.51 15.6
Bold values indicate the results of the proposed YOLO-PLNet detector.
FIGURE 11

Confusion matrix of YOLO-PLNet on the test set.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1707501
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2025.1707501
maintaining low computational overhead. When all three modules

(LAE, CBAM, and AFPN) are integrated simultaneously, YOLO-

PLNet achieves optimal detection accuracy while effectively

reducing model parameter count and weight size, providing

strong support for the efficient detection of peanut leaf diseases

and deployment on edge devices.
3.6 Comparison with baseline models

To further validate the comprehensive performance of the

YOLO-PLNet model in object detection applications, a systematic

comparison was conducted with eight representative detection

models, including the classic two-stage detector (Faster R-CNN)

(Ren et al., 2016), the lightweight single-stage detector SSD, and

several mainstream lightweight versions of the YOLO series:

YOLOv5n, YOLOv6n (Li et al., 2022), YOLOv7-tiny, YOLOv9t

(Wang et al., 2025a), and YOLOv10n (Wang et al., 2024). The

relevant results are presented in Table 8.

From the comparison results, the lightweight YOLO-PLNet

model demonstrates clear advantages over mainstream object

detectors in terms of detection accuracy and model complexity.

YOLO-PLNet achieves an mAP@0.5 of 98.1% and an mAP@

0.5:0.95 of 94.7%. Compared to the benchmark models

YOLOv5n, YOLOv6n, YOLOv7-tiny, YOLOv9t, and YOLOv10n,

YOLO-PLNet shows improvements in mAP@0.5 by 13.8%, 9.7%,

7.8%, 4.6%, and 5.3%, respectively, and in mAP@0.5:0.95 by 15.5%,

12.0%, 11.6%, 6.1%, and 6.8%, respectively. The largest

improvement is 13.8% (relative to YOLOv5n), and the smallest is

5.3% (relative to YOLOv10n). Compared to the classic detectors
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SSD and Faster R-CNN, YOLO-PLNet also achieves significant

enhancements in both accuracy metrics. In terms of lightweight

metrics, YOLO-PLNet’s parameter count, FLOPs, and model file

size are 2.13M, 5.4G, and 4.51MB, respectively, making it the best-

performing among all compared models. This fully demonstrates

that the improved YOLO-PLNet model offers high detection

accuracy while providing effective support for real-time detection

tasks in resource-constrained scenarios.
3.7 Edge deployment and inference
evaluation

With the advancement of edge computing technology, the

deployment of deep learning models not only prioritizes high

accuracy but also requires balancing runtime speed and resource

usage. To verify the deployment adaptability and real-time

inference capability of the improved model YOLO-PLNet on edge

devices, we established a complete inference pipeline covering real-

world peanut field scenarios, as shown in Figure 12. This pipeline

builds directly on the Jetson Orin NX Developer Kit (Figure 7),

which serves as the hardware foundation.On the platform, the

trained YOLO-PLNet model was first exported from the.pt

format to an ONNX intermediate representation and then

optimized into an.engine inference engine file using the TensorRT

toolchain. To simulate the dynamic monitoring needs in the field,

an industrial-grade CSI (Camera Serial Interface) camera was

introduced, capable of capturing real video streams that include

natural lighting variations and leaf movement interference. By

deserializing and loading the.engine file with the TensorRT
TABLE 8 Performance comparison of different object detection models.

Model mAP@0.5 (%) mAP@0.5:0.95 (%) Params (M) FLOPs (G) Size (MB)

Faster R-CNN 55.7 20.3 40.1 34.7 339.7

SSD 51.2 29.4 29.51 30.1 169.72

YOLOv5n 84.3 79.2 3.23 7.6 7.81

YOLOv6n 88.4 82.7 4.82 12.2 8.32

YOLOv7-tiny 90.3 83.1 6.21 11.7 10.81

YOLOv9t 93.5 88.6 3.14 12.1 5.1

YOLOv10n 92.8 87.9 2.81 8.1 5.71

YOLO-PLNet (Ours) 98.1 94.7 2.13 5.4 4.51
Bold values indicate the results of the proposed YOLO-PLNet detector.
TABLE 7 Ablation experiments of different modules.

YOLO11 LAE CBAM AFPN mAP @0.5
mAP

@0.5:0.95
Params (M) FLOPs (G) Size (MB)

✓ × × × 96.70% 93.00% 2.6 6.5 5.35

✓ ✓ × × 97.50% 93.50% 2.52 6 5.23

✓ ✓ ✓ × 97.70% 93.90% 2.45 5.6 4.95

✓ ✓ ✓ ✓ 98.10% 94.70% 2.13 5.4 4.51
Bold values indicate the results of the proposed YOLO-PLNet detector.
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runtime, combined with the input of real field video streams from

the camera, frame-by-frame real-time inference and visualization

were performed, validating the model’s deployment performance in

dynamic and complex edge scenarios.

To verify the inference efficiency of the model on edge devices,

this study conducted experiments based on the edge deployment

inference pipeline shown in Figure 12, utilizing the mainstream

inference framework TensorRT (Xia et al., 2022). TensorRT offers

various precision optimization methods, including FP16 half-

precision and INT8 integer quantization deployment modes. The

FP16 precision uses half-precision floating-point representation,

offering significant advantages such as fast computation speed and

low memory usage, making it widely used in efficient inference

scenarios on edge devices. In contrast, INT8 precision quantizes

weights and activation values into 8-bit integers, enabling further

reduction in model size and device power consumption while

maintaining a certain level of accuracy, which aligns well with the

needs of resource-constrained edge devices.

After completing model training, the Post-Training

Quantization (PTQ) (Li et al., 2021) toolchain provided by

TensorRT was used to directly convert the original ONNX model
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(FP32 precision) into FP16 and INT8 precision versions, avoiding

the high cost of retraining. These were then deployed on the Jetson

Orin NX platform to verify the impact of different quantization

strategies on deployment performance, with the detailed results

presented in Table 9.

The results indicate that differences in detection accuracy under

varying quantization precisions during edge deployment are

minimal, while the improvements in inference efficiency and

resource utilization are significant. The INT8 quantized model

reduces inference latency by 38.21% and increases frame rate by

46.45% compared to FP16, while also featuring lower memory

usage and power consumption. Compared to the original FP32

precision, the inference efficiency is substantially enhanced, directly

supporting resource-constrained, real-time detection scenarios such

as peanut field agricultural machinery patrols, particularly for

battery-powered agricultural drones.

Although the YOLO-PLNet model was trained with a fixed

input size of 640×640, the industrial CSI camera in actual

deployment may differ from the model input size due to

variations in field of view and video resolution. To assess the

model’s adaptability to real-field data, tests were conducted with
TABLE 9 Deployment performance comparison under FP16 and INT8 precision configurations.

Quantization Precision
Latency
(ms/img)

FPS
(frame/s)

GPU Memory Usage (%) Power Consumption(W) mAP@0.5 (%)

FP32 32.5 15.4 62.3 5.2 98.1

FP16 19.1 28.2 52.1 4.1 98

INT8 11.8 41.3 48.6 3.4 97.5
FIGURE 12

Edge deployment and inference process.
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three input sizes: 320×320, 640×640, and 1280×1280, with the

relevant results presented in Table 10.

The experimental results show that higher resolutions lead to

increased inference latency and power consumption. While higher

resolutions can retain more information about leaf disease spots, the

focus of this experiment was to evaluate inference performance

across multiple resolutions. After consideration, 640×640 was

selected as the recommended input size. In actual deployment,

the field video streams captured by the camera will be preprocessed

to this size for input into the model, with inference results output

directly to the agricultural machinery cab display via a visualization

interface, providing operators with intuitive disease warnings.
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Figure 13 displays the keyframe detection results obtained from

video stream inference, covering six classes of peanut leaf diseases

(categories 0–5), represented by bounding boxes in different colors.

The inference process was conducted on the Jetson Orin NX

platform, and the results visually demonstrate the model’s ability

to detect and recognize real peanut leaf images in the field on edge

devices, verifying its feasibility and practical value in actual

deployment environments.
4 Discussion

In recent years, crop disease detection methods based on deep

learning have emerged as a focal point in the research of intelligent

agricultural monitoring (Khan et al., 2025). Numerous studies have

attempted to enhance the identification capability and detection

accuracy of disease spot regions by optimizing target detection

network architectures. Liu et al. proposed the A-Net model, an

improvement on YOLOv5, incorporating attention mechanisms,

Wise-IoU loss function, and RepVGG modules, effectively boosting

apple leaf disease detection accuracy to an mAP@0.5 of 92.7% (Liu

and Li, 2024). Xie et al. developed a strawberry disease detection
FIGURE 13

Detection results of YOLO-PLNet on key frames from video stream.
TABLE 10 Deployment performance of YOLO-PLNet under different
input sizes.

Input
Resolution

Latency
(ms/img)

FPS
(frame/s)

Power
Consumption

(W)

320×320 16.7 52.4 3

640×640 19.1 28.2 4.1

1280×1280 32.6 13.4 6
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model based on YOLOv8, integrating CBAM, DySample, and

ODConv, achieving an accuracy of 98.0% (Xie et al., 2024a).

However, these approaches predominantly focus on improving

algorithmic precision while overlooking various challenges in

practical agricultural applications, particularly the limitations of

computational resource constraints and high real-time

requirements when deploying disease detection models on edge

computing devices, which hinder their widespread adoption in real-

world scenarios.

To address these challenges, this study proposes an improved

target detection model, YOLO-PLNet, based on YOLO11n. One of

the most significant findings is the substantial enhancement in the

model’s ability to detect small disease spots through the introduction

of the AFPN. In the early stages of peanut diseases, leaf spot and rust

often manifest as tiny features spanning only a few pixels. Traditional

feature pyramid networks tend to lose these details during multiple

downsampling steps. In contrast, our fusion strategy, by reinforcing

the shallow feature flow in the top-down pathway, effectively

integrates high-resolution features rich in detail with low-resolution

features rich in semantics. This enables the model to retain the overall

context of the leaf while accurately identifying and locating these

minute early-stage spots, thereby providing a technical foundation for

early warning and intervention.

Furthermore, accurately classifying visually similar diseases is

crucial. For peanut leaf spot and rust, their distinct biophysical

characteristics are key: leaf spot manifests as dark necrotic patches

with noticeable texture changes, while rust is characterized by

yellowish-brown urediniospore pustules and distinct spectral

features, such as a reflection peak at 520–600 nm (Lin et al.,

2025). YOLO-PLNet integrates lightweight channel and spatial

attention mechanisms, enabling adaptive calibration of feature

maps. For instance, when processing suspected rust areas, it

enhances responses to specific color channels; when analyzing leaf

spot, it prioritizes edge and texture variations. This targeted

learning of disease-specific biophysical features aligns closely with

recent research using attention mechanisms to decode subtle plant

phenotypic patterns (Tang et al., 2025). Comparative evaluations

demonstrate that YOLO-PLNet achieves mAP@0.5 of 98.1% and

mAP@0.5:0.95 of 94.7%, surpassing existing benchmarks. Its edge

deployment on the Jetson Orin NX further validates its practicality.

At INT8 precision, it delivers a real-time detection speed of 41.3

FPS, offering a critical advantage for resource-constrained

platforms. Although INT8 quantization results in a slight

accuracy drop, the resulting reductions in power consumption

and speed improvements are vital for battery-powered mobile

platforms, such as agricultural drones and inspection robots. This

efficiency is supported by the Orin NX’s approximately 100 TOPS

INT8 performance, enabling uninterrupted field operations and

meeting the growing demand for sustainable edge AI in agriculture.

Although this study constructed a high-quality peanut leaf

disease dataset and developed a lightweight detection model

tailored for edge devices, certain limitations remain. First, the

model’s generalization ability requires further improvement. Its

performance has not been fully validated across diverse regional

peanut varieties, unknown disease types, or cross-crop scenarios
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(e.g., corn, soybean), which may limit its adaptability in varied

agricultural environments. Second, there are potential risks related

to data privacy and commercial confidentiality. The current

centralized training approach, when deployed across multiple

farms, may lead to the leakage of sensitive agricultural

information, such as planting layouts and variety characteristics,

posing ethical and security concerns.

To address these limitations, future research can pursue the

following directions: First, to enhance cross-scenario adaptability,

advanced techniques such as domain adaptation and open-set

recognition should be explored to improve the model’s

compatibility with diverse crops, unknown diseases, and complex

field conditions. Second, a privacy-preserving collaborative training

framework should be developed, leveraging federated learning to

enable distributed training across farms, integrating multi-source

farm data for iterative optimization.
5 Conclusion

This study proposes a lightweight object detection model for

peanut leaf disease, YOLO-PLNet, designed for edge deployment.

Built on the foundation of YOLOv11, the model incorporates

structural improvements such as LAE, CBAM, and AFPN to

enhance feature representation capability and detection accuracy.

The main research conclusions are as follows:
1. The YOLO-PLNet model achieved an mAP@0.5 of 98.1%

and an mAP@0.5:0.95 of 94.7% on the peanut disease

dataset. Additionally, its parameter count, FLOPs, and

model size were reduced by 18.07%, 16.92%, and 15.70%,

respectively, compared to the baseline model YOLOv11n,

effectively achieving model lightweighting and providing

favorable conditions for edge deployment.

2. Deployed on the Jetson Orin NX edge device, the INT8

precision quantization, compared to FP16, reduced

inference latency by 38.21%, increased FPS by 46.45%,

and significantly lowered memory usage and power

consumption, while detection accuracy slightly decreased

to 97.5%. This enables the model to perform efficient real-

time disease detection on low-power embedded platforms.

3. Under multi-resolution inputs, 640×640 delivered optimal

inference results on the edge device, making it suitable for

moderately resolved image streams in farmland scenarios.

Combined with CSI camera video input, it enabled end-side

automatic detection and visualized feedback.
In summary, the proposed YOLO-PLNet model offers high

accuracy, low resource consumption, and excellent engineering

deployability, making it suitable for peanut leaf disease

monitoring tasks on agricultural edge intelligent terminals. In the

context of sustainable agricultural development, this model can

provide farmers with precise disease warning information, enabling

targeted disease management, reducing unnecessary pesticide use,

and promoting green agriculture. Future research could integrate
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the model with IoT sensors to further enhance its real-time

performance and adaptability in practical agricultural scenarios,

contributing to the widespread adoption of agricultural automation

and intelligent management.
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