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Variation in leaf functional traits
of Pinus armandii and their
drivers along an altitudinal
gradient in Karst mountains
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!College of Ecological Engineering, Guizhou University of Engineering Science, Bijie, Guizhou, China,
2Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau
Wetlands, Bijie, Guizhou, China

Introduction: Leaf functional traits are pivotal indicators of plant ecological
strategies, reflecting adaptations to environmental conditions. However, the
patterns of intraspecific trait variation along environmental gradients and their
underlying drivers remain inadequately explored, particularly in fragile
ecosystems like karst landscapes.

Methods: We investigated 12 leaf functional traits (encompassing morphological
and chemical characteristics) of Pinus armandii along an elevational transect
(2128 to 2509 m) in the Karst mountainous region of southwestern China. Using
correlation and redundancy analyses, we examined altitudinal trends in trait
variation and their relationships with key soil factors.

Results: Our results revealed substantial intraspecific variability in all leaf traits,
with coefficients of variation ranging from 3.24% to 28.15%. Specific leaf area, leaf
length, thickness, area, carbon content, potassium content, and the ratios of C:N,
C:P, and N:P decreased significantly with increasing elevation. Conversely, leaf
dry matter content, nitrogen content, and phosphorus content increased
significantly. We found notable coordination and trade-offs among traits,
forming an integrated network centered on the C:N ratio. Soil factors—
specifically soil organic carbon, pH, and available potassium—were identified as
the primary drivers of this trait variation.

Discussion: P. armandii in karst mountainous regions adapts to elevational
changes through coordinated adjustments in leaf functional traits, thereby
optimizing resource acquisition and use strategies. These findings advance our
understanding of plant adaptation mechanisms in such fragile environments.
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1 Introduction

Global change is rapidly and extensively altering species
distributions, biodiversity, and ecosystem functioning (Batllori
et al, 2020; Chapin et al., 2000), with profound implications for
human well-being (Wang et al, 2021). These changes reshape
biodiversity through extinctions, range shifts, and population
fluctuations, thereby profoundly altering ecosystem functions
(Cardinale et al,, 2012; De Laender et al., 2016). Predicting these
changes is crucial for conservation and restoration, yet remains
challenging due to species diversity and ecosystem complexity.
Plant persistence under rapid climate change hinges on adaptive
capacity through phenotypic plasticity or genetic change (Nicotra
et al, 2015). Consequently, understanding how plant traits respond
plastically or genetically along existing environmental gradients is
essential for predicting in situ persistence under climate change
(Chevin and Lande, 2010; Anderson and Gezon, 2015).

Plant functional traits-morphological, physiological, or
phenological characteristics-directly reflect plant survival and
resource-use strategies across environmental gradients, revealing
evolutionary trade-offs and ecological strategies from physiology to
ecosystem function (Wright, 2010; Kumari et al., 2021). As primary
sensors of global change, plants dynamically adjust traits (e.g., leaf
morphology, nutrient allocation) in response to climatic stressors,
serving as indicators of ecosystem resilience (Wang et al., 2020;
Zhang et al., 2020). Among plant functional traits, leaf functional
traits (LFTs), the direct plant-atmosphere interface, are particularly
sensitive diagnostic tools. Traits like specific leaf area (SLA), leaf
nitrogen content (LNC), leaf dry matter content (LDMC), and
photosynthetic capacity are highly sensitive to temperature,
moisture, soil nutrients, and altitude (Klich, 2000; Wright et al,
2004; Ordoniez et al., 2009; Ni et al., 2022), elucidating resource
acquisition strategies (e.g., leaf economics spectrum) and
evolutionary responses to pressures like drought or nutrient
limitation (Wright et al., 2004; Reich et al., 2003; Akram et al.,
2023). While phylogeny influences LFTs, environmental filters
dominate regional trait variation, especially in dynamic habitats
(Akram et al., 2023; Liu et al, 2013), underscoring the need to
resolve trait responses at the species and population level to scale
ecological insights (Navas et al,, 2010). Thus, studying PFTs,
particularly LFTs, provides a powerful framework for deciphering
plant-environment interactions and predicting ecosystem responses
to global change (Webb et al, 2010; Diaz et al, 2016; Wang
et al., 2023).

Plant functional traits variation underpins species coexistence,
community assembly, and ecosystem processes. Intraspecific trait
variation (ITV), driven by phenotypic plasticity and local
adaptation, constitutes a significant component (up to 30-40%) of
total trait variation (Albert et al., 2010; Kattge et al, 2011). ITV
critically influences species’ niche breadth, adaptive capacity
(Ackerly and Cornwell, 2007), community stability, and
ecosystem functioning (Violle et al, 2012; Westerband et al,
2021). However, methodological constraints often lead researchers
to rely on species mean traits, potentially obscuring individual-level
responses (Westerband et al., 2021). ITV is heterogeneous along
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environmental gradients like elevation, arising from divergent life
forms (Frey et al,, 2016; Korner, 2007), ontogenetic plasticity
(Siefert et al., 2015), variable precipitation-elevation relationships
(Korner, 2007; Martin and Asner, 2009), and evolutionary
divergences (Wellstein et al., 2017). Traits also exhibit differential
plasticity: structural traits (e.g., SLA, LT) often show high ITV
tracking environmental filters, while others (e.g., wood density)
display constrained variation due to genetic limitations or counter-
gradient responses (Siefert et al., 2015; Umana et al., 2018). This
context-dependency explains inconsistent ITV patterns across
studies. A key unresolved question is the link between ITV and
individual performance along gradients: whether ITV reflects local
adaptation towards an optimum or serves as phenotypic buffering
to maintain performance across conditions (Korner, 1991).
Therefore, analyzing multi-trait ITV within species across
gradients is vital for scaling eco-physiological processes,
elucidating assembly mechanisms, and forecasting
biodiversity responses.

Mountain ecosystems, characterized by steep environmental
gradients, provide unparalleled natural laboratories for studying
plant functional responses (Korner, 2007; Graae et al, 2012).
Elevational gradients induce systematic shifts in temperature,
radiation, moisture, and soil conditions, imposing strong selective
pressures that drive intraspecific variation in LFTs linked to
resource strategies (Violle et al., 2007; Sides et al., 2014).
Typically, lower elevations favor resource-acquisitive traits (e.g.,
higher SLA), while higher elevations typically select for conservative
strategies (e.g., reduced SLA, increased LDMC) (Callaway et al.,
2002; Poorter et al., 2009; Pfennigwerth et al., 2017). However, trait
responses exhibit significant complexity, showing species
specificity, phylogenetic constraints, and functional group
divergence (He et al, 2023). Empirical findings for core traits
(e.g., SLA, LNC) are often inconsistent across studies, showing
increases, decreases, or no trend with elevation (Melis et al., 2023;
Xu et al, 2023; Zhao et al, 2016). This uncertainty reflects the
context-dependency of trait-environment relationships, modulated
by local heterogeneity (topography, soil), biotic interactions
(Rasmann et al., 2014), stand factors, and soil properties (e.g., N/
P availability, pH) (Liu et al., 2021b; Yang et al., 2023). Furthermore,
the mechanisms driving individual LFT responses and trait-trait
covariation remain poorly resolved (Onoda et al., 2017).
Disentangling these interactions is essential for predicting plant
responses to global change and impacts on ecosystem functions (De
Deyn et al., 2008; Rixen et al., 2022).

Karst mountains present unique “rock-water-soil-biota”
continua with slow soil formation, shallow lithic soils, and high
heterogeneity (Wang and Li, 2007). Plants here face dual stressors:
seasonal drought and nutrient limitation (Liu et al., 2021a),
potentially driving divergent trait strategies compared to other
ecosystems. Bedrock exposure may override temperature-driven
patterns (He et al., 2020), while calcareous soils (high Ca, low P)
exacerbate nutrient constraints (Zhang et al, 2021). Although
studies have compared traits between life forms (e.g., evergreen
vs. deciduous) or karst/non-karst regions (Jiang et al., 2016; Fu and
Sun, 2022), and assessed soil influences (Pan et al, 2011), the

frontiersin.org


https://doi.org/10.3389/fpls.2025.1707246
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

He et al.

10.3389/fpls.2025.1707246

Elevation( m )

- High : 2836

Bl Low: 1170

S
A S NSED
{ F/ Cininagunn Y, ,[;//,_
1/ s
Yeinin
0 10 20 km
\ [ e =] A Sampling site

FIGURE 1

Distribution of sampling point of P. armandii in Bijie City, Guizhou Province, China.

relative contributions of plant characteristics versus environmental
factors to trait variation in these heterogeneous systems remain
unclear. Furthermore, existing studies often focus on single-trait
variation, neglecting multi-trait coordination and stoichiometric
interactions (Han et al., 2023). Pinus armandii, a pioneer species in
ecological restoration across southwestern China’s karst regions, is
vital for ecosystem stability. Despite research on its population
dynamics (Yao et al., 2020), ecophysiology (Li et al., 2025),
distribution (Liu et al, 2021a), and nutrient limitations (Dong
et al., 2022), the elevational patterns of leaf functional trait
covariation and their driving mechanisms in karst habitats
remain poorly understood. Here, we investigate P. armandii along
a2128-2509 m elevational gradient in Guizhou’s karst mountains.
By systematically measuring leaf morphological and chemical traits,
coupled with soil-climate monitoring, we address: (1) How do LFTs
of P. armandii vary along elevational gradients in karst habitats? (2)
How are morphological traits coordinated with stoichiometric and
chemical traits? (3) What are the relative roles of soil properties in
driving trait covariation? Our findings will advance understanding
of karst plant adaptation, guide restoration species selection, and
refine models of leaf trait responses to climate change.

2 Materials and methods
2.1 Study area

The study was conducted in Bijie City(103°36'-106°43" E, 26°
21'-27°46' N), located in Guizhou Province, China (Figure 1). The
region lies within the core area of the contiguous karst zone of

Yunnan-Guizhou-Guangxi, which belongs to the East Asian karst
region-one of the three major global karst concentration areas. It is

Frontiers in Plant Science

characterized by a subtropical humid monsoon climate with
synchronous heat and moisture availability. Due to significant
altitudinal variation, vertical climatic zonation is pronounced. The
mean annual temperature ranges from 10 to 15°C, annual sunshine
duration ranges from 1096 to 1769 hours, and the frost-free period
lasts from 245 to 290 days. The dominant soil types include yellow
soil and yellow-brown soil, with sporadic distributions of calcareous
soil, purple soil, and paddy soil, exhibiting clear vertical zonation.
All experimental sites in this study were situated on yellow-brown
soil. The original vegetation was mid-subtropical evergreen broad-
leaved forest. However, due to long-term human disturbance,
primary forests are poorly preserved. The current vegetation is
predominantly dominated by secondary and artificial forests.
Common tree species include P. armandii, Pinus yunnanensis,
Pinus massoniana, as well as species from the Fagaceae family
(e.g., Castanopsis and Cyclobalanopsis) and the Lauraceae family
(e.g., Cinnamomum and Machilus).

2.2 Sampling design

From September to October 2024, a transect was established
along an elevational gradient within the main distribution area of P.
armandii in Bijie City. This sampling period was strategically
chosen to coincide with the late growing season, when leaf
functional traits are relatively stable and plants undergo nutrient
resorption for dormancy preparation. This timing was ideal for
investigating altitudinal variations in leaf traits during a key
phenological stage, thereby ensuring reliable comparisons across
elevations. Five elevation levels were selected at 100 m intervals
between 2100 and 2600 m (specifically: 2128 m, 2204 m, 2310 m,
2426 m, and 2509 m) (Figure 1). At each elevation, three 20 mx20
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m quadrats were randomly established, resulting in a total of 15
quadrats. Within each quadrat, stand characteristics were recorded,
including latitude, longitude, elevation, aspect, and slope.

In each quadrat, five healthy P. armandii individuals were
selected as standard trees. From the middle outer part of the
canopy, current-year branches were collected from the east, south,
west, and north directions. From each branch, 50 bundles of
healthy, undamaged needles were selected, wrapped in moist filter
paper, and stored in a cooling box. Within each quadrat, three
sampling points were randomly set up. At each sampling point, soil
was collected from a depth of 0-20 cm using the five-point sampling
method (centered on the point within a 1 m x 1 m area). After
removing the surface litter, soil augers were used for sampling. The
five soil subsamples from the same sampling point were mixed to
form one composite sample. Thus, each quadrat yielded three
independent composite samples, giving a total of 45 independent
soil samples (15 quadrats x 3 samples per quadrat). All samples
were sealed and stored for subsequent analysis.

2.3 Measurement of leaf functional traits
and soil properties

LFTs were measured following the protocols described in
the”Leaf traits”section of the Handbook for Standardized
Measurement of Plant Functional Traits Worldwide (Pérez-
Harguindeguy et al, 2013). A total of 12 LFTs, associated with
plant growth and metabolic strategies, were assessed: Leaf Length
(LL, cm), Leaf Thickness (LT, mm), Leaf Area (LA, cmz), Specific
Leaf Area (SLA, cm2~g_1), Leaf Dry Matter Content (LDMC,
mg-g '), Leaf Carbon Content (LCC, gkg '), Leaf Nitrogen
Content (LNC, gkg™'), Leaf Phosphorus Content (LPC, gkg™),
Leaf Potassium Content (LKC, g~kg’1), Leaf Carbon to Nitrogen
Ratio (Lcay), Leaf Carbon to Phosphorus Ratio (Lcp), and Leaf
Nitrogen to Phosphorus Ratio (Ly.p).

Prior to measurement, needles were stored in darkness at 5°C
for 12 hours, then surface-dried and weighed to determine leaf fresh
weight (LFW) using an electronic balance with a precision of 0.001
g. Leaf images were acquired with a flatbed scanner, and LA was
quantified using Image] software. LT was measured at three
locations (base, middle, and apex) with a vernier caliper
(precision: 0.02 mm), and the mean value was recorded.
Subsequently, leaves were oven-dried at 105°C to deactivate
enzymes, followed by drying at 80°C to constant weight to
determine leaf dry weight (LDW). Dried leaf samples were
ground and sieved for subsequent elemental analyses.

LNC and LPC was determined using a SEAL AA3 Continuous
Flow Analyzer (Germany). LKC was measured with a Puxi A3
AFG-12 Flame Atomic Absorption Spectrophotometer (Wang
et al,, 2024). Similarly, soil N and P contents were analyzed with
the continuous flow analyzer, and soil K was assessed via flame
atomic absorption spectrometry. Soil pH was measured using the
glass electrode method (Wang et al., 2024).
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SLA and LDMC were calculated as follows:

sLa = A
LDW
LD
Lomc = 2PV
LFW

2.4 Data analysis

All statistical analyses were performed in R 3.5.1. Spatial
autocorrelation in trait data was assessed using Moran’s I test in
the spdep package. A spatial weight matrix was constructed based
on the inverse distance between the geographic coordinates of the
15 plots. The Moran’s I test revealed no significant spatial
autocorrelation in any of the measured leaf functional traits (all |
Moran’s I|< 0.1, p>0.05). On this basis, linear regression was
considered appropriate for subsequent analysis. Linear regression
models were employed to evaluate the relationships between
elevation and leaf functional traits. Differences in leaf traits across
elevation gradients were compared using one-way analysis of
variance (ANOVA) followed by Tukey’s honestly significant
difference (HSD) test for post-hoc comparisons. Pearson
correlation and functional trait network were used to analyze trait
correlations. Forward selection with double-stopping criteria
identified key environmental factors, and redundancy analysis
(RDA) explored trait-environment relationships. Additionally,
path analysis was performed to partition the direct and indirect
effects of environmental factors on traits, thereby elucidating the
underlying mechanisms. All analyses were carried out using the
vegan, car, agricolae, and spdep packages in R.

2.4.1 Plant trait network construction

To investigate the co-variation relationships among plant traits,
we constructed a plant trait network following these specific steps:

Data Preprocessing: All plant trait data were tested for
normality using the Shapiro-Wilk test. The results indicated that
most traits did not follow a normal distribution (p < 0.05).
Therefore, we used the non-parametric Spearman’s rank
correlation to calculate correlations between all trait pairs, as this
method is insensitive to outliers and produces more robust results.

Correlation Matrix and Significance Testing: A matrix of
Spearman’s correlation coefficients (r*) and their corresponding p-
values was computed for all pairwise trait combinations.

Control of Spurious Correlations and Edge Filtering: To
mitigate spurious correlations arising from multiple comparisons,
we employed the False Discovery Rate (FDR) control method to
correct the p-values (Benjamini, 2010). Specifically, the Benjamini-
Hochberg procedure was used to calculate the FDR-adjusted q-
value (which represents the minimum FDR at which a test may be
called significant) for each correlation. Only correlations with q-
value< 0.05 were considered statistically significant and retained as
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TABLE 1 Leaf functional trait parameters and their coefficients of variation for P. armandii at different altitudinal gradients.

Leaf functional

trait
LL/cm 14.97 + 0.5% 13.80 + 0.41b 13.17 + 0.61bc 12.42 + 0.59cd 12.13 + 0.55d 8.67
LT/mm 0.87 + 0.06a 0.78 + 0.03b 0.74 + 0.01bc 0.69 + 0.01cd 0.66 + 0.02d 10.56
LA/cm? 1.66 + 0.01a 1.45 + 0.08b 1.30 + 0.06¢ 1.16 + 0.06d 1.05 + 0.05¢ 17.25
SLA/(cm*g ™) 85.58 + 0.48a 79.57 + 3.39b 71.90 + 0.58¢ 68.41 + 2.47c 60.47 + 5.35d 12.83
LDMC/(mgg ") 0.36 + 0.02d 0.40 + 0.01c 0.43 + 0.01c 0.47 + 0.02b 0.52 + 0.03a 13.56
LCC/(gkg ™) 501.02 + 15.31ab 504.85 + 4.38ab 506.68 + 20.80a 484.75 + 5.42ab 480.42 + 14.35b 3.24
LNC/(gkg™) 11.38 + 1.29b 12.92 + 0.61b 1257 + 0.22b 12.22 + 0.54b 15.00 + 1.92a 12.15
LPC/(gkg™) 0.97 + 0.09b 1.17 + 0.34b 1.21 + 0.24ab 1.42 + 0.40ab 1.73 + 0.25a 28.15
LKC/(gkg™) 5.96 + 1.06a 5.59 + 0.47a 5.59 + 0.40a 4.97 + 0.45a 3.49 + 0.45b 20.42
Len 4433 + 4,152 39.14 + 2.23a 40.29 + 1.01a 39.74 + 2.09a 32.33 + 3.63b 11.95
Lo 519.48 + 44.25a 458.17 + 129.33ab 430.94 + 89.55abc 357.51 + 91.74bc 281.89 + 45.20c 27.38
Lup 11.73 + 0.53a 11.68 + 3.07a 10.71 + 2.29a 9.02 +2.32a 8.87 + 2.13a 21.96

LL, leaf length; LT, leaf thickness; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; LKC,
leaf potassium content; Lea, leaf C/N ratio; Le.p, leaf C/P ratio; Ly.p, leaf N/P ratio. Different lowercase letters within the same line indicate significant differences between altitudinal gradients at

p<0.05.

edges in the final network. This step is crucial for controlling the
false positive rate and ensuring that network edges represent reliable
ecological relationships.

Network Visualization and Analysis: The filtered matrix of
significant correlations was imported into the igraph package for
network visualization and analysis. In the resulting network, nodes
represent plant traits, and edges represent Spearman correlations
that remained significant after FDR correction. Edge thickness is
proportional to the absolute value of the correlation coefficient,
providing visual representation of association strength.

2.4.2 Path analysis and variable selection

Path analysis was conducted to disentangle the direct and
indirect effects of environmental factors on plant functional traits.
The variable selection procedure was implemented as follows:

Initial Full Model Construction: For each plant trait, a full path
model was constructed incorporating all eight soil factors.

Stepwise Variable Selection:

To mitigate multicollinearity, we computed the variance
inflation factor (VIF) for each soil factor. Predictors with VIF
values exceeding 10 - indicating severe multicollinearity - were
sequentially excluded to ensure model stability and interpretability
(James et al., 2013).

After addressing multicollinearity, a backward stepwise
selection procedure was applied based on the Akaike information
criterion (AIC). Predictors with the highest p-values were iteratively
removed until all remaining path coefficients were statistically
significant (p < 0.05).

Final Model Validation: The final path model for each trait
retained only those variables that were both statistically significant
and ecologically interpretable, ensuring a parsimonious and
meaningful representation of the underlying processes.
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3 Results
3.1 LFTs variation characteristics

Variance analysis revealed significant differences (p<0.05) in
most LFTs across the elevational gradient, with the exception of Ly
p (Table 1). Specifically, LL, LT, SLA, and LDMC did not show
significant differences among middle elevation gradients, but
exhibited significant variation across other elevation ranges
(p<0.05). In contrast, LA showed significant differences (p<0.05)
across all five distinct elevation gradients. Significant differences
(p<0.05) in LCC, LNC, LPC, LKC, as well as Lcy and Lep were
primarily observed between the highest elevation (2509 m) and the
other gradients, indicating that these functional traits exhibit the
greatest divergence between the highest elevation and
other gradients.

The coefficients of variation (CV) for the LFTs of P. armandii
ranged from 3.24% to 28.15%. Among these traits, LCC displayed
the lowest variability (CV = 3.24%), suggesting minimal influence of
elevational change on carbon allocation and relatively stable carbon
metabolism. In contrast, LPC exhibited the highest variability (CV
=28.15%), reflecting a high sensitivity of phosphorus metabolism to
the environmental gradients associated with elevation.

3.2 Altitudinal divergence in LFTs

Linear regression analysis revealed significant altitudinal
divergence patterns in LFTs (Figure 2). SLA, LL, LT, and LA
exhibited significant decreasing trends with increasing elevation
(p<0.01). Conversely, LDMC showed a significant increasing trend
(p<0.01). These morphological traits demonstrated strong
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correlations with elevation, which were either positive (R>0.80) or

negative (R<-0.80).

LCC, LKC, Len, Lep, and Lyp decreased significantly with
increasing elevation (p<0.05). In contrast, LNC and LPC increased

Frontiers in Plant Science

significantly (p<0.05). These nutrient-related traits showed
substantial correlations with elevation, which were either positive
(R>0.50) or negative (R<-0.50). Notably, the strength of correlation
between elevation and morphological traits (LL, LT, LA, SLA,
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FIGURE 3

The correlation between leaf functional traits of P. armandii. Different numbers and color blocks represent Pearson correlation coefficients between
different functional traits, with asterisks indicating the level of correlation significance (*p<0.05; **p<0.01).

LDMC) was substantially greater than those observed for nutrient
traits (LCC, LKC, LNC, LPC, Lo Lo, Livp).

3.3 Analysis of correlations among LFTs

Correlation analysis revealed widespread but variable
significant relationships among LFTs of P. armandii (Figure 3).
Notably, LDMC exhibited significant correlations with all traits
except Ly.p. LT, LA, SLA, and LKC were significantly associated
with most traits, excluding LCC and Ly.p. LL and LPC also showed
strong connectivity, lacking significant correlations only with LCC,
LPC, Ly.p and with LL, LCC, LNG, respectively. LNC correlated
significantly with the majority of traits, showing non-significance
only with LCC, LPC, L¢.p, and Ly.p. Conversely, LCC displayed the
weakest connectivity, correlating significantly only with LDMC,
while Ly.p exhibited limited connectivity, correlating significantly
only with LPC and Lc.p.

The functional trait network constructed based on these
correlations (Figure 4) further demonstrated that the LFTs of P.
armandii form a tightly interconnected and highly coordinated
complex network. Topological analysis of the network (Table 2)
identified Ly as the most central hub trait, exhibiting the highest
degree centrality (Degree=7), closeness centrality (Closeness=0.818),
and betweenness centrality (Betweenness=0.222). This centrality
highlighted the pivotal regulatory role of Lcy in the environmental
adaptation strategies of P. armandii.
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3.4 Response of LFTs to environmental
factors

Given the limited spatial scale of the study area and the minimal
variation in climatic factors within the region, we hypothesized that
soil properties would exert a greater influence on the variation in
LFTs of P. armandii. Redundancy analysis (RDA) identified eight
key soil variables: SOC, TP, TCa, TK, AN, pH, AK, and AP
(Figure 5). Collectively, these factors explained 84.65% of the total
variation observed in the LFTs. Among them, SOC, pH, and AK
exhibited statistically significant correlations with the leaf functional
traits (p<0.05), indicating their predominant role in driving the
variation of leaf functional characteristics in P. armandii.

Path analysis of LFTs and environmental factors (Table 3)
revealed significant divergence in the dominant environmental
drivers among different leaf traits of P. armandii. Specifically, LL
was primarily regulated by SOC, AP, and AK, with SOC and AP
exerting positive effects, while AK exerted a negative effect. LT was
mainly influenced by AP and AK; AK exerted a direct negative
effect, while AP contributed a positive effect primarily through a
significant indirect pathway. LA was predominantly regulated by
SOC, pH, and AK, with SOC and pH exerting positive effects and
AK exerting a negative effect. SLA was primarily governed by SOC,
TCa, and TK, where SOC and TCa exerted positive effects and TK a
negative effect. LDMC was mainly regulated by SOC, pH, AK, and
AP; AK exerted a positive direct effect, SOC and pH exerted
negative direct effects, and AP exerted a negative effect via a
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FIGURE 4
The correlation network among the functional traits of P. armandii. Each different node represents a distinct trait of the plant, and the edges
represent the relationships between the traits.

significant indirect pathway. LNC was predominantly influenced by ~ controlled by TCa, pH, AK, and AP; pH exerted a positive direct
TP, TCa, and pH; TP exerted a positive direct effect, whereas TCa  effect, while TCa, AK, and AP exerted negative direct effects. Lcp
and pH exerted negative direct effects. LKC was primarily driven by ~ was predominantly influenced by pH and AK, with pH exerting a
pH, AK, and AP, with pH exerting a positive direct effect and both ~ positive direct effect and AK exerting a negative direct effect.
AK and AP exerting negative direct effects. Ly.p was mainly  Additionally, pH exerted a direct positive effect on L.

TABLE 2 Node parameters of correlation network among leaf functional traits of P. armandii.

Network node parameter

Leaf functional trait

Closeness Betweenness Clustering coefficient

LA 7 0.818 0.035 0.857
LL 4 0.563 0.000 1.000
LT 7 0.818 0.035 0.857
SLA 7 0.818 0.035 0.857
LDMC 7 0.818 0.035 0.857
N 1 0.474 0.000 0.000
P 7 0.818 0.097 0.762
CN 7 0.818 0.222 0.714
C:P 7 0.818 0.097 0.762
N:P 2 0.500 0.000 1.000
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FIGURE 5

Redundancy analysis between the leaf functional traits of P. armandii. and soil factors.

4 Discussion

As a primary organ for material accumulation and energy
exchange, the leaf plays a fundamental role in ecosystem primary
productivity. Leaf traits reflect key aspects of plant adaptation
strategies developed through long-term evolution (Wright et al,
2005). Investigating how these traits vary along environmental
gradients provides critical insights into the mechanisms
underlying plant environmental adaptation.

4.1 Altitudinal effects on LFTs of P.
armandii

Variation in altitude drives gradient changes in environmental
factors such as temperature, precipitation, light availability, and soil
properties, leading to pronounced redistribution of heat and
moisture within relatively confined spatial scales. In response to
these complex environmental shifts, plants exhibit adaptive
adjustments in functional traits. This study revealed significant
altitudinal variation (p<0.05) in LFTs of P. armandii, with
coefficients of variation ranging from 3.24% to 28.15%, indicating
considerable trait plasticity. These results suggest that P. armandii
employs coordinated changes in multiple leaf functional traits to
adapt to varying altitudinal habitats. While interspecific variation
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has traditionally been emphasized in plant functional trait studies,
growing evidence indicates that intraspecific variation is also
substantial, accounting for 28%-52% of total trait variation
(Albert et al., 2010; Auger and Shipley, 2013; Jiang et al., 2016).
In this study, the average intraspecific variation in LFTs of P.
armandii was 16.80%, which is relatively low compared to other
vegetation types. We propose several non-exclusive explanations for
this constrained variation. First, it may indeed reflect limited
morphological plasticity in response to the strong filtering effect
of the harsh, high-elevation environmental conditions (Auger and
Shipley, 2013), which selects for a narrow range of trait values.
Second, the studied elevational gradient, while capturing the
species’ primary distribution, might not encompass the full
environmental spectrum necessary to elicit broader trait variation.
Finally, as a long-lived conifer, P. armandii may possess an
inherently conservative growth strategy, leading to lower
intraspecific variability compared to more opportunistic
herbaceous species commonly reported in other studies.

Plants adapt to environmental heterogeneity through functional
traits such as LA, SLA, LDMC, LL, and LT. These traits collectively
reflect strategies of resource acquisition and conservation (Yao
et al,, 2023). SLA, in particular, is a key structural trait related to
light interception efficiency and environmental acclimation (Xu
et al, 2023). In this study, SLA decreased significantly with
increasing altitude, consistent with observations across multiple
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TABLE 3 Path coefficients of main influencing factors of leaf functional traits of P. armandii.

Leaf functional trait  Influencing factor =~ Correlation coefficient = Direct path coefficient

Total indirect path

coefficient

LL/cm SOC 0.9502 0.8497 0.1005

AP 0.3910 0.2606 0.1303

AK -0.8014 -0.2280 -0.5734

LT/mm AP 0.3205 -0.2215 0.5421

AK -0.7107 -0.5863 -0.1244

LA/cm? SOC 0.9143 0.5466 0.3677

pH 0.5804 0.3429 0.2374

AK -0.8101 -0.5309 -0.2792

SLA/ SOC 0.9253 0.5935 0.3318
cm’g!

TCa 0.3820 0.1572 0.2247

TK -0.7891 -0.3179 -0.4712

LDMC/ SOC -0.9268 -0.5344 -0.3924
mgg-!

pH -0.5125 -0.4715 -0.0410

AK 0.7634 03144 0.4489

AP -0.0791 0.3379 -0.4171

LNC/ TP 0.5584 0.8025 -0.2441
gkg!

TCa -0.2095 -0.4629 0.2533

pH -0.2727 -0.8366 0.5638

LKC/ pH 0.2881 0.9305 -0.6424
gkg!

AK -0.6881 -0.7650 0.0769

AP -0.2267 -0.7851 0.5584

Lo pH 0.3902 0.9760 -0.5857

Lep pH 0.4063 0.6959 -0.2895

AK -0.6063 -0.7225 0.1161

L TCa -0.1620 -0.5207 0.3586

pH 0.2709 0.7093 -0.4383

AK -0.3854 -0.5566 0.1711

AP -0.1148 -0.6792 0.5644

mountain ecosystems (Pensa et al.,, 2009; Rixen et al., 2022). This
pattern can be explained by divergent resource-use strategies: at
lower altitudes, where conditions are warmer and resources more
abundant, plants prioritize light capture and photosynthetic rates by
producing larger, thinner leaves with high SLA. At higher altitudes,
plants invest in denser mesophyll tissues, reduce LA, and decrease
SLA to limit respiration and transpiration, thereby enhancing
photoprotection and adaptation to resource-limited environments
(Gao and Liu, 2018; Liu et al.,, 2023a). This shift toward a
conservative strategy aligns with observations that plants in arid
or cold environments often prioritize structural durability over
rapid growth (Melis et al., 2023; Poggiato et al,, 2023).

Frontiers in Plant Science

Conversely, LDMC showed a significant positive correlation
with altitude (p<0.01). LDMC reflects nutrient retention capacity
and is largely independent of other leaf traits. Higher LDMC at
elevated altitudes suggests greater investment in carbon-rich
structural tissues, which reduces water loss by increasing diffusion
resistance and enhances mechanical support under environmental
stress. These findings align with reports that plants in high-altitude
environments-characterized by low temperatures, high radiation,
and nutrient-poor soils-allocate more biomass to supportive tissues,
resulting in elevated LDMC (Saura-Mas and Lloret, 2007). A
negative correlation between SLA and LDMC further supports a
trade-off between resource acquisition and conservation strategies
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along the altitudinal gradient. However, the ecological implications
of this relationship may vary between species due to divergent
adaptive responses to altitude.

Carbon (C), nitrogen (N), and phosphorus (P) are major
constituents of leaf dry mass and play vital roles in
photosynthesis, cell growth, and differentiation (He et al., 2006).
Their stoichiometric ratios provide valuable insights into plant
metabolic strategies and environmental adaptability (Pulido et al.,
2023). In this study, both LN and LP increased with elevation,
consistent with results from a 3000-m elevation gradient on Gongga
Mountain (Xu et al., 2021). This trend supports the Temperature-
Plant Physiology Hypothesis (TPPH), which posits that low
temperatures at high altitudes reduce metabolic and phosphate
cycling rates, prompting plants to accumulate N and P to maintain
photosynthetic and enzyme activity (e.g., Rubisco synthesis). These
adjustments help compensate for reduced physiological efficiency
under cold conditions and facilitate adaptation to short growing
seasons and high light intensity.

Len and Lep decreased with increasing elevation, indicating
lower nitrogen and phosphorus use efficiency in high-altitude
populations. This likely results from constrained leaf development
and reduced photosynthetic rates under cooler and drier conditions,
limiting nutrient accumulation and utilization. These findings align
with the observed reduction in SLA, suggesting greater resource
allocation to structural defense at the expense of growth-related
functions at higher elevations (Rauf et al., 2023). The N:P ratio
serves as an indicator of nutrient limitation. Across all five
elevations, Ly.p was below 14, suggesting that nitrogen is the
primary limiting nutrient for P. armandii growth in the study
area (Koerselman and Meuleman, 1996). Leaf stoichiometric traits
exhibited varying degrees of altitudinal sensitivity: phosphorus
content showed the highest coefficient of variation, indicating
stronger phenotypic plasticity and faster response to elevation
changes compared to nitrogen, carbon, and C:N ratios (Zhang
et al, 2023). This highlights the role of P in mediating plant
adaptation to altitudinal gradients.

4.2 Coupling and trade-offs among LFTs

In the process of plant environmental adaptation, leaf
functional traits do not operate in isolation but form integrated
suites through trade-offs and synergies, as captured by the leaf
economics spectrum framework (Fajardo and Siefert, 2018; Monge-
Gonzalez et al., 2021; Wright et al., 2007). These trait combinations
reflect fundamental ecological strategies in resource allocation.
However, the strength and direction of these trait relationships
can vary across study scales. A key uncertainty lies in understanding
how the response of a given trait along elevational gradients is
constrained by its correlations with other traits (Midolo et al., 2019).
This study demonstrates widespread significant correlations among
LFTs in P. armandii, indicating that leaf traits respond to
environmental stress in a modular and coordinated manner. This
reflects a strategy optimizing carbon investment and return,
consistent with the “fast-slow”trade-off framework of the plant
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economics spectrum. SLA and LDMC, key indicators of
ecological strategies, represent opposing ends of the resource
acquisition-conservation spectrum (van Bodegom et al.,, 2014).
Here, they exhibited a highly significant negative correlation,
consistent with previous studies (Reich et al., 1991; Wilson et al.,
1999; Wright and Cannon, 2001; Wei et al., 2011). In high-elevation
environments characterized by low temperatures, low SLA and high
LDMC help reduce water loss by increasing resistance to water
diffusion and prolonging the diffusion pathway, thereby extending
carbon payback time and allocating more resources to defense and
structural support, which enhances survival under resource-limited
conditions (Cornelissen et al., 2003). Additionally, a significant
negative correlation was observed between LDMC and LT,
suggesting that at high altitudes, P. armandii adopts a “slow
investment-return” strategy characterized by high LDMC and low
LT, improving tolerance to adverse conditions through increased
dry matter content. In contrast, at low elevations, a”fast investment-
return”strategy with low LDMC and high LT is favored. Meanwhile,
the positive correlation between SLA and LT may be related to leaf
size effects on boundary layer dynamics and thermal regulation
(Wright et al., 2017). Larger leaves with thicker boundary layers can
reduce sensible heat exchange, influencing leaf temperature and
transpiration rates, thereby aiding water conservation and reducing
transpiration (Leigh et al., 2017).

Significant trade-offs were also observed between structural and
chemical traits. LDMC was positively correlated with LNC and
negatively with Lc., indicating that higher nitrogen investment
may support denser structural tissue synthesis and improve
nitrogen use efficiency. Conversely, SLA was positively correlated
with L¢.n and negatively with LNC, aligning with the leaf economics
spectrum: high-SLA leaves favor rapid resource acquisition,
whereas low-SLA leaves reflect a conservative strategy (Wright
et al,, 2004). This coordinated variation between structural and
chemical traits reflects an adaptive mechanism through which
plants optimize resource use efficiency by balancing
photosynthetic gain, structural investment, and metabolic cost in
nutrient-poor habitats, consistent with the role of trait coordination
in ecosystem functional recovery emphasized by Gao et al. (2025).
Furthermore, LCC was significantly correlated only with LDMC,
suggesting that carbon accumulation is primarily driven by
structural demands rather than metabolic requirements. Ly.p was
correlated only with LPC and Lc.p, indicating that nitrogen and
phosphorus allocation may be independently regulated by genetic
constraints or soil phosphorus availability. The lack of a significant
correlation between LNC and LPC along the elevational gradient
further suggests that nutrient limitations (e.g., low temperature or
soil nutrient availability) may decouple stoichiometric
relationships, reflecting adaptive divergence of P. armandii across
heterogeneous habitats.

In the trait network, traits with high node degree centrality
often play core roles in functional integration (Flores-Moreno et al.,
2019). In this study, Lon emerged as a central node (with the
highest degree, closeness, and betweenness centrality), indicating
that carbon-nitrogen balance plays a pivotal regulatory role in trait
coordination. This finding supports the ecological stoichiometry
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theory, which posits that carbon-to-nitrogen ratios mediate growth-
defense trade-offs. A high L.y typically signifies resource allocation
to structural defense, whereas a low ratio promotes nitrogen
metabolism and growth, suggesting that P. armandii dynamically
adjusts carbon and nitrogen allocation to balance photosynthetic,
structural, and defensive investments, thereby enhancing
environmental adaptability.

4.3 Environmental drivers of LFTs

It is well-established that plant leaf functional traits are
influenced by a range of abiotic and biotic factors, including
climate (Sardans and Penuelas, 2014; Yuan and Chen, 2009), soil
properties (Chen et al, 2013; Zhang et al, 2019), and plant life
forms (He et al., 2006; Zhao et al., 2018). At broad spatial scales,
climatic variables are often the dominant drivers of trait variation
(Craine and Lee, 2003), whereas at finer regional scales, soil factors
become particularly influential (Luo et al., 2019). Soil conditions
affect plant growth through both direct and indirect pathways,
serving as a primary source of nutrients and mediating resource
availability (Peguero et al., 2023; Chen et al., 2024). Variations in
nutrient supply can significantly impact plant functional traits,
thereby influencing plant performance (Zhang et al., 2023). In
line with these observations, our study demonstrated that
multiple soil nutrients collectively influence the LFTs of P.
armandii, though distinct traits being influenced by different
key factors.

First, soil organic carbon (SOC) exerted significant positive
direct effects on multiple leaf traits, particularly LL, LA, and SLA.
This indicates that SOC promotes rapid leaf expansion and
enhances light capture capacity by improving soil structure and
nutrient availability, aligning with a “resource-acquisitive”
ecological strategy. Conversely, SOC showed a significant negative
correlation with LDMC, further supporting the idea that plants in
high-SOC environments may prioritize resource allocation toward
growth rather than structural defense. These findings align with
previous studies by Huang et al. (2018) and Duan et al. (2017),
which identified SOC as a key driver of divergence in plant
functional traits. Similarly, Fan et al. (2022) reported SOC as a
critical soil factor influencing LFTs in Pinus tabulaeformis. SOC,
derived mainly from the decomposition of plant, animal, and
microbial residues, as well as litter input, significantly modulates
plant functional trait variation. Furthermore, by improving soil
structure and enhancing water and nutrient retention, SOC
provides plants with more sufficient moisture and nutrients,
thereby facilitating transpiration and photosynthesis and
promoting plant growth and development (Kiithn et al., 2021).

Second, soil pH also significantly influenced multiple traits,
particularly stoichiometric traits such as Lcy and Lcp, indicating
that soil acidity or alkalinity plays a crucial role in regulating
internal carbon, nitrogen, and phosphorus balance in plants. The
underlying mechanism may involve pH-induced changes in
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microbial activity and nutrient availability, which indirectly
modulate elemental stoichiometry in plants (Liu et al., 2023b). In
high-pH environments, plants tended to accumulate more carbon,
reflecting a conservative resource-use strategy likely driven by
nutrient limitations (e.g., reduced phosphorus availability) under
alkaline conditions (Lin et al., 2022).

Notably, available potassium (AK) was negatively correlated
with most leaf traits, particularly LL, LT, LA, and LDMC. For
instance, the direct path coefficients of AK on LA and SLA were
-0.5309 and -0.3179, respectively, suggesting that potassium
availability may inhibit leaf expansion and specific leaf area,
thereby promoting a more conservative leaf construction strategy.
Although potassium is essential for plant growth, excess levels may
inhibit leaf development via ionic toxicity or antagonism with other
elements (e.g., calcium, magnesium), while also increasing LDMC-
indicating a potential shift toward higher tissue density to maintain
water and ionic balance under potassium stress.

Moreover, available phosphorus (AP) exhibited a complex
relationship with LT: although their correlation coefficient was
positive (0.3205), the direct path coefficient was negative
(-0.2215), while the indirect effect was positive (0.5421). This
implies that AP may indirectly promote leaf thickening through
interactions with other factors (e.g., SOC or AK), rather than
exerting a direct positive effect. This indirect influence highlights
the complex synergistic and antagonistic interactions among soil
factors, underscoring the need for multi-path analysis rather than
relying solely on simple correlations when interpreting the effects of
phosphorus on plant morphogenesis. Consistent with our findings,
Chen et al. (2024) also identified soil phosphorus as a key factor
influencing leaf functional traits.

5 Conclusion

This study examined LFTs of P. armandii along a small-scale
elevational gradient, revealing significant altitudinal variation and
coordinated trait relationships indicative of ecological adaptation to
local environmental conditions. Key leaf traits exhibited synergistic
or trade-off relationships in response to shifts in hydrothermal
factors and soil properties along the gradient. Multiple soil drivers
influenced these traits, with SOC, pH, and AK identified as primary
factors, although different traits were influenced by distinct
environmental factors. These results illuminate how P. armandii
in karst mountainous areas adjusts to elevation-dependent
environmental conditions, highlighting mechanisms underlying
plant adaptation to changing habitats. The findings further imply
that through trait integration, plants achieve a balance between
growth and survival, offering insights for ecological restoration in
rocky desertification zones. Future research should incorporate
broader environmental dimensions-such as climate and
topography-and extend trait analysis across multiple plant organs
and functional groups to improve multi-scale understanding of
trait-environment-ecosystem linkages. Particularly critical is
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exploring how global change alters soil nutrient availability and
subsequently affects plant traits and ecosystem functioning.
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