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Early identification of grapevine diseases is critical for reducing yield losses and
ensuring sustainable viticulture. CNNs trained on benchmark datasets such as
PlantVillage often achieve near-perfect accuracy, yet this performance fails to
translate to real-world field conditions where lighting, backgrounds, and lesion
appearance vary widely. To address challenges of data scarcity and imbalance,
this study introduces VitiForge, a novel procedural synthetic imagery pipeline for
generating realistic synthetic grape leaf textures representing healthy, Black Rot,
Esca, and Leaf Blight conditions. VitiForge is systematically evaluated against
GAN-based augmentation through a data ablation study on PlantVillage and
FieldVitis, a curated field dataset, using MobileNetV2, InceptionV3, and
ResNet50V2 classifiers. Results show that VitiForge significantly improves
performance in low-data regimes, enabling model training even without real
samples, whereas GAN augmentation proves more effective once sufficient real
data is available. On field imagery, VitiForge often matched or surpassed GAN-
based methods, particularly when paired with MobileNetV2. These findings
highlight the complementary roles of procedural and GAN-based synthetic
data: VitiForge offers flexibility and scalability under cross-domain and data-
scarce conditions, while GANs enhance realism and variability when ample data
exists. Together, they support the development of robust and generalizable
models for automated grape disease detection in precision agriculture.
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1 Introduction

Early detection of plant diseases, often manifested as visible
patterns on leaves, is critical for minimizing crop yield losses.
Globally, plant diseases account for more than 30% of annual
crop losses, equating to hundreds of billions of dollars in damage
(Gai and Wang, 2024). Traditional monitoring methods are labor-
intensive, time-consuming, and reliant on expert knowledge,
underscoring the need for automated solutions. Viticulture
exemplifies the opportunities in this field. Grapes represent an
important fruit crop with significant global economic importance
(Li et al., 2023); however, grapevine diseases such as Black Rot, Leaf
Blight, Downy Mildew and Esca pose substantial threats to
cultivation, motivating intensive research into automated disease
detection approaches (Xie et al., 2020; Tang et al., 2020; Lu X. et al,,
2022; Zhu et al., 2021).

Among these diseases, Black Rot (Guignardia bidwellii) and
Esca are particularly destructive, experiencing up to 100% yield loss
from Black Rot (Szabo et al., 2023) with heavily infected vineyards.

Recent advances in Artificial Intelligence (AI) and image
processing have enabled more precise plant disease detection,
where automated workflows typically involve steps such as image
acquisition, segmentation, feature extraction, and lesion
classification. Within this framework, deep learning models have
shown strong effectiveness in recognizing disease symptoms in the
visible spectrum (Upadhyay et al., 2025), with a wide range of
segmentation and feature extraction strategies also explored to
improve performance (Khirade and Patil, 2015; Szekely et al., 2024).

Convolutional Neural Network (CNN)-based models, such as
MobileNet, Inception, and ResNet, have shown great promise for
grape disease classification and have achieved impressive accuracy
on benchmark datasets like PlantVillage (Mohanty et al., 2016),
with some models reaching near-perfect results under controlled
conditions (Kunduracioglu and Pacal, 2024; Lu X. et al.,, 2022).
However, their performance often degrades sharply when applied to
real-world images, where uneven lighting, complex backgrounds,
and subtle lesion patterns introduce significant challenges (Barbedo,
2022). Transfer learning can alleviate some of these limitations
(Morellos et al., 2022), but the domain gap remains a
persistent obstacle.

Despite their success, CNN models rely on large, representative,
and balanced datasets to achieve robust performance across diverse
conditions (Dablain et al., 2023; Albattah and Khan, 2025). In the
context of plant pathology, however, constructing such datasets is
particularly challenging. Plant diseases are inherently variable,
influenced by environmental factors, growth stages, and pathogen
interactions, which makes capturing sufficient examples of all
relevant symptoms extremely difficult. Furthermore, disease
occurrence is region-dependent and seasonal, meaning that data
collection requires significant time and geographic coverage. As a
result, available datasets are often limited, imbalanced, and
narrowly focused (Pacal et al., 2024).

Synthetic data has emerged as a promising solution to this
challenge. Several studies have shown that synthetic augmentation
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can substantially reduce the reliance on large real-world datasets
(Nowruzi et al,, 2019), and agricultural applications have already
employed synthetic data effectively in tasks such as crop
phenotyping (Toda et al., 2020). In the context of plant disease
detection, Generative Adversarial Networks (GANs) have become a
widely used approach for generating synthetic plant images,
particularly to expand minority classes and balance datasets,
thereby improving the robustness of training (Xie et al, 2020;
Tang et al., 2020; Liu et al., 2020; Jin et al., 2022).

Taking an alternative approach, this work proposes VitiForge, a
novel scalable pipeline for generating realistic synthetic grape leaf
images using a procedural methodology. The approach produces
diverse, customizable datasets that realistically represent grape
leaves and disease patterns under varied conditions. The
effectiveness of procedurally generated synthetic grape leaf images
is evaluated as a data augmentation strategy for classical Al models
in disease detection. Benchmarking is conducted through a data
ablation strategy applied to splits of the PlantVillage dataset and
FieldVitis, a curated dataset of field images assembled from public
sources, comparing three approaches: (i) real data only, (ii) real data
with GAN based augmentation, and (iii) real data with VitiForge
augmentation. The main contributions of this work can be
summarized as follows:

1. The development of VitiForge, a scalable framework for
synthesizing realistic grapevine leaf imagery by
procedurally modeling disease patterns (Black Rot, Esca,
and Leaf Blight) and environmental variability such as
lighting, orientation, and background clutter.

2. The introduction of FieldVitis, a curated dataset of grapevine
leaves collected from multiple public sources to reflect the
real-world variability of vineyard imagery, providing a
valuable benchmark for evaluating model generalization
under realistic field conditions. It is available in Zenodo at
https://doi.org/10.5281/zenodo.17307846.

3. A comprehensive data ablation study on PlantVillage and
FieldVitis, demonstrating that VitiForge consistently
improves performance in low-data scenarios and even
enables model training in complete absence of real
samples, establishing its viability as a zero-data solution.

4. A comparative analysis across three CNN architectures
(MobileNetV2, InceptionV3, and ResNet50V2), highlighting
architecture-specific responses to augmentation strategies,
with MobileNetV2 achieving the strongest and most
consistent gains.

2 Related work

This research on automated grape disease detection intersects
with three main areas: deep learning approaches for plant
pathology, synthetic data augmentation in agriculture, and
procedural image generation for computer vision.
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2.1 Deep learning for grape leaf disease
identification

Deep learning techniques have been widely applied to grape
disease classification, with most early work demonstrating strong
results on controlled datasets such as the PlantVillage dataset
(Mohanty et al., 2016), which comprises 54,306 images of
diseased and healthy leaves across 14 crop species and 26
diseases, including approximately 4,000 grape leaf images. Using
this resource, Geetharamani and Pandian (2019) developed a nine-
layer CNN that achieved accuracies above than 90%. Similarly,
Tang et al. (2020) proposed a lightweight model combining
ShuffleNet with squeeze-and-excitation blocks, reaching 99.14%
test accuracy on PlantVillage while maintaining a compact size
suitable for embedded deployment. Extensions to real-time
detection have also been pursued, as in Xie et al. (2020), who
introduced Faster DR-TACNN trained on an augmented
PlantVillage dataset of 62,286 images, achieving 81.1% mean
Average Precision (mAP).

Beyond classical CNNs, recent work has explored more
sophisticated architectures and feature fusion strategies.
Transformer-based designs such as Swin Transformer have
demonstrated near-perfect performance, with some configurations
reaching 100% accuracy on grape leaf classification (Kunduracioglu
and Pacal, 2024). Hybrid models combining CNN and Transformer
components have also been proposed, including Group Shuffle
Residual DeformNet with Swin Transformer (Karthik et al,
2024b) and Inception ResNet with Shuffle-Transformer fusion
(Karthik et al., 2024a), both reporting high classification accuracy.
Other studies have investigated variations in CNN backbones, such
as VGG12 with wide convolution layers (Thomkaew, 2025), deep
learning approaches for multiclass grape disease classification
(Fraiwan et al., 2022), and broader comparative analyses across
multiple architectures (Mangaoang, 2025).

A recurring challenge emerges when models trained on
controlled data are evaluated on field imagery. As emphasized by
George et al. (2025), leaf disease datasets in general can be broadly
divided into laboratory collections, characterized by controlled
lighting, uniform backgrounds, and isolated leaf presentation, and
real-world collections, which include varied environmental
conditions such as wind, uneven illumination, diverse
backgrounds, and occlusions from surrounding foliage. This
distinction is evident in grapevine disease detection as well:
Morellos et al. (2022) reported that fine-tuned CNNs achieved
100% validation accuracy on PlantVillage (a typical laboratory
dataset) but dropped to 66.7% with AlexNet when tested on
vineyard-collected images. Similarly, Zhu et al. (2021) observed
that Black Rot detection achieved 95.79% precision and 94.52%
recall on controlled indoor test images, compared to 86.69%
precision and 82.27% recall on orchard images, with performance
partially recovering when restricted to simple backgrounds. More
complex acquisition setups such as UAV imagery have also been
investigated: Li et al. (2023) introduced a multistage pipeline
combining Multifusion U-Net with modified VGG-19, reaching
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71.91% average segmentation accuracy under challenging
conditions with low light and motion interference.

To reduce this domain gap, several field-oriented datasets have
been developed, like observed in (Alessandrini et al., 2021)
(Dharrao et al,, 2025), and (Lu X. et al, 2022) that intended to
expand coverage to field conditions, yet their size, class balance and
diversity remain limiting factors in building broadly
generalizable models.

2.2 Synthetic data augmentation in
agriculture

To address the limitations of dataset size, class balance, and
diversity, data augmentation is a standard strategy in plant disease
detection pipelines. As noted by George et al. (2025), traditional
augmentation approaches can be broadly divided into position-
based (mirroring, clipping, rotation) and color-based (brightness,
contrast, saturation) transformations, with more advanced
techniques such as CutMix and MixUp combining sample images
through linear interpolation or region-level patching. In addition,
masking-based background replacement has been proposed to
better mimic real-world conditions (Benabbas et al., 2024). While
these methods improve generalization, they are limited in their
ability to generate genuinely new samples or replicate the variability
of field conditions.

Beyond these traditional approaches, GANs have been widely
investigated for synthetic augmentation in agricultural computer
vision. Reviews by Sampath et al. (2021) and Lu Y. et al. (2022)
document their effectiveness for addressing dataset imbalance and
scarcity, particularly when constrained by seasonal or geographic
limitations. GANs have been applied across diverse crops: Giuffrida
etal. (2017) pioneered a DCGAN-style framework for synthesizing
Arabidopsis images, Zhao et al. (2022) used GANs for wheat disease
generation, Li et al. (2024) developed SugarcaneGAN for feature
expansion in sugarcane diseases, and Ramadan et al. (2024)
demonstrated synthetic augmentation for wheat disease
classification. Other work includes Kierdorf et al. (2022), who
applied conditional GANs to estimate occluded grapevine berry
counts by generating synthetic leaf-berry compositions, and Barth
etal. (2020), who employed CycleGAN to enhance realism in plant
images for part segmentation tasks, Cap et al. (2022) introduced
LeafGAN, a model that leverages segmentation masks on top of
CycleGAN to generate cucumber disease-specific imagery.

In grapevine pathology, specialized GAN architectures have
been developed to capture the unique features of grape leaf diseases.
Liu et al. (2020) introduced Leaf GAN, not to be confused with
LeafGAN, which incorporated degressive-channel deconvolutions
in the generator and dense connectivity with instance normalization
in the discriminator, stabilized with a deep regret gradient penalty.
Trained on 4,062 PlantVillage grape leaf images, Leaf GAN
synthesized 8,124 additional samples with enhanced lesion
visibility and achieved lower Fréchet Inception Distance (FID)
than DCGAN and WGAN. Incorporating these GAN-generated
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samples improved downstream CNN classifiers, with Xception
reaching 98.7% accuracy.

Building on this direction, Jin et al. (2022) developed
GrapeGAN, an unsupervised GAN architecture for grape leaf
disease image enhancement. Its U-Net-like generator with reorg
downsampling, residual blocks, and feature concatenation
preserved fine lesion textures, while a discriminator combining
convolutional blocks with a capsule network enforced structural
integrity and reduced artifacts such as petiole misalignment.

Taking an alternative approach, Zhang et al. (2021) employed a
multi-feature fusion Faster R-CNN (MF® R-CNN) for soybean leaf
disease detection under field conditions, with synthetic data
augmentation through compositing diseased leaves from scene
captures into real soybean field backgrounds, followed by reflection,
rotation, and color perturbation. Notably, trained solely on synthetic
data, MF® R-CNN was able to generalize to real soybean field
imagery, robustly identifying virus disease, frogeye leaf spot, and
bacterial spot despite occlusion and background clutter.

Recent developments have explored alternative generative
approaches in agricultural contexts. Muhammad et al. (2023) and
Egusquiza et al. (2025) investigated the application of diffusion
models for plant disease image augmentation, examining their
potential for generating synthetic plant disease imagery. Heschl
et al. (2025) introduced SynthSet, a methodology utilizing
Denoising Diffusion Probabilistic Models and GANs for generating
synthetic annotated agricultural data, with demonstrated efficacy in
wheat head segmentation applications.

2.3 Procedural synthetic image generation
for Al augmentation

Procedural image generation has been widely explored in
computer vision applications where annotated data is costly or
impractical to obtain. Park et al. (2021) demonstrated its
effectiveness for food instance segmentation, using Blender-
generated datasets to train Mask R-CNN models that performed
strongly on real meal images without requiring manual annotations.
Similarly, Mousavi et al. (2020) introduced a platform built on
Unreal Engine for controlled synthetic dataset generation, enabling
systematic variation of factors such as lighting and texture fidelity
while preserving scene geometry.

In agriculture and plant-related computer vision, procedural
synthesis has also shown promise. Toda et al. (2020) generated seed
images across multiple crops using domain randomization, training
networks that achieved 96% recall and 95% average precision when
evaluated on real phenotyping tasks. Barth et al. (2018) developed a
3D modeling pipeline for Capsicum annuum leaves based on
empirical measurements, achieving segmentation performance
comparable to models trained on real annotated data while
reducing annotation costs. More recently, Giakoumoglou et al.
(2023) combined procedural generation with diffusion models in
the Generate-Paste-Blend-Detect framework for pest monitoring,
reporting competitive whitefly detection performance without large
manually labeled datasets.
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These examples demonstrate that procedural methods can
reduce reliance on annotated data and provide explicit control
over variability. However, despite their adoption in related
agricultural contexts, procedural generation remains relatively
unexplored in plant disease detection tasks.

3 Materials and methods

To evaluate the effectiveness of VitiForge for grapevine disease
identification, a methodology centered on the creation,
augmentation, and testing of grape leaf datasets was designed.
The methods described below cover the synthetic generation
pipeline, disease pattern modeling, dataset construction, ablation
study design, and classifier training protocols, providing a
reproducible framework for assessing performance across both
laboratory and field conditions.

3.1 Synthetic grape leaf generation
methodology

This work investigates and compares synthetic data generation
as a means to improve grape leaf disease identification, focusing on
four classes derived from the PlantVillage dataset: healthy leaves,
and leaves affected by Black Rot, Esca, and Leaf Blight. To address
different scenarios of data availability and modeling requirements,
two complementary generation strategies were employed:
VitiForge, a procedural rendering framework developed in this
study, and a GAN-based generative framework adapted from
prior work.

The procedural approach generates samples by projecting high-
resolution textures onto 3D meshes and procedurally applying
disease-specific patterns that replicate lesion color, shape, and
distribution. Parameters such illumination, surface variation, and
lesion progression can be systematically adjusted, enabling scalable
and controllable dataset creation. In contrast, the GAN-based
approach employs adversarial training to learn a transformation
from healthy leaves to diseased variants, relying on unsupervised
image-to-image translation. The second approach serves as a
baseline against which the procedural method can be compared.

3.1.1 VitiForge leaf generation

VitiForge’s methodology for generating synthetic imagery is
grounded in the projection of real-world photographs onto 3D
planes assigned with Physically Based Rendering (PBR) materials
(Pharr et al,, 2023). Formally, a PBR material 7 on a surface S can
be defined as a tuple of spatially varying fields

T=@:S—[01a:8S—[0,1,n:5—Sp:8—[0,1))

where a is the albedo map (base color), o the alpha mask
(opacity), n, the normal map (in tangent space), and p the
roughness map (controlling microfacet variance).

The albedo map a was derived from high-resolution
photographs of grape leaves captured against a plain white

frontiersin.org


https://doi.org/10.3389/fpls.2025.1706973
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Farinati Leite et al.

10.3389/fpls.2025.1706973

Photographic Studio

4K Capable Lo Plain White
Camera Studio Lights Real Leaves g
Produc? Dl,f . <— | Select Leaves
(__Illumination
Adjust C'amera —> | Take Pictures | < Stl'Ck Leaves
Framing ) Against Surface |
|

l

Pictures

FIGURE 1
Schematic representation of the images collection pipeline.

background under diffuse illumination, thereby minimizing cast
shadows and enhancing surface detail. Images were subsequently
processed for color correction, alignment, and optimization to
ensure their suitability as texture assets. The image collection
setup is illustrated in Figure 1.

The alpha mask o was generated to isolate the leaf from its
background and enabling its integration into synthetic scenes. This
allows systematic variation of the background, illumination, and
other environmental factors. The post-processing workflow is
presented in Figure 2.

To enhance realism, the normal n, and roughness p maps were
incorporated, modulating light-surface interaction to simulate
depth, venation, and subtle irregularities (Lin et al., 2014). These
maps were generated from leaf photographs by creating grayscale
height maps in Adobe Photoshop 2025, which were then imported
into Blender 4.3.2 and applied as displacement masks. This
procedure allowed the mesh to approximate real-world surface
topography such as veins and roughness.

The high-polygon leaf model was subsequently paired with a
simplified low-poly mesh using the caging technique
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FIGURE 2
The image processing workflow
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(Kelesoglu and Ozer, 2021). In practice, the cage is a slightly
expanded version of the low-poly geometry that fully encloses the
high-poly model. During the baking process, where fine surface
details are encoded into texture maps, the software casts rays from
the surface of the low-poly model and uses the cage to guide their
direction. This ensures that intricate details from the high-poly
surface, such as grooves, ridges, and venation, are accurately
projected into a, while avoiding artifacts due to misaligned
ray projections.

Finally, combining each of these maps, the material 7 was
constructed to form realistic base textures, which could then be
systematically varied for further stages of the generation pipeline.
This stage of the process is presented in Figure 3.

The resulting textures provided a controllable foundation for the
subsequent application of disease symptoms and environmental variation.

3.1.2 Disease pattern modeling

Building on the base material 7, VitiForge introduces disease
symptoms as stochastic perturbations D applied over the leaf
surface S. Those perturbations are defined as

D=(m:S—{0,1}, §,:S—[0,1]%, §,:8 > [0,1], §,:S > S?),

where m is a binary infection mask indicating symptomatic
regions, 0, chromatic perturbations to the albedo map, 5p
perturbations to the roughness field, and 9, perturbations to the
normal field. The resulting diseased material is obtained through

T(T,D)=(a+6, & n,+8,, p+6,)Om,

with © denoting masking, ensuring that modifications are
applied only to symptomatic regions.
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The disease textures for Black Rot, Leaf Blight, and Esca were
generated using the node-based material system in Blender, which
allows the combination of texture masks within this formalism
through mathematical operations (Guerrero et al., 2022). This
approach enables flexible and non-destructive editing: by
adjusting parameters such as position, scale, and distribution,
disease textures can be systematically varied without recreating
them from scratch.

Black Rot was simulated using a layered system designed to
reproduce its characteristic concentric lesion structure. Four
chromatic perturbations &, were stacked: a pale yellow halo, a
dark brown border, a lighter brown interior, and a light gray core
corresponding to advanced infection. The mask m was initialized
from a Photoshop-derived base aligned with the leaf’s vein
structure, and subsequently distorted with Perlin noise to
introduce variability and organic irregularity. A Voronoi-based
submask defined lesion boundaries, mapping grayscale intensities
to the layered color bands to mimic progression from mild to severe
infection. Normal perturbations 8, and roughness perturbations d,,,
also derived from Perlin noise, were applied to blend the lesions into
the underlying leaf texture through a color ramp.

Esca was modeled to replicate its distinct chromatic
progression. Three layers of §, were used: a thin greenish outer
zone, a broader yellow band, and a central reddish-brown necrotic
area. The mask m reused the venation-guided base from Black Rot,
combined with procedural noise to enhance irregularity.
Multiplying both masks produced a grayscale distribution mask,
which was further distorted to simulate natural variability and
progression. Color mapping was then applied, reproducing the
yellow-to-red transition observed in reference samples, with
manual adjustments made to capture tonal differences across

frontiersin.org


https://doi.org/10.3389/fpls.2025.1706973
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Farinati Leite et al.

10.3389/fpls.2025.1706973

FIGURE 4

VitiForge diseased leaf generation examples, under “laboratory” and “real-world" rendering conditions. From top to bottom, left to right, (a)
laboratory Black Rot, (b) laboratory Esca, (c) laboratory Leaf Blight, (d) real-world Black Rot, (e) real-world Esca, (f) real-world Leaf Blight.

leaves. Finally, a noise-based normal perturbation &, was applied to
simulate subtle surface deformation.

Leaf Blight was reproduced as larger, irregular blotches with a
characteristic two-tone structure: a thin yellowish border and a dark
gray interior interspersed with scattered brown and light gray spots.
A Voronoi-based mask was created and randomly distorted to form
the coarse small speckles, while a secondary noise mask generated
larger blotches. The combined mask m was mapped to the two-tone
6, pattern. Overlays of noise textures added the small brown and
light gray specks, simulating fungal mycelium. As with the other
classes, normal perturbations d, and roughness shifts 6, were
applied to the infected regions, giving the surface a roughened,
irregular texture.

Examples of procedurally generated grapevine leaves for the
three disease classes are presented in Figure 4, illustrating both
controlled and realistic rendering conditions.

3.1.3 Synthetic dataset generation system

With the modeling and material definitions established for each
class, the dataset generation pipeline was implemented through
Blender’s Python API. The system dynamically manipulates
material properties, object parameters, and scene configurations
to produce a large and visually diverse collection of synthetic
images. The full automation workflow is illustrated in Figure 5.

The process operates in iterative cycles. In each iteration, a
random leaf mesh is selected and assigned one of the pre-defined
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materials corresponding to the target classes. Parameters
controlling disease texture mapping-such as scale and
displacement-are randomized within controlled ranges, and
deformation modifiers are applied to introduce geometric
variability. Leaf orientation is further diversified by rotating the
model along all three axes.

Lighting and viewpoint are varied at every cycle. Illumination
intensity and color temperature are adjusted within pre-set limits,
while light sources and the camera are repositioned within bounded
regions and rotated around their own axes, ensuring higher
visual diversity.

Each cycle generates two main outputs: a photorealistic render
of the leaf and a label file containing the class ID, ensuring
compatibility with common machine learning pipelines. The
system also produces a semantic segmentation render, providing
a foundation for future applications such as bounding box
derivation or segmentation-based models. From parameter
adjustment to final annotation, the entire cycle executes in
approximately 10 seconds, enabling the creation of customizable
synthetic datasets.

3.1.4 GAN-based leaf generation

GANSs are widely used in agricultural computer vision for data
augmentation, particularly when real datasets are limited or
imbalanced. Following conventional practice in the plant disease
image synthesis literature (Jin et al., 2022; Cap et al,, 2022; Li et al,,
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FIGURE 5
Synthetic dataset generation system.

2024), GAN-based models were adopted here as a baseline strategy
against which the proposed procedural pipeline can be evaluated.
These models provide a commonly used framework for generating
realistic diseased leaf images, especially when paired healthy/
diseased datasets are not available. Comparing procedurally
generated synthetic leaves with GAN generated images enables an
assessment of the relative merits of both approaches in terms of
structural fidelity, realism, and utility for downstream classification.

Two GAN architectures were evaluated: CycleGAN (Zhu et al.,
2017), a general-purpose unpaired image-to-image translation
framework, and LeafGAN (Cap et al, 2022), a plant-specific
adaptation that incorporates segmentation maps and shape-aware
loss to better guide disease placement. The following subsections
outline their comparison and describe the CycleGAN setup used in
this study.

3.1.5 Comparison of GAN architectures

CycleGAN (Zhu et al,, 2017) employs two pairs of generator—
discriminator networks and is trained using a cycle-consistency
loss, which ensures that an image translated from domain A to B
and then back again reconstructs the original input. In this study, it
was trained to translate healthy grape leaves into diseased
counterparts with Black Rot, Esca, and Leaf Blight, while
preserving leaf structure and venation.

Proposed by Cap et al. (2022), LeafGAN extends the CycleGAN
framework by incorporating segmentation masks and a shape-
aware loss function to anatomically constrain disease placement.
This design enables lesions to be localized to meaningful regions of
the leaf surface, and has shown strong performance in datasets
where segmentation masks are reliably available, such as cucumber
disease datasets. However, when applied to vineyard data with fewer
samples (4,639 compared to 12,000 in cucumber), segmentation
guidance proved less stable. Limited annotations often led to
irregular disease localization and inconsistent outputs. In
comparison, CycleGAN, without relying on segmentation,
produced structurally intact leaves and more consistent lesion
patterns under the same conditions, as shown in Figure 6.

Frontiers in Plant Science

These observations illustrate that segmentation-driven models
such as LeafGAN are contingent on dense, high-quality
annotations, which were not available for vineyard datasets.
CycleGAN, in contrast, provided greater robustness in
standardized conditions, synthesizing structurally coherent leaves
without requiring segmentation guidance. Nevertheless, in domains
with reliable segmentation masks, LeafGAN’s shape-aware
constraints may offer advantages by guiding lesion placement
with higher anatomical fidelity.

3.1.6 CycleGAN training setup

The CycleGAN models were optimized following the standard
training configuration introduced by Zhu et al. (2017), employing
adversarial, cycle-consistency, and identity losses alongside the
associated hyperparameters and training protocol. Dropout was
not used, and training was conducted with a batch size of 1 using
the Adam optimizer with an initial learning rate of 0.0002. A linear
learning rate decay was applied beginning at epoch 100 to stabilize
convergence during later training stages.

Input images were first resized to 266x266 pixels and then
cropped to 256x256 pixels, before being normalized to the range
[-1,1]. Cycle-consistency and identity losses were weighted at A, =
10.0, Az = 10.0, and Aigengiyy - 0.5, respectively.

For each ablation level described in Section 3.2, three separate
CycleGAN models were trained, one for each disease class (Black
Rot, Esca, and Leaf Blight), using healthy-disease domain pairs. The
trained models were then applied to healthy leaves to generate
additional diseased samples, which were incorporated into the
datasets for the ablation experiments.

3.2 Ablation study methodology

To evaluate the effectiveness of synthetic grape leaf images in data
augmentation, a data ablation strategy was employed. Models were
trained and tested under three experimental cases: (i) real data only,
(ii) real data with GAN-based synthetic augmentation, and (iii) real
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FIGURE 6
Example outputs of CycleGAN & LeafGAN models.

data with VitiForge augmentation. For each condition, progressively
greater subsets of real data were used to simulate scenarios of limited
dataset availability, enabling the impact of synthetic augmentation on
model performance to be systematically assessed.

Although data ablation studies are less common in agricultural
computer vision, they are well established in other fields For
example, Nowruzi et al. (2019) demonstrated that fine-tuning
synthetic data with limited real samples improved detection
performance on cars and people using SSD-MobileNet. Likewise,
Mousavi et al. (2020) developed an ablation tool and showed that
high-fidelity synthetic training can match or even surpass real data
in some contexts.

In agriculture, however, the approach is arguably even more
pertinent. Collecting annotated field data is both time-consuming
and logistically challenging, while certain diseases may be region-
specific or restricted to particular growth stages, making them
underrepresented in datasets. As a result, agricultural datasets
often exhibit scarcity and imbalance, especially for rare or early-
stage disease symptoms.

Within this context, the data ablation study explores how much
real data is needed to achieve acceptable model performance,
whether VitiForge or GAN-based augmentation provides greater
benefit when data is limited, and how performance scales as real
data becomes more abundant.

Frontiers in Plant Science

3.2.1 Dataset descriptions

For these experiments, five datasets were prepared: one training set,
two real testing sets, and two procedurally generated synthetic sets. The
real datasets are derived either from the well-known PlantVillage
benchmark or from FieldVitis, a curated collection of grape leaf
images from the field assembled from multiple public sources. Finally,
the synthetic datasets were each generated to mirror the conditions of the
corresponding test datasets. All datasets share the same four-class
structure: healthy, black rot, esca, and leaf blight, which allows direct
comparison across controlled, field, and synthetic conditions.

The training dataset was sourced from Geetharamani and
Pandian (2019), which augmented the original PlantVillage
dataset (Mohanty et al.,, 2016). It consists of 950 images and was
intentionally left imbalanced, with around 5 times more of healthy
leaves than diseased ones, reflecting common collection scenarios
where healthy samples are more readily available. This deliberate
imbalance creates a more challenging scenario for augmentation
techniques to address class imbalance.

The PlantVillage testing dataset is fully independent of the
training set, though also derived from Geetharamani and Pandian
(2019). It contains 3,689 images and serves to evaluate performance
under laboratory conditions, characterized by uniform lighting,
clean backgrounds, and individual leaves with no occlusion.
Examples of PlantVillage leaves are shown in Figure 7.
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FIGURE 7

PlantVillage examples. From left to right, (a) Black Rot, (b) Esca, (c) Leaf Blight.

The FieldVitis testing dataset (Farinati Leite et al., 2025) was
compiled from several independent public sources. Healthy and
Esca images were collected from Alessandrini et al. (2021), Black
Rot and Leaf Blight from Shikalgar et al. (2024), with additional
Black Rot samples from Singh et al. (2020). Some classes required
substantial cleaning: for example, Black Rot contained mislabeled
Esca samples, while Leaf Blight included images with disrupted
backgrounds such as hands holding leaves. After these revisions, the
dataset comprises 555 images and reflects typical field variability,
including different lighting conditions (time of day and capture
angles), diverse backgrounds (e.g., grass beneath leaves or vineyard
canopy), and varied leaf orientations, sometimes even in shadow.
Examples are shown in Figure 8.

Two VitiForge-based synthetic datasets were created, each
designed to approximate the conditions of the test datasets.
Synthetic 1 comprises 13,202 samples and corresponds to the
PlantVillage test dataset, while Synthetic 2 contains 5,180 samples
and corresponds to the FieldVitis test dataset (note that while these
sample counts are fixed for the data ablation experiments, VitiForge
allows both datasets to be scaled arbitrarily). They were used both to
balance and to increase the number of samples during the
ablation experiments.

Table 1 summarizes the distribution of images across the four
classes in each dataset.

3.2.2 Ablation strategy

The ablation strategy was designed to systematically test the impact
of synthetic data under different levels of real data availability. By
progressively increasing the size of the training dataset, the experiment
simulates scenarios where annotated samples are scarce, a common
occurrence in this domain. At each reduction step, model performance
was evaluated under three training configurations: real data only, real
data with VitiForge augmentation, and real data balanced with GAN-
generated samples.

The procedure unfolded as follows:

1. Dataset reduction: as described in Section 3.2.1, the original
training set contained 950 images, consisting of 800 Healthy
leaves and 50 samples per disease class. To simulate different
levels of scarcity, progressively bigger subsets were sampled,
ranging from 5% to 100% of the original size. For example, at
the 10% level, the subset contained approximately 80
Healthy images and 5 images per disease class.
Importantly, the natural imbalance between classes was

FIGURE 8

FieldVitis examples. From left to right, (a) Black Rot, (b) Esca, (c) Leaf Blight.
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TABLE 1

eite et al.

Number of images per class across datasets.

Black

Leaf

Dataset Healthy rot et} blight Total
Training 800 50 50 50 950
PlantVillage 200 1130 1333 1026 3689
FieldVitis 158 39 200 158 555
Synthetic 1 3287 3265 3309 3341 13202
Synthetic 2 1191 1358 1242 1389 5180

preserved at all levels. These progressively reduced splits
serve as the x-axis in the ablation plots.

. Baseline training: for each subset size, a classification model

was trained using only the available real images. These
models served as baselines against which augmented
training strategies were compared.

. VitiForge augmentation: each reduced subset was balanced

with procedurally generated samples until all classes
matched the size of the majority class (e.g., healthy).
Beyond this balanced setup, additional synthetic samples
were progressively introduced to create different real-
synthetic ratios. These experiments were carried out to
determine how classification performance varied with
increasing proportions of synthetic data, and to identify
the optimal ratio for each ablation level based on the
classification metrics employed.

. GAN-based augmentation: for comparison, GANs were

trained separately at each reduction level using only the
available real images from that subset, ensuring no
information leaked from larger datasets. CycleGAN was
employed as the primary model. This approach is inspired
by prior works that demonstrate the effectiveness of GANs
for oversampling imbalanced datasets in computer vision
and plant disease diagnosis tasks (Cap et al., 2022; Sampath

100% of the train
dataset

Dataset reduction

5% of the train
dataset

FIGURE 9
Data ablation pipeline.
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etal, 2021). The GAN-generated images were then used to
balance the reduced subsets, following the same per-class
equalization strategy applied in procedural augmentation.

. Evaluation: models were evaluated using precision, recall,
accuracy, and Fl-score. Model checkpoints were selected
based on the best F1-score. To ensure robustness and reduce
variance from random splits, performance was computed using
5-fold cross-validation at each ablation level. For each metric,
the mean and standard deviation across folds were calculated
and visualized in the line plots, enabling direct comparison of
performance trends between the three scenarios.

Figure 9 illustrates the ablation process, showing how subsets of
the training dataset used in the three experimental scenarios.

3.3 Model architectures

Three CNN architectures were selected as classifiers for the
ablation procedure: MobileNetV2, InceptionV3, and ResNet50V2.
These models were chosen because of their computational efficiency,
their widespread adoption as benchmarks in image classification, and
their demonstrated use in plant disease diagnosis (Karthik et al,
2024a, b; Geetharamani and Pandian, 2019; Fraiwan et al., 2022).

This selection supports reproducibility, as all three models are
readily available in major deep learning frameworks. Their
efficiency allows experiments to be repeated across multiple
ablation levels without prohibitive computational cost. Moreover,
their compact design makes them suitable for potential deployment
in resource-constrained agricultural settings. A brief overview of
each architecture is given below:

*  MobileNetV2 (Sandler et al., 2018): designed for mobile and
embedded vision applications, it employs inverted residual
blocks and depthwise separable convolutions, making it
efficient in terms of parameter count and inference speed.

\( \

Baseline training

VitiForge

¥ Evaluation
augmentation

GAN-based
augmentation
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FIGURE 10
F1 macro scores on the PlantVillage test set across ablation levels.

* InceptionV3 (Szegedy et al, 2016): leverages factorized
convolutions and dimensionality reduction to extract
features at multiple scales, achieving high accuracy with
relatively modest computationalrequirements.

* ResNet50V2 (He et al., 2016): introduces residual learning
with identity mappings and pre-activation, facilitating the
training of deeper models by alleviating vanishing
gradient issues.

By employing these three distinct architectures, the study aims
to abstract away model-specific differences in performance,
allowing the impact to be more confidently attributed to dataset
composition and augmentation strategies rather than to particular
model designs.

3.3.1 Training setup

All three CNN architectures were initialized with ImageNet-
pretrained (Deng et al, 2009) weights and fine-tuned on the
augmented training dataset splits, as described in Section 3.2.2.
The final classification layers were replaced with a fully connected
head producing four outputs corresponding to the target classes
(healthy, black rot, esca, leaf blight).

Random Guess —— Baseline Training

ResNet50V2

=
=}

0510 20 30 40 50 60 70 80 90 100
Portion of the train dataset (%)

—— GAN-based Augmentation
MobileNetV2

0510 20 30 40 50 60 70 80 90 100
Portion of the train dataset (%)

Data preprocessing involved scaling pixel values to the range
[-1, 1] and resizing all samples to 224x224 pixels. When optimizing
the real-synthetic ratio, random erasing was applied as an
additional augmentation technique, using an erasing factor of 0.7
and a scale of 0.08.

Experiments were carried out using TensorFlow 2.19 with
CUDA 12.2 and Python 3.11.2 on a Debian 12.11 system
equipped with an NVIDIA Quadro RTX 4000 GPU with 8 GB of
memory. A batch size of 32 and 10 training epochs were used, the
latter empirically chosen to balance performance with the large
number of experimental runs required for the ablation study.

Optimization was performed using the Adam optimizer with a
learning rate of 0.001 and a weight decay of 0.0002. A dropout rate
of 0.3 was applied to reduce overfitting, and the loss function was
categorical cross-entropy. Hyperparameters were adapted from
Karthik et al. (2024b), which proposed these values after extensive
testing on similar architectures.

3.3.2 Evaluation metrics

Model performance was assessed using the Fl-score and
accuracy, with precision and recall computed as intermediate
quantities. The Fl-score, defined as the harmonic mean of
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FIGURE 11
Macro accuracy on the PlantVillage test set across ablation levels
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FIGURE 12

F1 macro scores on the FieldVitis test set across ablation levels.

precision and recall, was chosen to better reflect performance under
class imbalance, while accuracy was included as a complementary
measure of overall correctness. In addition, loss was monitored to
evaluate convergence.

The precision, recall, F1-score, and accuracy for each class were
defined as:

= TP
Precision = ———
TP + FP
TP
Recall = ———
TP + EN

2 - Precision - Recall

F1 — Score = —
Precision + Recall

N TP + TN
ccuras =
Y TP+ TN+ FP+FN

where TP, TN, FP, and FN denote true positives, true negatives,
false positives, and false negatives, respectively.

----- Random Guess —4— Baseline Training

—— GAN-based Augmentation

Each reduced dataset was split into 80% training and 20%
validation, and metrics were computed during training on the
validation splits, for model checkpointing. Scores were calculated
per class and then macro-averaged across the four categories,
according to:

1€
Mmacro = EEMZ
i=1

Results across ablation levels (0%-100% of training data) were
visualized using scatter plots to compare the three training
strategies. The 0% case was also included to assess the feasibility
of training exclusively on procedurally generated synthetic data.

4 Results

The results of the data ablation experiments on the PlantVillage
and FieldVitis test datasets are presented in this section. Models
were evaluated across ablation levels ranging from 0% to 100% of
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FIGURE 13
Macro accuracy on the FieldVitis test set across ablation levels.
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the training data under three strategies: real data only, real data
balanced and augmented with VitiForge, and real data balanced
with GAN-generated samples. Performance was measured using the
F1 macro score and macro accuracy, computed with 5-fold cross-
validation, and the mean and standard deviation across folds were
visualized with scatter plots to assess performance trends under
varying levels of data availability.

Results are reported separately for the PlantVillage test dataset,
which represents controlled laboratory conditions, and the FieldVitis
test dataset, which represents more variable field conditions.

4.1 PlantVillage data ablation

Figure 10 presents the F1 macro scores, on the PlantVillage test
set, obtained across ablation levels for MobileNetV2, InceptionV3,
and ResNet50V2. Figure 11 shows the corresponding macro
accuracy results under the same conditions.

Across all three architectures, performance increased steadily as
more real data became available. At low ablation levels (below 20%),
the real-only models exhibited the lowest scores, reflecting the
scarcity and imbalance of the available training data.
Augmentation improved performance in these regimes, with
VitiForge providing early gains across all architectures. This effect
was most evident in MobileNetV2, where procedural augmentation
consistently produced a small edge at the lowest data proportions.
InceptionV3 showed the same trend, although the advantage was
less pronounced, while ResNet50V2 also benefited from procedural
data at the smallest splits.

At intermediate levels (20%-50%), the gap between augmented
and non-augmented training narrowed and the differences between
the two augmentation strategies became clearer. In all three
architectures, GAN-based augmentation began to surpass
procedural synthesis from the 20% split onwards. The effect was
especially marked in MobileNetV2, which recorded a noticeable
spike with GAN-generated data at this point. InceptionV3 and
ResNet50V2 followed a similar trajectory, showing procedural gains
in the low-data regime but stronger results from GANs as more real
data was introduced.

At higher ablation levels (above 50%), differences among the
three strategies became less pronounced. All models approached
their maximum performance when trained on the full dataset,
though both augmentation strategies continued to outperform
real-only training. In this regime, GAN-augmented models
generally achieved slightly stronger results than VitiForge.

The accuracy curves closely mirrored the F1 trends, confirming
that the observed improvements were not confined to class-balance
effects. Across ablation levels, both augmentation strategies steadily
improved accuracy, yielding, on average, higher values than the
corresponding F1 scores.

In the 0% case, VitiForge enabled model training without any
real data, achieving approximately 0.4 for both F1 macro and macro
accuracy on the PlantVillage test set.

Among the three architectures, MobileNetV2 achieved the
overall best results across the ablation study, consistently
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outperforming InceptionV3 and ResNet50V2 in both real-only
and augmented conditions.

4.2 FieldVitis data ablation

Figures 12, 13 show the F1 macro scores and macro accuracy on
the FieldVitis test set for MobileNetV2, InceptionV3, and
ResNet50V?2 across all ablation levels.

Overall, scores on FieldVitis were consistently lower than those
obtained on PlantVillage, reflecting the added complexity of field
imagery, characterized by variable lighting, occlusions, and
heterogeneous backgrounds. The two metrics followed
remarkably similar trends across all ablation levels, suggesting
that class imbalance also did not substantially affect the models’
relative performance. Notably, models trained with GAN-based
augmentation and real-only data exhibited visibly larger error bars,
indicating higher variability across cross-validation folds and
sensitivity to the training-validation split.

In the smallest subsets (below 20%), models trained only on real
data performed poorly, while augmentation provided measurable
improvements. MobileNetV2 consistently benefited from
procedural augmentation in all proportions of real data, showing
stable gains over real-only training. The best overall result on
FieldVitis was obtained at the 50% split, where MobileNetV2 with
VitiForge reached an F1 macro score and a macro accuracy of
roughly 0.57.

InceptionV3 also benefited from augmentation techniques,
particularly at the lowest ablation levels, though the improvements
were less pronounced than those observed with MobileNetV2. Both
augmentation strategies produced competitive results across the
different proportions of real data, and on average, VitiForge
maintained a slight advantage.

For ResNet50V2, GAN augmentation consistently performed
marginally better than the procedural augmentation. Augmentation
overall was less effective for this architecture, with models trained
solely on real data producing relatively stronger results compared to
the augmented cases at higher ablation levels.

As the amount of real data increased beyond 50%, real-only
training showed clear upward trends, while augmented strategies
produced more mixed results, occasionally plateauing or yielding
inconsistent gains. Nonetheless, both augmentation methods
outperformed real-only training at nearly all ablation levels, with
VitiForge proving particularly effective for MobileNetV2 in the low-
data regime.

At the 0% level, models trained exclusively with procedurally
generated data achieved F1 macro scores ranging from 0.35 to 0.5
and corresponding macro accuracies in a similar range across the
three architectures.

5 Discussion

The ablation experiments from Section 4 highlight distinct roles
for procedural and GAN-based augmentation across data regimes
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and test conditions. Both methods consistently improved
performance over real-only training, but their relative strengths
varied depending on the availability of real data and the evaluation
dataset. VitiForge proved especially valuable in low-data scenarios,
where it provided reliable improvements and even enabled training
without any real samples. GAN augmentation depended on
reaching a minimum dataset size; beyond this threshold, it
consistently yielded stronger results provided the gap between the
training distribution and the target application was small.

In the PlantVillage dataset, VitiForge excelled in the lowest data
scenarios, where its consistent outputs supplied additional examples
that supported classifier convergence under scarce real data. Once
the proportion of real data exceeded 10%, GAN augmentation
began to gain the upper hand, leveraging more complete
distributions to capture finer-grained textures and patterns.

In contrast, results on the FieldVitis dataset showed a stronger
role for VitiForge. Here, the procedural methodology often matched
or surpassed GAN-based synthesis, particularly with the
MobileNetV2 architecture. This outcome likely reflects the
explicit variability controls embedded in VitiForge (e.g.,
randomized lighting, orientation, and background noise), which
aligned more closely with the diversity of real field conditions than
GANS trained on curated PlantVillage data. In particular, classifiers
trained exclusively on procedurally generated images achieved
competitive scores, demonstrating the potential of VitiForge as a
standalone training resource.

GAN-based augmentation remained competitive in higher-data
regimes across both datasets, consistently performing well when
real training datasets grow larger, allowing them to better capture
disease-speciﬁc textures. However, its reliance on representative,
annotated datasets constrains applicability in field settings, where
rare diseases and early infection stages are often underrepresented
(Sharma et al., 2024). Furthermore, adversarial training can bias
models toward dominant patterns, reducing diversity and limiting
coverage of atypical or early-stage disease manifestations. These
observations suggest that GANSs are best suited as complementary
tools for high-fidelity augmentation when data availability is not a
limiting factor, while procedural synthesis offers greater adaptability
and scalability in cross-domain and low-data scenarios. In contexts
requiring broader variability or resilience to annotation scarcity,
hybrid or alternative generative methods may be preferable
(Muhammad et al., 2023; Miiller-Franzes et al., 2023).

Beyond augmentation methods, the choice of model
architecture further influenced outcomes, with clear trends
emerging across MobileNetV2, InceptionV3, and ResNet50V2.
MobileNetV2 consistently achieved the strongest results in this
study, aligning with multiple reports in the literature that highlight
its effectiveness for grape leaf classification (Thomkaew, 2025;
Mangaoang, 2025). InceptionV3 provided a strong and stable
baseline but generally fell slightly behind MobileNetV2, while
ResNet50V2 occasionally benefited more from real-only training,
reflecting its sensitivity to augmentation regimes. Importantly,
classification tasks on curated datasets such as PlantVillage are
close to “solved”, with near-ceiling accuracies across architectures.
As Shah et al. (2023) notes, relatively small differences in
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preprocessing, augmentation, class balance, or checkpointing
criteria can shift performance rankings between the architectures.

6 Conclusion

This work investigated the role of synthetic data generation for
grape leaf disease classification, comparing VitiForge, GAN-based
synthesis, and no augmentation through a systematic data ablation
study. Results showed that GAN augmentation excelled on
PlantVillage when sufficient real data was available, while
VitiForge was more effective in the low-data regime. In the
FieldVitis dataset, the procedural rendering technique consistently
matched or outperformed GAN augmentation, highlighting its
strength in bridging the gap between controlled laboratory
datasets and real-world conditions.

Procedural-based synthesis offers key advantages: it eliminates the
need for immediate in-field data collection, enabling preemptive
training before outbreaks occur. By parameterizing lesion attributes,
such as size, number, color intensity, spatial distribution, and blending
with leaf venation, along with environmental factors like lighting and
background clutter, it produces diverse, balanced, and fully annotated
datasets without manual labeling costs. This controlled process allows
the simulation of rare, early-stage, or geographically constrained
disease cases, which are often absent in real datasets.

GAN-generated images, in contrast, function best as augmentation
tools when domain-specific real data is already available. Since GANs
require training examples, they cannot be deployed in a zero-data
scenario. However, once trained, they can inject realistic texture
variations, noise patterns, and morphological diversity, helping
improve robustness and generalization across intra-domain variations.

When interpreting these results, some limitations should be
acknowledged. First, the experiments were restricted to a limited
set of grape diseases, which may not generalize to other pathogens or
crop species with more complex visual symptoms. Second, grape
cultivar was not a controlled factor in our experiments, and variety-
specific differences in leaf morphology may influence recognition
outcomes. Third, while VitiForge offers explicit control over lesion
characteristics and environmental conditions, it may still fall short of
capturing the full biological variability of disease progression
observed in real vineyards, especially in mixed infections or under
extreme environmental stress. Fourth, GAN-based augmentation was
evaluated using a limited set of architectures and training conditions;
alternative generative models may yield different outcomes. Finally,
the evaluation focused primarily on classification tasks; extending the
analysis to segmentation or detection scenarios could reveal
additional challenges in domain transfer.

In summary, this paper highlights the complementary roles of
procedural and GAN-based synthesis: VitiForge offers orderly
control and flexibility during early-stage release, while GANs add
realism and diversity during late-stage, when real-world data exists.
Looking ahead, future work should explore hybrid frameworks that
integrate the controllability of procedural methods with the fidelity
of generative models, while extending experiments to additional
grapevine pathogens, diverse cultivation contexts (across locations

frontiersin.org


https://doi.org/10.3389/fpls.2025.1706973
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Farinati Leite et al.

and cultivars), and exploring semantic segmentation outputs for
mixed infection recognition. Preprocessing strategies may also help
mitigate domain shifts and facilitate the transfer of models trained
on laboratory datasets to field conditions, as in Li et al. (2023),
thereby complementing the benefits of synthetic augmentation.
Finally, integrating these synthetic pipelines into real-time
decision-support tools for growers could help advance early
disease diagnosis from a research-focused approach into a
practical instrument for sustainable viticulture.
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