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Early identification of grapevine diseases is critical for reducing yield losses and

ensuring sustainable viticulture. CNNs trained on benchmark datasets such as

PlantVillage often achieve near-perfect accuracy, yet this performance fails to

translate to real-world field conditions where lighting, backgrounds, and lesion

appearance vary widely. To address challenges of data scarcity and imbalance,

this study introduces VitiForge, a novel procedural synthetic imagery pipeline for

generating realistic synthetic grape leaf textures representing healthy, Black Rot,

Esca, and Leaf Blight conditions. VitiForge is systematically evaluated against

GAN-based augmentation through a data ablation study on PlantVillage and

FieldVitis, a curated field dataset, using MobileNetV2, InceptionV3, and

ResNet50V2 classifiers. Results show that VitiForge significantly improves

performance in low-data regimes, enabling model training even without real

samples, whereas GAN augmentation proves more effective once sufficient real

data is available. On field imagery, VitiForge often matched or surpassed GAN-

based methods, particularly when paired with MobileNetV2. These findings

highlight the complementary roles of procedural and GAN-based synthetic

data: VitiForge offers flexibility and scalability under cross-domain and data-

scarce conditions, while GANs enhance realism and variability when ample data

exists. Together, they support the development of robust and generalizable

models for automated grape disease detection in precision agriculture.
KEYWORDS

deep learning, plant disease recognition, convolutional neural network, synthetic data,
precision agriculture
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1 Introduction

Early detection of plant diseases, often manifested as visible

patterns on leaves, is critical for minimizing crop yield losses.

Globally, plant diseases account for more than 30% of annual

crop losses, equating to hundreds of billions of dollars in damage

(Gai and Wang, 2024). Traditional monitoring methods are labor-

intensive, time-consuming, and reliant on expert knowledge,

underscoring the need for automated solutions. Viticulture

exemplifies the opportunities in this field. Grapes represent an

important fruit crop with significant global economic importance

(Li et al., 2023); however, grapevine diseases such as Black Rot, Leaf

Blight, Downy Mildew and Esca pose substantial threats to

cultivation, motivating intensive research into automated disease

detection approaches (Xie et al., 2020; Tang et al., 2020; Lu X. et al.,

2022; Zhu et al., 2021).

Among these diseases, Black Rot (Guignardia bidwellii) and

Esca are particularly destructive, experiencing up to 100% yield loss

from Black Rot (Szabó et al., 2023) with heavily infected vineyards.

Recent advances in Artificial Intelligence (AI) and image

processing have enabled more precise plant disease detection,

where automated workflows typically involve steps such as image

acquisition, segmentation, feature extraction, and lesion

classification. Within this framework, deep learning models have

shown strong effectiveness in recognizing disease symptoms in the

visible spectrum (Upadhyay et al., 2025), with a wide range of

segmentation and feature extraction strategies also explored to

improve performance (Khirade and Patil, 2015; Székely et al., 2024).

Convolutional Neural Network (CNN)-based models, such as

MobileNet, Inception, and ResNet, have shown great promise for

grape disease classification and have achieved impressive accuracy

on benchmark datasets like PlantVillage (Mohanty et al., 2016),

with some models reaching near-perfect results under controlled

conditions (Kunduracioglu and Pacal, 2024; Lu X. et al., 2022).

However, their performance often degrades sharply when applied to

real-world images, where uneven lighting, complex backgrounds,

and subtle lesion patterns introduce significant challenges (Barbedo,

2022). Transfer learning can alleviate some of these limitations

(Morellos et al., 2022), but the domain gap remains a

persistent obstacle.

Despite their success, CNN models rely on large, representative,

and balanced datasets to achieve robust performance across diverse

conditions (Dablain et al., 2023; Albattah and Khan, 2025). In the

context of plant pathology, however, constructing such datasets is

particularly challenging. Plant diseases are inherently variable,

influenced by environmental factors, growth stages, and pathogen

interactions, which makes capturing sufficient examples of all

relevant symptoms extremely difficult. Furthermore, disease

occurrence is region-dependent and seasonal, meaning that data

collection requires significant time and geographic coverage. As a

result, available datasets are often limited, imbalanced, and

narrowly focused (Pacal et al., 2024).

Synthetic data has emerged as a promising solution to this

challenge. Several studies have shown that synthetic augmentation
Frontiers in Plant Science
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can substantially reduce the reliance on large real-world datasets

(Nowruzi et al., 2019), and agricultural applications have already

employed synthetic data effectively in tasks such as crop

phenotyping (Toda et al., 2020). In the context of plant disease

detection, Generative Adversarial Networks (GANs) have become a

widely used approach for generating synthetic plant images,

particularly to expand minority classes and balance datasets,

thereby improving the robustness of training (Xie et al., 2020;

Tang et al., 2020; Liu et al., 2020; Jin et al., 2022).

Taking an alternative approach, this work proposes VitiForge, a

novel scalable pipeline for generating realistic synthetic grape leaf

images using a procedural methodology. The approach produces

diverse, customizable datasets that realistically represent grape

leaves and disease patterns under varied conditions. The

effectiveness of procedurally generated synthetic grape leaf images

is evaluated as a data augmentation strategy for classical AI models

in disease detection. Benchmarking is conducted through a data

ablation strategy applied to splits of the PlantVillage dataset and

FieldVitis, a curated dataset of field images assembled from public

sources, comparing three approaches: (i) real data only, (ii) real data

with GAN based augmentation, and (iii) real data with VitiForge

augmentation. The main contributions of this work can be

summarized as follows:
1. The development of VitiForge, a scalable framework for

synthesizing realistic grapevine leaf imagery by

procedurally modeling disease patterns (Black Rot, Esca,

and Leaf Blight) and environmental variability such as

lighting, orientation, and background clutter.

2. The introduction of FieldVitis, a curated dataset of grapevine

leaves collected from multiple public sources to reflect the

real-world variability of vineyard imagery, providing a

valuable benchmark for evaluating model generalization

under realistic field conditions. It is available in Zenodo at

https://doi.org/10.5281/zenodo.17307846.

3. A comprehensive data ablation study on PlantVillage and

FieldVitis, demonstrating that VitiForge consistently

improves performance in low-data scenarios and even

enables model training in complete absence of real

samples, establishing its viability as a zero-data solution.

4. A comparative analysis across three CNN architectures

(MobileNetV2, InceptionV3, and ResNet50V2), highlighting

architecture-specific responses to augmentation strategies,

with MobileNetV2 achieving the strongest and most

consistent gains.
2 Related work

This research on automated grape disease detection intersects

with three main areas: deep learning approaches for plant

pathology, synthetic data augmentation in agriculture, and

procedural image generation for computer vision.
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2.1 Deep learning for grape leaf disease
identification

Deep learning techniques have been widely applied to grape

disease classification, with most early work demonstrating strong

results on controlled datasets such as the PlantVillage dataset

(Mohanty et al., 2016), which comprises 54,306 images of

diseased and healthy leaves across 14 crop species and 26

diseases, including approximately 4,000 grape leaf images. Using

this resource, Geetharamani and Pandian (2019) developed a nine-

layer CNN that achieved accuracies above than 90%. Similarly,

Tang et al. (2020) proposed a lightweight model combining

ShuffleNet with squeeze-and-excitation blocks, reaching 99.14%

test accuracy on PlantVillage while maintaining a compact size

suitable for embedded deployment. Extensions to real-time

detection have also been pursued, as in Xie et al. (2020), who

introduced Faster DR-IACNN trained on an augmented

PlantVillage dataset of 62,286 images, achieving 81.1% mean

Average Precision (mAP).

Beyond classical CNNs, recent work has explored more

sophisticated architectures and feature fusion strategies.

Transformer-based designs such as Swin Transformer have

demonstrated near-perfect performance, with some configurations

reaching 100% accuracy on grape leaf classification (Kunduracioglu

and Pacal, 2024). Hybrid models combining CNN and Transformer

components have also been proposed, including Group Shuffle

Residual DeformNet with Swin Transformer (Karthik et al.,

2024b) and Inception ResNet with Shuffle-Transformer fusion

(Karthik et al., 2024a), both reporting high classification accuracy.

Other studies have investigated variations in CNN backbones, such

as VGG12 with wide convolution layers (Thomkaew, 2025), deep

learning approaches for multiclass grape disease classification

(Fraiwan et al., 2022), and broader comparative analyses across

multiple architectures (Mangaoang, 2025).

A recurring challenge emerges when models trained on

controlled data are evaluated on field imagery. As emphasized by

George et al. (2025), leaf disease datasets in general can be broadly

divided into laboratory collections, characterized by controlled

lighting, uniform backgrounds, and isolated leaf presentation, and

real-world collections, which include varied environmental

conditions such as wind, uneven illumination, diverse

backgrounds, and occlusions from surrounding foliage. This

distinction is evident in grapevine disease detection as well:

Morellos et al. (2022) reported that fine-tuned CNNs achieved

100% validation accuracy on PlantVillage (a typical laboratory

dataset) but dropped to 66.7% with AlexNet when tested on

vineyard-collected images. Similarly, Zhu et al. (2021) observed

that Black Rot detection achieved 95.79% precision and 94.52%

recall on controlled indoor test images, compared to 86.69%

precision and 82.27% recall on orchard images, with performance

partially recovering when restricted to simple backgrounds. More

complex acquisition setups such as UAV imagery have also been

investigated: Li et al. (2023) introduced a multistage pipeline

combining Multifusion U-Net with modified VGG-19, reaching
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71.91% average segmentation accuracy under challenging

conditions with low light and motion interference.

To reduce this domain gap, several field-oriented datasets have

been developed, like observed in (Alessandrini et al., 2021)

(Dharrao et al., 2025), and (Lu X. et al., 2022) that intended to

expand coverage to field conditions, yet their size, class balance and

diversity remain limiting factors in building broadly

generalizable models.
2.2 Synthetic data augmentation in
agriculture

To address the limitations of dataset size, class balance, and

diversity, data augmentation is a standard strategy in plant disease

detection pipelines. As noted by George et al. (2025), traditional

augmentation approaches can be broadly divided into position-

based (mirroring, clipping, rotation) and color-based (brightness,

contrast, saturation) transformations, with more advanced

techniques such as CutMix and MixUp combining sample images

through linear interpolation or region-level patching. In addition,

masking-based background replacement has been proposed to

better mimic real-world conditions (Benabbas et al., 2024). While

these methods improve generalization, they are limited in their

ability to generate genuinely new samples or replicate the variability

of field conditions.

Beyond these traditional approaches, GANs have been widely

investigated for synthetic augmentation in agricultural computer

vision. Reviews by Sampath et al. (2021) and Lu Y. et al. (2022)

document their effectiveness for addressing dataset imbalance and

scarcity, particularly when constrained by seasonal or geographic

limitations. GANs have been applied across diverse crops: Giuffrida

et al. (2017) pioneered a DCGAN-style framework for synthesizing

Arabidopsis images, Zhao et al. (2022) used GANs for wheat disease

generation, Li et al. (2024) developed SugarcaneGAN for feature

expansion in sugarcane diseases, and Ramadan et al. (2024)

demonstrated synthetic augmentation for wheat disease

classification. Other work includes Kierdorf et al. (2022), who

applied conditional GANs to estimate occluded grapevine berry

counts by generating synthetic leaf–berry compositions, and Barth

et al. (2020), who employed CycleGAN to enhance realism in plant

images for part segmentation tasks, Cap et al. (2022) introduced

LeafGAN, a model that leverages segmentation masks on top of

CycleGAN to generate cucumber disease-specific imagery.

In grapevine pathology, specialized GAN architectures have

been developed to capture the unique features of grape leaf diseases.

Liu et al. (2020) introduced Leaf GAN, not to be confused with

LeafGAN, which incorporated degressive-channel deconvolutions

in the generator and dense connectivity with instance normalization

in the discriminator, stabilized with a deep regret gradient penalty.

Trained on 4,062 PlantVillage grape leaf images, Leaf GAN

synthesized 8,124 additional samples with enhanced lesion

visibility and achieved lower Fréchet Inception Distance (FID)

than DCGAN and WGAN. Incorporating these GAN-generated
frontiersin.org
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samples improved downstream CNN classifiers, with Xception

reaching 98.7% accuracy.

Building on this direction, Jin et al. (2022) developed

GrapeGAN, an unsupervised GAN architecture for grape leaf

disease image enhancement. Its U-Net-like generator with reorg

downsampling, residual blocks, and feature concatenation

preserved fine lesion textures, while a discriminator combining

convolutional blocks with a capsule network enforced structural

integrity and reduced artifacts such as petiole misalignment.

Taking an alternative approach, Zhang et al. (2021) employed a

multi-feature fusion Faster R-CNN (MF3 R-CNN) for soybean leaf

disease detection under field conditions, with synthetic data

augmentation through compositing diseased leaves from scene

captures into real soybean field backgrounds, followed by reflection,

rotation, and color perturbation. Notably, trained solely on synthetic

data, MF3 R-CNN was able to generalize to real soybean field

imagery, robustly identifying virus disease, frogeye leaf spot, and

bacterial spot despite occlusion and background clutter.

Recent developments have explored alternative generative

approaches in agricultural contexts. Muhammad et al. (2023) and

Egusquiza et al. (2025) investigated the application of diffusion

models for plant disease image augmentation, examining their

potential for generating synthetic plant disease imagery. Heschl

et al. (2025) introduced SynthSet, a methodology utilizing

Denoising Diffusion Probabilistic Models and GANs for generating

synthetic annotated agricultural data, with demonstrated efficacy in

wheat head segmentation applications.
2.3 Procedural synthetic image generation
for AI augmentation

Procedural image generation has been widely explored in

computer vision applications where annotated data is costly or

impractical to obtain. Park et al. (2021) demonstrated its

effectiveness for food instance segmentation, using Blender-

generated datasets to train Mask R-CNN models that performed

strongly on real meal images without requiring manual annotations.

Similarly, Mousavi et al. (2020) introduced a platform built on

Unreal Engine for controlled synthetic dataset generation, enabling

systematic variation of factors such as lighting and texture fidelity

while preserving scene geometry.

In agriculture and plant-related computer vision, procedural

synthesis has also shown promise. Toda et al. (2020) generated seed

images across multiple crops using domain randomization, training

networks that achieved 96% recall and 95% average precision when

evaluated on real phenotyping tasks. Barth et al. (2018) developed a

3D modeling pipeline for Capsicum annuum leaves based on

empirical measurements, achieving segmentation performance

comparable to models trained on real annotated data while

reducing annotation costs. More recently, Giakoumoglou et al.

(2023) combined procedural generation with diffusion models in

the Generate-Paste-Blend-Detect framework for pest monitoring,

reporting competitive whitefly detection performance without large

manually labeled datasets.
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These examples demonstrate that procedural methods can

reduce reliance on annotated data and provide explicit control

over variability. However, despite their adoption in related

agricultural contexts, procedural generation remains relatively

unexplored in plant disease detection tasks.
3 Materials and methods

To evaluate the effectiveness of VitiForge for grapevine disease

identification, a methodology centered on the creation,

augmentation, and testing of grape leaf datasets was designed.

The methods described below cover the synthetic generation

pipeline, disease pattern modeling, dataset construction, ablation

study design, and classifier training protocols, providing a

reproducible framework for assessing performance across both

laboratory and field conditions.
3.1 Synthetic grape leaf generation
methodology

This work investigates and compares synthetic data generation

as a means to improve grape leaf disease identification, focusing on

four classes derived from the PlantVillage dataset: healthy leaves,

and leaves affected by Black Rot, Esca, and Leaf Blight. To address

different scenarios of data availability and modeling requirements,

two complementary generation strategies were employed:

VitiForge, a procedural rendering framework developed in this

study, and a GAN-based generative framework adapted from

prior work.

The procedural approach generates samples by projecting high-

resolution textures onto 3D meshes and procedurally applying

disease-specific patterns that replicate lesion color, shape, and

distribution. Parameters such illumination, surface variation, and

lesion progression can be systematically adjusted, enabling scalable

and controllable dataset creation. In contrast, the GAN-based

approach employs adversarial training to learn a transformation

from healthy leaves to diseased variants, relying on unsupervised

image-to-image translation. The second approach serves as a

baseline against which the procedural method can be compared.

3.1.1 VitiForge leaf generation
VitiForge’s methodology for generating synthetic imagery is

grounded in the projection of real-world photographs onto 3D

planes assigned with Physically Based Rendering (PBR) materials

(Pharr et al., 2023). Formally, a PBR material   T on a surface S can

be defined as a tuple of spatially varying fields

T = (a :S → ½0, 1�3,a :S → ½0, 1�, nt :S → S2, r :S → ½0, 1�)

where a is the albedo map (base color), a the alpha mask

(opacity), nt the normal map (in tangent space), and r the

roughness map (controlling microfacet variance).

The albedo map a was derived from high-resolution

photographs of grape leaves captured against a plain white
frontiersin.org
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background under diffuse illumination, thereby minimizing cast

shadows and enhancing surface detail. Images were subsequently

processed for color correction, alignment, and optimization to

ensure their suitability as texture assets. The image collection

setup is illustrated in Figure 1.

The alpha mask a was generated to isolate the leaf from its

background and enabling its integration into synthetic scenes. This

allows systematic variation of the background, illumination, and

other environmental factors. The post-processing workflow is

presented in Figure 2.
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To enhance realism, the normal nt and roughness r maps were

incorporated, modulating light-surface interaction to simulate

depth, venation, and subtle irregularities (Lin et al., 2014). These

maps were generated from leaf photographs by creating grayscale

height maps in Adobe Photoshop 2025, which were then imported

into Blender 4.3.2 and applied as displacement masks. This

procedure allowed the mesh to approximate real-world surface

topography such as veins and roughness.

The high-polygon leaf model was subsequently paired with a

simplified low-poly mesh using the caging technique
FIGURE 1

Schematic representation of the images collection pipeline.
FIGURE 2

The image processing workflow.
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(Keles ̧oğlu and Özer, 2021). In practice, the cage is a slightly

expanded version of the low-poly geometry that fully encloses the

high-poly model. During the baking process, where fine surface

details are encoded into texture maps, the software casts rays from

the surface of the low-poly model and uses the cage to guide their

direction. This ensures that intricate details from the high-poly

surface, such as grooves, ridges, and venation, are accurately

projected into a, while avoiding artifacts due to misaligned

ray projections.

Finally, combining each of these maps, the material T was

constructed to form realistic base textures, which could then be

systematically varied for further stages of the generation pipeline.

This stage of the process is presented in Figure 3.

The resulting textures provided a controllable foundation for the

subsequent application of disease symptoms and environmental variation.
3.1.2 Disease pattern modeling
Building on the base material T , VitiForge introduces disease

symptoms as stochastic perturbations D  applied over the leaf

surface S. Those perturbations are defined as

D = (m :S → 0, 1f g,  da :S → ½0, 1�3,  dr :S → ½0, 1�,  dn :S → S2);

where m is a binary infection mask indicating symptomatic

regions, da chromatic perturbations to the albedo map, dr
perturbations to the roughness field, and dn perturbations to the

normal field. The resulting diseased material is obtained through

T 0(T ,D) = (a + da,  a ,  nt + dn,  r + dr)⊙m,

with ⊙ denoting masking, ensuring that modifications are

applied only to symptomatic regions.
Frontiers in Plant Science 06
The disease textures for Black Rot, Leaf Blight, and Esca were

generated using the node-based material system in Blender, which

allows the combination of texture masks within this formalism

through mathematical operations (Guerrero et al., 2022). This

approach enables flexible and non-destructive editing: by

adjusting parameters such as position, scale, and distribution,

disease textures can be systematically varied without recreating

them from scratch.

Black Rot was simulated using a layered system designed to

reproduce its characteristic concentric lesion structure. Four

chromatic perturbations da were stacked: a pale yellow halo, a

dark brown border, a lighter brown interior, and a light gray core

corresponding to advanced infection. The mask m was initialized

from a Photoshop-derived base aligned with the leaf’s vein

structure, and subsequently distorted with Perlin noise to

introduce variability and organic irregularity. A Voronoi-based

submask defined lesion boundaries, mapping grayscale intensities

to the layered color bands to mimic progression from mild to severe

infection. Normal perturbations dn and roughness perturbations dr ,
also derived from Perlin noise, were applied to blend the lesions into

the underlying leaf texture through a color ramp.

Esca was modeled to replicate its distinct chromatic

progression. Three layers of da were used: a thin greenish outer

zone, a broader yellow band, and a central reddish-brown necrotic

area. The mask m reused the venation-guided base from Black Rot,

combined with procedural noise to enhance irregularity.

Multiplying both masks produced a grayscale distribution mask,

which was further distorted to simulate natural variability and

progression. Color mapping was then applied, reproducing the

yellow-to-red transition observed in reference samples, with

manual adjustments made to capture tonal differences across
FIGURE 3

Texture combination stage diagram.
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leaves. Finally, a noise-based normal perturbation dn was applied to

simulate subtle surface deformation.

Leaf Blight was reproduced as larger, irregular blotches with a

characteristic two-tone structure: a thin yellowish border and a dark

gray interior interspersed with scattered brown and light gray spots.

A Voronoi-based mask was created and randomly distorted to form

the coarse small speckles, while a secondary noise mask generated

larger blotches. The combined maskm was mapped to the two-tone

da pattern. Overlays of noise textures added the small brown and

light gray specks, simulating fungal mycelium. As with the other

classes, normal perturbations dn and roughness shifts dr were

applied to the infected regions, giving the surface a roughened,

irregular texture.

Examples of procedurally generated grapevine leaves for the

three disease classes are presented in Figure 4, illustrating both

controlled and realistic rendering conditions.

3.1.3 Synthetic dataset generation system
With the modeling and material definitions established for each

class, the dataset generation pipeline was implemented through

Blender’s Python API. The system dynamically manipulates

material properties, object parameters, and scene configurations

to produce a large and visually diverse collection of synthetic

images. The full automation workflow is illustrated in Figure 5.

The process operates in iterative cycles. In each iteration, a

random leaf mesh is selected and assigned one of the pre-defined
Frontiers in Plant Science 07
materials corresponding to the target classes. Parameters

controlling disease texture mapping–such as scale and

displacement–are randomized within controlled ranges, and

deformation modifiers are applied to introduce geometric

variability. Leaf orientation is further diversified by rotating the

model along all three axes.

Lighting and viewpoint are varied at every cycle. Illumination

intensity and color temperature are adjusted within pre-set limits,

while light sources and the camera are repositioned within bounded

regions and rotated around their own axes, ensuring higher

visual diversity.

Each cycle generates two main outputs: a photorealistic render

of the leaf and a label file containing the class ID, ensuring

compatibility with common machine learning pipelines. The

system also produces a semantic segmentation render, providing

a foundation for future applications such as bounding box

derivation or segmentation-based models. From parameter

adjustment to final annotation, the entire cycle executes in

approximately 10 seconds, enabling the creation of customizable

synthetic datasets.

3.1.4 GAN-based leaf generation
GANs are widely used in agricultural computer vision for data

augmentation, particularly when real datasets are limited or

imbalanced. Following conventional practice in the plant disease

image synthesis literature (Jin et al., 2022; Cap et al., 2022; Li et al.,
FIGURE 4

VitiForge diseased leaf generation examples, under “laboratory” and “real-world” rendering conditions. From top to bottom, left to right, (a)
laboratory Black Rot, (b) laboratory Esca, (c) laboratory Leaf Blight, (d) real-world Black Rot, (e) real-world Esca, (f) real-world Leaf Blight.
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2024), GAN-based models were adopted here as a baseline strategy

against which the proposed procedural pipeline can be evaluated.

These models provide a commonly used framework for generating

realistic diseased leaf images, especially when paired healthy/

diseased datasets are not available. Comparing procedurally

generated synthetic leaves with GAN generated images enables an

assessment of the relative merits of both approaches in terms of

structural fidelity, realism, and utility for downstream classification.

Two GAN architectures were evaluated: CycleGAN (Zhu et al.,

2017), a general-purpose unpaired image-to-image translation

framework, and LeafGAN (Cap et al., 2022), a plant-specific

adaptation that incorporates segmentation maps and shape-aware

loss to better guide disease placement. The following subsections

outline their comparison and describe the CycleGAN setup used in

this study.

3.1.5 Comparison of GAN architectures
CycleGAN (Zhu et al., 2017) employs two pairs of generator–

discriminator networks and is trained using a cycle-consistency

loss, which ensures that an image translated from domain A to B

and then back again reconstructs the original input. In this study, it

was trained to translate healthy grape leaves into diseased

counterparts with Black Rot, Esca, and Leaf Blight, while

preserving leaf structure and venation.

Proposed by Cap et al. (2022), LeafGAN extends the CycleGAN

framework by incorporating segmentation masks and a shape-

aware loss function to anatomically constrain disease placement.

This design enables lesions to be localized to meaningful regions of

the leaf surface, and has shown strong performance in datasets

where segmentation masks are reliably available, such as cucumber

disease datasets. However, when applied to vineyard data with fewer

samples (4,639 compared to 12,000 in cucumber), segmentation

guidance proved less stable. Limited annotations often led to

irregular disease localization and inconsistent outputs. In

comparison, CycleGAN, without relying on segmentation,

produced structurally intact leaves and more consistent lesion

patterns under the same conditions, as shown in Figure 6.
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These observations illustrate that segmentation-driven models

such as LeafGAN are contingent on dense, high-quality

annotations, which were not available for vineyard datasets.

CycleGAN, in contrast, provided greater robustness in

standardized conditions, synthesizing structurally coherent leaves

without requiring segmentation guidance. Nevertheless, in domains

with reliable segmentation masks, LeafGAN’s shape-aware

constraints may offer advantages by guiding lesion placement

with higher anatomical fidelity.

3.1.6 CycleGAN training setup
The CycleGAN models were optimized following the standard

training configuration introduced by Zhu et al. (2017), employing

adversarial, cycle-consistency, and identity losses alongside the

associated hyperparameters and training protocol. Dropout was

not used, and training was conducted with a batch size of 1 using

the Adam optimizer with an initial learning rate of 0.0002. A linear

learning rate decay was applied beginning at epoch 100 to stabilize

convergence during later training stages.

Input images were first resized to 266×266 pixels and then

cropped to 256×256 pixels, before being normalized to the range

[−1,1]. Cycle-consistency and identity losses were weighted at lA =

10:0, lB = 10:0, and lidentity = 0:5, respectively.
For each ablation level described in Section 3.2, three separate

CycleGAN models were trained, one for each disease class (Black

Rot, Esca, and Leaf Blight), using healthy–disease domain pairs. The

trained models were then applied to healthy leaves to generate

additional diseased samples, which were incorporated into the

datasets for the ablation experiments.
3.2 Ablation study methodology

To evaluate the effectiveness of synthetic grape leaf images in data

augmentation, a data ablation strategy was employed. Models were

trained and tested under three experimental cases: (i) real data only,

(ii) real data with GAN-based synthetic augmentation, and (iii) real
FIGURE 5

Synthetic dataset generation system.
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data with VitiForge augmentation. For each condition, progressively

greater subsets of real data were used to simulate scenarios of limited

dataset availability, enabling the impact of synthetic augmentation on

model performance to be systematically assessed.

Although data ablation studies are less common in agricultural

computer vision, they are well established in other fields For

example, Nowruzi et al. (2019) demonstrated that fine-tuning

synthetic data with limited real samples improved detection

performance on cars and people using SSD-MobileNet. Likewise,

Mousavi et al. (2020) developed an ablation tool and showed that

high-fidelity synthetic training can match or even surpass real data

in some contexts.

In agriculture, however, the approach is arguably even more

pertinent. Collecting annotated field data is both time-consuming

and logistically challenging, while certain diseases may be region-

specific or restricted to particular growth stages, making them

underrepresented in datasets. As a result, agricultural datasets

often exhibit scarcity and imbalance, especially for rare or early-

stage disease symptoms.

Within this context, the data ablation study explores how much

real data is needed to achieve acceptable model performance,

whether VitiForge or GAN-based augmentation provides greater

benefit when data is limited, and how performance scales as real

data becomes more abundant.
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3.2.1 Dataset descriptions
For these experiments, five datasets were prepared: one training set,

two real testing sets, and two procedurally generated synthetic sets. The

real datasets are derived either from the well-known PlantVillage

benchmark or from FieldVitis, a curated collection of grape leaf

images from the field assembled from multiple public sources. Finally,

the synthetic datasets were each generated tomirror the conditions of the

corresponding test datasets. All datasets share the same four-class

structure: healthy, black rot, esca, and leaf blight, which allows direct

comparison across controlled, field, and synthetic conditions.

The training dataset was sourced from Geetharamani and

Pandian (2019), which augmented the original PlantVillage

dataset (Mohanty et al., 2016). It consists of 950 images and was

intentionally left imbalanced, with around 5 times more of healthy

leaves than diseased ones, reflecting common collection scenarios

where healthy samples are more readily available. This deliberate

imbalance creates a more challenging scenario for augmentation

techniques to address class imbalance.

The PlantVillage testing dataset is fully independent of the

training set, though also derived from Geetharamani and Pandian

(2019). It contains 3,689 images and serves to evaluate performance

under laboratory conditions, characterized by uniform lighting,

clean backgrounds, and individual leaves with no occlusion.

Examples of PlantVillage leaves are shown in Figure 7.
FIGURE 6

Example outputs of CycleGAN & LeafGAN models.
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The FieldVitis testing dataset (Farinati Leite et al., 2025) was

compiled from several independent public sources. Healthy and

Esca images were collected from Alessandrini et al. (2021), Black

Rot and Leaf Blight from Shikalgar et al. (2024), with additional

Black Rot samples from Singh et al. (2020). Some classes required

substantial cleaning: for example, Black Rot contained mislabeled

Esca samples, while Leaf Blight included images with disrupted

backgrounds such as hands holding leaves. After these revisions, the

dataset comprises 555 images and reflects typical field variability,

including different lighting conditions (time of day and capture

angles), diverse backgrounds (e.g., grass beneath leaves or vineyard

canopy), and varied leaf orientations, sometimes even in shadow.

Examples are shown in Figure 8.

Two VitiForge-based synthetic datasets were created, each

designed to approximate the conditions of the test datasets.

Synthetic 1 comprises 13,202 samples and corresponds to the

PlantVillage test dataset, while Synthetic 2 contains 5,180 samples

and corresponds to the FieldVitis test dataset (note that while these

sample counts are fixed for the data ablation experiments, VitiForge

allows both datasets to be scaled arbitrarily). They were used both to

balance and to increase the number of samples during the

ablation experiments.
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Table 1 summarizes the distribution of images across the four

classes in each dataset.

3.2.2 Ablation strategy
The ablation strategy was designed to systematically test the impact

of synthetic data under different levels of real data availability. By

progressively increasing the size of the training dataset, the experiment

simulates scenarios where annotated samples are scarce, a common

occurrence in this domain. At each reduction step, model performance

was evaluated under three training configurations: real data only, real

data with VitiForge augmentation, and real data balanced with GAN-

generated samples.

The procedure unfolded as follows:
1. Dataset reduction: as described in Section 3.2.1, the original

training set contained 950 images, consisting of 800 Healthy

leaves and 50 samples per disease class. To simulate different

levels of scarcity, progressively bigger subsets were sampled,

ranging from 5% to 100% of the original size. For example, at

the 10% level, the subset contained approximately 80

Healthy images and 5 images per disease class.

Importantly, the natural imbalance between classes was
FIGURE 7

PlantVillage examples. From left to right, (a) Black Rot, (b) Esca, (c) Leaf Blight.
FIGURE 8

FieldVitis examples. From left to right, (a) Black Rot, (b) Esca, (c) Leaf Blight.
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preserved at all levels. These progressively reduced splits

serve as the x-axis in the ablation plots.

2. Baseline training: for each subset size, a classification model

was trained using only the available real images. These

models served as baselines against which augmented

training strategies were compared.

3. VitiForge augmentation: each reduced subset was balanced

with procedurally generated samples until all classes

matched the size of the majority class (e.g., healthy).

Beyond this balanced setup, additional synthetic samples

were progressively introduced to create different real–

synthetic ratios. These experiments were carried out to

determine how classification performance varied with

increasing proportions of synthetic data, and to identify

the optimal ratio for each ablation level based on the

classification metrics employed.

4. GAN-based augmentation: for comparison, GANs were

trained separately at each reduction level using only the

available real images from that subset, ensuring no

information leaked from larger datasets. CycleGAN was

employed as the primary model. This approach is inspired

by prior works that demonstrate the effectiveness of GANs

for oversampling imbalanced datasets in computer vision

and plant disease diagnosis tasks (Cap et al., 2022; Sampath
tiers in Plant Science 11
et al., 2021). The GAN-generated images were then used to

balance the reduced subsets, following the same per-class

equalization strategy applied in procedural augmentation.

5. Evaluation: models were evaluated using precision, recall,

accuracy, and F1-score. Model checkpoints were selected

based on the best F1-score. To ensure robustness and reduce

variance from random splits, performance was computed using

5-fold cross-validation at each ablation level. For each metric,

the mean and standard deviation across folds were calculated

and visualized in the line plots, enabling direct comparison of

performance trends between the three scenarios.
Figure 9 illustrates the ablation process, showing how subsets of

the training dataset used in the three experimental scenarios.
3.3 Model architectures

Three CNN architectures were selected as classifiers for the

ablation procedure: MobileNetV2, InceptionV3, and ResNet50V2.

These models were chosen because of their computational efficiency,

their widespread adoption as benchmarks in image classification, and

their demonstrated use in plant disease diagnosis (Karthik et al.,

2024a, b; Geetharamani and Pandian, 2019; Fraiwan et al., 2022).

This selection supports reproducibility, as all three models are

readily available in major deep learning frameworks. Their

efficiency allows experiments to be repeated across multiple

ablation levels without prohibitive computational cost. Moreover,

their compact design makes them suitable for potential deployment

in resource-constrained agricultural settings. A brief overview of

each architecture is given below:
• MobileNetV2 (Sandler et al., 2018): designed for mobile and

embedded vision applications, it employs inverted residual

blocks and depthwise separable convolutions, making it

efficient in terms of parameter count and inference speed.
TABLE 1 Number of images per class across datasets.

Dataset Healthy
Black
rot

Esca
Leaf
blight

Total

Training 800 50 50 50 950

PlantVillage 200 1130 1333 1026 3689

FieldVitis 158 39 200 158 555

Synthetic 1 3287 3265 3309 3341 13202

Synthetic 2 1191 1358 1242 1389 5180
FIGURE 9

Data ablation pipeline.
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• InceptionV3 (Szegedy et al., 2016): leverages factorized

convolutions and dimensionality reduction to extract

features at multiple scales, achieving high accuracy with

relatively modest computationalrequirements.

• ResNet50V2 (He et al., 2016): introduces residual learning

with identity mappings and pre-activation, facilitating the

training of deeper models by alleviating vanishing

gradient issues.
By employing these three distinct architectures, the study aims

to abstract away model-specific differences in performance,

allowing the impact to be more confidently attributed to dataset

composition and augmentation strategies rather than to particular

model designs.

3.3.1 Training setup
All three CNN architectures were initialized with ImageNet-

pretrained (Deng et al., 2009) weights and fine-tuned on the

augmented training dataset splits, as described in Section 3.2.2.

The final classification layers were replaced with a fully connected

head producing four outputs corresponding to the target classes

(healthy, black rot, esca, leaf blight).
tiers in Plant Science 12
Data preprocessing involved scaling pixel values to the range

[-1, 1] and resizing all samples to 224×224 pixels. When optimizing

the real–synthetic ratio, random erasing was applied as an

additional augmentation technique, using an erasing factor of 0.7

and a scale of 0.08.

Experiments were carried out using TensorFlow 2.19 with

CUDA 12.2 and Python 3.11.2 on a Debian 12.11 system

equipped with an NVIDIA Quadro RTX 4000 GPU with 8 GB of

memory. A batch size of 32 and 10 training epochs were used, the

latter empirically chosen to balance performance with the large

number of experimental runs required for the ablation study.

Optimization was performed using the Adam optimizer with a

learning rate of 0.001 and a weight decay of 0.0002. A dropout rate

of 0.3 was applied to reduce overfitting, and the loss function was

categorical cross-entropy. Hyperparameters were adapted from

Karthik et al. (2024b), which proposed these values after extensive

testing on similar architectures.

3.3.2 Evaluation metrics
Model performance was assessed using the F1-score and

accuracy, with precision and recall computed as intermediate

quantities. The F1-score, defined as the harmonic mean of
FIGURE 10

F1 macro scores on the PlantVillage test set across ablation levels.
FIGURE 11

Macro accuracy on the PlantVillage test set across ablation levels.
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precision and recall, was chosen to better reflect performance under

class imbalance, while accuracy was included as a complementary

measure of overall correctness. In addition, loss was monitored to

evaluate convergence.

The precision, recall, F1-score, and accuracy for each class were

defined as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − Score =
2 · Precision · Recall
Precision + Recall

Accuracy =
TP + TN

TP + TN + FP + FN

where TP, TN, FP, and FN denote true positives, true negatives,

false positives, and false negatives, respectively.
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Each reduced dataset was split into 80% training and 20%

validation, and metrics were computed during training on the

validation splits, for model checkpointing. Scores were calculated

per class and then macro-averaged across the four categories,

according to:

Mmacro =
1
Co

C

i=1
Mi

Results across ablation levels (0%–100% of training data) were

visualized using scatter plots to compare the three training

strategies. The 0% case was also included to assess the feasibility

of training exclusively on procedurally generated synthetic data.
4 Results

The results of the data ablation experiments on the PlantVillage

and FieldVitis test datasets are presented in this section. Models

were evaluated across ablation levels ranging from 0% to 100% of
FIGURE 12

F1 macro scores on the FieldVitis test set across ablation levels.
FIGURE 13

Macro accuracy on the FieldVitis test set across ablation levels.
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the training data under three strategies: real data only, real data

balanced and augmented with VitiForge, and real data balanced

with GAN-generated samples. Performance was measured using the

F1 macro score and macro accuracy, computed with 5-fold cross-

validation, and the mean and standard deviation across folds were

visualized with scatter plots to assess performance trends under

varying levels of data availability.

Results are reported separately for the PlantVillage test dataset,

which represents controlled laboratory conditions, and the FieldVitis

test dataset, which represents more variable field conditions.
4.1 PlantVillage data ablation

Figure 10 presents the F1 macro scores, on the PlantVillage test

set, obtained across ablation levels for MobileNetV2, InceptionV3,

and ResNet50V2. Figure 11 shows the corresponding macro

accuracy results under the same conditions.

Across all three architectures, performance increased steadily as

more real data became available. At low ablation levels (below 20%),

the real-only models exhibited the lowest scores, reflecting the

scarcity and imbalance of the available training data.

Augmentation improved performance in these regimes, with

VitiForge providing early gains across all architectures. This effect

was most evident in MobileNetV2, where procedural augmentation

consistently produced a small edge at the lowest data proportions.

InceptionV3 showed the same trend, although the advantage was

less pronounced, while ResNet50V2 also benefited from procedural

data at the smallest splits.

At intermediate levels (20%–50%), the gap between augmented

and non-augmented training narrowed and the differences between

the two augmentation strategies became clearer. In all three

architectures, GAN-based augmentation began to surpass

procedural synthesis from the 20% split onwards. The effect was

especially marked in MobileNetV2, which recorded a noticeable

spike with GAN-generated data at this point. InceptionV3 and

ResNet50V2 followed a similar trajectory, showing procedural gains

in the low-data regime but stronger results from GANs as more real

data was introduced.

At higher ablation levels (above 50%), differences among the

three strategies became less pronounced. All models approached

their maximum performance when trained on the full dataset,

though both augmentation strategies continued to outperform

real-only training. In this regime, GAN-augmented models

generally achieved slightly stronger results than VitiForge.

The accuracy curves closely mirrored the F1 trends, confirming

that the observed improvements were not confined to class-balance

effects. Across ablation levels, both augmentation strategies steadily

improved accuracy, yielding, on average, higher values than the

corresponding F1 scores.

In the 0% case, VitiForge enabled model training without any

real data, achieving approximately 0.4 for both F1 macro and macro

accuracy on the PlantVillage test set.

Among the three architectures, MobileNetV2 achieved the

overall best results across the ablation study, consistently
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outperforming InceptionV3 and ResNet50V2 in both real-only

and augmented conditions.
4.2 FieldVitis data ablation

Figures 12, 13 show the F1 macro scores and macro accuracy on

the FieldVitis test set for MobileNetV2, InceptionV3, and

ResNet50V2 across all ablation levels.

Overall, scores on FieldVitis were consistently lower than those

obtained on PlantVillage, reflecting the added complexity of field

imagery, characterized by variable lighting, occlusions, and

heterogeneous backgrounds. The two metrics followed

remarkably similar trends across all ablation levels, suggesting

that class imbalance also did not substantially affect the models’

relative performance. Notably, models trained with GAN-based

augmentation and real-only data exhibited visibly larger error bars,

indicating higher variability across cross-validation folds and

sensitivity to the training-validation split.

In the smallest subsets (below 20%), models trained only on real

data performed poorly, while augmentation provided measurable

improvements. MobileNetV2 consistently benefited from

procedural augmentation in all proportions of real data, showing

stable gains over real-only training. The best overall result on

FieldVitis was obtained at the 50% split, where MobileNetV2 with

VitiForge reached an F1 macro score and a macro accuracy of

roughly 0.57.

InceptionV3 also benefited from augmentation techniques,

particularly at the lowest ablation levels, though the improvements

were less pronounced than those observed with MobileNetV2. Both

augmentation strategies produced competitive results across the

different proportions of real data, and on average, VitiForge

maintained a slight advantage.

For ResNet50V2, GAN augmentation consistently performed

marginally better than the procedural augmentation. Augmentation

overall was less effective for this architecture, with models trained

solely on real data producing relatively stronger results compared to

the augmented cases at higher ablation levels.

As the amount of real data increased beyond 50%, real-only

training showed clear upward trends, while augmented strategies

produced more mixed results, occasionally plateauing or yielding

inconsistent gains. Nonetheless, both augmentation methods

outperformed real-only training at nearly all ablation levels, with

VitiForge proving particularly effective for MobileNetV2 in the low-

data regime.

At the 0% level, models trained exclusively with procedurally

generated data achieved F1 macro scores ranging from 0.35 to 0.5

and corresponding macro accuracies in a similar range across the

three architectures.
5 Discussion

The ablation experiments from Section 4 highlight distinct roles

for procedural and GAN-based augmentation across data regimes
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and test conditions. Both methods consistently improved

performance over real-only training, but their relative strengths

varied depending on the availability of real data and the evaluation

dataset. VitiForge proved especially valuable in low-data scenarios,

where it provided reliable improvements and even enabled training

without any real samples. GAN augmentation depended on

reaching a minimum dataset size; beyond this threshold, it

consistently yielded stronger results provided the gap between the

training distribution and the target application was small.

In the PlantVillage dataset, VitiForge excelled in the lowest data

scenarios, where its consistent outputs supplied additional examples

that supported classifier convergence under scarce real data. Once

the proportion of real data exceeded 10%, GAN augmentation

began to gain the upper hand, leveraging more complete

distributions to capture finer-grained textures and patterns.

In contrast, results on the FieldVitis dataset showed a stronger

role for VitiForge. Here, the procedural methodology often matched

or surpassed GAN-based synthesis, particularly with the

MobileNetV2 architecture. This outcome likely reflects the

explicit variability controls embedded in VitiForge (e.g.,

randomized lighting, orientation, and background noise), which

aligned more closely with the diversity of real field conditions than

GANs trained on curated PlantVillage data. In particular, classifiers

trained exclusively on procedurally generated images achieved

competitive scores, demonstrating the potential of VitiForge as a

standalone training resource.

GAN-based augmentation remained competitive in higher-data

regimes across both datasets, consistently performing well when

real training datasets grow larger, allowing them to better capture

disease-specific textures. However, its reliance on representative,

annotated datasets constrains applicability in field settings, where

rare diseases and early infection stages are often underrepresented

(Sharma et al., 2024). Furthermore, adversarial training can bias

models toward dominant patterns, reducing diversity and limiting

coverage of atypical or early-stage disease manifestations. These

observations suggest that GANs are best suited as complementary

tools for high-fidelity augmentation when data availability is not a

limiting factor, while procedural synthesis offers greater adaptability

and scalability in cross-domain and low-data scenarios. In contexts

requiring broader variability or resilience to annotation scarcity,

hybrid or alternative generative methods may be preferable

(Muhammad et al., 2023; Müller-Franzes et al., 2023).

Beyond augmentation methods, the choice of model

architecture further influenced outcomes, with clear trends

emerging across MobileNetV2, InceptionV3, and ResNet50V2.

MobileNetV2 consistently achieved the strongest results in this

study, aligning with multiple reports in the literature that highlight

its effectiveness for grape leaf classification (Thomkaew, 2025;

Mangaoang, 2025). InceptionV3 provided a strong and stable

baseline but generally fell slightly behind MobileNetV2, while

ResNet50V2 occasionally benefited more from real-only training,

reflecting its sensitivity to augmentation regimes. Importantly,

classification tasks on curated datasets such as PlantVillage are

close to “solved”, with near-ceiling accuracies across architectures.

As Shah et al. (2023) notes, relatively small differences in
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preprocessing, augmentation, class balance, or checkpointing

criteria can shift performance rankings between the architectures.
6 Conclusion

This work investigated the role of synthetic data generation for

grape leaf disease classification, comparing VitiForge, GAN-based

synthesis, and no augmentation through a systematic data ablation

study. Results showed that GAN augmentation excelled on

PlantVillage when sufficient real data was available, while

VitiForge was more effective in the low-data regime. In the

FieldVitis dataset, the procedural rendering technique consistently

matched or outperformed GAN augmentation, highlighting its

strength in bridging the gap between controlled laboratory

datasets and real-world conditions.

Procedural-based synthesis offers key advantages: it eliminates the

need for immediate in-field data collection, enabling preemptive

training before outbreaks occur. By parameterizing lesion attributes,

such as size, number, color intensity, spatial distribution, and blending

with leaf venation, along with environmental factors like lighting and

background clutter, it produces diverse, balanced, and fully annotated

datasets without manual labeling costs. This controlled process allows

the simulation of rare, early-stage, or geographically constrained

disease cases, which are often absent in real datasets.

GAN-generated images, in contrast, function best as augmentation

tools when domain-specific real data is already available. Since GANs

require training examples, they cannot be deployed in a zero-data

scenario. However, once trained, they can inject realistic texture

variations, noise patterns, and morphological diversity, helping

improve robustness and generalization across intra-domain variations.

When interpreting these results, some limitations should be

acknowledged. First, the experiments were restricted to a limited

set of grape diseases, which may not generalize to other pathogens or

crop species with more complex visual symptoms. Second, grape

cultivar was not a controlled factor in our experiments, and variety-

specific differences in leaf morphology may influence recognition

outcomes. Third, while VitiForge offers explicit control over lesion

characteristics and environmental conditions, it may still fall short of

capturing the full biological variability of disease progression

observed in real vineyards, especially in mixed infections or under

extreme environmental stress. Fourth, GAN-based augmentation was

evaluated using a limited set of architectures and training conditions;

alternative generative models may yield different outcomes. Finally,

the evaluation focused primarily on classification tasks; extending the

analysis to segmentation or detection scenarios could reveal

additional challenges in domain transfer.

In summary, this paper highlights the complementary roles of

procedural and GAN-based synthesis: VitiForge offers orderly

control and flexibility during early-stage release, while GANs add

realism and diversity during late-stage, when real-world data exists.

Looking ahead, future work should explore hybrid frameworks that

integrate the controllability of procedural methods with the fidelity

of generative models, while extending experiments to additional

grapevine pathogens, diverse cultivation contexts (across locations
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and cultivars), and exploring semantic segmentation outputs for

mixed infection recognition. Preprocessing strategies may also help

mitigate domain shifts and facilitate the transfer of models trained

on laboratory datasets to field conditions, as in Li et al. (2023),

thereby complementing the benefits of synthetic augmentation.

Finally, integrating these synthetic pipelines into real-time

decision-support tools for growers could help advance early

disease diagnosis from a research-focused approach into a

practical instrument for sustainable viticulture.
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