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SinGAN-CBAM: a multi-scale
GAN with attention for few-shot
plant disease image generation
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Zongyuan Lv1, Li Chen1, Jianping Yang1* and Canyu Wang1*

1College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, China, 2Qujing Tobacco
Company Shizong Branch, QuJing, Yunnan, China
Introduction: To address the limitation in model performance for tea and coffee

disease identification caused by scarce and low-quality image samples, this

paper proposes a few-shot multi-scale image generation method named

SinGAN-CBAM, aiming to enhance the detail fidelity and semantic usability of

generated images.

Methods: The research data were collected from Kunming, Baoshan, and Pu’er

regions in Yunnan Province, covering seven typical diseases affecting both tea

and coffee plants. Based on the SinGAN framework as the baseline, we

incorporate the Convolutional Block Attention Module (CBAM), which

leverages dual-channel and spatial attention mechanisms to strengthen the

model’s ability to capture texture, edges, and spatial distribution features of

diseased regions. Additionally, a SinGAN-SE model is constructed for

comparative analysis to evaluate the improvement brought by channel-wise

attentionmechanisms. The generated images are validated through classification

using a YOLO v8 model to assess their effectiveness in real-world

recognition tasks.

Results: Experimental results demonstrate that SinGAN-CBAM significantly

outperforms GAN, Fast-GAN, and the original SinGAN in metrics such as SSIM,

PSNR, and Tenengrad, exhibiting superior structural consistency and edge clarity

in generating both tea and coffee disease images. Compared with SinGAN-SE,

SinGAN-CBAM further improves the naturalness of texture details and lesion

distribution, showing particularly notable advantages in generating complex

diseases such as rust and leaf miner infestations. Downstream classification

results indicate that the YOLOv8 model trained on data generated by SinGAN-

CBAM achieves higher precision, recall, and F1-score than those trained with

other models, with key category recognition performance approaching or

exceeding 0.98.

Discussion: This study validates the effectiveness of dual-dimensional attention

mechanisms in enhancing the quality of agricultural few-shot image generation,

providing a high-quality data augmentation solution for intelligent disease

identification with promising practical applications.
KEYWORDS

generative adversarial networks, SinGAN, attention mechanism, crop disease
images, YOLOv8
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1 Introduction

Tea and coffee are important cash crops in Yunnan Province,

possessing significant production value and a broad international

consumer market. However, the frequent occurrence of diseases

severely threatens their yield and quality, causing not only

agricultural economic losses but also weakening the

competitiveness of these products in the global market. Therefore,

achieving efficient and accurate disease identification and control

has become a key challenge in ensuring crop safety and advancing

the intelligentization of agricultural production.

In recent years, deep learning technologies have demonstrated

great potential in crop disease identification, yet their performance

heavily relies on large-scale, high-quality annotated datasets (Keith

and Javaan, 2022). In practical agricultural scenarios, acquiring

sufficient and diverse disease images faces numerous challenges due

to complex shooting conditions and the seasonal and regional

nature of disease occurrences, resulting in generally scarce and

imbalanced training data. To alleviate this issue, Generative

Adversarial Networks (GANs), owing to their powerful data

generation capabilities, have gradually been applied to agricultural

image enhancement and synthesis tasks, emerging as an effective

approach to address few-shot learning problems.

Since the introduction of the GAN framework by Goodfellow

et al. in 2014, this technology has rapidly advanced (Goodfellow

et al., 2014). Through adversarial training between a generator (G)

and a discriminator (D), GANs are able to learn the underlying

distribution of real data and generate visually realistic new samples.

However, early GANs suffered from issues such as unstable training

and mode collapse. To address these problems, a series of improved

models have emerged: Deep Convolutional GAN (DCGAN),

proposed by Radford et al., enhanced image generation quality by

incorporating convolutional architectures (Radford et al., 2015);

Conditional GAN (CGAN), introduced by Mirza et al., utilized label

information to guide the generation process, mitigating mode

collapse, but its applicability is limited due to dependence on

annotated data (Mirza and Osindero, 2014); Progressive GAN

(PGGAN), developed by Karras et al., successfully generated

high-resolution images through a coarse-to-fine multi-scale

training strategy, though at the cost of high computational

resources and long training times (Karras et al., 2017);

subsequently, BigGAN and FastGAN achieved breakthroughs in

generation quality and efficiency, respectively, offering new insights

for complex image synthesis (Brock et al., 2018; Liu et al., 2021).

In the field of single-image generation, the SinGAN model

proposed by Shaham et al. requires only a single natural image for

training and achieves image generation from low to high resolution

through a multi-scale pyramid structure, demonstrating excellent

performance in preserving the original image’s structure and

texture details, making it particularly suitable for few-shot

agricultural image generation (Shaham et al., 2019). In recent

years, research into improving SinGAN has advanced steadily:

Nikankin et al. explored diffusion models based on single video
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frames for generating dynamic content (Nikankin et al., 2022);

Hambarde et al. proposed an underwater GAN for single-image

depth estimation (Hambarde et al., 2021); Ahmadkhani et al.

introduced Topo-SinGAN, incorporating a differentiable

topological loss to enhance structural consistency in generated

images (Ahmadkhani and Shook, 2024); and Songwei et al.

proposed Improved-SinGAN, effectively mitigating geographical

bias in remote sensing image generation (Songwei et al., 2021).

In agricultural applications, GANs have been gradually utilized

for plant disease detection and phenotypic analysis. Amreen et al.

employed C-GAN to generate images of tomato diseased leaves,

achieving a classification model accuracy of 98.42% (Amreen et al.,

2021); Yuwana et al. expanded a tea dataset using GAN and

DCGAN, improving detection model performance by 10%–15%

(Yuwana et al., 2020); Cap et al. introduced LeafGAN to transform

healthy leaves into diseased ones, significantly enhancing the

generalization ability of cucumber disease diagnosis systems (Cap

et al., 2020); Hassan et al. developed SRGANs to generate artificial

images of young plant seedlings, alleviating issues related to

insufficient training data (Hassan et al., 2021); Zhu et al. adopted

an improved cDCGAN for grading the vitality of orchid seedlings,

verifying the usability of generated images in practical tasks (Zhu

et al., 2020).

To assess the practical value of generated images, in addition to

using objective metrics such as SSIM, PSNR, and MSE, it is

common to verify their semantic consistency and usability

through downstream tasks (e.g., classification or detection). The

YOLO series of algorithms are widely used in agricultural object

recognition due to their efficient and real-time detection

capabilities. Among them, YOLOv8 stands out in disease

detection tasks with its excellent balance of speed and accuracy,

making it suitable as a validation tool for the quality of generated

images (Wang et al., 2023).

In summary, although GANs have achieved certain progress in

agricultural image generation, research on few-shot disease image

generation for specific cash crops such as tea and coffee remains

relatively limited. Moreover, existing models still have room for

improvement in preserving texture details and representing lesion

characteristics. To address these issues, this study focuses on major

diseases of tea and coffee, and proposes a single-image generative

adversarial network enhanced with attention mechanisms—

SinGAN-CBAM. The main research components include: (1)

constructing a tea and coffee disease image dataset covering

multiple regions in Yunnan Province, and employing instance

segmentation techniques to precisely extract lesion areas, thereby

eliminating interference from complex backgrounds; (2) comparing

the generative performance of GAN, Fast-GAN, and SinGAN under

few-shot conditions to establish SinGAN as the baseline model; (3)

integrating the CBAM (Convolutional Block Attention Module)

and SELayer into SinGAN to enhance feature representation in

both spatial and channel dimensions, thereby improving the clarity

and realism of generated images; and (4) validating the generated

images using YOLOv8 classification to evaluate their effectiveness in
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downstream recognition tasks. Experimental results demonstrate

that SinGAN-CBAM significantly outperforms the original models

and SinGAN-SE in both image quality and classification

performance, providing an efficient and feasible technical solution

for few-shot agricultural image generation, with significant

implications for advancing intelligent plant protection and

precision agriculture.
2 Materials and methods

2.1 Experimental materials and data
collection

This study focuses on tea and coffee leaves, constructing an

image dataset that includes both healthy and typical disease states

for the training and evaluation of few-shot disease image

generation models.

Tea leaf images were collected from the tea plantation located at

the back hill of Yunnan Agricultural University in Panlong District,

Kunming City, Yunnan Province. Four common diseases that

significantly impact tea production were selected as the subjects

of this study: White-star disease, Anthracnose, Algae-spot disease,
Frontiers in Plant Science 03
and Cloud leaf blight. Disease images are shown in Figure 1. All leaf

samples were photographed in the field against a uniform white

background using a digital SLR camera, with an image resolution of

5472 × 3648 pixels, ensuring even lighting and no shadow

interference. A total of 1075 valid images were collected,

categorized to form the tea disease dataset (see Table 1).

Coffee leaf images were sourced from two major growing areas:

the Lujiang Town Coffee Plantation Base in Baoshan City, Yunnan

Province, and the NanDaohe Baisha Slope Coffee Demonstration

Base of Yunnan Agricultural University in Pu’er City. The study

includes three main diseases: Coffee Rust, Coffee Spot Disease, and

symptoms of damage by the Coffee Leaf Miner, with disease images

shown in Figure 2. Images were taken directly in the field using

smartphones under natural lighting conditions, focusing on

capturing the leaves of plants in the field, resulting in a total of

749 valid images. During shooting, efforts were made to keep the

lens perpendicular to the leaf surface and focus on clear diseased

areas to minimize blurriness and obstruction. The final constructed

coffee disease dataset is shown in Table 2.

All original images were stored in JPEG format and underwent

preliminary screening to remove blurry images, those with severe

occlusions, or those where non-target areas occupied an excessive

proportion, ensuring data quality.
FIGURE 1

Dataset of different types of tea.
TABLE 1 Overview of the tea dataset.

Tea types Healthy White-star disease Anthracnose Algae-spot disease Cloud leaf blight

Original-quantity 170 188 269 146 302

Filter quantity 100 100 100 100 100
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2.2 Image preprocessing and instance
segmentation

Since the coffee images were taken on-site with complex

backgrounds (including branches, soil, adjacent leaves, etc.), this

could cause noise interference for the feature extraction of

subsequent image generation models. To enhance the semantic

consistency of the generated images and the integrity of lesion

structures, this study introduces instance segmentation technology

to accurately extract target leaves from coffee images.

The Segment Anything 2.1 (Base) model in the X-AnyLabeling-

CPU software platform is utilized for automatic initial segmentation

of each coffee image, followed by meticulous annotation completed

with manual corrections. For each type of disease image, the prompt

point function of the Segment Anything model is used to generate

high-quality masks, outputting JSON-formatted annotation files

which are stored locally. Subsequently, custom Python scripts are

employed to parse the original images and their corresponding JSON

files, cropping out areas containing only the target leaves, and

standardizing the background to white. This achieves background

standardization. Figure 3 illustrates examples of the segmentation

annotation process and extraction results. After processing, a sub-

dataset of coffee disease images with unified backgrounds and clear

lesions was constructed, with example images for each disease type

shown in Figure 4. This preprocessing workflow effectively eliminated

the interference of complex backgrounds, enhanced the structural

consistency of the images, and provided high-quality inputs for the

training of subsequent small-sample generation models.
Frontiers in Plant Science 04
2.3 Selection of benchmark generation
models

In agricultural image analysis tasks, the acquisition of disease

samples is often limited by seasonality, geographic constraints, and

the cost of manual labeling, resulting in a limited scale of training

data that barely meets the demands of deep generative models for

large datasets. To address this challenge, various generative

adversarial networks designed for few-sample conditions have

been proposed in recent years, showing promising potential in

image enhancement and data augmentation. To systematically

compare the adaptability and performance of different generation

paradigms in the task of generating tea and coffee disease images,

this study selects three representative generative models as

benchmarks: the standard Generative Adversarial Network

(GAN), the lightweight high-resolution generation model (Fast-

GAN), and the multi-scale generative network based on single-

image (SinGAN).

The standard Generative Adversarial Network (GAN),

proposed by Goodfellow et al., achieves mapping from latent

space to real data distribution through an adversarial learning

mechanism between the generator and discriminator (Goodfellow

et al., 2014). This framework laid the foundation for deep generative

models and has been widely applied in image synthesis. However,

its training process is highly sensitive to sample size, often suffering

from issues such as mode collapse and convergence difficulties

under few-shot conditions, which limits the diversity of generated

images. Although structural improvements (e.g., introducing

convolutional architectures) can enhance stability (Radford et al.,

2015), its reliance on large-scale training data still restricts direct

application in low-resource agricultural scenarios.

Fast-GAN, proposed by Liu et al., is a lightweight framework

designed for high-resolution image generation and specifically

tailored for few-shot conditions (Liu et al., 2021). The model

introduces a Skip-layer Channel Excitation (SLE) module to
FIGURE 2

Dataset of different types of coffee.
TABLE 2 Overview of the coffee leaves dataset.

Coffee types Healthy Rust Spot Miner

Original quantity 202 247 159 141

Filter quantity 100 100 100 100
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enhance cross-scale feature representation and employs a self-

supervised discriminator to improve discrimination capability,

enabling fast convergence and stable training even with limited

samples. It has demonstrated superior efficiency and robustness

compared to StyleGAN2 in tasks involving material images and

natural scene generation, making it suitable for moderate-scale few-
Frontiers in Plant Science 05
shot image generation. Therefore, it is included in the comparative

framework of this study.

SinGAN represents an even more extreme few-shot generation

paradigm—requiring only a single training image to construct a

multi-scale generative network (Shaham et al., 2019). The model

builds a pyramid structure, training independent generator-
FIGURE 3

The annotation process and the extracted image. (A) Original image; (B) Segmentation label; (C) Extracted image.
FIGURE 4

Processed coffee dataset.
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discriminator pairs at multiple resolution levels to achieve coarse-

to-fine image synthesis. Each level learns the local texture and

structural statistical characteristics of the input image and generates

visually diverse new samples by incorporating noise inputs. Due to

its independence from class labels or large datasets, and its ability to

effectively preserve the semantic structure of the original image,

SinGAN demonstrates unique advantages in tasks involving scarce

and structurally complex samples, such as agricultural

disease images.
2.4 Generator model improvement based
on channel attention: SinGAN-SE

To enhance the model’s ability to represent key features of tea

and coffee diseases, this study introduces a channel attention

mechanism into the original SinGAN framework, proposing

an improved model named SinGAN-SE. The model embeds

a Squeeze-and-Excitation block (SE Block) (Hu et al., 2018)

after each multi-scale convolutional module in both the generator

and discr iminator , enabl ing adaptive reweight ing of

feature channels.

The SE block “squeezes” spatial information through a global

average pooling operation to generate channel-wise descriptors,

then learns inter-channel dependencies via fully connected layers,

and finally outputs a set of weighting coefficients to “re-calibrate”

the feature maps across channels. This mechanism enables the

model to dynamically enhance responses from channels that are

important for disease texture representation, while suppressing

interference from background or irrelevant textures, thereby

improving the discriminative power of feature representation
Frontiers in Plant Science 06
under few-shot conditions. The architecture of the SELayer is

shown in Figure 5, and the overall structure of the proposed

SinGAN-SE model is illustrated in Figure 6.

In SinGAN-SE, the SE module is integrated after every residual

block in generators and discriminators at each scale, forming a

“convolution-attention” cascading structure. The training process

follows SinGAN’s progressive growing strategy: starting from the

lowest resolution and gradually moving upwards, with parameters

being fixed once the training of each layer is completed. The loss

function at each scale consists of an adversarial loss and a

reconstruction loss: the adversarial loss maintains the balance

between the generator and discriminator; the reconstruction loss

uses the L1 norm to constrain the consistency between the

generated image and the input image in the pixel space, ensuring

that the generation result retains the original structure.

Parameter updates use an alternating optimization strategy: in

each iteration round, the discriminator is optimized first, followed

by the generator, to maintain training stability. This structure

enhances the model’s selective response capability to disease-

related channel features without significantly increasing the

computational burden.
2.5 Generator model improvement based
on dual-dimensional attention: SinGAN-
CBAM

To further enhance the model’s spatial localization and

structural perception capabilities for diseased regions, this study

explores a fusion strategy incorporating both channel and spatial

attention mechanisms, proposing the SinGAN-CBAM model. The
FIGURE 5

SELayer structure.
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model introduces the Convolutional Block Attention Module

(CBAM) (Woo et al., 2018) into the generator and discriminator

at each scale of SinGAN. By cascading channel and spatial attention

sub-modules, CBAM enables joint optimization of feature maps.
Frontiers in Plant Science 07
CBAM first computes the importance weights of each feature

channel through the channel attention sub-module. This

mechanism is similar to SE, but employs dual pathways of max

pooling and average pooling to enhance feature representation.
FIGURE 6

Improved SinGAN-SELayer structure.
FIGURE 7

Structure of CBAM.
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Subsequently, the spatial attention sub-module calculates spatial

position weights based on the channel-aggregated feature map,

amplifying the response strength of key regions, thereby more

precisely capturing the spatial distribution patterns of diseases.

The architecture of CBAM is illustrated in Figure 7.

In SinGAN-CBAM, the CBAM module is embedded after each

convolutional block in both the generator and discriminator,

participating in the entire generation process from low to high

resolution. This design helps mitigate the loss of fine-grained

textures in multi-scale generation, particularly enhancing the

modeling capability of local details such as lesion edges and color

transitions at high-resolution stages. The training strategy remains

consistent with that of SinGAN-SE, employing a layer-by-layer

training and alternating optimization approach to ensure training

stability even after the integration of attention mechanisms. The

architecture of the improved model is illustrated in Figure 8.

Compared to SinGAN-SE, which focuses only on the channel

dimension, SinGAN-CBAM is expected to generate images with

higher semantic consistency under complex backgrounds and

irregular lesion shapes by leveraging synergistic dual-dimensional

attention, thereby providing higher-quality data support for

subsequent recognition tasks.
2.6 Disease classification performance
validation model: YOLOv8

To evaluate the effectiveness of generated images in practical

recognition tasks, this study employs YOLOv8 as the downstream

disease classification model to verify the performance improvement

brought by the generated data. As an efficient object detection

framework, YOLOv8 features a backbone network based on

CSPDarknet53 and incorporates the Spatial Pyramid Pooling with

Fast (SPPF) module, endowing it with strong multi-scale feature

extraction capabilities. Compared to traditional classification
Frontiers in Plant Science 08
networks and two-stage detectors, YOLOv8 adopts a single-stage,

end-to-end architecture that unifies object localization and category

recognition into a single model, significantly improving inference

efficiency and making it well-suited for real-time disease

identification in agricultural scenarios.

In this experiment, YOLOv8 is used to perform multi-class

disease classification tasks on tea and coffee leaves. The model input

consists of a training set composed of a mixture of original and

generated images, and the output is the classification results for

healthy leaves and various disease categories. By comparing the

precision, recall, and F1-score of YOLOv8 when trained on datasets

augmented with images generated by different models (GAN, Fast-

GAN, SinGAN, SinGAN-SE, SinGAN-CBAM), the practical value

of each generation method in enhancing recognition performance

can be objectively evaluated.

This validation process not only evaluates the visual quality of

the generated images, but also focuses on their semantic usability—

that is, whether the generated samples contain discriminative

features that can be effectively utilized by recognition models—

thereby providing a practical evaluation criterion for the

agricultural application of generative models.
2.7 Evaluation metrics

2.7.1 SSIM
SSIM is designed based on three factors: brightness, contrast,

and structure to better adapt to the working principle of the human

visual system. SSIM measures the similarity between two images.

The SSIM value is specified in [0,1], and the size of the value

represents the effect of the image. The larger the value, the better the

image effect, and the smaller the value, the worse the image effect.

The mathematical calculation formula of SSIM is (Equation 1):

SSIM(x, y) = ½Ci(x, y)�a ½Cc(x, y)�b ½Cs(x, y)�g (1)
FIGURE 8

Improved SinGAN-CBAM structure.
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where x, y represent the real image and the generated image,

and a、 b、 g represent the controllable parameters. When a= b=
g=1, we can get (Equation 2):

SSIM(x, y) =
(2mxmy+C1)(2sxy+C2)

(m2
x+m2

y+C1)(s 2
x +s 2

y +C2)
(2)
2.7.2 MSE
MSE is the most commonly used estimator in image quality

measurement. It is a complete reference indicator that calculates the

average value of the difference in pixel values between two images.

The closer the value is to zero, the better. MSE introduces the root

mean square error (RMSE) or root mean square deviation (RMSD),

which is often referred to as the standard deviation of the variance

(Equation 3).

MSE =
1

MNo
M

i=1
o
N

j=1
½I1(i, j) − I2(i, j)�2 (3)

Where I1 and I2 are two images, M and N are the height and

width of the images respectively, and i and j are the pixel

position indexes.

2.7.3 PSNR
PSNR is used to calculate the ratio between the maximum

possible signal power and the distortion noise power that affects its

representation quality. Peak signal-to-noise ratio is the most

commonly used quality assessment technique to measure the

reconstruction quality of lossy image compression codecs. The

signal is regarded as raw data, and the noise is the error caused

by compression or distortion. The image quality is evaluated by

measuring the error between the reconstructed image and the

reference image. It is based on MSE, which is the square average

of the difference between each pixel. The larger the PSNR value, the

smaller the difference between the generated image and the input

real image, and the better the image quality. The formula is as

follows (Equation 4):

PSNR = 10 · log10
MAX2

MSE

� �
(4)

where MAX is the maximum possible pixel value of the image

(e.g., for an 8-bit image, MAX = 255), and MSE is the mean squared

error between the reconstructed image and the reference image.

2.7.4 Tenengrad
The Tenengrad gradient method uses the Sobel operator to

calculate the gradients in the horizontal and vertical directions

respectively. In the same scene, the higher the gradient value, the

clearer the image. The calculation is the sum of the squares of the

gradients of the image after being processed by the Sobel operator or

other edge detection operators. The larger the gradient value, the

clearer the image texture.

The gradient calculation formula of image I at point (x, y) is

as follows, where Gx and Gy are Sobel’s convolution kernels

(Equation 5).
Frontiers in Plant Science 09
S(x,y) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gx*I(x, y) + Gy*I(x, y)

p
(5)

The Tenengrad value of this image is (Equation 6):

Ten =
1
n *ox oy S(x, y)

2 (6)

In the disease classification task of YOLOv8, the classification

results are comprehensively evaluated through multi-dimensional

indicators. The key evaluation indicators used are Precision, Recall,

and F1-score measures the proportion of correctly predicted

samples to the total samples; precision, also known as the search

rate, is the proportion of all samples predicted to be positive that are

actually positive; recall, also known as the search rate, is the

proportion of all samples that are actually positive that are

correctly identified as positive. The three formulas are as follows

(Equations 7–9):

Precision = TP
TP+FP (7)

Recall = TP
TP+FN (8)

F1 − score = 2 · Precision·Recall
Precision+Recall (9)
3 Experiment and result analysis

3.1 Experimental environment and
parameter configuration

The experiment was conducted in a MobaXterm terminal

environment, on a hardware platform equipped with an AMD

Ryzen 5 3500U processor and a single NVIDIA GeForce RTX 4090

graphics card, with CUDA version 11.5. The software environment

was built based on Python 3.9.18, and the deep learning framework

used was PyTorch 2.0.0. Detailed environment configuration and

hyperparameter settings are shown in Table 3, respectively.
3.2 Comparison of generation effects of
benchmark models

To evaluate the performance of different generation models on

the task of generating images of tea and coffee plant diseases, this

paper trains and generates images using three benchmark models:
TABLE 3 Parameter settings.

Parameter GAN Fast-GAN SinGAN

Learning Rate 0.002 0.002 0.002

Optimizer Adam Adam Adam

Batch-Size 4 4 1

Iteration steps 2000 2000 2000
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GAN, Fast-GAN, and SinGAN. Figure 9 shows the generation

results of healthy leaves of tea and coffee.

From a visual perspective, GAN-generated images exhibit

obvious defects: blurred edges, coarse details, failure to clearly

render the serrated leaf margins, and lack of the sharp texture

characteristic of real leaves, resulting in significant overall

differences from real images. This is primarily due to GAN’s weak

ability to capture high-frequency texture information during

training, making it difficult to effectively model edge and

microstructure features. Fast-GAN shows improvement in edge

clarity, with textures emerging in some areas, but still suffers from

artifacts and unnatural texture distribution, indicating limited

accuracy in reconstructing local details.

In contrast, SinGAN leverages its multi-scale pyramid structure

to progressively capture both global layout and local texture

features, achieving significantly better detail representation than

the other two models. Leaf color reproduction is accurate, vein

textures are clear, surface highlights and shadow transitions appear

natural, and the overall visual consistency is higher, demonstrating

superior structural fidelity.

Although visual evaluation provides an intuitive reference,

subjective judgment is susceptible to individual bias. Therefore, to

further objectively assess generation quality, this study employs

Structural Similarity (SSIM), Mean Squared Error (MSE), Peak
Frontiers in Plant Science 10
Signal-to-Noise Ratio (PSNR), and Tenengrad gradient values as

quantitative evaluation metrics. The average metric values for each

model are presented in Table 4.

Comprehensive metric analysis shows that SinGAN outperforms

GAN and Fast-GAN across all evaluation dimensions, demonstrating

superior generation performance. In tea image generation, SinGAN
TABLE 4 Evaluation index results of images generated by different
models.

Evaluation
index

Study
subjects

GAN
Fast-
GAN

SinGAN

SSIM Tea 0.284 0.552 0.682

Coffee 0.279 0.530 0.636

MSE Tea 70.35 69.86 46.97

Coffee 79.83 88.95 48.48

PSNR Tea 29.66 29.68 31.41

Coffee 29.11 28.64 31.27

Tenengrad Tea 0.201 0.359 0.567

Coffee 0.197 0.301 0.454
fro
The bolded numbers in the table represent the optimal results (values).
FIGURE 9

Example of the generated image of healthy tea and coffee leaves. (A) GAN-generated images; (B) Fast-GAN-generated images; (C) SinGAN-
generated images.
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achieves a 23.6% improvement in SSIM over Fast-GAN, a 32.8%

reduction in MSE, and a PSNR of 31.28, representing a 5.9% increase;

for coffee images, SSIM improves by 20.0%, MSE decreases by 45.5%,

and PSNR increases by 7.4% to 30.70. Furthermore, SinGAN’s

Tenengrad value is significantly higher than that of the other

models, indicating sharper edges in the generated images. These

results validate SinGAN’s superiority in few-shot agricultural image

generation tasks and confirm its better suitability for the target crop

data characteristics in this study.
3.3 Improved effect of introducing channel
attention mechanism (SinGAN-SE)

In order to further enhance the expression ability of generated

images on disease characteristics, this paper introduces the Squeeze-

and-Excitation block (SELayer) on the basis of SinGAN to construct

an improved model called SinGAN-SE. Figures 10 and 11 show the

generation results of tea white star disease and algal spot

disease, respectively.

In the white star disease generation task, the white spots

generated by the original SinGAN have blurry edges, insufficient

contrast, and a distribution that lacks naturalness. In contrast, the
Frontiers in Plant Science 11
spots generated by SinGAN-SE have sharper boundaries, enhanced

color saturation, a density of distribution closer to real diseases,

richer textural details, presenting a stronger “graininess” and sense

of hierarchy. In the generation of algal spot disease, SinGAN-SE

also shows superior shape fidelity and textural coherence.

For coffee disease images, Figures 12 and 13 show the

generation results of leaf rust and leaf miner damage, respectively.

The original SinGAN has issues such as clumped spots and overly

dense distribution in generating leaf rust, while the brown patches

of leaf miner damage have blurry edges and distorted textures. By

reinforcing the response of disease-related features through the

channel attention mechanism, SinGAN-SE effectively alleviates

these problems: the distribution of rust spots is more natural with

smoother edge transitions; the edges of leaf miner patches are

clearer, with more realistic color gradients, significantly

enhancing overall realism.

To quantify the improvement effects of the SELayer, this paper

conducts a quantitative evaluation of the generation results of

SinGAN and SinGAN-SE on five types of tea disease images and

four types of coffee disease images. The results are shown in Table 5

and Table 6, respectively.

In tea images, the SSIM of SinGAN-SE increases to 0.714

(+4.7%), the MSE decreases by 30.1%, and the PSNR improves to
FIGURE 11

Generated images of algal spot disease of tea leaves. (A) Original image; (B) SinGAN generated images; (C) SinGAN-SE generated images.
FIGURE 10

Generated images of white spot disease of tea leaves. (A) Original image; (B) SinGAN-generated images; (C) SinGAN-SELayer-generated images.
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32.97 (+5.0%). Additionally, the Tenengrad value increases by

approximately 17.1%, indicating significant improvements in

image structure, clarity, and visual quality. In coffee images, there

is an increase in SSIM, a reduction of MSE by about 15%, an

improvement of 2.27% in PSNR, and a higher Tenengrad value,
Frontiers in Plant Science 12
suggesting that the generated images surpass the baseline model in

pixel-level similarity and detail sharpness. Experimental results

demonstrate that the introduction of SELayer effectively enhances

the model’s ability to learn key disease features while retaining

SinGAN’s multi-scale generation advantages.
3.4 Improvement effects of introducing
dual-dimensional attention mechanism
(SinGAN-CBAM)

To further explore the impact of spatial context information on

generation quality, this paper constructs the SinGAN-CBAM

model, introducing CBAM modules into both the generator and

discriminator to achieve synergistic optimization of channel and
frontiersin.or
FIGURE 12

Generated images of coffee leaf rust disease. (A) Original image; (B) SinGAN generated images; (C) SinGAN-SE generated images.
TABLE 5 Quantitative evaluation of the quality of tea generation images.

Evaluation index SinGAN SinGAN-SE

SSIM 0.682 0.714

MSE 46.97 32.83

PSNR 31.41 32.97

Tenengrad 0.567 0.664
FIGURE 13

Generated images of the damage caused by the coffee leaf miner. (A) Original image; (B) SinGAN generated images; (C) SinGAN-SE generated
images.
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spatial attention. Figures 14–17 showcase the generated results of

tea and coffee disease images.

In the generation of tea white star disease, SinGAN-CBAM

exhibits more evenly distributed spots, clearer edges, and higher

morphological fidelity. In the generation of algal spot disease, the

position and shape of the spots are closer to the real images, with the

overall texture of the leaf being well-preserved without noticeable

distortion. For coffee leaf rust, SinGAN-CBAM effectively reduces

the adhesion between spots and enhances the naturalness of edge

textures. In the generation of leaf miner damage, the edges of the

patches appear naturally rough with distinct color layers, clear

traces of insect damage, and a more naturally blended background.

To verify the effectiveness of CBAM, this paper quantitatively

evaluates SinGAN and SinGAN-CBAM using the same metrics,

with the results shown in Tables 7 and 8.

In tea leaf images, the incorporation of CBAM leads to a

significant improvement in SSIM, with MSE decreasing by 42.8%,

an increase in PSNR, and a substantial rise in the Tenengrad value,

indicating notable advancements in structure, noise control, and

edge clarity of the generated images. In coffee leaf images, MSE is

reduced by 22.7%, with improvements in both PSNR and

Tenengrad, suggesting an overall enhancement in generation

quality. The results demonstrate that the dual-dimensional

attention mechanism of CBAM effectively boosts the model’s

ability to perceive diseased areas and improves detail

reproduction accuracy.
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3.5 Comparative analysis of two attention
mechanisms

To intuitively compare the improvement effects of SELayer and

CBAM, this article selects typical disease images for comparative

analysis, with the results shown in Figures 18–21. From a visual

perspective, SinGAN-CBAM outperforms SinGAN-SE in terms of

spot edge clarity, distribution naturalness, and texture coherence,

particularly excelling in the restoration of spatial structures.

Further aggregating the quantitative metrics of the two

improved models, the results are shown in Table 9. In tea leaf

image generation, SinGAN-CBAM shows improvements over

SinGAN-SE with an increase of 15.7% in SSIM, a decrease of

18.1% in MSE, an increase of 2.6% in PSNR, and an increase of

24.8% in Tenengrad, with all metrics being superior. In coffee

images, although SinGAN-SE has a slightly higher SSIM (possibly

due to its ability to enhance low-resolution textures), SinGAN-

CBAM performs better in terms of MSE (with a decrease of 9.0%),

PSNR (an increase of 1.3%), and Tenengrad (an increase of 30.0%).

Overall, SinGAN-CBAM demonstrates a clear advantage in the

overall quality of generated tea and coffee disease images, which

fully validates the effectiveness of the dual-dimension attention

mechanism in enhancing the realism and detail fidelity of

generated images.
3.6 Verification of downstream
classification performance of generated
images

To evaluate the usability and semantic fidelity of generated

images in practical agricultural disease recognition tasks, this paper

further conducts disease classification experiments based on the

YOLOv8 model. The experiment selects images generated by

SinGAN, SinGAN-SE, and SinGAN-CBAM models as input data,

indirectly reflecting the quality of the generated images through

classification performance. Although SinGAN is inherently a single-

image generative model, we apply it in a ‘few-shot augmentation’
TABLE 6 Quantitative evaluation of the quality of coffee generation
images.

Evaluation index SinGAN SinGAN-SE

SSIM 0.636 0.691

MSE 48.48 41.18

PSNR 31.27 31.98

Tenengrad 0.454 0.602
FIGURE 14

Generated images of white spot disease of tea leaves. (A)Original image; (B)SinGAN generated images; (C)SinGAN-CBAM generated images.
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FIGURE 15

Generated images of algal spot disease of tea leaves. (A) Original image; (B) SinGAN generated images; (C) SinGAN CBAM-generated images.
FIGURE 16

Generated images of coffee leaf rust disease. (A) Original image; (B) SinGAN generated images; (C) SinGAN-CBAM generated images.
FIGURE 17

Generated images of the damage caused by the coffee leaf miner. (A) Original image; (B) SinGAN generated images; (C) SinGAN-CBAM generated
images.
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pipeline: for each of the N real images in a disease class, an

independent SinGAN instance is trained. The union of all

synthetic outputs constitutes the augmented dataset.

During the image generation phase, 10 new samples are

generated for each original training image. For the tea dataset,

which includes four disease categories, each category originally has

100 samples, which are expanded to 1000 images after generation.

The coffee dataset contains three disease categories, with each

category similarly generating 1000 synthetic images from 100

original images. All generated images are divided into training,

validation, and test sets at an 8:1:1 ratio for the training and

evaluation of the YOLOv8 model. Classification performance is

evaluated using precision, recall, and F1-score as metrics, with

results shown in Table 10.

The experimental results indicate that images synthesized by

generative models incorporating attention mechanisms exhibit

superior recognition performance in downstream classification
Frontiers in Plant Science 15
tasks. Compared to the original SinGAN, both SinGAN-SE and

SinGAN-CBAM showed improved classification metrics, with

SinGAN-CBAM demonstrating the best overall performance.

Specifically, across all disease types, SinGAN-CBAM achieved

the highest levels of precision, recall, and F1-score. For instance,

regarding the coffee leaf miner disease, its precision improved from

0.90 with the original SinGAN to 0.98, with a recall nearing 1.00 and

an F1-score reaching 0.98. This indicates that the images generated

by this model not only retain critical lesion features but also possess

a high degree of semantic consistency, making them accurately

identifiable by recognition models. In the case of tea blight,

SinGAN-CBAM achieved an precision rate of 0.94, suggesting

that the lesions it generates are clear in shape and have distinctive

features that are easily recognizable by classifiers.

The improvement effects of the attention mechanism are

particularly evident in categories that are challenging to
TABLE 7 Quantitative evaluation of the quality of tea generation images.

Evaluation index SinGAN SinGAN-CBAM

SSIM 0.682 0.826

MSE 46.97 26.88

PSNR 31.41 33.84

Tenengrad 0.567 0.829
TABLE 8 Quantitative evaluation of the quality of coffee generation
images.

Evaluation index SinGAN SinGAN+ CBAM

SSIM 0.636 0.675

MSE 48.48 37.46

PSNR 31.27 32.39

Tenengrad 0.454 0.782
FIGURE 18

Tea scab generated image. (A) Original image; (B) SinGAN generated images; (C) SinGAN-CBAM generated images.
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FIGURE 19

The image of algae spot disease in tea leaves. (A) Original image; (B) SinGAN generated images; (C) SinGAN-CBAM generated images.
FIGURE 20

Coffee leaf rust image. (A) Original image; (B) SinGAN generated images; (C) SinGAN-CBAM generated images.
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distinguish. Images of tea algae spot disease generated by the

original SinGAN had a classification precision of merely 0.69 and

an F1-score of 0.73, indicating blurred lesion boundaries and low

differentiation from healthy tissue in the generated images. Post-

introduction of attention mechanisms, classification performance
Frontiers in Plant Science 17
significantly improved: SinGAN-SE increased the F1-score for this

category to 0.81, while SinGAN-CBAM further raised it to 0.93,

demonstrating its effective enhancement of modeling capabilities

for subtle lesion areas through dual-channel and spatial attention

mechanisms, thereby improving the discriminability of

disease features.

Similarly, on diseases such as anthracnose in tea characterized

by indistinct edges and complex color gradients, SinGAN-CBAM

exhibited stronger feature restoration abilities. Although SinGAN-

SE enhanced key feature responses through channel attention, it

was somewhat lacking in spatial positioning and local detail

depiction, resulting in slightly lower classification performance

than SinGAN-CBAM.

Comprehensive analysis shows that the CBAM module, by

collaboratively optimizing channel importance and spatial

attention regions, ensures that generated images surpass other

models in terms of texture clarity, natural distribution of lesions,

and structural consistency. Consequently, this significantly

enhances the recognition accuracy and robustness of downstream

classification models. These results further validate that high-

quality generated images should not only possess visual

authenticity but also retain semantic features useful for
FIGURE 21

Coffee leaf miner moth generation image. (A) Original image; (B) SinGAN generated images; (C) SinGAN-CBAM generated images.
TABLE 9 Evaluation indicators for the quality of tea and coffee images
generated by two models.

Study
subjects

Index
SinGAN-
SELayer

SinGAN-
CBAM

Tea

SSIM 0.714 0.826

MSE 32.83 26.88

PSNR 32.97 33.84

Tenengrad 0.664 0.829

Coffee

SSIM 0.691 0.675

MSE 41.18 37.46

PSNR 31.98 32.39

Tenengrad 0.602 0.782
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identification. In this regard, SinGAN-CBAM demonstrates

significant advantages.
4 Discussion

Addressing the scarcity of disease image data for tea and coffee

leaves, this study proposes an image generation framework that

integrates multi-scale generation with attention mechanisms.

Experimental results demonstrate that under small sample

conditions, SinGAN exhibits a clear advantage in generation

quality over traditional GANs and Fast-GAN, capable of learning

texture and structural priors from a single image to generate visually

natural and semantically consistent disease samples. This

characteristic makes it highly applicable for low-resource and

hard-to-collect image enhancement tasks in agriculture,

contrasting sharply with existing research emphasizing large-scale

data-driven image generation methods (Tan et al., 2023).

Further, by introducing attention mechanisms to improve SinGAN,

this paper explores the potential of channel attention (SELayer) and

dual-dimension attention (CBAM) in enhancing the expression ability

of disease features. The results show that SELayer can enhance the
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model’s response intensity to lesion area features by adaptively adjusting

channel weights, improving spot boundary clarity and color contrast,

which aligns with Hu et al.’s (2018) observation of channel feature

recalibration effects in image classification tasks. However, its effect is

limited to the channel dimension, making it difficult to effectively model

the spatial distribution patterns of lesions, thus limiting further

improvement in complex texture restoration.

In contrast, CBAM achieves collaborative focusing on “important

features” and “key locations” during generation by jointly optimizing

channel and spatial attention. Experiments indicate that SinGAN-

CBAM more closely mimics real disease morphology in terms of rust

spot distribution and leaf miner trail orientation, significantly

enhancing the semantic fidelity of images. These findings echo those

of Woo et al. (2018), who found that CBAM improves localization

accuracy in object detection, further validating the effectiveness of

spatial attention mechanisms in fine-grained visual tasks.

Although SinGAN-CBAM demonstrates excellent performance

on the tea leaf disease dataset, its generation quality on coffee disease

images is notably limited, primarily due to the high heterogeneity in

image acquisition conditions within the original dataset. Specifically,

among the 400 original coffee disease images used in this study,

approximately 72.6% (290 images) have resolutions lower than
TABLE 10 Each model generates image disease classification results.

Tea and coffee diseases Model F1-score Recall Precision

Tea leaf white spot disease

SinGAN 0.80 0.85 0.76

SinGAN-SELayer 0.86 0.91 0.81

SinGAN-CBAM 0.95 0.94 0.96

Tea Anthracnose

SinGAN 0.79 0.83 0.75

SinGAN-SELayer 0.86 0.90 0.82

SinGAN-CBAM 0.93 0.92 0.94

Tea algae spot

SinGAN 0.73 0.78 0.69

SinGAN-SELayer 0.81 0.86 0.77

SinGAN-CBAM 0.93 0.93 0.94

Tea leaf blight

SinGAN 0.79 0.83 0.76

SinGAN-SELayer 0.86 0.88 0.84

SinGAN-CBAM 0.93 0.92 0.94

Coffee rust

SinGAN 0.79 0.80 0.79

SinGAN-SELayer 0.88 0.87 0.89

SinGAN-CBAM 0.91 0.90 0.93

Coffee leaf spot

SinGAN 0.82 0.85 0.80

SinGAN-SELayer 0.88 0.92 0.85

SinGAN-CBAM 0.94 0.93 0.96

Coffee leaf miner

SinGAN 0.88 0.87 0.90

SinGAN-SELayer 0.94 0.98 0.91

SinGAN-CBAM 0.98 0.99 0.98
The bolded figures in the table are to better highlight the outstanding results (values) of SinGAN-SELayer and SinGAN-CBAM.
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1920×1080 pixels, and nearly 79% (316 images) exhibit non-standard

aspect ratios (i.e., neither 16:9 nor 9:16), with some images even

suffering from severe stretching or compression. This inconsistency

poses a significant challenge for SinGAN-based models, which rely on

internal statistical priors learned from a single image for multi-scale

reconstruction. Low input resolution restricts the model’s ability to

capture high-frequency textures, while unnatural aspect ratios induce

spatial structural distortions during generation, ultimately

compromising the fidelity of lesion morphology. This issue

highlights a key limitation of current single-image generative models

when applied to non-standardized agricultural imagery and aligns

with recent findings that “generative models are highly sensitive to

input geometric properties” (Wang and Ponce, 2021). To mitigate this

problem, we recommend incorporating a standardized preprocessing

pipeline in practical applications: first applying center cropping or

lesion-aware intelligent cropping, followed by resizing all images to a

fixed resolution. This strategy preserves critical disease features while

enhancing structural consistency in the input data. In contrast,

transfer learning or cross-domain generative approaches have

demonstrated greater robustness in handling heterogeneous data

(Wang et al., 2020), suggesting that future work should explore

integrating pretraining strategies with multi-scale generation

frameworks to improve model generalization and real-

world applicability.

In conclusion, by embedding attention mechanisms into a multi-

scale generation framework, this study achieves higher-quality disease

image synthesis under small sample conditions. Experimental results

not only verify the feasibility of SinGAN in agricultural image

generation but also reveal the potential of attention mechanisms in

enhancing semantic consistency. However, the model still has

limitations regarding cross-resolution adaptability, and future work

could explore integrating transfer learning, self-supervised priors, or

conditional generation strategies to further enhance the model’s

practicality and generalization capabilities.
5 Conclusion

Addressing the challenges of scarce data, high acquisition costs,

and insufficient sample diversity in tea and coffee leaf disease image

datasets, this study constructs and validates an image generation

framework based on the integration of multi-scale generation and

attention mechanisms. By comparing the performance of three

generative models—GAN, Fast-GAN, and SinGAN—under few-

shot conditions, the results demonstrate that SinGAN significantly

outperforms traditional generative models in generation quality and

structural fidelity due to its ability to learn texture and structural

priors from a single image, making it more suitable for low-resource

data augmentation tasks in agriculture.

The proposed SinGAN-CBAM framework exhibits strong

performance and practical potential in both few-shot agricultural

image generation and downstream classification tasks. It achieves

significantly better results than SinGAN and SinGAN-SE across

multiple metrics: in image quality assessment (e.g., SSIM, PSNR,

and Tenengrad) and in classification performance (e.g., precision,
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recall, and F1-score). Notably, it excels in recognizing complex

textures (e.g., algal spot disease) and subtle lesions (e.g., leaf miner

damage), demonstrating that the generated samples possess high

semantic fidelity and usability. This framework thus offers an efficient

and cost-effective data augmentation solution for plant disease

identification. Future work may explore incorporating transfer

learning, cross-scale alignment mechanisms, or conditional

generation strategies to further enhance the model’s generalization

capability and robustness in real-world deployment scenarios.
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