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Company Shizong Branch, Quding, Yunnan, China

Introduction: To address the limitation in model performance for tea and coffee
disease identification caused by scarce and low-quality image samples, this
paper proposes a few-shot multi-scale image generation method named
SinGAN-CBAM, aiming to enhance the detail fidelity and semantic usability of
generated images.

Methods: The research data were collected from Kunming, Baoshan, and Pu’er
regions in Yunnan Province, covering seven typical diseases affecting both tea
and coffee plants. Based on the SinGAN framework as the baseline, we
incorporate the Convolutional Block Attention Module (CBAM), which
leverages dual-channel and spatial attention mechanisms to strengthen the
model’s ability to capture texture, edges, and spatial distribution features of
diseased regions. Additionally, a SinGAN-SE model is constructed for
comparative analysis to evaluate the improvement brought by channel-wise
attention mechanisms. The generated images are validated through classification
using a YOLO v8 model to assess their effectiveness in real-world
recognition tasks.

Results: Experimental results demonstrate that SinGAN-CBAM significantly
outperforms GAN, Fast-GAN, and the original SinGAN in metrics such as SSIM,
PSNR, and Tenengrad, exhibiting superior structural consistency and edge clarity
in generating both tea and coffee disease images. Compared with SinGAN-SE,
SinGAN-CBAM further improves the naturalness of texture details and lesion
distribution, showing particularly notable advantages in generating complex
diseases such as rust and leaf miner infestations. Downstream classification
results indicate that the YOLOvV8 model trained on data generated by SinGAN-
CBAM achieves higher precision, recall, and Fl-score than those trained with
other models, with key category recognition performance approaching or
exceeding 0.98.

Discussion: This study validates the effectiveness of dual-dimensional attention
mechanisms in enhancing the quality of agricultural few-shot image generation,
providing a high-quality data augmentation solution for intelligent disease
identification with promising practical applications.
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generative adversarial networks, SinGAN, attention mechanism, crop disease
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1 Introduction

Tea and coffee are important cash crops in Yunnan Province,
possessing significant production value and a broad international
consumer market. However, the frequent occurrence of diseases
severely threatens their yield and quality, causing not only
agricultural economic losses but also weakening the
competitiveness of these products in the global market. Therefore,
achieving efficient and accurate disease identification and control
has become a key challenge in ensuring crop safety and advancing
the intelligentization of agricultural production.

In recent years, deep learning technologies have demonstrated
great potential in crop disease identification, yet their performance
heavily relies on large-scale, high-quality annotated datasets (Keith
and Javaan, 2022). In practical agricultural scenarios, acquiring
sufficient and diverse disease images faces numerous challenges due
to complex shooting conditions and the seasonal and regional
nature of disease occurrences, resulting in generally scarce and
imbalanced training data. To alleviate this issue, Generative
Adversarial Networks (GANs), owing to their powerful data
generation capabilities, have gradually been applied to agricultural
image enhancement and synthesis tasks, emerging as an effective
approach to address few-shot learning problems.

Since the introduction of the GAN framework by Goodfellow
et al. in 2014, this technology has rapidly advanced (Goodfellow
et al., 2014). Through adversarial training between a generator (G)
and a discriminator (D), GANs are able to learn the underlying
distribution of real data and generate visually realistic new samples.
However, early GANs suffered from issues such as unstable training
and mode collapse. To address these problems, a series of improved
models have emerged: Deep Convolutional GAN (DCGAN),
proposed by Radford et al., enhanced image generation quality by
incorporating convolutional architectures (Radford et al., 2015);
Conditional GAN (CGAN), introduced by Mirza et al., utilized label
information to guide the generation process, mitigating mode
collapse, but its applicability is limited due to dependence on
annotated data (Mirza and Osindero, 2014); Progressive GAN
(PGGAN), developed by Karras et al., successfully generated
high-resolution images through a coarse-to-fine multi-scale
training strategy, though at the cost of high computational
resources and long training times (Karras et al.,, 2017);
subsequently, BigGAN and FastGAN achieved breakthroughs in
generation quality and efficiency, respectively, offering new insights
for complex image synthesis (Brock et al., 2018; Liu et al., 2021).

In the field of single-image generation, the SInGAN model
proposed by Shaham et al. requires only a single natural image for
training and achieves image generation from low to high resolution
through a multi-scale pyramid structure, demonstrating excellent
performance in preserving the original image’s structure and
texture details, making it particularly suitable for few-shot
agricultural image generation (Shaham et al, 2019). In recent
years, research into improving SinGAN has advanced steadily:
Nikankin et al. explored diffusion models based on single video
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frames for generating dynamic content (Nikankin et al., 2022);
Hambarde et al. proposed an underwater GAN for single-image
depth estimation (Hambarde et al., 2021); Ahmadkhani et al.
introduced Topo-SinGAN, incorporating a differentiable
topological loss to enhance structural consistency in generated
images (Ahmadkhani and Shook, 2024); and Songwei et al.
proposed Improved-SinGAN, effectively mitigating geographical
bias in remote sensing image generation (Songwei et al., 2021).

In agricultural applications, GANs have been gradually utilized
for plant disease detection and phenotypic analysis. Amreen et al.
employed C-GAN to generate images of tomato diseased leaves,
achieving a classification model accuracy of 98.42% (Amreen et al.,
2021); Yuwana et al. expanded a tea dataset using GAN and
DCGAN, improving detection model performance by 10%-15%
(Yuwana et al,, 2020); Cap et al. introduced LeafGAN to transform
healthy leaves into diseased ones, significantly enhancing the
generalization ability of cucumber disease diagnosis systems (Cap
et al,, 2020); Hassan et al. developed SRGANs to generate artificial
images of young plant seedlings, alleviating issues related to
insufficient training data (Hassan et al., 2021); Zhu et al. adopted
an improved cDCGAN for grading the vitality of orchid seedlings,
verifying the usability of generated images in practical tasks (Zhu
et al., 2020).

To assess the practical value of generated images, in addition to
using objective metrics such as SSIM, PSNR, and MSE, it is
common to verify their semantic consistency and usability
through downstream tasks (e.g., classification or detection). The
YOLO series of algorithms are widely used in agricultural object
recognition due to their efficient and real-time detection
capabilities. Among them, YOLOv8 stands out in disease
detection tasks with its excellent balance of speed and accuracy,
making it suitable as a validation tool for the quality of generated
images (Wang et al., 2023).

In summary, although GANs have achieved certain progress in
agricultural image generation, research on few-shot disease image
generation for specific cash crops such as tea and coffee remains
relatively limited. Moreover, existing models still have room for
improvement in preserving texture details and representing lesion
characteristics. To address these issues, this study focuses on major
diseases of tea and coffee, and proposes a single-image generative
adversarial network enhanced with attention mechanisms—
SinGAN-CBAM. The main research components include: (1)
constructing a tea and coffee disease image dataset covering
multiple regions in Yunnan Province, and employing instance
segmentation techniques to precisely extract lesion areas, thereby
eliminating interference from complex backgrounds; (2) comparing
the generative performance of GAN, Fast-GAN, and SinGAN under
few-shot conditions to establish SinGAN as the baseline model; (3)
integrating the CBAM (Convolutional Block Attention Module)
and SELayer into SinGAN to enhance feature representation in
both spatial and channel dimensions, thereby improving the clarity
and realism of generated images; and (4) validating the generated
images using YOLOVS classification to evaluate their effectiveness in
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FIGURE 1
Dataset of different types of tea.

downstream recognition tasks. Experimental results demonstrate
that SinGAN-CBAM significantly outperforms the original models
and SinGAN-SE in both image quality and classification
performance, providing an efficient and feasible technical solution
for few-shot agricultural image generation, with significant
implications for advancing intelligent plant protection and
precision agriculture.

2 Materials and methods

2.1 Experimental materials and data
collection

This study focuses on tea and coffee leaves, constructing an
image dataset that includes both healthy and typical disease states
for the training and evaluation of few-shot disease image
generation models.

Tea leaf images were collected from the tea plantation located at
the back hill of Yunnan Agricultural University in Panlong District,
Kunming City, Yunnan Province. Four common diseases that
significantly impact tea production were selected as the subjects
of this study: White-star disease, Anthracnose, Algae-spot disease,

TABLE 1 Overview of the tea dataset.

Anthracnose

Cloud leaf blight

Algae-spot
disease

and Cloud leaf blight. Disease images are shown in Figure 1. All leaf
samples were photographed in the field against a uniform white
background using a digital SLR camera, with an image resolution of
5472 x 3648 pixels, ensuring even lighting and no shadow
interference. A total of 1075 valid images were collected,
categorized to form the tea disease dataset (see Table 1).

Coffee leaf images were sourced from two major growing areas:
the Lujiang Town Coffee Plantation Base in Baoshan City, Yunnan
Province, and the NanDaohe Baisha Slope Coffee Demonstration
Base of Yunnan Agricultural University in Pu’er City. The study
includes three main diseases: Coffee Rust, Coffee Spot Disease, and
symptoms of damage by the Coffee Leaf Miner, with disease images
shown in Figure 2. Images were taken directly in the field using
smartphones under natural lighting conditions, focusing on
capturing the leaves of plants in the field, resulting in a total of
749 valid images. During shooting, efforts were made to keep the
lens perpendicular to the leaf surface and focus on clear diseased
areas to minimize blurriness and obstruction. The final constructed
coffee disease dataset is shown in Table 2.

All original images were stored in JPEG format and underwent
preliminary screening to remove blurry images, those with severe
occlusions, or those where non-target areas occupied an excessive
proportion, ensuring data quality.

Tea types Healthy White-star disease =~ Anthracnose = Algae-spot disease Cloud leaf blight
Original-quantity 170 188 269 146 302
Filter quantity 100 100 100 100 100
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FIGURE 2
Dataset of different types of coffee.

TABLE 2 Overview of the coffee leaves dataset.

Coffee types  Healthy Rust Spot Miner
Original quantity 202 247 ‘ 159 141
Filter quantity 100 100 ‘ 100 100

2.2 Image preprocessing and instance
segmentation

Since the coffee images were taken on-site with complex
backgrounds (including branches, soil, adjacent leaves, etc.), this
could cause noise interference for the feature extraction of
subsequent image generation models. To enhance the semantic
consistency of the generated images and the integrity of lesion
structures, this study introduces instance segmentation technology
to accurately extract target leaves from coffee images.

The Segment Anything 2.1 (Base) model in the X-AnyLabeling-
CPU software platform is utilized for automatic initial segmentation
of each coffee image, followed by meticulous annotation completed
with manual corrections. For each type of disease image, the prompt
point function of the Segment Anything model is used to generate
high-quality masks, outputting JSON-formatted annotation files
which are stored locally. Subsequently, custom Python scripts are
employed to parse the original images and their corresponding JSON
files, cropping out areas containing only the target leaves, and
standardizing the background to white. This achieves background
standardization. Figure 3 illustrates examples of the segmentation
annotation process and extraction results. After processing, a sub-
dataset of coffee disease images with unified backgrounds and clear
lesions was constructed, with example images for each disease type
shown in Figure 4. This preprocessing workflow effectively eliminated
the interference of complex backgrounds, enhanced the structural
consistency of the images, and provided high-quality inputs for the
training of subsequent small-sample generation models.

Frontiers in Plant Science

2.3 Selection of benchmark generation
models

In agricultural image analysis tasks, the acquisition of disease
samples is often limited by seasonality, geographic constraints, and
the cost of manual labeling, resulting in a limited scale of training
data that barely meets the demands of deep generative models for
large datasets. To address this challenge, various generative
adversarial networks designed for few-sample conditions have
been proposed in recent years, showing promising potential in
image enhancement and data augmentation. To systematically
compare the adaptability and performance of different generation
paradigms in the task of generating tea and coffee disease images,
this study selects three representative generative models as
benchmarks: the standard Generative Adversarial Network
(GAN), the lightweight high-resolution generation model (Fast-
GAN), and the multi-scale generative network based on single-
image (SinGAN).

The standard Generative Adversarial Network (GAN),
proposed by Goodfellow et al., achieves mapping from latent
space to real data distribution through an adversarial learning
mechanism between the generator and discriminator (Goodfellow
etal., 2014). This framework laid the foundation for deep generative
models and has been widely applied in image synthesis. However,
its training process is highly sensitive to sample size, often suffering
from issues such as mode collapse and convergence difficulties
under few-shot conditions, which limits the diversity of generated
images. Although structural improvements (e.g., introducing
convolutional architectures) can enhance stability (Radford et al.,
2015), its reliance on large-scale training data still restricts direct
application in low-resource agricultural scenarios.

Fast-GAN, proposed by Liu et al,, is a lightweight framework
designed for high-resolution image generation and specifically
tailored for few-shot conditions (Liu et al., 2021). The model
introduces a Skip-layer Channel Excitation (SLE) module to
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(A)

FIGURE 3

(B)

The annotation process and the extracted image. (A) Original image; (B) Segmentation label; (C) Extracted image.

Rust

Healthy

FIGURE 4
Processed coffee dataset.

enhance cross-scale feature representation and employs a self-
supervised discriminator to improve discrimination capability,
enabling fast convergence and stable training even with limited
samples. It has demonstrated superior efficiency and robustness
compared to StyleGAN2 in tasks involving material images and
natural scene generation, making it suitable for moderate-scale few-
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Spot Miner

shot image generation. Therefore, it is included in the comparative
framework of this study.

SinGAN represents an even more extreme few-shot generation
paradigm—requiring only a single training image to construct a
multi-scale generative network (Shaham et al., 2019). The model
builds a pyramid structure, training independent generator-
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SELayer structure.

discriminator pairs at multiple resolution levels to achieve coarse-
to-fine image synthesis. Each level learns the local texture and
structural statistical characteristics of the input image and generates
visually diverse new samples by incorporating noise inputs. Due to
its independence from class labels or large datasets, and its ability to
effectively preserve the semantic structure of the original image,
SinGAN demonstrates unique advantages in tasks involving scarce
and structurally complex samples, such as agricultural
disease images.

2.4 Generator model improvement based
on channel attention: SiInGAN-SE

To enhance the model’s ability to represent key features of tea
and coffee diseases, this study introduces a channel attention
mechanism into the original SinGAN framework, proposing
an improved model named SinGAN-SE. The model embeds
a Squeeze-and-Excitation block (SE Block) (Hu et al, 2018)
after each multi-scale convolutional module in both the generator
and discriminator, enabling adaptive reweighting of
feature channels.

The SE block “squeezes” spatial information through a global
average pooling operation to generate channel-wise descriptors,
then learns inter-channel dependencies via fully connected layers,
and finally outputs a set of weighting coefficients to “re-calibrate”
the feature maps across channels. This mechanism enables the
model to dynamically enhance responses from channels that are
important for disease texture representation, while suppressing
interference from background or irrelevant textures, thereby
improving the discriminative power of feature representation
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under few-shot conditions. The architecture of the SELayer is
shown in Figure 5, and the overall structure of the proposed
SinGAN-SE model is illustrated in Figure 6.

In SinGAN-SE, the SE module is integrated after every residual
block in generators and discriminators at each scale, forming a
“convolution-attention” cascading structure. The training process
follows SinGAN’s progressive growing strategy: starting from the
lowest resolution and gradually moving upwards, with parameters
being fixed once the training of each layer is completed. The loss
function at each scale consists of an adversarial loss and a
reconstruction loss: the adversarial loss maintains the balance
between the generator and discriminator; the reconstruction loss
uses the L1 norm to constrain the consistency between the
generated image and the input image in the pixel space, ensuring
that the generation result retains the original structure.

Parameter updates use an alternating optimization strategy: in
each iteration round, the discriminator is optimized first, followed
by the generator, to maintain training stability. This structure
enhances the model’s selective response capability to disease-
related channel features without significantly increasing the
computational burden.

2.5 Generator model improvement based
on dual-dimensional attention: SinGAN-
CBAM

To further enhance the model’s spatial localization and
structural perception capabilities for diseased regions, this study
explores a fusion strategy incorporating both channel and spatial
attention mechanisms, proposing the SinGAN-CBAM model. The
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model introduces the Convolutional Block Attention Module
(CBAM) (Woo et al.,, 2018) into the generator and discriminator
at each scale of SinGAN. By cascading channel and spatial attention

sub-modules, CBAM enables joint optimization of feature maps.
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Improved SinGAN-CBAM structure.

Subsequently, the spatial attention sub-module calculates spatial
position weights based on the channel-aggregated feature map,
amplifying the response strength of key regions, thereby more
precisely capturing the spatial distribution patterns of diseases.
The architecture of CBAM is illustrated in Figure 7.

In SinGAN-CBAM, the CBAM module is embedded after each
convolutional block in both the generator and discriminator,
participating in the entire generation process from low to high
resolution. This design helps mitigate the loss of fine-grained
textures in multi-scale generation, particularly enhancing the
modeling capability of local details such as lesion edges and color
transitions at high-resolution stages. The training strategy remains
consistent with that of SinGAN-SE, employing a layer-by-layer
training and alternating optimization approach to ensure training
stability even after the integration of attention mechanisms. The
architecture of the improved model is illustrated in Figure 8.

Compared to SinGAN-SE, which focuses only on the channel
dimension, SInGAN-CBAM is expected to generate images with
higher semantic consistency under complex backgrounds and
irregular lesion shapes by leveraging synergistic dual-dimensional
attention, thereby providing higher-quality data support for
subsequent recognition tasks.

2.6 Disease classification performance
validation model: YOLOvS8

To evaluate the effectiveness of generated images in practical
recognition tasks, this study employs YOLOV8 as the downstream
disease classification model to verify the performance improvement
brought by the generated data. As an efficient object detection
framework, YOLOvS features a backbone network based on
CSPDarknet53 and incorporates the Spatial Pyramid Pooling with
Fast (SPPF) module, endowing it with strong multi-scale feature
extraction capabilities. Compared to traditional classification
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Activation function
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networks and two-stage detectors, YOLOv8 adopts a single-stage,
end-to-end architecture that unifies object localization and category
recognition into a single model, significantly improving inference
efficiency and making it well-suited for real-time disease
identification in agricultural scenarios.

In this experiment, YOLOVS is used to perform multi-class
disease classification tasks on tea and coffee leaves. The model input
consists of a training set composed of a mixture of original and
generated images, and the output is the classification results for
healthy leaves and various disease categories. By comparing the
precision, recall, and F1-score of YOLOvV8 when trained on datasets
augmented with images generated by different models (GAN, Fast-
GAN, SinGAN, SinGAN-SE, SinGAN-CBAM), the practical value
of each generation method in enhancing recognition performance
can be objectively evaluated.

This validation process not only evaluates the visual quality of
the generated images, but also focuses on their semantic usability—
that is, whether the generated samples contain discriminative
features that can be effectively utilized by recognition models—
thereby providing a practical evaluation criterion for the
agricultural application of generative models.

2.7 Evaluation metrics

2.7.1 SSIM

SSIM is designed based on three factors: brightness, contrast,
and structure to better adapt to the working principle of the human
visual system. SSIM measures the similarity between two images.
The SSIM value is specified in [0,1], and the size of the value
represents the effect of the image. The larger the value, the better the
image effect, and the smaller the value, the worse the image effect.
The mathematical calculation formula of SSIM is (Equation 1):

SSIM(x,y) = [C,(x, )] *[C.(x, )P [Cy(x, )] ey
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where X,y represent the real image and the generated image,
and o, B, v represent the controllable parameters. When o= =
v=1, we can get (Equation 2):

SSIM(x, y) = M @)

Wi+ +Cp)(0g +07+C2)

2.7.2 MSE

MSE is the most commonly used estimator in image quality
measurement. It is a complete reference indicator that calculates the
average value of the difference in pixel values between two images.
The closer the value is to zero, the better. MSE introduces the root
mean square error (RMSE) or root mean square deviation (RMSD),
which is often referred to as the standard deviation of the variance
(Equation 3).

1 MN )

MSE = —— I,G,j) — L(i,j 3

i 22N 60 = 1) G)

Where I; and I, are two images, M and N are the height and

width of the images respectively, and i and j are the pixel
position indexes.

2.7.3 PSNR

PSNR is used to calculate the ratio between the maximum
possible signal power and the distortion noise power that affects its
representation quality. Peak signal-to-noise ratio is the most
commonly used quality assessment technique to measure the
reconstruction quality of lossy image compression codecs. The
signal is regarded as raw data, and the noise is the error caused
by compression or distortion. The image quality is evaluated by
measuring the error between the reconstructed image and the
reference image. It is based on MSE, which is the square average
of the difference between each pixel. The larger the PSNR value, the
smaller the difference between the generated image and the input
real image, and the better the image quality. The formula is as
follows (Equation 4):

PSNR = 10 - logy, (%) (4)

where MAX is the maximum possible pixel value of the image
(e.g., for an 8-bit image, MAX = 255), and MSE is the mean squared
error between the reconstructed image and the reference image.

2.7.4 Tenengrad

The Tenengrad gradient method uses the Sobel operator to
calculate the gradients in the horizontal and vertical directions
respectively. In the same scene, the higher the gradient value, the
clearer the image. The calculation is the sum of the squares of the
gradients of the image after being processed by the Sobel operator or
other edge detection operators. The larger the gradient value, the
clearer the image texture.

The gradient calculation formula of image I at point (x,y) is
as follows, where G, and G, are Sobel’s convolution kernels
(Equation 5).
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TABLE 3 Parameter settings.

Parameter GAN Fast-GAN SinGAN
Learning Rate 0.002 0.002 0.002
Optimizer Adam Adam Adam
Batch-Size 4 4 1
Iteration steps 2000 2000 2000
Steyy = /Gl () + G+ (x, ) (5)

The Tenengrad value of this image is (Equation 6):
1 2
Ten = o > > S(x, y) (6)
x y

In the disease classification task of YOLOVS, the classification
results are comprehensively evaluated through multi-dimensional
indicators. The key evaluation indicators used are Precision, Recall,
and Fl-score measures the proportion of correctly predicted
samples to the total samples; precision, also known as the search
rate, is the proportion of all samples predicted to be positive that are
actually positive; recall, also known as the search rate, is the
proportion of all samples that are actually positive that are
correctly identified as positive. The three formulas are as follows
(Equations 7-9):

Precision = it (7)
Recall = 5 (8)
F1 = score =2 - Precision-Recall 9)

Precision+Recall

3 Experiment and result analysis

3.1 Experimental environment and
parameter configuration

The experiment was conducted in a MobaXterm terminal
environment, on a hardware platform equipped with an AMD
Ryzen 5 3500U processor and a single NVIDIA GeForce RTX 4090
graphics card, with CUDA version 11.5. The software environment
was built based on Python 3.9.18, and the deep learning framework
used was PyTorch 2.0.0. Detailed environment configuration and
hyperparameter settings are shown in Table 3, respectively.

3.2 Comparison of generation effects of
benchmark models

To evaluate the performance of different generation models on

the task of generating images of tea and coffee plant diseases, this
paper trains and generates images using three benchmark models:
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(A) (B) ©)
FIGURE 9

Example of the generated image of healthy tea and coffee leaves. (A) GAN-generated images; (B) Fast-GAN-generated images; (C) SinGAN-

generated images.

GAN, Fast-GAN, and SinGAN. Figure 9 shows the generation
results of healthy leaves of tea and coffee.

From a visual perspective, GAN-generated images exhibit
obvious defects: blurred edges, coarse details, failure to clearly
render the serrated leaf margins, and lack of the sharp texture
characteristic of real leaves, resulting in significant overall
differences from real images. This is primarily due to GAN’s weak
ability to capture high-frequency texture information during
training, making it difficult to effectively model edge and
microstructure features. Fast-GAN shows improvement in edge
clarity, with textures emerging in some areas, but still suffers from
artifacts and unnatural texture distribution, indicating limited
accuracy in reconstructing local details.

In contrast, SINGAN leverages its multi-scale pyramid structure
to progressively capture both global layout and local texture
features, achieving significantly better detail representation than
the other two models. Leaf color reproduction is accurate, vein
textures are clear, surface highlights and shadow transitions appear
natural, and the overall visual consistency is higher, demonstrating
superior structural fidelity.

Although visual evaluation provides an intuitive reference,
subjective judgment is susceptible to individual bias. Therefore, to
further objectively assess generation quality, this study employs
Structural Similarity (SSIM), Mean Squared Error (MSE), Peak
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Signal-to-Noise Ratio (PSNR), and Tenengrad gradient values as
quantitative evaluation metrics. The average metric values for each
model are presented in Table 4.

Comprehensive metric analysis shows that SInGAN outperforms
GAN and Fast-GAN across all evaluation dimensions, demonstrating
superior generation performance. In tea image generation, SiInGAN

TABLE 4 Evaluation index results of images generated by different
models.

SR | GAN | SMGAN

SSIM Tea 0.284 0.552 0.682
Coffee 0.279 0.530 0.636

MSE Tea 70.35 69.86 46.97
Coffee 79.83 88.95 48.48

PSNR Tea 29.66 29.68 31.41
Coffee 29.11 28.64 31.27

Tenengrad Tea 0.201 0.359 0.567
Coffee 0.197 0.301 0.454

The bolded numbers in the table represent the optimal results (values).
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(A) (B)

Generated images of white spot disease of tea leaves. (A) Original image;

L

(A)

FIGURE 11

(B) ©

(©)

(B) SInGAN-generated images; (C) SinGAN-SELayer-generated images.

Generated images of algal spot disease of tea leaves. (A) Original image; (B) SinGAN generated images; (C) SinGAN-SE generated images.

achieves a 23.6% improvement in SSIM over Fast-GAN, a 32.8%
reduction in MSE, and a PSNR of 31.28, representing a 5.9% increase;
for coffee images, SSIM improves by 20.0%, MSE decreases by 45.5%,
and PSNR increases by 7.4% to 30.70. Furthermore, SinGAN’s
Tenengrad value is significantly higher than that of the other
models, indicating sharper edges in the generated images. These
results validate SInGAN’s superiority in few-shot agricultural image
generation tasks and confirm its better suitability for the target crop
data characteristics in this study.

3.3 Improved effect of introducing channel
attention mechanism (SinGAN-SE)

In order to further enhance the expression ability of generated
images on disease characteristics, this paper introduces the Squeeze-
and-Excitation block (SELayer) on the basis of SinGAN to construct
an improved model called SInGAN-SE. Figures 10 and 11 show the
generation results of tea white star disease and algal spot
disease, respectively.

In the white star disease generation task, the white spots
generated by the original SinGAN have blurry edges, insufficient
contrast, and a distribution that lacks naturalness. In contrast, the
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spots generated by SinGAN-SE have sharper boundaries, enhanced
color saturation, a density of distribution closer to real diseases,
richer textural details, presenting a stronger “graininess” and sense
of hierarchy. In the generation of algal spot disease, SInGAN-SE
also shows superior shape fidelity and textural coherence.

For coffee disease images, Figures 12 and 13 show the
generation results of leaf rust and leaf miner damage, respectively.
The original SinGAN has issues such as clumped spots and overly
dense distribution in generating leaf rust, while the brown patches
of leaf miner damage have blurry edges and distorted textures. By
reinforcing the response of disease-related features through the
channel attention mechanism, SinGAN-SE effectively alleviates
these problems: the distribution of rust spots is more natural with
smoother edge transitions; the edges of leaf miner patches are
clearer, with more realistic color gradients, significantly
enhancing overall realism.

To quantify the improvement effects of the SELayer, this paper
conducts a quantitative evaluation of the generation results of
SinGAN and SinGAN-SE on five types of tea disease images and
four types of coffee disease images. The results are shown in Table 5
and Table 6, respectively.

In tea images, the SSIM of SinGAN-SE increases to 0.714
(+4.7%), the MSE decreases by 30.1%, and the PSNR improves to
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(A) (B) (©

Generated images of coffee leaf rust disease. (A) Original image; (B) SinGAN generated images; (C) SinGAN-SE generated images.

(B) (©)

Generated images of the damage caused by the coffee leaf miner. (A) Original image; (B) SinGAN generated images; (C) SinGAN-SE generated
images.

(A)

suggesting that the generated images surpass the baseline model in
TABLE 5 Quantitative evaluation of the quality of tea generation images. . Lo . )
pixel-level similarity and detail sharpness. Experimental results

Evaluationlindex SINGAN SINGAN-SE demonstrate that the introduction of SELayer effectively enhances
the model’s ability to learn key disease features while retaining
SSIM 0.682 0714 SinGAN’s multi-scale generation advantages.
MSE 46.97 32.83
PSNR 3141 32.97 ) .
3.4 Improvement effects of introducing
Tenengrad 0.567 0.664

dual-dimensional attention mechanism
(SinGAN-CBAM)

32.97 (+5.0%). Additionally, the Tenengrad value increases by

approximately 17.1%, indicating significant improvements in To further explore the impact of spatial context information on
image structure, clarity, and visual quality. In coffee images, there ~ generation quality, this paper constructs the SinGAN-CBAM
is an increase in SSIM, a reduction of MSE by about 15%, an model, introducing CBAM modules into both the generator and

improvement of 2.27% in PSNR, and a higher Tenengrad value, discriminator to achieve synergistic optimization of channel and
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00000

(A) (B)

FIGURE 14

©)

Generated images of white spot disease of tea leaves. (A)Original image; (B)SInGAN generated images; (C)SInGAN-CBAM generated images.

TABLE 6 Quantitative evaluation of the quality of coffee generation
images.

Evaluation index SinGAN SinGAN-SE
SSIM 0.636 0.691
MSE 48.48 41.18
PSNR 3127 31.98
Tenengrad 0.454 0.602

spatial attention. Figures 14-17 showcase the generated results of
tea and coffee disease images.

In the generation of tea white star disease, SInNGAN-CBAM
exhibits more evenly distributed spots, clearer edges, and higher
morphological fidelity. In the generation of algal spot disease, the
position and shape of the spots are closer to the real images, with the
overall texture of the leaf being well-preserved without noticeable
distortion. For coffee leaf rust, SinGAN-CBAM effectively reduces
the adhesion between spots and enhances the naturalness of edge
textures. In the generation of leaf miner damage, the edges of the
patches appear naturally rough with distinct color layers, clear
traces of insect damage, and a more naturally blended background.

To verify the effectiveness of CBAM, this paper quantitatively
evaluates SinGAN and SinGAN-CBAM using the same metrics,
with the results shown in Tables 7 and 8.

In tea leaf images, the incorporation of CBAM leads to a
significant improvement in SSIM, with MSE decreasing by 42.8%,
an increase in PSNR, and a substantial rise in the Tenengrad value,
indicating notable advancements in structure, noise control, and
edge clarity of the generated images. In coffee leaf images, MSE is
reduced by 22.7%, with improvements in both PSNR and
Tenengrad, suggesting an overall enhancement in generation
quality. The results demonstrate that the dual-dimensional
attention mechanism of CBAM effectively boosts the model’s
ability to perceive diseased areas and improves detail
reproduction accuracy.
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3.5 Comparative analysis of two attention
mechanisms

To intuitively compare the improvement effects of SELayer and
CBAM, this article selects typical disease images for comparative
analysis, with the results shown in Figures 18-21. From a visual
perspective, SinGAN-CBAM outperforms SinGAN-SE in terms of
spot edge clarity, distribution naturalness, and texture coherence,
particularly excelling in the restoration of spatial structures.

Further aggregating the quantitative metrics of the two
improved models, the results are shown in Table 9. In tea leaf
image generation, SinGAN-CBAM shows improvements over
SinGAN-SE with an increase of 15.7% in SSIM, a decrease of
18.1% in MSE, an increase of 2.6% in PSNR, and an increase of
24.8% in Tenengrad, with all metrics being superior. In coffee
images, although SinGAN-SE has a slightly higher SSIM (possibly
due to its ability to enhance low-resolution textures), SinGAN-
CBAM performs better in terms of MSE (with a decrease of 9.0%),
PSNR (an increase of 1.3%), and Tenengrad (an increase of 30.0%).

Overall, SInGAN-CBAM demonstrates a clear advantage in the
overall quality of generated tea and coffee disease images, which
fully validates the effectiveness of the dual-dimension attention
mechanism in enhancing the realism and detail fidelity of
generated images.

3.6 Verification of downstream
classification performance of generated
images

To evaluate the usability and semantic fidelity of generated
images in practical agricultural disease recognition tasks, this paper
further conducts disease classification experiments based on the
YOLOvV8 model. The experiment selects images generated by
SinGAN, SinGAN-SE, and SinGAN-CBAM models as input data,
indirectly reflecting the quality of the generated images through
classification performance. Although SinGAN is inherently a single-
image generative model, we apply it in a ‘few-shot augmentation’
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(A) | (B) ©)

Generated images of algal spot disease of tea leaves. (A) Original image; (B) SinGAN generated images; (C) SinGAN CBAM-generated images.

(A) (B) (©)

Generated images of coffee leaf rust disease. (A) Original image; (B) SinGAN generated images; (C) SInGAN-CBAM generated images.

(A) (B) ©)

FIGURE 17
Generated images of the damage caused by the coffee leaf miner. (A) Original image; (B) SInGAN generated images; (C) SinGAN-CBAM generated
images.
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TABLE 7 Quantitative evaluation of the quality of tea generation images.

Evaluation index SinGAN SinGAN-CBAM
SSIM 0.682 0.826
MSE 46.97 26.88
PSNR 3141 33.84
Tenengrad 0.567 0.829

pipeline: for each of the N real images in a disease class, an
independent SinGAN instance is trained. The union of all
synthetic outputs constitutes the augmented dataset.

During the image generation phase, 10 new samples are
generated for each original training image. For the tea dataset,
which includes four disease categories, each category originally has
100 samples, which are expanded to 1000 images after generation.
The coffee dataset contains three disease categories, with each
category similarly generating 1000 synthetic images from 100
original images. All generated images are divided into training,
validation, and test sets at an 8:1:1 ratio for the training and
evaluation of the YOLOv8 model. Classification performance is
evaluated using precision, recall, and Fl-score as metrics, with
results shown in Table 10.

The experimental results indicate that images synthesized by
generative models incorporating attention mechanisms exhibit

superior recognition performance in downstream classification

1411,
00000

(A) (B)

FIGURE 18

10.3389/fpls.2025.1703529

TABLE 8 Quantitative evaluation of the quality of coffee generation
images.

Evaluation index SinGAN SinGAN+ CBAM
SSIM 0.636 ‘ 0.675
MSE 48.48 ‘ 37.46
PSNR 31.27 ‘ 32.39
Tenengrad 0.454 ‘ 0.782

tasks. Compared to the original SinGAN, both SinGAN-SE and
SinGAN-CBAM showed improved classification metrics, with
SinGAN-CBAM demonstrating the best overall performance.

Specifically, across all disease types, SnGAN-CBAM achieved
the highest levels of precision, recall, and Fl-score. For instance,
regarding the coffee leaf miner disease, its precision improved from
0.90 with the original SinGAN to 0.98, with a recall nearing 1.00 and
an Fl-score reaching 0.98. This indicates that the images generated
by this model not only retain critical lesion features but also possess
a high degree of semantic consistency, making them accurately
identifiable by recognition models. In the case of tea blight,
SinGAN-CBAM achieved an precision rate of 0.94, suggesting
that the lesions it generates are clear in shape and have distinctive
features that are easily recognizable by classifiers.

The improvement effects of the attention mechanism are
particularly evident in categories that are challenging to

(©)

Tea scab generated image. (A) Original image; (B) SinGAN generated images; (C) SinGAN-CBAM generated images.
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(A) (B) ©)

The image of algae spot disease in tea leaves. (A) Original image; (B) SInGAN generated images; (C) SinGAN-CBAM generated images.

(A) (B) (©)

Coffee leaf rust image. (A) Original image; (B) SInGAN generated images; (C) SInGAN-CBAM generated images.

FIGURE 20
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(A) (B)

FIGURE 21

©)

Coffee leaf miner moth generation image. (A) Original image; (B) SInGAN generated images; (C) SnGAN-CBAM generated images.

TABLE 9 Evaluation indicators for the quality of tea and coffee images
generated by two models.

Study Index SinGAN - SinGAN-
subjects SELayer CBAM

SSIM 0.714 0.826

MSE 32.83 26.88

Tea

PSNR 32.97 33.84

Tenengrad 0.664 0.829

SSIM 0.691 0.675

Coffee MSE 41.18 37.46
PSNR 31.98 32.39

Tenengrad 0.602 0.782

distinguish. Images of tea algae spot disease generated by the
original SInGAN had a classification precision of merely 0.69 and
an Fl-score of 0.73, indicating blurred lesion boundaries and low
differentiation from healthy tissue in the generated images. Post-
introduction of attention mechanisms, classification performance
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significantly improved: SinGAN-SE increased the F1-score for this
category to 0.81, while SinGAN-CBAM further raised it to 0.93,
demonstrating its effective enhancement of modeling capabilities
for subtle lesion areas through dual-channel and spatial attention
mechanisms, thereby improving the discriminability of
disease features.

Similarly, on diseases such as anthracnose in tea characterized
by indistinct edges and complex color gradients, SinGAN-CBAM
exhibited stronger feature restoration abilities. Although SinGAN-
SE enhanced key feature responses through channel attention, it
was somewhat lacking in spatial positioning and local detail
depiction, resulting in slightly lower classification performance
than SinGAN-CBAM.

Comprehensive analysis shows that the CBAM module, by
collaboratively optimizing channel importance and spatial
attention regions, ensures that generated images surpass other
models in terms of texture clarity, natural distribution of lesions,
and structural consistency. Consequently, this significantly
enhances the recognition accuracy and robustness of downstream
classification models. These results further validate that high-
quality generated images should not only possess visual
authenticity but also retain semantic features useful for
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TABLE 10 Each model generates image disease classification results.

10.3389/fpls.2025.1703529

Tea and coffee diseases Model Fl-score Recall Precision
SinGAN 0.80 0.85 0.76
Tea leaf white spot disease SinGAN-SELayer 0.86 0.91 0.81
SinGAN-CBAM 0.95 0.94 0.96
SinGAN 0.79 0.83 0.75
Tea Anthracnose SinGAN-SELayer 0.86 0.90 0.82
SinGAN-CBAM 0.93 0.92 0.94
SinGAN 0.73 0.78 0.69
Tea algae spot SinGAN-SELayer 0.81 0.86 0.77
SinGAN-CBAM 0.93 0.93 0.94
SinGAN 0.79 0.83 0.76
Tea leaf blight SinGAN-SELayer 0.86 0.88 0.84
SinGAN-CBAM 0.93 0.92 0.94
SinGAN 0.79 0.80 0.79
Coffee rust SinGAN-SELayer 0.88 0.87 0.89
SinGAN-CBAM 0.91 0.90 0.93
SinGAN 0.82 0.85 0.80
Coffee leaf spot SinGAN-SELayer 0.88 0.92 0.85
SinGAN-CBAM 0.94 0.93 0.96
SinGAN 0.88 0.87 0.90
Coffee leaf miner SinGAN-SELayer 0.94 0.98 091
SinGAN-CBAM 0.98 0.99 0.98

The bolded figures in the table are to better highlight the outstanding results (values) of SinGAN-SELayer and SinGAN-CBAM.

identification. In this regard, SinGAN-CBAM demonstrates
significant advantages.

4 Discussion

Addressing the scarcity of disease image data for tea and coffee
leaves, this study proposes an image generation framework that
integrates multi-scale generation with attention mechanisms.
Experimental results demonstrate that under small sample
conditions, SInGAN exhibits a clear advantage in generation
quality over traditional GANs and Fast-GAN, capable of learning
texture and structural priors from a single image to generate visually
natural and semantically consistent disease samples. This
characteristic makes it highly applicable for low-resource and
hard-to-collect image enhancement tasks in agriculture,
contrasting sharply with existing research emphasizing large-scale
data-driven image generation methods (Tan et al.,, 2023).

Further, by introducing attention mechanisms to improve SinGAN,
this paper explores the potential of channel attention (SELayer) and
dual-dimension attention (CBAM) in enhancing the expression ability
of disease features. The results show that SELayer can enhance the
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model’s response intensity to lesion area features by adaptively adjusting
channel weights, improving spot boundary clarity and color contrast,
which aligns with Hu et al’s (2018) observation of channel feature
recalibration effects in image classification tasks. However, its effect is
limited to the channel dimension, making it difficult to effectively model
the spatial distribution patterns of lesions, thus limiting further
improvement in complex texture restoration.

In contrast, CBAM achieves collaborative focusing on “important
features” and “key locations” during generation by jointly optimizing
channel and spatial attention. Experiments indicate that SinGAN-
CBAM more closely mimics real disease morphology in terms of rust
spot distribution and leaf miner trail orientation, significantly
enhancing the semantic fidelity of images. These findings echo those
of Woo et al. (2018), who found that CBAM improves localization
accuracy in object detection, further validating the effectiveness of
spatial attention mechanisms in fine-grained visual tasks.

Although SinGAN-CBAM demonstrates excellent performance
on the tea leaf disease dataset, its generation quality on coffee disease
images is notably limited, primarily due to the high heterogeneity in
image acquisition conditions within the original dataset. Specifically,
among the 400 original coffee disease images used in this study,
approximately 72.6% (290 images) have resolutions lower than
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1920x1080 pixels, and nearly 79% (316 images) exhibit non-standard
aspect ratios (i.e., neither 16:9 nor 9:16), with some images even
suffering from severe stretching or compression. This inconsistency
poses a significant challenge for SinGAN-based models, which rely on
internal statistical priors learned from a single image for multi-scale
reconstruction. Low input resolution restricts the model’s ability to
capture high-frequency textures, while unnatural aspect ratios induce
spatial structural distortions during generation, ultimately
compromising the fidelity of lesion morphology. This issue
highlights a key limitation of current single-image generative models
when applied to non-standardized agricultural imagery and aligns
with recent findings that “generative models are highly sensitive to
input geometric properties” (Wang and Ponce, 2021). To mitigate this
problem, we recommend incorporating a standardized preprocessing
pipeline in practical applications: first applying center cropping or
lesion-aware intelligent cropping, followed by resizing all images to a
fixed resolution. This strategy preserves critical disease features while
enhancing structural consistency in the input data. In contrast,
transfer learning or cross-domain generative approaches have
demonstrated greater robustness in handling heterogeneous data
(Wang et al, 2020), suggesting that future work should explore
integrating pretraining strategies with multi-scale generation
frameworks to improve model generalization and real-
world applicability.

In conclusion, by embedding attention mechanisms into a multi-
scale generation framework, this study achieves higher-quality disease
image synthesis under small sample conditions. Experimental results
not only verify the feasibility of SinGAN in agricultural image
generation but also reveal the potential of attention mechanisms in
enhancing semantic consistency. However, the model still has
limitations regarding cross-resolution adaptability, and future work
could explore integrating transfer learning, self-supervised priors, or
conditional generation strategies to further enhance the model’s
practicality and generalization capabilities.

5 Conclusion

Addressing the challenges of scarce data, high acquisition costs,
and insufficient sample diversity in tea and coffee leaf disease image
datasets, this study constructs and validates an image generation
framework based on the integration of multi-scale generation and
attention mechanisms. By comparing the performance of three
generative models—GAN, Fast-GAN, and SinGAN—under few-
shot conditions, the results demonstrate that SInGAN significantly
outperforms traditional generative models in generation quality and
structural fidelity due to its ability to learn texture and structural
priors from a single image, making it more suitable for low-resource
data augmentation tasks in agriculture.

The proposed SinGAN-CBAM framework exhibits strong
performance and practical potential in both few-shot agricultural
image generation and downstream classification tasks. It achieves
significantly better results than SinGAN and SinGAN-SE across
multiple metrics: in image quality assessment (e.g., SSIM, PSNR,
and Tenengrad) and in classification performance (e.g., precision,
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recall, and Fl-score). Notably, it excels in recognizing complex
textures (e.g., algal spot disease) and subtle lesions (e.g., leaf miner
damage), demonstrating that the generated samples possess high
semantic fidelity and usability. This framework thus offers an efficient
and cost-effective data augmentation solution for plant disease
identification. Future work may explore incorporating transfer
learning, cross-scale alignment mechanisms, or conditional
generation strategies to further enhance the model’s generalization
capability and robustness in real-world deployment scenarios.
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