
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Tariq Hussain,
Zhejiang Gongshang University, China

REVIEWED BY

Wajahat Akbar,
Chang’an University, China
Sayyed Mudassar Shah,
Shenzhen University, China

*CORRESPONDENCE

Zhuang He

zhuanghe20250808@163.com

RECEIVED 09 September 2025
ACCEPTED 20 October 2025

PUBLISHED 06 November 2025

CITATION

Chen G, Xia Z, Ma X, Jiang Y and He Z (2025)
MobileNet-GDR: a lightweight algorithm for
grape leaf disease identification based
on improved MobileNetV4-small.
Front. Plant Sci. 16:1702071.
doi: 10.3389/fpls.2025.1702071

COPYRIGHT

© 2025 Chen, Xia, Ma, Jiang and He. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 06 November 2025

DOI 10.3389/fpls.2025.1702071
MobileNet-GDR: a lightweight
algorithm for grape leaf
disease identification based on
improved MobileNetV4-small
Gang Chen, Zhennan Xia, Xiaodan Ma, Yiyang Jiang
and Zhuang He*

School of Information Engineering, Changchun College Of Electronic Technology, Changchun, China
To address the challenges of high computational complexity and difficult

deployment of existing deep learning models on mobile devices for grape leaf

disease diagnosis, this paper proposes a lightweight image classification

algorithm named MobileNet-GDR (Grape Disease Recognition), built upon the

MobileNetV4-small architecture. The algorithm constructs an efficient feature

extraction module based on depthwise separable convolutions and grouped

convolutions to optimize the feature fusion process, while incorporating PReLU

activation functions to enhance nonlinear representation capability.

Experimental results on a grape leaf disease dataset demonstrate that

MobileNet-GDR achieves high accuracy while significantly reducing

computational overhead: with only 1.75M parameters and 0.18G FLOPs, it

attains real-time inference speed of 184.89 FPS and a classification accuracy of

99.625%. Ablation studies validate the effectiveness of each module, and

comparative experiments show that its computational efficiency surpasses

mainstream lightweight models such as FasterNet and GhostNet. MobileNet-

GDR provides a practical lightweight solution for real-time disease diagnosis in

field conditions, demonstrating significant value for agricultural applications.
KEYWORDS

grape leaf disease, image classification, deep learning, MobileNetV4, precision
agriculture
1 Introduction

As one of the world’s most important economic crops, grapevines are susceptible to

various diseases during growth (Gramaje et al., 2018), including back measles, leaf blight,

and black rot, which significantly compromise yield and quality. Traditional disease

diagnosis relying on agricultural experts’ visual inspection suffers from low efficiency

and subjective bias, failing to meet modern precision agriculture demands (Mahlein, 2016).

Recent advances in computer vision and deep learning have promoted image-based

automated disease diagnosis as a research focus (Mochida et al., 2019). Convolutional
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neural networks (CNNs) (Krizhevsky et al., 2017) - exemplified by

ResNet (He et al., 2015a), VGG (Simonyan and Zisserman, 2015),

and EfficientNet (Tan and V. Le 2020) - demonstrate remarkable

advantages in plant disease recognition through powerful feature

extraction, achieving high accuracy across crop disease classification

tasks (Mohanty et al., 2016). However, these models typically

exhibit excessive parameters and computational complexity,

hindering deployment on resource-constrained mobile or

embedded systems for field applications (Ahmed et al., 2023).

When faced with this problem, some scholars choose more

efficient processing modules when constructing models (Song

et al., 2025; Yu et al., 2024). Others choose to combine the two

algorithms to obtain a more efficient model (Yu et al., 2025).

However, overall, the limitations of the algorithm still exist.

To address these limitations, lightweight neural architectures

have emerged as a critical research direction in agricultural

intelligence (Liu et al., 2021). The MobileNet (Howard et al.,

2017) series, employing depthwise separable convolutions

(Chollet, 2017), substantially reduces computational costs and

parameters, enabling real-time image classification on mobile and

edge devices (Kumar et al., 2021). Nevertheless, standard MobileNet

models face persistent challenges in complex agricultural scenarios:

(1) grape leaf diseases present highly variable visual features (e.g.,

lesion morphology, coloration, texture) across growth stages and

environmental conditions, demanding enhanced multi-scale feature

extraction; (2) field acquired images frequently suffer from

illumination variations, occlusions, and background interference,

requiring superior noise robustness. Although lightweight networks

like MobileNet provide a viable infrastructure for this purpose,

existing improvements still fall significantly short when addressing

the practical demands of agricultural scenarios: On one hand,

complex modules introduced to enhance accuracy—such as large

attention mechanisms—often sacrifice model inference speed,

deviating from the original goal of lightweight design; On the

other hand, standard separable convolutions have limited

capability in capturing subtle disease features, making it difficult

for lightweight models to match the accuracy of complex ones. This

“inefficiency-accuracy imbalance” severely hampers the

technology’s application in real agricultural environments.

Consequently, improving discriminative capability for grape

disease features while maintaining lightweight architecture

remains a fundamental research challenge (Karim et al., 2024).

To address the limitations of existing models in achieving an

optimal balance between accuracy and computational cost for

mobile deployment, this study proposes MobileNet-GDR, a

lightweight image classification algorithm optimized for grapevine

leaf disease diagnosis. Building upon the MobileNetV4 (Qin et al.,

2024) architecture, our principal contributions are threefold:

(1) To mitigate the high computational cost of pointwise

convolutions in MobileNetV4, which constitutes a significant

bottleneck, we replace them with grouped convolutions. This

design choice directly targets parameter and FLOPs reduction,

leading to a substantial improvement in computational efficiency

with a negligible impact on feature representation.
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(2) Recognizing that standard ReLU activations may suppress

subtle but discriminative features in diseased leaf images (e.g., early-

stage spots), we introduce the parametric PReLU function. Its

learnable slope parameters allow the model to adaptively capture

fine-grained textural variations, effectively enhancing feature

representation for small lesion areas.

(3) Through systematic experiments, we demonstrate that these

targeted modifications enable our model to surpass existing

MobileNet variants and other deep learning solutions, achieving a

superior trade-off between classification accuracy and

computational efficiency specifically for the agricultural

pathology domain.
2 Materials and methods

2.1 Data acquisition

As illustrated in Figure 1, this study systematically investigates

four distinct categories: black rot (Molitor and Beyer, 2014), black

measles (Ji and Wu, 2022), leaf blight (Liu et al., 2020), and healthy

leaves. This selection was based on comprehensive considerations of

agricultural economic impact, diagnostic challenges, and practical

disease management requirements. These three diseases represent

the most destructive foliar pathologies in viticulture. Black rot, as a

highly contagious fungal disease, can cause devastating yield losses

under humid conditions, with its characteristic concentric ring

patterns providing distinct visual markers for early diagnosis.

Black measles, characterized by prolonged latency and subtle

symptoms, often leads to irreversible vascular damage before

detection, resulting in cumulative negative effects on long-term

plant productivity. Leaf blight, as an environment-sensitive disease,

shows a strong correlation with field management practices and

exhibits significant spatial heterogeneity in symptom manifestation.

During early development stages, all three diseases manifest as leaf

spots, but demonstrate clearly divergent pathological characteristics

in later phases, creating an ideal difficulty gradient for developing

classification models with fine-grained recognition capabilities.

From an agricultural practice perspective, these diseases require

significantly different control timings and chemical treatments.

Moreover, their epidemic patterns cover all critical phenological

stages of grape growth, enabling the developed diagnostic system to

provide comprehensive seasonal coverage. Detailed category

descriptions are as follows:

Black rot samples display characteristic reddish-brown to black

circular lesions with well-defined margins and prominent dark

concentric rings. Advanced infections develop perforations or

desiccation features. This disease not only causes premature

defoliation that impairs photosynthesis but also directly infects

berries, leading to mummified fruits that lose commercial value due

to dehydration.

Black measles samples exhibit scattered black punctate lesions

on leaf surfaces, showing irregular distribution but tending to

cluster along veins. Slight depressions are observable on the
frontiersin.org
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abaxial surface. Under high-resolution imaging, these lesions reveal

faint halos at their margins and demonstrate spot fusion as the

disease progresses.

Healthy leaf samples serve as the control group, strictly selected

frommature leaves without any pathological symptoms. They exhibit

cultivar-specific uniform green coloration (ranging from light to dark

green), intact smooth surfaces, and clearly defined venation patterns.

As the primary organs for photosynthesis and nutrient synthesis in

grapevines, healthy leaves demonstrate complete morphological

structure and optimal physiological condition.

Leaf blight samples are most notably characterized by irregular

brown necrotic areas, typically initiating from leaf margins or tips

and progressing toward midribs. Distinct yellow halo transitions are

commonly observed at lesion borders, with severe cases showing

typical “scorched” appearances. The disease primarily damages

mesophyll tissue, causing premature leaf drop that reduces sugar

accumulation in berries, leading to phenolic compound loss in wine
Frontiers in Plant Science 03
grapes and uneven coloring in table grapes. The disease progresses

rapidly under drought conditions and significantly compromises

plant cold hardiness.

Notably, black rot and black measles demonstrate particularly

high similarity in visual presentation, posing significant challenges

for model development. Ultimately, 1,000 images were obtained for

each category, which were divided into training and test sets in an

8:2 ratio.
2.2 MobileNetV4-small

MobileNetV4 is a lightweight convolutional neural network

architecture proposed by Google in 2024 (Qin et al., 2024). It is the

latest iteration of the MobileNet series and aims to further optimize

the balance between computational efficiency and model

performance on mobile devices and edge computing devices. This
FIGURE 1

Grape leaf disease dataset showcase.
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architecture continues the core idea of the MobileNet family in

lightweight design, while through structural innovation and

training strategy improvements, it significantly enhances the

model’s performance in image classification.

As shown in Figure 2, the structure of MobileNetV4-small is

presented. MobileNetV4-small is a lightweight and streamlined

version of MobileNetV4, specifically optimized for extremely

resource-constrained mobile and edge devices. The network

structure of MobileNetV4-small adopts efficient depthwise separable

convolution as the basic operation unit, but introduces a more flexible

channel expansion mechanism compared to previous models.

The UIB module dynamically adjusts the dilation rate of the

convolution kernel, using a smaller receptive field in the shallow

network to preserve detailed information, and gradually expanding

the receptive field in the deep network to capture global features.

This adaptive mechanism significantly enhances the model’s

adaptability to different scale features. Two optional Depthwise
Frontiers in Plant Science 04
Convolutions (DWConv) are introduced in the inverted bottleneck

block, one before the expansion layer and the other between the

expansion and compression layers. An innovative dynamic channel

adjustment mechanism is introduced within the structure, which

can adaptively adjust the channel expansion ratio at each stage,

enabling the network to automatically adjust its feature processing

strategy at different depths.

The ConvBNmodule serves as the fundamental computing unit

of the network, consisting of a standard convolution layer (Conv), a

batch normalization layer (BN), and a ReLU6 activation function

connected in series. The mathematical expression of ConvBN is

shown in Equation 1.

ConvBN(x) = ReLU6 BN(Conv(x))ð Þ (1)

By applying the BN layer to standardize the convolutional

output, the problem of internal covariate shift is effectively

alleviated, making the training process more stable and faster.
FIGURE 2

The structure of MobileNetV4-small.
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The cascaded structure of the three elements can be fused into a

single operator during inference, which not only reduces memory

access overhead but also supports quantization deployment.

Moreover, the saturation characteristic of ReLU6 retains the non-

linear expression ability while avoiding the risk of numerical

overflow during low-precision calculations.
2.3 MobileNet-GDR

As shown in the model design in Figure 3, we replace the

traditional pointwise convolution in UIB with group convolution.

This improvement is based on a comprehensive consideration of

computational efficiency and feature expression capabilities. While

pointwise convolution enables full-connection feature fusion across

channels, its computational complexity grows quadratically with the

number of channels, a limitation that becomes particularly pronounced

in lightweight model designs. Specifically, for a pointwise convolution

layer with Cin input channels and Cout output channels. The parameter

quantity of pointwise convolution is shown in Equation 2.

1� 1� Cin � Cout (2)
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The computational cost of pointwise convolution is as shown in

Equation 3.

1� 1� Cin � H �W � Cout (3)

When the number of channels is large, this can result in significant

storage and computational overhead. In contrast, group convolution

effectively reduces the number of parameters to 1/G by dividing the

input channels into G non-overlapping subgroups and performing

convolution operations independently within each subgroup. The

parameter quantity of group convolution is shown in Equation 4.

1� 1� Cin
G � Cout (4)

The computational cost of group convolution is as shown in

Equation 5.

1� 1� Cin
G �H �W � Cout (5)

From the perspective of feature learning, the introduction of

group convolution is not merely a reduction in computational

complexity but a structured constraint on how features interact.

Traditional pointwise convolution forces full connectivity between all

channels, which may lead to overfitting or redundant computations
FIGURE 3

The improved structure of the model.
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in certain scenarios. Group convolution naturally constructs a

hierarchical structure for feature learning through its grouping

mechanism, allowing different groups to focus on learning different

aspects of feature representations. Grouped convolution has inherent

compatibility with depthwise separable convolution, and their

combination can form more efficient convolution computation

units, which has been thoroughly validated in advanced lightweight

architectures such as ShuffleNet (Zhang et al., 2017).

It is worth noting that the choice of the number of groups requires

a trade-off between model capacity and computational efficiency. A

larger number of groups (e.g., the number of groups equals the

number of channels) degenerates into depthwise convolution.

Assuming that the convolution kernel is K, the parameter quantity

of depthwise convolution is shown in Equation 6.

K2 � Cin
Gin

� Cout (6)

The computational cost of depthwise convolution is as shown in

Equation 7.

K2 � Cin
Cin

�H �W � Cout (7)

Although computational complexity is minimized, this may limit

feature fusion capabilities; a smaller number of groups is closer to

traditional pointwise convolution. In practical design, we typically use a

group size between 4 and 16, which has demonstrated good balance

across multiple benchmark tests. Overall, replacing pointwise

convolution with grouped convolution not only achieves a significant

improvement in computational efficiency but also enhances the feature

learning process through structured sparsity constraints, making it a

key and effective improvement strategy in lightweight network design.

This study replaces the ReLU6 function(G. Howard et al., 2017)

with the PReLU function (He et al., 2015b). ReLU6 and PReLU, as

important improvements to the ReLU function, exhibit unique

functional characteristics and gradient behavior in deep neural

networks. From the Figure 4, the function expression of ReLU6 is

shown in Equation 8.

f (x) = min (max (0, x), 6) (8)

In the negative value region (x < 0), neuronal activation is

completely suppressed. In the positive value region, it exhibits linear
Frontiers in Plant Science 06
growth characteristics. However, when the input value exceeds 6, it

enters the saturation region. This design ensures that the derivative

maintains a constant gradient of 1 in the (0, 6) interval, while the

gradient abruptly drops to 0 when x ≤ 0 or x ≥ 6, resulting in a

distinct gradient clipping phenomenon. While this hard constraint

enhances numerical stability during mobile deployment and

facilitates model quantization, the non-continuous gradient

characteristics can easily trigger the vanishing gradient problem

during training of deep networks, especially when the network is

deep or the learning rate is improperly set, potentially causing a

large number of neurons to enter an irreversible “dead” state. In

contrast, the function expression of PReLU is shown in Equation 9.

f (x) = max (0, x) + a(min (0, x)) (9)

The function curve exhibits smoother transition characteristics.

In the positive interval, it maintains the linear response of the

standard ReLU, while in the negative interval, it maintains a certain

degree of activation through the learnable parameter a. This design
ensures that the derivative remains at a gradient of 1 when x ≥ 0 and

at a gradient value of awhen x < 0, thereby ensuring that the network

obtains non-zero gradient flow throughout the entire domain. From

the mathematical properties of the function’s form, PReLU is not

differentiable at the origin, but in practical applications, this can be

handled using subgradient methods. This minor sacrifice in

continuity yields significantly improved training stability.

A detailed analysis of the gradient propagation characteristics of

the two activation functions reveals that while the rigid clipping of

ReLU6 simplifies the computational process, it also severely limits

the model’s expressive power. In complex data distributions and

deep network structures, this limitation may prevent the network

from learning sufficiently rich feature representations. PReLU, on

the other hand, introduces an adjustable negative region slope

parameter, not only retaining the computational efficiency

advantages of the ReLU family of activation functions but more

importantly endowing the network with the ability to adaptively

adjust its activation characteristics. This adaptive mechanism allows

the network to dynamically adjust the activation intensity in the

negative region based on specific task requirements and data

characteristics, providing a more flexible mathematical expression

space for feature learning. From the perspective of computational
FIGURE 4

Comparison of the curves of ReLU6 and PReLU and their derivatives.
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graphs, PReLU exhibits smoother gradient flow characteristics

during backpropagation. During training of deep networks, this

smooth gradient propagation effectively mitigates gradient

vanishing or exploding issues, particularly in complex network

structures such as residual connections. Although PReLU requires

additional maintenance and updating of the a parameter, resulting

in minor computational overhead, modern deep learning

frameworks can efficiently handle such parameter updates.

Additionally, the initialization of PReLU parameters typically sets

a = 0.25, an empirical value that ensures smooth gradient flow

during the initial phase while leaving sufficient room for adjustment

during subsequent optimization. In contrast, while the fixed form of

ReLU6 simplifies computation, its limitations in model

expressiveness make it more suitable for mobile deployment

scenarios with strict computational resource constraints and

relatively relaxed requirements for model accuracy.
2.4 Experimental environment and
parameter settings

This study details the training parameters for the proposed

network model. The input image size was fixed at 224×224 pixels,

with a batch size of 32 and a base learning rate of 0.001. The model

was trained for 50 epochs using Stochastic Gradient Descent (SGD)

as the optimizer. All experiments were conducted on a workstation

equipped with an Intel Xeon Gold 6246R CPU (3.4 GHz) and an

NVIDIA Quadro RTX 8000 GPU (48GB VRAM), running

Windows 10. The software environment included Anaconda3

(2021.11), PyCharm as the compiler, and PyTorch 1.2.1 built on

Python 3.8.3. To ensure consistency, all algorithms were executed

under identical hardware and software configurations.
2.5 Evaluation indicators for the model

In supervised learning, confusion matrices serve as a

fundamental tool for evaluating classification model performance.

The matrix organizes predictions against ground truth labels:

columns correspond to predicted classes, while rows represent

actual classes. For a binary classification task, the matrix consists

of four key components. True Positives (TP): Cases where both the

actual and predicted labels are positive, False Positives (FP):

Negative instances incorrectly predicted as positive, False

Negatives (FN): Positive instances misclassified as negative, True

Negatives (TN): Correctly identified negative cases. The structure of

a binary confusion matrix is illustrated in Table 1.
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Accuracy (Acc), Precision (P), Recall (R), and F1-score (F1) are

derived from the confusion matrix and serve as key metrics for

evaluating the classification performance of a model. The

corresponding formulas and brief descriptions of these metrics

are provided in Table 2.

In the design and evaluation of lightweight deep learning models,

we focus on five key metrics to comprehensively assess computational

efficiency, memory footprint, and real-time performance. These

metrics provide clear optimization directions, ensuring efficient

deployment in resource-constrained environments.

Parameter Count (Params): The total number of trainable

parameters directly influences memory consumption and

computational demand. Lightweight models typically employ

architectural optimizations and parameter pruning to reduce

model size, thereby lowering storage and computational overhead.

Floating-Point Operations (FLOPs): This metric quantifies the

computational complexity required for a single forward pass.

Reducing FLOPs decreases energy consumption and improves

energy efficiency, making the model more suitable for deployment

on low-power devices.

Model Size: The storage space occupied by model weights.

Through quantization and compression techniques, lightweight

models significantly reduce storage requirements, facilitating

deployment on embedded systems with limited resources.

Latency: The inference time required to process a single input.

Optimizing latency enhances real-time performance, meeting the

demands of time-sensitive applications such as autonomous driving

and industrial inspection.

Frames Per Second (FPS): This measures the model’s throughput

—the number of samples processed per second. Higher FPS enables

efficient handling of video streams or batch processing, making it

suitable for high-throughput tasks like real-time video analysis.

Together, these metrics form a core evaluation framework for

lightweight models, guiding researchers in balancing accuracy and

efficiency to meet the practical deployment needs of edge

computing and mobile AI applications.
TABLE 1 Confusion matrix of a binary classification problem.

Confusion matrix
Actual results

Positive Negative

Forecast Results
Positive TP FP

Negative FN TN
TABLE 2 Formulas and brief descriptions of each evaluation indicator.

Evaluation
metrics

Formulas Brief description

Accuracy(Acc)
Acc =  

TP + TN
TP + FP + FN + TN

The ratio of the number of
correctly predicted positive and
negative samples to the total

number of samples.

Precision(P)
P =  

TP
TP + FP

The ratio of the number of
correctly predicted positive

samples to the total number of
samples predicted to be positive.

Recall(R)
R =  

TP
TP + FN

The ratio of the number of
correctly identified positive

samples to the total number of
actual positive samples.

F1-score(F1)
F1 = 2�

 
Precision� Recall
Precision + Recall

The reconciled mean of
precision and recall.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1702071
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2025.1702071
3 Results and analysis

3.1 Results of the ablation experiment

As shown in Table 3, through an in-depth analysis of the

accuracy metrics of the ablation experiments, the evolution of

performance during the model improvement process can be

clearly observed. From the baseline model MobileNetV4-S to the

final optimized MobileNet-GDR, the model’s classification

performance has been significantly improved. The accuracy rate

of the baseline model was 98.375%. After introducing the PReLU

activation function, the accuracy rate increased by 1.25 percentage

points, reaching an excellent level of 99.625%. This significant

performance improvement indicates that the PReLU activation

function can more effectively capture image features and enhance

the model’s expressive capabilities.

It is worth noting that after introducing group convolutions in

subsequent improvements, the model accuracy experienced a slight

fluctuation, with the accuracy rate dropping to 99.375%. However,

the MobileNet-GDR version obtained after final optimization once

again reached the top-tier level of 99.625%, and all evaluation

metrics (accuracy rate, precision rate, recall rate, and F1 score)

remained highly consistent, demonstrating exceptional stability.

Particularly noteworthy is that these accuracy improvements were

achieved on the basis of the significant optimization of model

efficiency analyzed earlier, reflecting the efficiency of the

MobileNet-GDR design.

In terms of the balance of various metrics, MobileNet-GDR

performs exceptionally well. Its precision, recall, and F1 score all

remain at a high level above 99.6%, indicating that the model

maintains high accuracy without significant overfitting or

underfitting. This balance is crucial in practical applications, as it

ensures that the model maintains stable performance across

different scenarios. A detailed analysis of the impact of each

improvement stage reveals that improvements to the activation

function contributed the most to the model’s performance

enhancement, while subsequent structural optimizations

significantly improved model efficiency while maintaining

accuracy. This phased improvement strategy ensures steady

performance improvements while avoiding the complexity

associated with over-engineering.

Through an in-depth analysis of the results of the ablation

experiment, it is clear that the MobileNet-GDR model has

significant advantages in several key metrics. In terms of
Frontiers in Plant Science 08
parameter size, MobileNet-GDR demonstrates excellent

parameter efficiency, with 1.75 million parameters, which is 30%

less than the baseline model and 20.8% less than the intermediate

version MobileNet-GConv in the improvement process. This

reduction in parameter count directly translates to lower model

storage requirements, with a model size of 6.86 MB, representing a

29.5% reduction compared to the baseline model, making it more

suitable for deployment on edge devices with limited

storage resources.

A detailed analysis of the impact of each improvement step on

performance reveals that the model underwent three key

improvement stages from the baseline model to the final version.

First, replacing the standard activation function with PReLU

resulted in a slight improvement in latency (from 5.70ms to

5.64ms). Subsequently, the introduction of group convolutions

(GConv) further optimized the model structure, reducing the

number of parameters to 2.21M and FLOPs to 0.22G. The final

MobileNet-GDR version achieved the best balance across all

evaluation metrics through carefully designed network structure

optimization. Notably, these improvements were cumulative, with

each modification yielding measurable performance gains. The final

MobileNet-GDR version achieved a significant increase in inference

speed while maintaining low computational costs.

From a practical application perspective, the performance

advantages demonstrated by MobileNet-GDR are of great value.

The reduction in model size means it can be more easily deployed

on mobile devices, the decrease in computational load directly

translates to longer battery life, and the improvement in inference

speed makes real-time applications more fluid. These

improvements collectively make MobileNet-GDR a highly

competitive solution in resource-constrained environments. Based

on the data from comprehensive ablation experiments, it can be

confirmed that MobileNet-GDR has achieved significant

breakthroughs in model efficiency through carefully designed

optimization strategies, providing valuable references for the

development of deep learning models for mobile devices.
3.2 Comparative experiments with other
algorithms

As shown in Figure 5, through an in-depth comparative analysis

of the confusion matrices of the six models (CoAtNet_0 (Dai et al.,

2021), FasterNet-T0 (Chen et al., 2023), GhostNet (Han et al.,
TABLE 3 Partial results of ablation experiments.

Model Name Acc(%) P(%) R(%) F1(%)
Params
(M)

FLOPs
(G)

Model
Size(MB)

Latency
(ms)

FPS

MobileNetV4-S 98.375 98.400 98.375 98.375 2.50 0.25 9.73 5.70 175.49

MobileNet-PReLU 99.625 99.625 99.625 99.600 2.50 0.25 9.73 5.64 177.43

MobileNet-GConv 99.375 99.375 99.375 99.375 2.21 0.22 8.26 5.51 181.53

MobileNet-GDR 99.625 99.625 99.625 99.600 1.75 0.18 6.86 5.41 184.89
fro
(The results in the table represent the average of five consecutive measurements.)
The bolded content reflects the training results of the model proposed in this study.
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2020), RepVGGNet-A0 (Ding et al., 2021), ResNeXt50 (Xie et al.,

2017), and MobileNet-GDR), it can be clearly observed that the

MobileNet-GDR model we proposed demonstrates outstanding

classification performance. From the visual presentation of the

confusion matrix, the main diagonal elements of MobileNet-GDR

generally remain at a high level, indicating that the model

maintains a very high degree of accuracy in identifying

samples of each category. Notably, compared to other lightweight

models, MobileNet-GDR achieves significantly lower off-diagonal

element values while maintaining high accuracy. This feature clearly

demonstrates that the model significantly reduces misclassification

during the classification process, showcasing more precise

discrimination capabilities. Specifically, MobileNet-GDR achieves

classification accuracy rates exceeding 99% in most categories, a

performance comparable to the more complex CoAtNet-0 model.

Although CoAtNet-0 shows slightly better classification

performance in a few fine-grained categories with small sample

sizes, this advantage comes at the cost of model efficiency. Further

analysis of the error distribution patterns in the confusion matrix

reveals that the misclassifications generated by MobileNet-GDR

are primarily concentrated between two categories with highly

similar visual features. This error pattern aligns closely with

human expert misjudgments, indicating that the model has

learned visual discrimination capabilities approaching human

levels. In contrast, the confusion matrices of other lightweight

models such as GhostNet and FasterNet-T0 exhibit more
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dispersed error distributions, suggesting relatively weaker feature

learning capabilities.

As shown in Table 4, MobileNet-GDR demonstrated

outstanding overall performance in this comparative experiment.

Through systematic experimental comparison and analysis, we can

clearly see that this model has achieved a breakthrough balance in

multiple key dimensions. From the perspective of model accuracy,

MobileNet-GDR’s performance is impressive. Experimental data

shows that its classification accuracy reaches 99.625%, tying with

RepVGGNet-A0 for second place and trailing the top-performing

CoAtNet-0 by a mere 0.125 percentage points. More notably, its

precision, recall, and F1 scores all remain above the high level of

99.6%, fully demonstrating the model’s stable and reliable

classification capabilities. This nearly perfect accuracy makes it

fully capable of handling most application scenarios with

stringent requirements for recognition accuracy. In terms of

model efficiency, MobileNet-GDR’s advantages are even more

prominent. Its parameter count is kept at an extremely low

1.75M, which is only 77% of the lightweight model FasterNet-T0

and approximately one-tenth of the large model CoAtNet-0. In

terms of computational complexity metrics, the 0.18G FLOPs

performance is second only to GhostNet, but considering the

significant accuracy gap between GhostNet and MobileNet-GDR,

this minor difference in computational load is entirely acceptable.

Notably, the model achieves a significant leap in computational

efficiency while maintaining top-tier accuracy.
FIGURE 5

Confusion matrix in comparison experiments.
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From a practical deployment perspective, MobileNet-GDR also

performs exceptionally well. With a compact model size of 6.86MB,

it is an ideal choice for edge device deployment. In terms of key

performance metrics, its inference latency of 5.41ms and processing

speed of 184.89FPS both rank at the top, even surpassing the fast-

paced FasterNet-T0. Through a side-by-side comparison with other

models, it is evident that MobileNet-GDR has found the optimal

balance between accuracy and efficiency. It not only significantly

outperforms similar lightweight models in terms of accuracy but

also significantly outperforms RepVGGNet-A0 and CoAtNet-0,

which have comparable accuracy, in terms of computational

efficiency. In particular, compared to CoAtNet-0, which has

slightly higher accuracy, MobileNet-GDR achieves nearly

equivalent accuracy with an order of magnitude advantage in

terms of parameters and computational complexity, making it

highly cost-effective for grape leaf recognition.

The key to the success of this model lies in its innovative

resolution of the core contradiction in lightweight network design:

it maintains recognition accuracy comparable to that of large,

complex networks while achieving extreme computational

efficiency. This breakthrough makes it particularly suitable for

deployment on edge computing devices with l imited

computational resources, opening up new possibilities for the

development of mobile intelligent applications. Future research

can build on this foundation to further explore optimization

directions such as model compression and knowledge distillation,

continuously enhancing the model’s overall performance.
3.3 Comparison before and after model
improvement

From the comparison of the accuracy curves in Figure 6, it is

evident that the improved model exhibits superior convergence

characteristics during training. The accuracy curve of the pre-

improved model shows a relatively gradual upward trend,

typically requiring a large number of epochs to reach a stable

state. In contrast, the improved curve exhibits a steeper upward

slope in the early stages of training, indicating that the model can

more quickly capture key feature patterns in the data. This
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accelerated convergence is primarily attributed to optimizations

in the network architecture and training strategy within the

improved scheme. Specifically, the improved accuracy curve

achieves a high accuracy plateau in the early stages of training,

saving approximately 30–50% of training time compared to the pre-

improvement model. This not only enhances training efficiency but

also indicates that the model possesses superior optimization

properties. The curve remains stable after reaching the plateau

phase, with no significant fluctuations, validating the stability of the

improved scheme. Additionally, the final convergence accuracy of

the improved model is typically 1–2 percentage points higher than

the pre-improvement version, consistent with the performance

improvements across categories mentioned earlier.

Additionally, this faster convergence rate indicates that the

improved model has a more reasonable parameter initialization

strategy and a more effective gradient propagation mechanism. The

optimized network structure can learn discriminative features more

directly, avoiding redundant parameter updates. Additionally, the

improved scheme better coordinates the learning rates of different

network layers, enabling parameters across layers to be optimized

collaboratively and efficiently, thereby accelerating the overall

convergence process. These characteristics make the improved

model not only perform better ultimately but also have a

significant advantage in training efficiency, facilitating model

iteration and deployment in practical applications.

By comparing the loss curves before and after the improvement,

it is clear that the improved model exhibits superior optimization

characteristics and convergence behavior during training. The loss

curve before the improvement shows a relatively gradual downward

trend, with a high loss value in the initial stage and requiring a long

training time to gradually converge to a lower level. In contrast, the

improved loss curve exhibits a steeper decline from the early stages

of training, indicating that the model can more quickly find the

optimal direction and effectively reduce the loss function value.

Specifically, the improved loss curve rapidly declines to a level close

to the final convergence value within the first 20% of the training

cycle, with a convergence speed approximately 30-50% faster than

the pre-improvement model. This accelerated convergence is

primarily due to the careful design of the network architecture

and adjustments to the optimization strategy in the improved
TABLE 4 Comparison of experimental results.

Model Name Acc(%) P(%) R(%) F1(%)
Params
(M)

FLOPs
(G)

Model Size
(MB)

Latency
(ms)

FPS

CoAtNet-0 99.750 99.750 99.750 99.750 16.99 3.35 66.64 11.02 90.78

FasterNet-T0 99.125 99.125 99.125 99.100 2.26 0.34 10.15 5.54 180.64

GhostNet 98.500 98.500 98.500 98.475 3.91 0.15 15.21 11.54 86.64

RepVGGNet-A0 99.625 99.625 99.625 99.600 7.83 1.53 30.11 7.77 128.75

ResNeXt50 99.500 99.500 99.500 99.475 22.99 4.29 88.06 7.97 125.55

MobileNet-GDR 99.625 99.625 99.625 99.600 1.75 0.18 6.86 5.41 184.89
frontie
(The results in the table represent the average of five consecutive measurements.)
The bolded content reflects the training results of the model proposed in this study.
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scheme. More notably, the improved model not only converges

faster but also achieves a significantly lower stable loss value,

typically 15-25% lower than the pre-improvement model. This

phenomenon indicates that the improved model has stronger

fitting capabilities and better generalization performance.

From the perspective of the optimization process, the

smoothness of the loss curve after improvement has also been

significantly enhanced, with a notable reduction in oscillation

amplitude. This suggests that the improved scheme may have

introduced more effective regularization mechanisms or optimizer

configurations, resulting in a more stable parameter update process.

The curve remains stable in the later training stages without any

noticeable rebounds or fluctuations, verifying the robustness of the

training process. These improvements enable the model to converge

more reliably to a better local minimum, thereby achieving better

final performance. These improved characteristics of the loss curve

are consistent with the observed improvements in accuracy and

performance across various categories, collectively demonstrating

the effectiveness of the improved approach. Faster convergence

speeds imply enhanced training efficiency, while lower final loss

values directly correspond to strengthened model discriminative

capabilities. These advantages enable the improved model to

shorten development cycles and provide more reliable predictive

performance in practical applications, holding significant

engineering practical value.
Frontiers in Plant Science 11
Figure 7 shows the recognition differences in each category

before and after the model improvement. By comparing the

performance metrics of various categories before and after the

improvements, it is clear that the model optimization has led to

significant enhancements. Across the four plant health status

categories, the improved model demonstrates comprehensive and

balanced performance improvements, particularly in the more

challenging disease categories. The most notable improvement

was observed in the Black rot category, where the F1 score

increased from 0.967 to 0.992, representing a 2.5 percentage point

increase. This improvement is primarily due to a significant

increase in accuracy (from 0.965 to 0.995), indicating that the

improved model has significantly reduced misclassification of this

disease. Meanwhile, the recall rate has also increased from 0.970 to

0.990, indicating that the model has reduced the rate of missed

detections of Black rot cases and can more comprehensively capture

the features of this category. The Black measles category exhibits a

different improvement pattern. Although precision slightly

decreased (from 0.995 to 0.990), recall significantly improved

from 0.965 to 0.995, ultimately increasing the F1 score from 0.980

to 0.992. This change suggests that the improved model may have

adjusted the classification boundaries, opting for a slight decrease in

precision in exchange for a higher recall rate, which is typically a

more desirable strategy for disease detection tasks. The Healthy and

Leaf blight categories already performed exceptionally well before
FIGURE 6

The comparison of the accuracy curves and loss curves before and after model improvement on the validation set.
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the improvement and now achieve perfect scores. The precision of

the Healthy category increased from 0.976 to 1.000 while

maintaining a 100% recall rate, while the Leaf blight category

continued to achieve perfect scores across all metrics. These

results demonstrate that the improved model maintains accurate

identification of healthy samples while significantly enhancing its

ability to detect diseased samples.

Overall, the improved model achieves a more balanced

precision and recall across all categories, particularly exhibiting

stronger discriminative capability when handling similar diseases

(Black rot and Black measles). The F1 scores for all categories

exceed 0.99, with two categories achieving a perfect 1.000,

indicating that the improved approach effectively addresses the
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shortcomings of the original model in certain fine-grained

classifications, providing a more reliable solution for practical

agricultural disease diagnosis applications. This comprehensive

improvement in recognition performance, combined with the

high efficiency advantages analyzed earlier, makes the improved

model highly valuable for applications in plant health monitoring.

To qualitatively validate the enhanced feature representation

capability of our proposed MobileNet-GDR, we present a visual

comparison of Grad-CAM heatmaps generated by the baseline

MobileNetV4-small and our model in Figure 8. The results

demonstrate that our model achieves superior focus and

localization on the pathological regions. A critical analysis of the

deeper layers (Layer 3 to Layer 5) reveals a distinct difference in the
FIGURE 7

Comparison of differences in each category before and after model improvement.
FIGURE 8

Comparison of Grad-CAM heatmaps of the model before and after improvement.
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models’ attention mechanisms. The activation maps from

MobileNetV4-small (Figure 8, top row) are often more diffuse and

scattered, with significant activation spillover onto healthy leaf tissue

and background areas. This suggests that the baseline model relies on

a broader, and potentially less relevant, contextual footprint for

classification, which may introduce ambiguity. In contrast, our

MobileNet-GDR (Figure 8, bottom row) produces remarkably

precise and concentrated activation heatmaps. The model’s focus is

sharply confined to the core lesion areas, such as the necrotic spots

and the boundaries between diseased and healthy tissue.

Concurrently, the optimized feature channels resulting from the

grouped convolution design may contribute to a more efficient and

discriminative feature representation in the deeper layers. This visual

evidence aligns perfectly with our quantitative results, confirming

that MobileNet-GDR does not merely achieve higher accuracy but

does so by developing a more semantically meaningful understanding

of the disease features, thereby strengthening the model’s

interpretability and reliability for practical agricultural diagnosis.
3.4 Comparison experiment of activation
functions

As shown in Figure 9, through an in-depth analysis of the

activation function comparison experiment, it is clear to observe the
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significant impact of different activation functions on model

performance. The experimental results indicate that the PReLU

activation function demonstrates the most outstanding overall

performance, achieving an accuracy rate of 99.625%, significantly

outperforming other candidate schemes, while maintaining the

lowest loss value of 0.0183. This outstanding performance

indicates that PReLU can more effectively promote feature

learning while enhancing discriminative ability, while maintaining

model stability. From the accuracy metric perspective, the

performance of various activation functions can be divided into

three tiers: PReLU leads with an accuracy rate of 99.625%, forming

the first tier; Mish and SiLU/Hardswish form the second tier with

accuracy rates of 99.5% and 99.375%, respectively; while ReLU,

ReLU6, and SELU are in the third tier with accuracy rates ranging

from 98.125% to 98.75%. Notably, PReLU outperforms the baseline

ReLU by 0.875 percentage points, an improvement that often

translates to significant quality gains in practical applications.

From the perspective of the loss function, PReLU’s loss value of

0.0183 is 22.6% lower than the next-best Mish (0.0235) and 66.9%

lower than ReLU (0.0553). This substantial reduction in loss

directly reflects the model’s stronger generalization ability. A

deeper analysis of the characteristics of each activation function

reveals that the best-performing PReLU andMish both exhibit non-

monotonicity, enabling them to better handle negative inputs and

avoid the “neuron death” issue associated with the ReLU series. In
FIGURE 9

Visualization of activation function comparison results.
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contrast, the poorer-performing ReLU6 and SELU are limited in

their expressive capabilities due to over-constraint or sensitivity.

Notably, while Hardswish and SiLU belong to the Swish family of

activation functions, their performance differs significantly,

indicating that subtle mathematical form changes can lead to

substantial performance differences. These experimental results

provide important guidance for selecting activation functions in

practical engineering applications, validate the superiority of

PReLU in specific tasks, and also point to potential directions for

future research.
3.5 Five-fold cross-validation results

As shown in Table 5, this study comprehensively evaluated the

performance of the MobileNet-GDR model in grape leaf disease

detection through five-fold cross-validation. The validation results

fully demonstrate the model’s outstanding classification capability

and excellent generalization performance. Across four core

evaluation metrics, the model achieved an average accuracy of

99.39% in five-fold validation, with average precision, recall, and

F1 score reaching 99.26%, 99.30%, and 99.29%, respectively. These

figures indicate the model has attained near-perfect performance

levels in grape leaf disease identification.

Specifically, the model’s high precision indicates an extremely

low false positive rate during identification, effectively preventing

healthy leaves from being misclassified as diseased. This is crucial

for precise pesticide application and reducing pesticide misuse.

Simultaneously, the high recall rate signifies an extremely low

false negative rate, maximizing the detection of genuinely

diseased leaves—essential for early disease warning and control.

The high F1 score further confirms the model achieves an ideal

balance between precision and recall, showcasing its outstanding

overall performance.

Notably, in five-fold cross-validation, although metrics in Fold-

4 showed slight fluctuations, all remained above 98.5%, while

the other four folds demonstrated high consistency. This

stability demonstrates the model’s strong adaptability to different

data subsets and robust performance. Overall, the high

performance and reliability of the MobileNet-GDR model in

grape leaf disease detection make it highly valuable for practical

agricultural applications.
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3.6 The influence of parameter settings in
group convolution and PReLU on the
model results

Figure 10a demonstrates the impact of group convolution

configuration on model performance and complexity in grape leaf

disease detection. The results reveal a critical trade-off between

accuracy and parameter efficiency based on the number of groups.

When increasing groups from 1 (standard convolution) to 4, the

model maintains peak classification accuracy (99.625%) while

reducing parameters from 2.50M to 1.75M, achieving a 30%

reduction. This demonstrates that moderate grouping significantly

enhances model efficiency without compromising performance,

making it suitable for resource-constrained deployment

environments. However, beyond 4 groups, model performance

deteriorates substantially, with accuracy dropping from 99.625%

to 95.625%. Excessive grouping disrupts feature interaction between

channels, severely limiting the model’s representational capacity.

Although parameter count further decreases to 1.63M, the accuracy

loss becomes unacceptable for practical applications. Therefore, 4

groups represents the optimal configuration for this task, achieving

the best balance between classification accuracy and model

efficiency while maintaining practical applicability.

Figure 10b demonstrates the effect of PReLU parameter a on

model performance. The results show that a=0.25 achieves optimal

performance with 99.625% accuracy and 0.0253 loss. This value

provides the best balance for feature learning and gradient

propagation. When a increases beyond 0.25, both accuracy and

loss deteriorate, indicating impaired learning capability. Conversely,

lower a values (0.10-0.20) yield suboptimal results. These findings

highlight the importance of proper activation function

configuration for agricultural vision tasks. The study establishes

a=0.25 as the optimal initialization for PReLU in grape leaf disease

detection, providing guidance for similar agricultural applications.

This configuration ensures effective model performance while

maintaining training stability.
4 Discussion

The proposed MobileNet-GDR algorithm demonstrates

significant advancements in lightweight grape leaf disease

identification, achieving an exceptional classification accuracy of

99.625% while maintaining remarkably low computational

requirements of just 1.75M parameters and 0.18G FLOPs. This

outstanding performance positions our model as a highly effective

solution for real-time agricultural applications, successfully

addressing the critical challenge of balancing accuracy with

efficiency in mobile deployment scenarios. The experimental

results clearly indicate that MobileNet-GDR surpasses existing

lightweight models, including FasterNet and GhostNet, in both

diagnostic precision and computational efficiency, establishing its

superiority in the field of mobile-based plant disease recognition.

The integration of depthwise separable convolutions with

grouped convolutions forms the foundation of an exceptionally
TABLE 5 Results of the five-fold cross-validation of the MobileNet-GDR.

Folding
factor

Acc(%) P(%) R(%) F1(%)

Fold-1 99.45 99.35 99.35 99.25

Fold-2 99.63 99.25 99.53 99.47

Fold-3 99.68 99.50 99.45 99.60

Fold-4 98.58 98.55 98.53 98.54

Fold-5 99.63 99.63 99.63 99.60
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efficient feature extraction system, significantly reducing

computational overhead while maintaining robust feature

representation capabilities. This optimized approach to feature

extraction is particularly crucial for identifying subtle disease

patterns that may be easily overlooked in conventional models.

Furthermore, the strategic incorporation of PReLU activation

functions substantially improves the model ’s nonlinear

representat ion capaci ty compared to standard ReLU

implementations, enabling more sophisticated pattern recognition

for disease classification tasks. The redesigned feature fusion

mechanism represents another critical advancement, as it

effectively minimizes information loss during downsampling

operations - a common limitation in many lightweight

architectures that can severely impact performance on fine-

grained classification tasks. This capability could revolutionize

crop management practices by providing timely and accurate

disease detection, ultimately leading to more targeted

interventions and reduced pesticide usage.

A critical question arising from this work is how MobileNet-

GDR conceptually and empirically distinguishes itself from other

efficient architectures such as ShuffleNet and GhostNet, which also

employ channel manipulation and enhanced non-linearity.

Conceptually, ShuffleNet introduces channel shuffling to facilitate

information flow between grouped convolutions, a mechanism

primarily aimed at maintaining accuracy as network width

increases. In contrast, our use of grouped convolution in

MobileNet-GDR is more targeted: it serves as a direct and

parameter-efficient replacement for the computationally expensive

pointwise convolutions in MobileNetV4, forming a leaner base.

More importantly, we pair this with PReLU not as a generic non-

linearity, but explicitly to amplify the model’s sensitivity to the low-

intensity, high-frequency textural patterns that characterize early-

stage disease spots. This design philosophy is inherently task-

specific, prioritizing feature quality for fine-grained pathology

over generic classification. While ShuffleNet and GhostNet are
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formidable competitors on general benchmarks, MobileNet-GDR

consistently achieves superior accuracy under comparable or lower

computational budgets on our grape disease dataset. We attribute

this to the fact that our model’s inductive biases are more aligned

with the demands of the task. The PReLU’s adaptive gradients

appear better suited for capturing the nuanced visual cues of plant

diseases than the fixed operations in ShuffleNet or the linear

transformations in GhostNet modules.

Despite the promising results, this study is not without its

limitations, which also present avenues for future work. A primary

consideration is the generalizability of the model. The dataset used

for training and validation, while substantial, was acquired under a

specific set of conditions regarding lighting, leaf orientation, and

background. Consequently, the model’s performance may be

susceptible to variations encountered in truly uncontrolled field

environments, such as different times of day, weather conditions, or

occlusions by other plant parts. This potential dataset bias warrants

further investigation. Furthermore, while our proposed

architectural modifications have demonstrated efficacy in terms of

accuracy and computational efficiency, their practical deployment

on resource-constrained edge devices remains to be fully quantified.

The reported high inference speed was achieved on a high-

performance computing server. A more rigorous validation

involving benchmarking on a range of actual mobile and

embedded hardware (e.g., smartphones, Raspberry Pi, or Jetson

Nano) is necessary to conclusively support our claims of real-time

capability in practical applications. Finally, although Grad-CAM

visualizations suggest that our model focuses on semantically

relevant regions, a more rigorous, quantitative assessment of

model interpretability is lacking. The current evaluation is

primarily qualitative. Future work would benefit from engaging

domain experts to systematically evaluate the clinical relevance of

the model’s explanations or by employing quantitative metrics for

interpretability, which is crucial for building trust with end-users in

agricultural settings.
FIGURE 10

The influence of parameter settings in group convolution and PReLU on the model results. (a) The impact of the number of groups in grouped
convolutions on model results, (b) The impact of parameter settings in PReLU on model results.
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5 Conclusions

This paper addresses the practical needs of grape leaf disease

diagnosis by proposing a lightweight image classification algorithm,

MobileNet-GDR. Through careful design of the network

architecture and optimization of training strategies, the algorithm

achieves high accuracy while significantly improving computational

efficiency. Compared to existing mainstream lightweight models,

MobileNet-GDR achieves over 20% higher computational efficiency

while maintaining comparable accuracy. The significance of this

study lies not only in proposing an efficient grape disease

classification algorithm but also in exploring optimization paths

for lightweight CNNs in agricultural intelligence.

Future research will focus on expanding the model’s capabilities

through cross-crop disease transfer learning, investigating its

generalizability across different plant species and disease types.

Concurrently, we plan to develop user-friendly mobile

applications to bridge the gap between theoretical research and

practical implementation, facilitating seamless technology transfer

to agricultural stakeholders. This deep integration of advanced deep

learning techniques with modern agricultural practices is expected

to revolutionize disease management strategies by enabling: (1)

early disease detection through real-time field diagnosis, (2) data-

driven decision-making for precision pesticide application, and (3)

large-scale crop health monitoring systems. Such technological

advancements will contribute significantly to sustainable

agricultural development by reducing chemical inputs,

minimizing crop losses, and optimizing resource allocation in

precision farming systems.
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