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MobileNet-GDR: a lightweight
algorithm for grape leaf
disease identification based on
improved MobileNetV4-small

Gang Chen, Zhennan Xia, Xiaodan Ma, Yiyang Jiang
and Zhuang He*

School of Information Engineering, Changchun College Of Electronic Technology, Changchun, China

To address the challenges of high computational complexity and difficult
deployment of existing deep learning models on mobile devices for grape leaf
disease diagnosis, this paper proposes a lightweight image classification
algorithm named MobileNet-GDR (Grape Disease Recognition), built upon the
MobileNetV4-small architecture. The algorithm constructs an efficient feature
extraction module based on depthwise separable convolutions and grouped
convolutions to optimize the feature fusion process, while incorporating PRelLU
activation functions to enhance nonlinear representation capability.
Experimental results on a grape leaf disease dataset demonstrate that
MobileNet-GDR achieves high accuracy while significantly reducing
computational overhead: with only 1.75M parameters and 0.18G FLOPs, it
attains real-time inference speed of 184.89 FPS and a classification accuracy of
99.625%. Ablation studies validate the effectiveness of each module, and
comparative experiments show that its computational efficiency surpasses
mainstream lightweight models such as FasterNet and GhostNet. MobileNet-
GDR provides a practical lightweight solution for real-time disease diagnosis in
field conditions, demonstrating significant value for agricultural applications.

KEYWORDS

grape leaf disease, image classification, deep learning, MobileNetV4, precision
agriculture

1 Introduction

As one of the world’s most important economic crops, grapevines are susceptible to
various diseases during growth (Gramaje et al., 2018), including back measles, leaf blight,
and black rot, which significantly compromise yield and quality. Traditional disease
diagnosis relying on agricultural experts’ visual inspection suffers from low efficiency
and subjective bias, failing to meet modern precision agriculture demands (Mahlein, 2016).
Recent advances in computer vision and deep learning have promoted image-based
automated disease diagnosis as a research focus (Mochida et al., 2019). Convolutional
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neural networks (CNNs) (Krizhevsky et al., 2017) - exemplified by
ResNet (He et al., 2015a), VGG (Simonyan and Zisserman, 2015),
and EfficientNet (Tan and V. Le 2020) - demonstrate remarkable
advantages in plant disease recognition through powerful feature
extraction, achieving high accuracy across crop disease classification
tasks (Mohanty et al, 2016). However, these models typically
exhibit excessive parameters and computational complexity,
hindering deployment on resource-constrained mobile or
embedded systems for field applications (Ahmed et al., 2023).
When faced with this problem, some scholars choose more
efficient processing modules when constructing models (Song
et al, 2025; Yu et al, 2024). Others choose to combine the two
algorithms to obtain a more efficient model (Yu et al, 2025).
However, overall, the limitations of the algorithm still exist.

To address these limitations, lightweight neural architectures
have emerged as a critical research direction in agricultural
intelligence (Liu et al., 2021). The MobileNet (Howard et al,
2017) series, employing depthwise separable convolutions
(Chollet, 2017), substantially reduces computational costs and
parameters, enabling real-time image classification on mobile and
edge devices (Kumar et al., 2021). Nevertheless, standard MobileNet
models face persistent challenges in complex agricultural scenarios:
(1) grape leaf diseases present highly variable visual features (e.g.,
lesion morphology, coloration, texture) across growth stages and
environmental conditions, demanding enhanced multi-scale feature
extraction; (2) field acquired images frequently suffer from
illumination variations, occlusions, and background interference,
requiring superior noise robustness. Although lightweight networks
like MobileNet provide a viable infrastructure for this purpose,
existing improvements still fall significantly short when addressing
the practical demands of agricultural scenarios: On one hand,
complex modules introduced to enhance accuracy—such as large
attention mechanisms—often sacrifice model inference speed,
deviating from the original goal of lightweight design; On the
other hand, standard separable convolutions have limited
capability in capturing subtle disease features, making it difficult
for lightweight models to match the accuracy of complex ones. This
“inefficiency-accuracy imbalance” severely hampers the
technology’s application in real agricultural environments.
Consequently, improving discriminative capability for grape
disease features while maintaining lightweight architecture
remains a fundamental research challenge (Karim et al., 2024).

To address the limitations of existing models in achieving an
optimal balance between accuracy and computational cost for
mobile deployment, this study proposes MobileNet-GDR, a
lightweight image classification algorithm optimized for grapevine
leaf disease diagnosis. Building upon the MobileNetV4 (Qin et al.,
2024) architecture, our principal contributions are threefold:

(1) To mitigate the high computational cost of pointwise
convolutions in MobileNetV4, which constitutes a significant
bottleneck, we replace them with grouped convolutions. This
design choice directly targets parameter and FLOPs reduction,
leading to a substantial improvement in computational efficiency
with a negligible impact on feature representation.
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(2) Recognizing that standard ReLU activations may suppress
subtle but discriminative features in diseased leaf images (e.g., early-
stage spots), we introduce the parametric PReLU function. Its
learnable slope parameters allow the model to adaptively capture
fine-grained textural variations, effectively enhancing feature
representation for small lesion areas.

(3) Through systematic experiments, we demonstrate that these
targeted modifications enable our model to surpass existing
MobileNet variants and other deep learning solutions, achieving a
superior trade-off between classification accuracy and
computational efficiency specifically for the agricultural
pathology domain.

2 Materials and methods
2.1 Data acquisition

As illustrated in Figure 1, this study systematically investigates
four distinct categories: black rot (Molitor and Beyer, 2014), black
measles (Ji and Wu, 2022), leaf blight (Liu et al., 2020), and healthy
leaves. This selection was based on comprehensive considerations of
agricultural economic impact, diagnostic challenges, and practical
disease management requirements. These three diseases represent
the most destructive foliar pathologies in viticulture. Black rot, as a
highly contagious fungal disease, can cause devastating yield losses
under humid conditions, with its characteristic concentric ring
patterns providing distinct visual markers for early diagnosis.
Black measles, characterized by prolonged latency and subtle
symptoms, often leads to irreversible vascular damage before
detection, resulting in cumulative negative effects on long-term
plant productivity. Leaf blight, as an environment-sensitive disease,
shows a strong correlation with field management practices and
exhibits significant spatial heterogeneity in symptom manifestation.
During early development stages, all three diseases manifest as leaf
spots, but demonstrate clearly divergent pathological characteristics
in later phases, creating an ideal difficulty gradient for developing
classification models with fine-grained recognition capabilities.
From an agricultural practice perspective, these diseases require
significantly different control timings and chemical treatments.
Moreover, their epidemic patterns cover all critical phenological
stages of grape growth, enabling the developed diagnostic system to
provide comprehensive seasonal coverage. Detailed category
descriptions are as follows:

Black rot samples display characteristic reddish-brown to black
circular lesions with well-defined margins and prominent dark
concentric rings. Advanced infections develop perforations or
desiccation features. This disease not only causes premature
defoliation that impairs photosynthesis but also directly infects
berries, leading to mummified fruits that lose commercial value due
to dehydration.

Black measles samples exhibit scattered black punctate lesions
on leaf surfaces, showing irregular distribution but tending to
cluster along veins. Slight depressions are observable on the
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Black rot Black measles

FIGURE 1
Grape leaf disease dataset showcase.

Healthy

Leaf blight

abaxial surface. Under high-resolution imaging, these lesions reveal
faint halos at their margins and demonstrate spot fusion as the
disease progresses.

Healthy leaf samples serve as the control group, strictly selected
from mature leaves without any pathological symptoms. They exhibit
cultivar-specific uniform green coloration (ranging from light to dark
green), intact smooth surfaces, and clearly defined venation patterns.
As the primary organs for photosynthesis and nutrient synthesis in
grapevines, healthy leaves demonstrate complete morphological
structure and optimal physiological condition.

Leaf blight samples are most notably characterized by irregular
brown necrotic areas, typically initiating from leaf margins or tips
and progressing toward midribs. Distinct yellow halo transitions are
commonly observed at lesion borders, with severe cases showing
typical “scorched” appearances. The disease primarily damages
mesophyll tissue, causing premature leaf drop that reduces sugar
accumulation in berries, leading to phenolic compound loss in wine
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grapes and uneven coloring in table grapes. The disease progresses
rapidly under drought conditions and significantly compromises
plant cold hardiness.

Notably, black rot and black measles demonstrate particularly
high similarity in visual presentation, posing significant challenges
for model development. Ultimately, 1,000 images were obtained for
each category, which were divided into training and test sets in an
8:2 ratio.

2.2 MobileNetV4-small

MobileNetV4 is a lightweight convolutional neural network
architecture proposed by Google in 2024 (Qin et al., 2024). It is the
latest iteration of the MobileNet series and aims to further optimize
the balance between computational efficiency and model
performance on mobile devices and edge computing devices. This
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architecture continues the core idea of the MobileNet family in
lightweight design, while through structural innovation and
training strategy improvements, it significantly enhances the
model’s performance in image classification.

As shown in Figure 2, the structure of MobileNetV4-small is
presented. MobileNetV4-small is a lightweight and streamlined
version of MobileNetV4, specifically optimized for extremely
resource-constrained mobile and edge devices. The network
structure of MobileNetV4-small adopts efficient depthwise separable
convolution as the basic operation unit, but introduces a more flexible
channel expansion mechanism compared to previous models.

The UIB module dynamically adjusts the dilation rate of the
convolution kernel, using a smaller receptive field in the shallow
network to preserve detailed information, and gradually expanding
the receptive field in the deep network to capture global features.
This adaptive mechanism significantly enhances the model’s
adaptability to different scale features. Two optional Depthwise

10.3389/fpls.2025.1702071

Convolutions (DWConv) are introduced in the inverted bottleneck
block, one before the expansion layer and the other between the
expansion and compression layers. An innovative dynamic channel
adjustment mechanism is introduced within the structure, which
can adaptively adjust the channel expansion ratio at each stage,
enabling the network to automatically adjust its feature processing
strategy at different depths.

The ConvBN module serves as the fundamental computing unit
of the network, consisting of a standard convolution layer (Conv), a
batch normalization layer (BN), and a ReLUS6 activation function
connected in series. The mathematical expression of ConvBN is

shown in Equation 1.

ConvBN(x) = ReLU6(BN(Conv(x))) (1)

By applying the BN layer to standardize the convolutional
output, the problem of internal covariate shift is effectively
alleviated, making the training process more stable and faster.

[ MobileNetV4-small ]

224x224x3
UIB
................................... \
J’ \ Layer 0
[ Depthwise Conv ] \ ConvBN x 1
7 \\ 112x112x32
[ BatchNorm2d ] \ ConvBN
5 \ Layer 1 P
[ Pointwise C ] \ ConvBN x 2 - l
ointwise Conv \ 56x56%32 _
i \ I/ il [ 2D Convolution
=
[ BatchNorm2d ] . g \ Layer 2 l
¥ g \ | ConvBN x2 BatchNorm2d
[ ReLU6 ] g \ 28x28x64
@) N l
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¥ & 141496 N !
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FIGURE 2
The structure of MobileNetV4-small.
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The cascaded structure of the three elements can be fused into a
single operator during inference, which not only reduces memory
access overhead but also supports quantization deployment.
Moreover, the saturation characteristic of ReLU6 retains the non-
linear expression ability while avoiding the risk of numerical
overflow during low-precision calculations.

2.3 MobileNet-GDR

As shown in the model design in Figure 3, we replace the
traditional pointwise convolution in UIB with group convolution.
This improvement is based on a comprehensive consideration of
computational efficiency and feature expression capabilities. While
pointwise convolution enables full-connection feature fusion across
channels, its computational complexity grows quadratically with the
number of channels, a limitation that becomes particularly pronounced
in lightweight model designs. Specifically, for a pointwise convolution
layer with C;, input channels and C,,, output channels. The parameter
quantity of pointwise convolution is shown in Equation 2.

1x1xCy X Cyy )

MobileNet-GDR

10.3389/fpls.2025.1702071

The computational cost of pointwise convolution is as shown in

Equation 3.

I1x1xCyxHxWxC,y (3)

When the number of channels is large, this can result in significant
storage and computational overhead. In contrast, group convolution
effectively reduces the number of parameters to 1/G by dividing the
input channels into G non-overlapping subgroups and performing
convolution operations independently within each subgroup. The
parameter quantity of group convolution is shown in Equation 4.

CIYX

I X1 X% Coy

4)
The computational cost of group convolution is as shown in
Equation 5.

S Hx W X Cpy

(5)

1x1x

From the perspective of feature learning, the introduction of
group convolution is not merely a reduction in computational
complexity but a structured constraint on how features interact.
Traditional pointwise convolution forces full connectivity between all
channels, which may lead to overfitting or redundant computations

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 GlobalAvgPool
ConvBNP x 1 ConvBNP x 2 ConvBNP x 2 UIBS x 6 UIBS x 6 ConvBNP x 2 Linear
112x112%32 56x56%32 28x28x64 14x14x96 TxT7x128 7x7x1280 1x1x1280
224x224x%3
UIB UIBS Depthwise Convolution
__________________________________________ C_in K*K C_out
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BatchNorm2d BatchNorm2d H 1‘
= - W Input Output
BatchNorm2d ;§ [mproved BatchNorm2d ‘%
2 > & — -
5 5 Pointwise Convolution
&) &)
_é Depthwise Conv 5 Input C_out
= 2
BatchNorm2d | & BatchNorm2d | &
H
&
Y
Pointwise Conv Group Conv W ()
€.m Output
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TSwde=1 | | ¥ Suide=1"
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H
i
!
W Output
FIGURE 3
The improved structure of the model.
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in certain scenarios. Group convolution naturally constructs a
hierarchical structure for feature learning through its grouping
mechanism, allowing different groups to focus on learning different
aspects of feature representations. Grouped convolution has inherent
compatibility with depthwise separable convolution, and their
combination can form more efficient convolution computation
units, which has been thoroughly validated in advanced lightweight
architectures such as ShuffleNet (Zhang et al., 2017).

It is worth noting that the choice of the number of groups requires
a trade-off between model capacity and computational efficiency. A
larger number of groups (e.g., the number of groups equals the
number of channels) degenerates into depthwise convolution.
Assuming that the convolution kernel is K, the parameter quantity
of depthwise convolution is shown in Equation 6.

2 o, Cin
K= x G X Copr (6)
The computational cost of depthwise convolution is as shown in
Equation 7.

szg—:xHxWxCom (7)

Although computational complexity is minimized, this may limit
feature fusion capabilities; a smaller number of groups is closer to
traditional pointwise convolution. In practical design, we typically use a
group size between 4 and 16, which has demonstrated good balance
across multiple benchmark tests. Overall, replacing pointwise
convolution with grouped convolution not only achieves a significant
improvement in computational efficiency but also enhances the feature
learning process through structured sparsity constraints, making it a
key and effective improvement strategy in lightweight network design.

This study replaces the ReLU6 function(G. Howard et al., 2017)
with the PReLU function (He et al., 2015b). ReLU6 and PReLU, as
important improvements to the ReLU function, exhibit unique
functional characteristics and gradient behavior in deep neural
networks. From the Figure 4, the function expression of ReLUS6 is

shown in Equation 8.
f(x) = min (max (0, x), 6) (8)

In the negative value region (x < 0), neuronal activation is
completely suppressed. In the positive value region, it exhibits linear

ReLU6 Function and Its Derivative

—— ReLUS6(x)
== ReLUG'(x) ©o)

©,1)

fix)

f(x)

00

FIGURE 4
Comparison of the curves of ReLU6 and PRelLU and their derivatives.
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growth characteristics. However, when the input value exceeds 6, it
enters the saturation region. This design ensures that the derivative
maintains a constant gradient of 1 in the (0, 6) interval, while the
gradient abruptly drops to 0 when x < 0 or x > 6, resulting in a
distinct gradient clipping phenomenon. While this hard constraint
enhances numerical stability during mobile deployment and
facilitates model quantization, the non-continuous gradient
characteristics can easily trigger the vanishing gradient problem
during training of deep networks, especially when the network is
deep or the learning rate is improperly set, potentially causing a
large number of neurons to enter an irreversible “dead” state. In
contrast, the function expression of PReLU is shown in Equation 9.

f(x) = max (0,x) + o( min (0, x))

)

The function curve exhibits smoother transition characteristics.
In the positive interval, it maintains the linear response of the
standard ReLU, while in the negative interval, it maintains a certain
degree of activation through the learnable parameter o. This design
ensures that the derivative remains at a gradient of 1 when x > 0 and
at a gradient value of o when x < 0, thereby ensuring that the network
obtains non-zero gradient flow throughout the entire domain. From
the mathematical properties of the function’s form, PReLU is not
differentiable at the origin, but in practical applications, this can be
handled using subgradient methods. This minor sacrifice in
continuity yields significantly improved training stability.

A detailed analysis of the gradient propagation characteristics of
the two activation functions reveals that while the rigid clipping of
ReLU6 simplifies the computational process, it also severely limits
the model’s expressive power. In complex data distributions and
deep network structures, this limitation may prevent the network
from learning sufficiently rich feature representations. PReLU, on
the other hand, introduces an adjustable negative region slope
parameter, not only retaining the computational efficiency
advantages of the ReLU family of activation functions but more
importantly endowing the network with the ability to adaptively
adjust its activation characteristics. This adaptive mechanism allows
the network to dynamically adjust the activation intensity in the
negative region based on specific task requirements and data
characteristics, providing a more flexible mathematical expression
space for feature learning. From the perspective of computational

PReLU Activation Function and Its Derivative

= PReLU(x), a=0.25
== PReLU'(x)

fix)

f(x)
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graphs, PReLU exhibits smoother gradient flow characteristics
during backpropagation. During training of deep networks, this
smooth gradient propagation effectively mitigates gradient
vanishing or exploding issues, particularly in complex network
structures such as residual connections. Although PReLU requires
additional maintenance and updating of the o parameter, resulting
in minor computational overhead, modern deep learning
frameworks can efficiently handle such parameter updates.
Additionally, the initialization of PReLU parameters typically sets
o = 0.25, an empirical value that ensures smooth gradient flow
during the initial phase while leaving sufficient room for adjustment
during subsequent optimization. In contrast, while the fixed form of
ReLU6 simplifies computation, its limitations in model
expressiveness make it more suitable for mobile deployment
scenarios with strict computational resource constraints and
relatively relaxed requirements for model accuracy.

2.4 Experimental environment and
parameter settings

This study details the training parameters for the proposed
network model. The input image size was fixed at 224x224 pixels,
with a batch size of 32 and a base learning rate of 0.001. The model
was trained for 50 epochs using Stochastic Gradient Descent (SGD)
as the optimizer. All experiments were conducted on a workstation
equipped with an Intel Xeon Gold 6246R CPU (3.4 GHz) and an
NVIDIA Quadro RTX 8000 GPU (48GB VRAM), running
Windows 10. The software environment included Anaconda3
(2021.11), PyCharm as the compiler, and PyTorch 1.2.1 built on
Python 3.8.3. To ensure consistency, all algorithms were executed
under identical hardware and software configurations.

2.5 Evaluation indicators for the model

In supervised learning, confusion matrices serve as a
fundamental tool for evaluating classification model performance.
The matrix organizes predictions against ground truth labels:
columns correspond to predicted classes, while rows represent
actual classes. For a binary classification task, the matrix consists
of four key components. True Positives (TP): Cases where both the
actual and predicted labels are positive, False Positives (FP):
Negative instances incorrectly predicted as positive, False
Negatives (FN): Positive instances misclassified as negative, True
Negatives (TN): Correctly identified negative cases. The structure of
a binary confusion matrix is illustrated in Table 1.

TABLE 1 Confusion matrix of a binary classification problem.

Actual results
Confusion matrix
Positive

Negative

Positive Fp
Forecast Results

Negative N
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Accuracy (Acc), Precision (P), Recall (R), and F1-score (F1) are
derived from the confusion matrix and serve as key metrics for
evaluating the classification performance of a model. The
corresponding formulas and brief descriptions of these metrics
are provided in Table 2.

In the design and evaluation of lightweight deep learning models,
we focus on five key metrics to comprehensively assess computational
efficiency, memory footprint, and real-time performance. These
metrics provide clear optimization directions, ensuring efficient
deployment in resource-constrained environments.

Parameter Count (Params): The total number of trainable
parameters directly influences memory consumption and
computational demand. Lightweight models typically employ
architectural optimizations and parameter pruning to reduce
model size, thereby lowering storage and computational overhead.

Floating-Point Operations (FLOPs): This metric quantifies the
computational complexity required for a single forward pass.
Reducing FLOPs decreases energy consumption and improves
energy efficiency, making the model more suitable for deployment
on low-power devices.

Model Size: The storage space occupied by model weights.
Through quantization and compression techniques, lightweight
models significantly reduce storage requirements, facilitating
deployment on embedded systems with limited resources.

Latency: The inference time required to process a single input.
Optimizing latency enhances real-time performance, meeting the
demands of time-sensitive applications such as autonomous driving
and industrial inspection.

Frames Per Second (FPS): This measures the model’s throughput
—the number of samples processed per second. Higher FPS enables
efficient handling of video streams or batch processing, making it
suitable for high-throughput tasks like real-time video analysis.

Together, these metrics form a core evaluation framework for
lightweight models, guiding researchers in balancing accuracy and
efficiency to meet the practical deployment needs of edge
computing and mobile AT applications.

TABLE 2 Formulas and brief descriptions of each evaluation indicator.

Evaluation

. Formulas
metrics

Brief description

Accuracy(Acc) Acc = TP + TN The ratio of the number of
TP+FP+FN+TN  correctly predicted positive and
negative samples to the total
number of samples.
Precision(P) P TP The ratio of the number of
TP + FP correctly predicted positive
samples to the total number of
samples predicted to be positive.
Recall(R) R= P The ratio of the number of
TP + FN correctly identified positive
samples to the total number of
actual positive samples.
F1-score(F1) Fl=2x The reconciled mean of

precision and recall.
Precision x Recall

Precision + Recall
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3 Results and analysis
3.1 Results of the ablation experiment

As shown in Table 3, through an in-depth analysis of the
accuracy metrics of the ablation experiments, the evolution of
performance during the model improvement process can be
clearly observed. From the baseline model MobileNetV4-S to the
final optimized MobileNet-GDR, the model’s classification
performance has been significantly improved. The accuracy rate
of the baseline model was 98.375%. After introducing the PReLU
activation function, the accuracy rate increased by 1.25 percentage
points, reaching an excellent level of 99.625%. This significant
performance improvement indicates that the PReLU activation
function can more effectively capture image features and enhance
the model’s expressive capabilities.

It is worth noting that after introducing group convolutions in
subsequent improvements, the model accuracy experienced a slight
fluctuation, with the accuracy rate dropping to 99.375%. However,
the MobileNet-GDR version obtained after final optimization once
again reached the top-tier level of 99.625%, and all evaluation
metrics (accuracy rate, precision rate, recall rate, and F1 score)
remained highly consistent, demonstrating exceptional stability.
Particularly noteworthy is that these accuracy improvements were
achieved on the basis of the significant optimization of model
efficiency analyzed earlier, reflecting the efficiency of the
MobileNet-GDR design.

In terms of the balance of various metrics, MobileNet-GDR
performs exceptionally well. Its precision, recall, and F1 score all
remain at a high level above 99.6%, indicating that the model
maintains high accuracy without significant overfitting or
underfitting. This balance is crucial in practical applications, as it
ensures that the model maintains stable performance across
different scenarios. A detailed analysis of the impact of each
improvement stage reveals that improvements to the activation
function contributed the most to the model’s performance
enhancement, while subsequent structural optimizations
significantly improved model efficiency while maintaining
accuracy. This phased improvement strategy ensures steady
performance improvements while avoiding the complexity
associated with over-engineering.

Through an in-depth analysis of the results of the ablation
experiment, it is clear that the MobileNet-GDR model has
significant advantages in several key metrics. In terms of

TABLE 3 Partial results of ablation experiments.

10.3389/fpls.2025.1702071

parameter size, MobileNet-GDR demonstrates excellent
parameter efficiency, with 1.75 million parameters, which is 30%
less than the baseline model and 20.8% less than the intermediate
version MobileNet-GConv in the improvement process. This
reduction in parameter count directly translates to lower model
storage requirements, with a model size of 6.86 MB, representing a
29.5% reduction compared to the baseline model, making it more
suitable for deployment on edge devices with limited
storage resources.

A detailed analysis of the impact of each improvement step on
performance reveals that the model underwent three key
improvement stages from the baseline model to the final version.
First, replacing the standard activation function with PReLU
resulted in a slight improvement in latency (from 5.70ms to
5.64ms). Subsequently, the introduction of group convolutions
(GConv) further optimized the model structure, reducing the
number of parameters to 2.21M and FLOPs to 0.22G. The final
MobileNet-GDR version achieved the best balance across all
evaluation metrics through carefully designed network structure
optimization. Notably, these improvements were cumulative, with
each modification yielding measurable performance gains. The final
MobileNet-GDR version achieved a significant increase in inference
speed while maintaining low computational costs.

From a practical application perspective, the performance
advantages demonstrated by MobileNet-GDR are of great value.
The reduction in model size means it can be more easily deployed
on mobile devices, the decrease in computational load directly
translates to longer battery life, and the improvement in inference
speed makes real-time applications more fluid. These
improvements collectively make MobileNet-GDR a highly
competitive solution in resource-constrained environments. Based
on the data from comprehensive ablation experiments, it can be
confirmed that MobileNet-GDR has achieved significant
breakthroughs in model efficiency through carefully designed
optimization strategies, providing valuable references for the
development of deep learning models for mobile devices.

3.2 Comparative experiments with other
algorithms

As shown in Figure 5, through an in-depth comparative analysis
of the confusion matrices of the six models (CoAtNet_0 (Dai et al.,
2021), FasterNet-TO (Chen et al,, 2023), GhostNet (Han et al,

Params = FLOPs Model Latenc
Model Name P(%) F1(%) ) G| Size(MB) (o) Y Fps
MobileNetV4-S 98375 ‘ 98.400 98375 98375 ‘ 250 025 9.73 570 17549
MobileNet-PReLU 99.625 ‘ 99.625 99.625 99.600 ‘ 250 025 9.73 5.64 177.43
MobileNet-GConv 99.375 ‘ 99.375 99.375 99.375 ‘ 221 022 8.26 551 181.53
MobileNet-GDR 99.625 99.625 99.625 99.600 ‘ 1.75 0.18 6.86 5.41 184.89

(The results in the table represent the average of five consecutive measurements.)
The bolded content reflects the training results of the model proposed in this study.
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2020), RepVGGNet-A0 (Ding et al., 2021), ResNeXt50 (Xie et al.,
2017), and MobileNet-GDR), it can be clearly observed that the
MobileNet-GDR model we proposed demonstrates outstanding
classification performance. From the visual presentation of the
confusion matrix, the main diagonal elements of MobileNet-GDR
generally remain at a high level, indicating that the model
maintains a very high degree of accuracy in identifying
samples of each category. Notably, compared to other lightweight
models, MobileNet-GDR achieves significantly lower off-diagonal
element values while maintaining high accuracy. This feature clearly
demonstrates that the model significantly reduces misclassification
during the classification process, showcasing more precise
discrimination capabilities. Specifically, MobileNet-GDR achieves
classification accuracy rates exceeding 99% in most categories, a
performance comparable to the more complex CoAtNet-0 model.
Although CoAtNet-0 shows slightly better classification
performance in a few fine-grained categories with small sample
sizes, this advantage comes at the cost of model efficiency. Further
analysis of the error distribution patterns in the confusion matrix
reveals that the misclassifications generated by MobileNet-GDR
are primarily concentrated between two categories with highly
similar visual features. This error pattern aligns closely with
human expert misjudgments, indicating that the model has
learned visual discrimination capabilities approaching human
levels. In contrast, the confusion matrices of other lightweight
models such as GhostNet and FasterNet-T0 exhibit more

Confusion matrix

Confusion matrix

10.3389/fpls.2025.1702071

dispersed error distributions, suggesting relatively weaker feature
learning capabilities.

Table 4, MobileNet-GDR demonstrated
outstanding overall performance in this comparative experiment.

As shown in

Through systematic experimental comparison and analysis, we can
clearly see that this model has achieved a breakthrough balance in
multiple key dimensions. From the perspective of model accuracy,
MobileNet-GDR’s performance is impressive. Experimental data
shows that its classification accuracy reaches 99.625%, tying with
RepVGGNet-A0 for second place and trailing the top-performing
CoAtNet-0 by a mere 0.125 percentage points. More notably, its
precision, recall, and F1 scores all remain above the high level of
99.6%, fully demonstrating the model’s stable and reliable
classification capabilities. This nearly perfect accuracy makes it
fully capable of handling most application scenarios with
stringent requirements for recognition accuracy. In terms of
model efficiency, MobileNet-GDR’s advantages are even more
prominent. Its parameter count is kept at an extremely low
1.75M, which is only 77% of the lightweight model FasterNet-T0
and approximately one-tenth of the large model CoAtNet-0. In
terms of computational complexity metrics, the 0.18G FLOPs
performance is second only to GhostNet, but considering the
significant accuracy gap between GhostNet and MobileNet-GDR,
this minor difference in computational load is entirely acceptable.
Notably, the model achieves a significant leap in computational
efficiency while maintaining top-tier accuracy.
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TABLE 4 Comparison of experimental results.

o o o Params FLOPs Model Size Latenc

Model Name  Acc(%) P(%) F1(%) ) ) (MB) )
CoAtNet-0 99.750 99.750 99.750 99.750 16.99 335 66.64 11.02 90.78
FasterNet-T0 99.125 99.125 99.125 99.100 226 0.34 10.15 5.54 180.64
GhostNet 98.500 98.500 98.500 98.475 391 0.15 15.21 11.54 86.64
RepVGGNet-A0 99.625 99.625 99.625 99.600 7.83 1.53 30.11 7.77 128.75
ResNeXt50 99.500 99.500 99.500 99.475 22.99 429 88.06 7.97 125.55
MobileNet-GDR 99.625 99.625 99.625 99.600 1.75 0.18 6.86 5.41 184.89

(The results in the table represent the average of five consecutive measurements.)
The bolded content reflects the training results of the model proposed in this study.

From a practical deployment perspective, MobileNet-GDR also
performs exceptionally well. With a compact model size of 6.86 MB,
it is an ideal choice for edge device deployment. In terms of key
performance metrics, its inference latency of 5.41ms and processing
speed of 184.89FPS both rank at the top, even surpassing the fast-
paced FasterNet-T0. Through a side-by-side comparison with other
models, it is evident that MobileNet-GDR has found the optimal
balance between accuracy and efficiency. It not only significantly
outperforms similar lightweight models in terms of accuracy but
also significantly outperforms RepVGGNet-A0 and CoAtNet-0,
which have comparable accuracy, in terms of computational
efficiency. In particular, compared to CoAtNet-0, which has
slightly higher accuracy, MobileNet-GDR achieves nearly
equivalent accuracy with an order of magnitude advantage in
terms of parameters and computational complexity, making it
highly cost-effective for grape leaf recognition.

The key to the success of this model lies in its innovative
resolution of the core contradiction in lightweight network design:
it maintains recognition accuracy comparable to that of large,
complex networks while achieving extreme computational
efficiency. This breakthrough makes it particularly suitable for
deployment on edge computing devices with limited
computational resources, opening up new possibilities for the
development of mobile intelligent applications. Future research
can build on this foundation to further explore optimization
directions such as model compression and knowledge distillation,
continuously enhancing the model’s overall performance.

3.3 Comparison before and after model
improvement

From the comparison of the accuracy curves in Figure 6, it is
evident that the improved model exhibits superior convergence
characteristics during training. The accuracy curve of the pre-
improved model shows a relatively gradual upward trend,
typically requiring a large number of epochs to reach a stable
state. In contrast, the improved curve exhibits a steeper upward
slope in the early stages of training, indicating that the model can
more quickly capture key feature patterns in the data. This
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accelerated convergence is primarily attributed to optimizations
in the network architecture and training strategy within the
improved scheme. Specifically, the improved accuracy curve
achieves a high accuracy plateau in the early stages of training,
saving approximately 30-50% of training time compared to the pre-
improvement model. This not only enhances training efficiency but
also indicates that the model possesses superior optimization
properties. The curve remains stable after reaching the plateau
phase, with no significant fluctuations, validating the stability of the
improved scheme. Additionally, the final convergence accuracy of
the improved model is typically 1-2 percentage points higher than
the pre-improvement version, consistent with the performance
improvements across categories mentioned earlier.

Additionally, this faster convergence rate indicates that the
improved model has a more reasonable parameter initialization
strategy and a more effective gradient propagation mechanism. The
optimized network structure can learn discriminative features more
directly, avoiding redundant parameter updates. Additionally, the
improved scheme better coordinates the learning rates of different
network layers, enabling parameters across layers to be optimized
collaboratively and efficiently, thereby accelerating the overall
convergence process. These characteristics make the improved
model not only perform better ultimately but also have a
significant advantage in training efficiency, facilitating model
iteration and deployment in practical applications.

By comparing the loss curves before and after the improvement,
it is clear that the improved model exhibits superior optimization
characteristics and convergence behavior during training. The loss
curve before the improvement shows a relatively gradual downward
trend, with a high loss value in the initial stage and requiring a long
training time to gradually converge to a lower level. In contrast, the
improved loss curve exhibits a steeper decline from the early stages
of training, indicating that the model can more quickly find the
optimal direction and effectively reduce the loss function value.
Specifically, the improved loss curve rapidly declines to a level close
to the final convergence value within the first 20% of the training
cycle, with a convergence speed approximately 30-50% faster than
the pre-improvement model. This accelerated convergence is
primarily due to the careful design of the network architecture
and adjustments to the optimization strategy in the improved
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The comparison of the accuracy curves and loss curves before and after model improvement on the validation set.

scheme. More notably, the improved model not only converges
faster but also achieves a significantly lower stable loss value,
typically 15-25% lower than the pre-improvement model. This
phenomenon indicates that the improved model has stronger
fitting capabilities and better generalization performance.

From the perspective of the optimization process, the
smoothness of the loss curve after improvement has also been
significantly enhanced, with a notable reduction in oscillation
amplitude. This suggests that the improved scheme may have
introduced more effective regularization mechanisms or optimizer
configurations, resulting in a more stable parameter update process.
The curve remains stable in the later training stages without any
noticeable rebounds or fluctuations, verifying the robustness of the
training process. These improvements enable the model to converge
more reliably to a better local minimum, thereby achieving better
final performance. These improved characteristics of the loss curve
are consistent with the observed improvements in accuracy and
performance across various categories, collectively demonstrating
the effectiveness of the improved approach. Faster convergence
speeds imply enhanced training efficiency, while lower final loss
values directly correspond to strengthened model discriminative
capabilities. These advantages enable the improved model to
shorten development cycles and provide more reliable predictive
performance in practical applications, holding significant
engineering practical value.

Frontiers in Plant Science

Figure 7 shows the recognition differences in each category
before and after the model improvement. By comparing the
performance metrics of various categories before and after the
improvements, it is clear that the model optimization has led to
significant enhancements. Across the four plant health status
categories, the improved model demonstrates comprehensive and
balanced performance improvements, particularly in the more
challenging disease categories. The most notable improvement
was observed in the Black rot category, where the F1 score
increased from 0.967 to 0.992, representing a 2.5 percentage point
increase. This improvement is primarily due to a significant
increase in accuracy (from 0.965 to 0.995), indicating that the
improved model has significantly reduced misclassification of this
disease. Meanwhile, the recall rate has also increased from 0.970 to
0.990, indicating that the model has reduced the rate of missed
detections of Black rot cases and can more comprehensively capture
the features of this category. The Black measles category exhibits a
different improvement pattern. Although precision slightly
decreased (from 0.995 to 0.990), recall significantly improved
from 0.965 to 0.995, ultimately increasing the F1 score from 0.980
to 0.992. This change suggests that the improved model may have
adjusted the classification boundaries, opting for a slight decrease in
precision in exchange for a higher recall rate, which is typically a
more desirable strategy for disease detection tasks. The Healthy and
Leaf blight categories already performed exceptionally well before
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Comparison of differences in each category before and after model improvement.

the improvement and now achieve perfect scores. The precision of
the Healthy category increased from 0.976 to 1.000 while
maintaining a 100% recall rate, while the Leaf blight category
continued to achieve perfect scores across all metrics. These
results demonstrate that the improved model maintains accurate
identification of healthy samples while significantly enhancing its
ability to detect diseased samples.

Overall, the improved model achieves a more balanced
precision and recall across all categories, particularly exhibiting
stronger discriminative capability when handling similar diseases
(Black rot and Black measles). The F1 scores for all categories
exceed 0.99, with two categories achieving a perfect 1.000,
indicating that the improved approach effectively addresses the

MobileNetV4
-small

MobileNet-
GDR

FIGURE 8

Comparison of Grad-CAM heatmaps of the model before and after improvement.
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shortcomings of the original model in certain fine-grained
classifications, providing a more reliable solution for practical
agricultural disease diagnosis applications. This comprehensive
improvement in recognition performance, combined with the
high efficiency advantages analyzed earlier, makes the improved
model highly valuable for applications in plant health monitoring.

To qualitatively validate the enhanced feature representation
capability of our proposed MobileNet-GDR, we present a visual
comparison of Grad-CAM heatmaps generated by the baseline
MobileNetV4-small and our model in Figure 8. The results
demonstrate that our model achieves superior focus and
localization on the pathological regions. A critical analysis of the
deeper layers (Layer 3 to Layer 5) reveals a distinct difference in the

Layer 4
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models’ attention mechanisms. The activation maps from
MobileNetV4-small (Figure 8, top row) are often more diffuse and
scattered, with significant activation spillover onto healthy leaf tissue
and background areas. This suggests that the baseline model relies on
a broader, and potentially less relevant, contextual footprint for
classification, which may introduce ambiguity. In contrast, our
MobileNet-GDR (Figure 8, bottom row) produces remarkably
precise and concentrated activation heatmaps. The model’s focus is
sharply confined to the core lesion areas, such as the necrotic spots
and the boundaries between diseased and healthy tissue.
Concurrently, the optimized feature channels resulting from the
grouped convolution design may contribute to a more efficient and
discriminative feature representation in the deeper layers. This visual
evidence aligns perfectly with our quantitative results, confirming
that MobileNet-GDR does not merely achieve higher accuracy but
does so by developing a more semantically meaningful understanding
of the disease features, thereby strengthening the model’s
interpretability and reliability for practical agricultural diagnosis.

3.4 Comparison experiment of activation
functions

As shown in Figure 9, through an in-depth analysis of the
activation function comparison experiment, it is clear to observe the

100

10.3389/fpls.2025.1702071

significant impact of different activation functions on model
performance. The experimental results indicate that the PReLU
activation function demonstrates the most outstanding overall
performance, achieving an accuracy rate of 99.625%, significantly
outperforming other candidate schemes, while maintaining the
lowest loss value of 0.0183. This outstanding performance
indicates that PReLU can more effectively promote feature
learning while enhancing discriminative ability, while maintaining
model stability. From the accuracy metric perspective, the
performance of various activation functions can be divided into
three tiers: PReLU leads with an accuracy rate of 99.625%, forming
the first tier; Mish and SiLU/Hardswish form the second tier with
accuracy rates of 99.5% and 99.375%, respectively; while ReLU,
ReLUS6, and SELU are in the third tier with accuracy rates ranging
from 98.125% to 98.75%. Notably, PReLU outperforms the baseline
ReLU by 0.875 percentage points, an improvement that often
translates to significant quality gains in practical applications.
From the perspective of the loss function, PReLU’s loss value of
0.0183 is 22.6% lower than the next-best Mish (0.0235) and 66.9%
lower than ReLU (0.0553). This substantial reduction in loss
directly reflects the model’s stronger generalization ability. A
deeper analysis of the characteristics of each activation function
reveals that the best-performing PReLU and Mish both exhibit non-
monotonicity, enabling them to better handle negative inputs and
avoid the “neuron death” issue associated with the ReLU series. In
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Visualization of activation function comparison results.
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contrast, the poorer-performing ReLU6 and SELU are limited in
their expressive capabilities due to over-constraint or sensitivity.
Notably, while Hardswish and SiLU belong to the Swish family of
activation functions, their performance differs significantly,
indicating that subtle mathematical form changes can lead to
substantial performance differences. These experimental results
provide important guidance for selecting activation functions in
practical engineering applications, validate the superiority of
PReLU in specific tasks, and also point to potential directions for
future research.

3.5 Five-fold cross-validation results

As shown in Table 5, this study comprehensively evaluated the
performance of the MobileNet-GDR model in grape leaf disease
detection through five-fold cross-validation. The validation results
fully demonstrate the model’s outstanding classification capability
and excellent generalization performance. Across four core
evaluation metrics, the model achieved an average accuracy of
99.39% in five-fold validation, with average precision, recall, and
F1 score reaching 99.26%, 99.30%, and 99.29%, respectively. These
figures indicate the model has attained near-perfect performance
levels in grape leaf disease identification.

Specifically, the model’s high precision indicates an extremely
low false positive rate during identification, effectively preventing
healthy leaves from being misclassified as diseased. This is crucial
for precise pesticide application and reducing pesticide misuse.
Simultaneously, the high recall rate signifies an extremely low
false negative rate, maximizing the detection of genuinely
diseased leaves—essential for early disease warning and control.
The high F1 score further confirms the model achieves an ideal
balance between precision and recall, showcasing its outstanding
overall performance.

Notably, in five-fold cross-validation, although metrics in Fold-
4 showed slight fluctuations, all remained above 98.5%, while
the other four folds demonstrated high consistency. This
stability demonstrates the model’s strong adaptability to different
data subsets and robust performance. Overall, the high
performance and reliability of the MobileNet-GDR model in
grape leaf disease detection make it highly valuable for practical
agricultural applications.

TABLE 5 Results of the five-fold cross-validation of the MobileNet-GDR.

nggi;‘f Acc(%) P(%) R(%) F1(%)
Fold-1 99.45 99.35 99.35 99.25
Fold-2 99.63 99.25 99.53 99.47
Fold-3 99.68 99.50 99.45 99.60
Fold-4 98.58 98.55 98.53 98.54
Fold-5 99.63 99.63 99.63 99.60
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3.6 The influence of parameter settings in
group convolution and PReLU on the
model results

Figure 10a demonstrates the impact of group convolution
configuration on model performance and complexity in grape leaf
disease detection. The results reveal a critical trade-off between
accuracy and parameter efficiency based on the number of groups.
When increasing groups from 1 (standard convolution) to 4, the
model maintains peak classification accuracy (99.625%) while
reducing parameters from 2.50M to 1.75M, achieving a 30%
reduction. This demonstrates that moderate grouping significantly
enhances model efficiency without compromising performance,
making it suitable for resource-constrained deployment
environments. However, beyond 4 groups, model performance
deteriorates substantially, with accuracy dropping from 99.625%
t0 95.625%. Excessive grouping disrupts feature interaction between
channels, severely limiting the model’s representational capacity.
Although parameter count further decreases to 1.63M, the accuracy
loss becomes unacceptable for practical applications. Therefore, 4
groups represents the optimal configuration for this task, achieving
the best balance between classification accuracy and model
efficiency while maintaining practical applicability.

Figure 10b demonstrates the effect of PReLU parameter o on
model performance. The results show that 0=0.25 achieves optimal
performance with 99.625% accuracy and 0.0253 loss. This value
provides the best balance for feature learning and gradient
propagation. When o increases beyond 0.25, both accuracy and
loss deteriorate, indicating impaired learning capability. Conversely,
lower o values (0.10-0.20) yield suboptimal results. These findings
highlight the importance of proper activation function
configuration for agricultural vision tasks. The study establishes
0=0.25 as the optimal initialization for PReLU in grape leaf disease
detection, providing guidance for similar agricultural applications.
This configuration ensures effective model performance while
maintaining training stability.

4 Discussion

The proposed MobileNet-GDR algorithm demonstrates
significant advancements in lightweight grape leaf disease
identification, achieving an exceptional classification accuracy of
99.625% while maintaining remarkably low computational
requirements of just 1.75M parameters and 0.18G FLOPs. This
outstanding performance positions our model as a highly effective
solution for real-time agricultural applications, successfully
addressing the critical challenge of balancing accuracy with
efficiency in mobile deployment scenarios. The experimental
results clearly indicate that MobileNet-GDR surpasses existing
lightweight models, including FasterNet and GhostNet, in both
diagnostic precision and computational efficiency, establishing its
superiority in the field of mobile-based plant disease recognition.

The integration of depthwise separable convolutions with
grouped convolutions forms the foundation of an exceptionally
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The influence of parameter settings in group convolution and PReLU on the model results. (@) The impact of the number of groups in grouped
convolutions on model results, (b) The impact of parameter settings in PReLU on model results.

efficient feature extraction system, significantly reducing
computational overhead while maintaining robust feature
representation capabilities. This optimized approach to feature
extraction is particularly crucial for identifying subtle disease
patterns that may be easily overlooked in conventional models.
Furthermore, the strategic incorporation of PReLU activation
functions substantially improves the model’s nonlinear
representation capacity compared to standard ReLU
implementations, enabling more sophisticated pattern recognition
for disease classification tasks. The redesigned feature fusion
mechanism represents another critical advancement, as it
effectively minimizes information loss during downsampling
operations - a common limitation in many lightweight
architectures that can severely impact performance on fine-
grained classification tasks. This capability could revolutionize
crop management practices by providing timely and accurate
disease detection, ultimately leading to more targeted
interventions and reduced pesticide usage.

A critical question arising from this work is how MobileNet-
GDR conceptually and empirically distinguishes itself from other
efficient architectures such as ShuffleNet and GhostNet, which also
employ channel manipulation and enhanced non-linearity.
Conceptually, ShuffleNet introduces channel shuffling to facilitate
information flow between grouped convolutions, a mechanism
primarily aimed at maintaining accuracy as network width
increases. In contrast, our use of grouped convolution in
MobileNet-GDR is more targeted: it serves as a direct and
parameter-efficient replacement for the computationally expensive
pointwise convolutions in MobileNetV4, forming a leaner base.
More importantly, we pair this with PReLU not as a generic non-
linearity, but explicitly to amplify the model’s sensitivity to the low-
intensity, high-frequency textural patterns that characterize early-
stage disease spots. This design philosophy is inherently task-
specific, prioritizing feature quality for fine-grained pathology
over generic classification. While ShuffleNet and GhostNet are
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formidable competitors on general benchmarks, MobileNet-GDR
consistently achieves superior accuracy under comparable or lower
computational budgets on our grape disease dataset. We attribute
this to the fact that our model’s inductive biases are more aligned
with the demands of the task. The PReLU’s adaptive gradients
appear better suited for capturing the nuanced visual cues of plant
diseases than the fixed operations in ShuffleNet or the linear
transformations in GhostNet modules.

Despite the promising results, this study is not without its
limitations, which also present avenues for future work. A primary
consideration is the generalizability of the model. The dataset used
for training and validation, while substantial, was acquired under a
specific set of conditions regarding lighting, leaf orientation, and
background. Consequently, the model’s performance may be
susceptible to variations encountered in truly uncontrolled field
environments, such as different times of day, weather conditions, or
occlusions by other plant parts. This potential dataset bias warrants
further investigation. Furthermore, while our proposed
architectural modifications have demonstrated efficacy in terms of
accuracy and computational efficiency, their practical deployment
on resource-constrained edge devices remains to be fully quantified.
The reported high inference speed was achieved on a high-
performance computing server. A more rigorous validation
involving benchmarking on a range of actual mobile and
embedded hardware (e.g., smartphones, Raspberry Pi, or Jetson
Nano) is necessary to conclusively support our claims of real-time
capability in practical applications. Finally, although Grad-CAM
visualizations suggest that our model focuses on semantically
relevant regions, a more rigorous, quantitative assessment of
model interpretability is lacking. The current evaluation is
primarily qualitative. Future work would benefit from engaging
domain experts to systematically evaluate the clinical relevance of
the model’s explanations or by employing quantitative metrics for
interpretability, which is crucial for building trust with end-users in
agricultural settings.
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5 Conclusions

This paper addresses the practical needs of grape leaf disease
diagnosis by proposing a lightweight image classification algorithm,
MobileNet-GDR. Through careful design of the network
architecture and optimization of training strategies, the algorithm
achieves high accuracy while significantly improving computational
efficiency. Compared to existing mainstream lightweight models,
MobileNet-GDR achieves over 20% higher computational efficiency
while maintaining comparable accuracy. The significance of this
study lies not only in proposing an efficient grape disease
classification algorithm but also in exploring optimization paths
for lightweight CNNs in agricultural intelligence.

Future research will focus on expanding the model’s capabilities
through cross-crop disease transfer learning, investigating its
generalizability across different plant species and disease types.
Concurrently, we plan to develop user-friendly mobile
applications to bridge the gap between theoretical research and
practical implementation, facilitating seamless technology transfer
to agricultural stakeholders. This deep integration of advanced deep
learning techniques with modern agricultural practices is expected
to revolutionize disease management strategies by enabling: (1)
early disease detection through real-time field diagnosis, (2) data-
driven decision-making for precision pesticide application, and (3)
large-scale crop health monitoring systems. Such technological
advancements will contribute significantly to sustainable
agricultural development by reducing chemical inputs,
minimizing crop losses, and optimizing resource allocation in
precision farming systems.
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