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Introduction: Real-time diagnosis of strawberry diseases plays a key role in
sustaining yield and improving field management. However, achieving reliable
recognition remains challenging. Lesions often display irregular shapes and
appear at different scales, which complicates detection. Field images also
contain cluttered backgrounds, while many diseases look visually alike, making
differentiation more difficult. In addition, collecting data under real conditions is
not easy, resulting in small datasets on which deep learning models tend to
overfit and fail to generalize.

Methods: To address these issues, this study introduces ENet-CAEM, a
redesigned EfficientNetBO framework equipped with modules tailored for
disease recognition. The Channel Context Module helps the network capture
key lesion features while suppressing background noise. The Multi-Scale Efficient
Channel Attention module applies multiple one-dimensional filters of varying
sizes in parallel, enabling the model to highlight critical patterns, tell apart similar
diseases, and adapt to lesions of different scales. A lightweight version of Atrous
Spatial Pyramid Pooling is further integrated, allowing the network to perceive
features at multiple spatial ranges. To balance local detail with global context, a
mixed pooling strategy is adopted, enhancing robustness when lesion shapes
change. Finally, Learnable DropPath and label smoothing are applied as
regularization strategies, reducing overfitting and improving generalization on
limited data.

Results: Experiments show that ENet-CAEM achieves 85.84% accuracy on a self-
built dataset, outperforming the baseline by 4.29%. On a public strawberry
dataset, the model reaches 97.39%, surpassing existing approaches.
Discussion: The proposed ENet-CAEM model shows superior accuracy and
robustness over existing methods, providing an effective solution for
strawberry disease recognition in practical field environments.

strawberry disease classification, EfficientNetB0O, deep learning, multi-scale
featurefusion, image classification
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1 Introduction

China is the world’s largest strawberry producer and has the
greatest cultivation area (Liu et al., 2023). Strawberries have strong
economic and nutritional value, containing bioactive nutrients
linked to lower risks of cancer, high cholesterol, and heart disease
(Liu et al., 2020a). However, diseases are common during the leaf
and fruit stages, and inexperienced farmers often find it difficult to
identify them quickly and apply appropriate control measures.
Delays reduce quality and yield and cause major economic losses.
(Barbedo, 2022) pointed out that traditional manual diagnosis is
slow, labor-intensive, and subjective, making early and accurate
disease diagnosis difficult. Thus, an efficient and accurate strawberry
disease identification model is essential for timely detection, reliable
diagnosis, and precise management.

With advances in artificial intelligence, machine learning has
become essential for intelligent recognition, enabling computers to
learn from data (Bishop and Nasrabadi, 2006). Deep learning, using
multilayer neural networks, improves hierarchical feature
representation and generalization (Hinton and Salakhutdinov,
2006). Convolutional neural networks demonstrated success in
visual recognition, such as handwritten digit classification (LeCun
et al, 2002), and AlexNet (Krizhevsky et al, 2012) achieved
breakthroughs on ImageNet, popularizing deep convolutional
networks. Later models such as ZFNet (Zeiler and Fergus, 2014),
VGGNet (Simonyan and Zisserman, 2014), and GoogLeNet
(Szegedy et al, 2015) further enhanced performance through
architectural optimization and multi-scale feature fusion. These
advances have extended deep learning to applications like
agricultural image analysis.

Recent studies have made significant progress in plant disease
classification. (Ramdani and Suyanto, 2021) utilized convolutional
neural networks (CNNs) to detect strawberry leaf images,
comparing VGG16, ResNet50, and G-Net, with ResNet50
achieving the highest accuracy. (Hassan et al., 2021) classified 38
disease categories across 14 plants in the PlantVillage dataset using
InceptionV3, InceptionResNetV2, MobileNetV2, and
EfficientNetB0, achieving high accuracy. (Degadwala et al.,, 2023)
proposed a hop disease classification method based on transfer
learning, comparing AlexNet, VGG16, and ResNet50. However,
most of these approaches rely on “heavyweight” architectures with
large parameter counts and high computational demands, limiting
their deployment in resource-constrained agricultural scenarios.

In practical applications, disease recognition systems are often
deployed on mobile devices, edge platforms, or low-power
monitoring systems with limited computing resources, which
cannot support the high demands of complex deep neural
networks. Therefore, developing a lightweight strawberry disease
recognition model that maintains accuracy while reducing
computational cost and ensuring fast response is crucial for real-
world agricultural deployment.

To enhance recognition efficiency and deployment adaptability,
some studies focus on lightweight model design and architectural
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improvements. (Wang and Cui, 2024) proposed a strawberry
disease recognition method based on MobileNetV3-Small, using
data augmentation, an enhanced Inception_ A module, the ULSAM
attention mechanism, and CondConv replacement to achieve high
accuracy with fewer parameters. (Hossain et al., 2018) developed a
lightweight CNN framework with a fine-tuned VGG16, achieving
high fruit classification accuracy on two datasets. (Tian et al., 2019)
introduced a five-layer CNN for corn disease recognition, obtaining
relatively high accuracy. However, in natural environments, factors
such as noise and varying light conditions pose additional
challenges for image feature extraction and recognition.

In further research, (Wu et al, 2025) proposed D-YOLO, a
lightweight model for strawberry health recognition that achieves
an effective balance between accuracy and detection speed. (He
et al, 2024) developed KTD-YOLOVS, based on YOLOVS,
integrating KernelWarehouse convolution, the Triplet Attention
mechanism, and a DBB parameter-sharing structure to enhance
strawberry leaf disease detection. However, recognition robustness
and multi-scale adaptability remain limited in complex
environments with overlapping or unevenly distributed lesions.
(Xu et al, 2021) introduced TCI-ALEXN, an enhanced AlexNet
incorporating Inception modules, global pooling, and transfer
learning, which effectively identified four types of corn diseases
but still exhibited confusion among visually similar categories.
(Wongsila et al., 2021) designed a CNN-based system for
detecting mango anthracnose, achieving over 70% accuracy,
though its performance was constrained by limited training data
and low classification precision.

In summary, existing methods for strawberry disease
identification still face several challenges. First, the high visual
similarity between complex backgrounds and disease features in
natural environments often leads to misclassification. Second, the
irregular morphology and significant scale variation of lesions
restrict the effectiveness of traditional models in multi-scale
feature extraction. Third, limited sample availability and class
imbalance weaken the model’s generalization capability, reducing
its practicality in real-world agricultural applications.

Given the above limitations, this paper proposes a lightweight
strawberry disease recognition framework, ENet-CAEM, which
integrates multiple structural optimizations to enhance multi-
scale lesion detection, background suppression, and small-sample
learning. The main contributions are as follows: (1) A Channel
Context Module (CCM) is introduced to reduce background
interference through channel-level context modeling.
Additionally, a Multi-Scale Efficient Channel Attention
(MultiScaleECA) module with lightweight spatial attention
strengthens the model’s focus on lesion textures and edges while
suppressing background noise. (2) A Lightweight Atrous Spatial
Pyramid Pooling (LightASPP) module expands the receptive field
using different atrous rates and incorporates a Mixed Pooling (MP)
strategy to balance global and local features, improving robustness
to lesion variability and efficiency in resource-limited
environments. (3) A learnable DropPath regularization strategy is
applied to enhance generalization under small-sample conditions.
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2 Materials and methods
2.1 Image source and acquisition

The study collected images from the high-quality strawberry
planting park in Jinhe Town, Hohhot City, Inner Mongolia
Autonomous Region, chosen for its concentrated and representative
strawberry cultivation. The research team systematically acquired
diverse images of healthy and diseased strawberries in March 2025.

During the image acquisition phase, the research team selected
the OPPO OnePlus Ace3 smartphone as the capturing device. All
images were saved at a resolution of 4096 x 3512 pixels, ensuring
sufficient clarity for lesion identification. In total, 1,486 images were
obtained, including both healthy and diseased strawberry leaves and
fruits. The dataset covers six major disease types: angular leaf spot,
powdery mildew, and leaf spot on leaves, and anthracnose, powdery
mildew, and gray mold on fruits, along with corresponding healthy
samples. Representative examples are shown in Figure 1.

2.2 Data preprocessing

In this study, a systematic data preprocessing workflow was
developed to ensure that the strawberry disease image dataset was
high-quality, representative, and suitable for deep learning model
training. The workflow included image selection, data
augmentation, and class balancing with uniform resizing,
providing a robust foundation for subsequent model development.

10.3389/fpls.2025.1701740

First, raw images were first carefully screened to remove non-
compliant samples, including those with abnormal lighting, motion
blur, or defocus, and visual interference such as occlusions or
reflections. Following this initial cleaning, images were labeled
based on authoritative references, such as the Strawberry Pest and
Disease Diagnosis and Control Atlas, and with guidance from
strawberry experts to ensure accurate category assignment. All
labeled results were then cross-checked by two experts, with
disputed images either re-evaluated or removed, thereby
guaranteeing both the consistency and reliability of the
annotations. This process resulted in 1,348 high-quality images
that preserved the diversity and representativeness of the dataset.

Secondly, to address the limited number of filtered images, data
augmentation was applied to expand the training dataset. Data
augmentation artificially expands the training dataset through
various transformations, and has been shown to effectively
mitigate model overfitting (Khosla and Saini, 2020; Maharana
et al., 2022). Geometric transformations included random
rotations (-45° to +45°), horizontal flips (50% probability), and
random cropping from 200x200 regions followed by resizing to
224x224 pixels. Image quality was enhanced with Gaussian blur
(kernel radius 0.5-1.5) and Gaussian noise (¢ = 10), while color
adjustments varied brightness (0.7-1.3%), contrast (0.8-1.2%), and
saturation (0.6-1.4x). In each augmentation cycle, two to three
transformations were randomly combined to generate two distinct
augmented versions per original image, increasing dataset diversity
and improving model generalization. Furthermore, class imbalance
was addressed using Scikit-learn’s resample method. Images were
organized by category and sampled with or without replacement to

FIGURE 1

Healthy and diseased strawberry leaves and fruits (a) angular_leafspot (b) powdery_mildew_leaf (c) leaf_spot (d) healthy_leaf (e)
anthracnose_fruit_rot (f) gray_mold (g) powdery_mildew_fruit (h) healthy_ripe_fruit.
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achieve target class sizes. Oversampling ensured adequate
representation for underrepresented categories, whereas
downsampling prevented bias from overrepresented classes. All
images were subsequently resized to 224x224 pixels and
converted to RGB format, ensuring consistent input for model
training. Figure 2 illustrates original and augmented images for

10.3389/fpls.2025.1701740

healthy and diseased strawberries, with the original images on the
left and the augmented images on the right.

The data augmentation process expanded the dataset to 2,261
samples (Table 1). Stratified random sampling divided the dataset
into training, validation, and test sets in an 8:1:1 ratio. The training
set facilitated feature learning and parameter optimization, the
validation set guided hyperparameter tuning and mitigated

(d) healthy leaf

(9) powdery mildew fruit

FIGURE 2

(h) healthy ripe fruit

Data augmented healthy and diseased strawberry leaves and fruits (a) angular_leafspot (b) powdery_mildew_leaf (c) leaf_spot (d) healthy_leaf (e)
anthracnose_fruit_rot (f) gray_mold (g) powdery_mildew_fruit (h) healthy_ripe_fruit.
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TABLE 1 Strawberry disease dataset.

Category name Category Original Augmented
label dataset dataset
angular_leafspot 0 146 288
powdery_mildew_leaf 1 157 299
leaf_spot 2 158 296
healthy_leaf 3 142 269
anthracnose_fruit_rot 4 143 266
powdery_mildew_fruit 5 286 293
gray_mold 6 191 284
healthy_ripe_fruit 7 125 266
sum 8 1348 2261

overfitting, and the test set provided an independent evaluation of
model performance and practical applicability. Dataset partitioning
is shown in Figure 3.

3 Strawberry disease classification
algorithm model

3.1 EfficientNet network architecture

In recent years, CNNs have achieved remarkable success in
plant disease recognition and dominate agricultural image analysis
(Abade et al., 2021). Classic architectures such as AlexNet,
VGGNet, and ResNet (He et al, 2016) are widely used due to
their strong feature extraction capabilities. The EfficientNet series is
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FIGURE 3
The number of training, validation, and test sets for different
diseases.
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a lightweight architecture that jointly scales network width, depth,
and input resolution, reducing complexity while maintaining high
accuracy (Tan and Le, 2019). This makes it well-suited for resource-
constrained field applications (Wei et al., 2022; Wang et al,, 2023).
Among them, EfficientNetB0, balancing accuracy and efficiency, has
shown strong performance in plant disease recognition (Liu et al.,
2020b) and was selected as the backbone for the strawberry disease
model. EfficientNetB0O consists of nine stages. Stage 1, also called
“stem_conv,” serves as the network’s input stage. It applies a 3x3
convolutional layer, followed by batch normalization (BN) (loffe
and Szegedy, 2015) and the Swish activation (Ramachandran et al,
2017), performing the initial spatial downsampling and feature
mapping. Stages 2-8 stack MBConv blocks (Sandler et al., 2018)
for feature extraction, while Stage 9 forms the classification head
with a 1x1 convolution, BN, Swish, average pooling, and a fully
connected layer. Each MBConv block includes a 1x1 expansion
convolution, depthwise separable convolution (Chollet, 2017),
squeeze-and-excitation module, 1x1 reduction convolution, and
Dropout to reduce overfitting. The overall architecture is shown in
Figure 4, with the MBConv block detailed in Figure 5.

3.2 ENet-CAEM network architecture

Based on EfficientNetB0, this study proposes an enhanced network
architecture, ENet-CAEM, to address key challenges in strawberry
disease recognition, including complex background interference, lesion
scale diversity, and limited generalization under small sample
conditions. The overall architecture is shown in Figure 6. Through
several multi-level improvements, the model significantly enhances
disease recognition performance in complex agricultural environments.
It consists of the initial stem_conv layer followed by a sequence of
MBConv blocks. The enhancements are as follows:

1. Within each MBConv block, the original SE module is
replaced with the MultiScaleECABlock, which captures
lesion features at different scales via parallel multi-branch
convolutions (3x3, 5x5, 7x7), it also incorporates a
dynamic weight fusion mechanism to adjust feature
importance across scales.

2. In Stages 4-6, a Channel Context Module (CCM) is
embedded after the depthwise convolution of each
MBConv block to model channel-level contextual
information and enhance focus on critical lesion features.
To improve mobile deployment efficiency, the number of
MBConv blocks is reduced from 16 to 13, lowering
computational complexity while maintaining performance.

3. A Learnable DropPath mechanism is applied to MBConv
residual connections, a dynamic weight fusion mechanism
that adaptively adjusts the importance of features
across scales.

4. After MBConv feature extraction, a lightweight Atrous
Spatial Pyramid Pooling (LightASPP) module is
integrated. Its output passes through a Mixed Pooling
layer, combining average and max pooling, followed by a

frontiersin.org
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FIGURE 4
EfficientNet network architecture diagram.

Dropout layer and a fully connected layer to map features
to disease categories. The improved MBConv structure is

shown in Figure 7.

3.2.1 MultiScale efficient channel attention

To improve the model’s ability to detect lesions of varying sizes,
this paper proposes the MultiScaleECA module based on the
Efficient Channel Attention (ECA) mechanism (Wang et al,
2020). While ECA efficiently captures inter-channel relationships

Stage 6 <

mechanism to enhance focus on edges and textures, improving
lesion localization and suppressing background noise. The overall
architecture is shown in Figure 8, with pseudocode in Algorithm 1.
The module consists of two main components:

Input: Feature map XeR¥©™Y Kernel sizes K={3,5,7}
Output: Xo,+
1:Fayg—GlobalAvgPool2d(X)
wise compression

//Channel-

2: Fyec—Transpose(Fayg) //Reshape to [B,1,C]
using 1D convolutions, single-scale kernels limit adaptability to 3 for keK do
large lesion size variations. MultiScaleECA employs multiscale 1D 4: FueConviDy (Fyeo) //Multi-scale parallel processing
convolutions to model channel dependencies across different 5. end for
receptive fields. It also integrates a lightweight spatial attention 6: W, —o( S, F)  //Multi-scale weight fusion
B B ot S sinoid ¥
N ,| Depthwise | Swish 4 : N O o Output
a— » » » »
Conv 1 iy erge Fot Fe2 ) Conv 1 Dropaut T P kg
Pooling
SENet
FIGURE 5
MBConv architecture diagram.
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ENet-CAEM network architecture diagram.

7: X' «—X®@Wc
8: if spatial_attention_enabled then

//Channel recalibration

9 Fhax—MaxPoolcpanner (X') //Max pooling

10 FreantAvgPo0lchanne: (X') //Avg pooling

11 Wse—o(Convs.7(Concat(Fupax, Fnean)))
//Spatial attention

12 Xour<X'®Ws //Spatial weighting

13: end if

14 return Xyt

Algorithm 1. MultiScaleECA module.

1. Multiscale Channel Attention

To enhance sensitivity to lesions of varying sizes, the module
models channel dependencies across multiple scales through multiscale
one-dimensional convolutions. The computation is as follows (see
Equations 1-6):

1. Global average pooling is applied to the input feature map
X € RBXOHXW (i1 et al., 2013) to extract channel-wise statistics

while compressing spatial dimensions:

F,,, = AvgPool(X) € RF*Cx1x1 (1)

Here, B is the batch size, C is the number of channels, and
H,W are spatial dimensions. This operation captures global
semantic information, enhancing the model’s ability to recognize
lesions of varying sizes.

2. To adapt to subsequent one-dimensional convolution
modeling, F,, is transposed to form a channel sequence:

Fyec = Transpose(F,,,) € RBX1xC

2)

This operation reshapes the feature representation, enabling
effective modeling of inter-channel dependencies through
subsequent 1D convolutions.

3. To capture multiscale channel context, parallel 1D
convolutions with kernel sizes of 3, 5, and 7 are applied to F,,:

BN+ BN+ 5
Swish .| Swish ! Channel 1 .
Depthwise |~ ~ i : Learning N »  Output
Conv 1x1 Conv 3x3 s N Context : Conv 1x1 DropPath (WY Feature Map
! Module |
FIGURE 7
Improved MBConv Architecture Diagram.
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FIGURE 8
Multi-scale efficient channel attention.
F(k) = Conv1Dk(F,.), k = 3,5,7 (3) 6. Finally, the generated channel weights are multiplied by the

F(k) represents the channel attention at each scale, enabling the
model to capture dependencies across channels and better detect
lesions of varying sizes.

4. To integrate the multiscale channel information, the above
multi-scale convolution results are fused through averaging:

n
Fpys = £ > Conv1Dk(F,.),n = 3 (4)
=1

Here, n = 3 denotes three scales, and F,,; is the fused multi-scale
channel response, enhancing attention robustness by aggregating
information across scales.

5. To obtain the importance score for each channel, use Sigmoid
activation to generate a weight vector for the fusion result:

W, = 0(F,,) € R*C<11 (5)

o(-) denotes the sigmoid function, and W, represents the
attention weights of each channel, indicating its importance for
the current image and guiding channel-wise feature modulation.

Frontiers in Plant Science 08

original input feature map in a channel-wise manner to perform
channel recalibration:

X' =X-W, (6)

X' is the weighted feature map, enhancing informative features,
suppressing redundant channels, and improving the model’s ability
to distinguish lesions of different sizes.

2. Lightweight Spatial Attention

To capture spatial characteristics such as lesion edges and
textures, a lightweight spatial attention module is added after
channel attention. Max pooling and average pooling along the
channel dimension produce a two-channel feature map, which is
concatenated. This computation is detailed in Equation 7:

F

spatial = Concat[AvgPool (X'), MaxPool (X')] € RP*> X (7)

AvgPool (X') and MaxPool (X’) denote average and max
pooling along the channel dimension, and Fg,,4, is their two-
channel concatenation, capturing spatial features for blurred or
overlapping lesions.

frontiersin.org
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®)

A 7x7 convolution followed by Sigmoid activation generates the

W, = 6(Conv,,,(Fspatial)) € RE*>*HxW

spatial weight map Wy, as defined in Equation 8, which is applied to
X' to enhance lesion regions, suppress background, and improve
recognition accuracy and robustness (Woo et al., 2018).

3.2.2 Channel context module

To improve robustness against complex background
interference, a Channel Context Module (CCM) is added in
intermediate stages. Inspired by the SE mechanism (Hu et al,
2018), it uses global channel statistics to recalibrate features,
thereby enhancing lesion regions and suppressing background
noise. For input X € R*H*W  global average pooling produces a
context vector, which passes through a 1x1 convolution to reduce
channels to C/r with ReLU, then a second 1x1 convolution restores
channels to C. Sigmoid activation generates context-aware weights
0(Z), applied to X via element-wise multiplication to yield X'.
Batch normalization is applied during compression and
reconstruction for stability. Figure 9 shows the structure, and
Algorithm 2 provides pseudocode.

Input: Feature map XeR®™" Reduction ratio r

Output: X'

. Fgap—GlobalAvgPool2d(X) //Channel-wise statistics
: Z4<—Conv1x1(C, C/r)(Fqap) //Compress to C/r channels
: Zy+<BatchNorm(Z,)
: Z1—RelLU(Z;)
: Zy«Conv1x1(C/r,C)(Zy) //Recover original channels

//Stabilize training
//Add nonlinearity

: Z,«BatchNorm(Z,) //BN for reconstruction
‘Wee0(Z7)
X e X® W,
: return X'

//Sigmoid attention weights
//Channel-wise scaling

O 0 N O o M WO N =

Algorithm 2. Channel context module.

3.2.3 Lightweight atrous spatial pyramid pooling
In strawberry disease detection, lesions often exhibit multi-scale
variation, diffusion, and morphological diversity, challenging
traditional convolutions in capturing spatial context. The
LightASPP module uses a streamlined set of multi-scale dilated
convolutions to expand the receptive field and enhance multi-scale
representation while controlling computational cost. Compared
with standard ASPP (Chen et al., 2017), LightASPP introduces
three lightweight branches with dilation rates of 3, 6, and 9, each

10.3389/fpls.2025.1701740

comprising a 3x3 dilated convolution followed by BN and ReLU,
omitting redundant 1x1 convolutions. The global average pooling
path is retained, with output channels compressed to 128 and
aligned via bilinear interpolation, preserving global context
efficiently. Multi-scale features are fused through direct
concatenation without an additional 1x1 convolution.

This module is integrated into the top feature layer of
EfficientNetBO to enhance adaptability to complex lesion
morphology while maintaining a lightweight design. The small
(rate=3), medium (rate=6), and large (rate=9) dilation branches
capture early, typical, and diffuse lesions, respectively, while the
global pooling path improves recognition of densely distributed
spots. The LightASPP structure is shown in Figure 10, and its
pseudocode is provided in Algorithm 3.

Input: Feature map XeR¥©™ Atrous rates R={3,6,9}
Output: X'

T: Frist—empty list
2: forreRdo // Process each dilated branch

3: F.Conv3x3_dilation=r(X) // 3x3 dilated conv (pad
=r)

F.<—BN(F.)

Fr—RelLU(F.)

//Initialize feature storage

Fiist append(Fry // Add to feature list

4:
5:
6
7: end for

8: Fgap<GlobalAvgPool(X) // Global context [1x1]
9:
//Compress to 128 channels

10 Fyap—BN(Fyap)

11 Fgap—ReLU(Fgap)

12: Fgap—BilinearUpsample(Fg.p) to size HxW

Fgap—1x1 Conv(Fgap) to reduce channels to 128

//
Bilinear interpolation

13 Flist append(Fgap) // Add global feature

14: X'«Concat(Fyist) // Channel-wise concatenation
15: return X’

Algorithm 3. LightASPP module.

3.2.4 Mixed pooling

To enhance feature extraction flexibility and robustness, a Mixed
Pooling strategy is introduced. Traditional pooling methods—max and
average pooling—each have limitations: max pooling highlights salient
features but neglects global context, while average pooling preserves
overall structure but weakens local detail sensitivity. Mixed Pooling

\

o " ’ " 2
Input feature map | Output feature map
—> P | . o Rel ol BN e Feature Fusion —>
YeRCHW ‘ Ir I o(z) XERCHN

X00(2) T

FIGURE 9
CCM module structure diagram.
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FIGURE 10
LightASPP architecture diagram.

resolves this trade-off through a learnable weighted fusion of both
operations, controlled by a trainable parameter A € [0,1], which
adaptively balances local and global information. It also
complements regularization methods such as data augmentation,
dropout, and weight decay, improving model generalization (Gu
et al, 2018). The formulation is given in Equation 9 (Yu et al., 2014):

1

|Ry

> g

(p9)ER;;

=N +(1=-A)-
Vij r’naé)%‘_jxkpq ( )

(p:q) ©)

Here, A determines the contribution of max and average
pooling, enabling the network to adaptively learn the optimal
pooling strategy for varying feature scales and data distributions.
This dynamic mechanism enhances the model’s robustness and
adaptability across complex visual tasks.

3.2.5 Learnable DropPath

DropPath is a regularization strategy that randomly removes
network paths—such as residual connections. This process
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Output feature map
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effectively creates an implicit ensemble and enhances model
generalization (Huang et al., 2016). In the traditional DropPath
method, paths are dropped with a fixed probability set by
hyperparameters, typically applied uniformly across all layers.

To achieve finer control over path activation during training,
the Learnable DropPath variant assigned to each block an
individually learnable drop probability (Tan and Le, 2021). This
adaptive mechanism allows the model to dynamically adjust path
importance. It overcomes the rigidity of fixed drop rates, thereby
enhancing both training flexibility and overall model performance.

4 Results and analysis

4.1 Experimental environment and
parameter settings

Experiments were conducted on a Windows 11 system with an
Intel Xeon Gold 6330 CPU and an NVIDIA RTX 3090 GPU,
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implemented in PyTorch 2.4.1 with CUDA 12.8. The model was
trained for 200 epochs using the Adam optimizer with a batch size
of 32. To avoid convergence issues caused by a fixed learning rate, a
cosine annealing schedule was adopted for dynamic learning
rate adjustment.

4.2 Evaluation metrics

In this study, model performance is analyzed through four
commonly used metrics: Accuracy, Precision, Recall, and F1 Score.
Ahmed and Yadav pointed out that these metrics are of significant
importance for evaluating plant disease recognition models (Ahmed
and Yadav, 2024). The definitions and calculation formulas are
presented in Equations 10-13 (Fawcett, 2006):

1. Accuracy: the percentage of samples that the model predicts
correctly from the total set of samples:

TP+TN (10)

Accuracy = oy pprrn

2. Precision: the proportion of predicted positive samples that
are actually positive:

Precision = 12 (€3))
3. Recall: the proportion of samples that are actually positive
and are correctly predicted as positive samples:

Recall = TPE% (12)

4. F1 Score: the balance between precision and recall, calculated
as their harmonic mean.

_ 2XPrecisionxRecall
F1 Score = Precision+Recall (13)

Here, TP denotes the number of positive samples correctly
identified as positive, TN denotes the number of negative samples
correctly identified as negative, FP denotes the number of negative

10.3389/fpls.2025.1701740

samples incorrectly identified as positive, and FN denotes the
number of positive samples incorrectly identified as negative.

4.3 Comparative experiment

4.3.1 Model performance comparison on self-
built dataset

To evaluate the performance of the proposed model, we
compared ENet-CAEM with several classic architectures,
including AlexNet, VGG16, ResNet, GoogleNet, MobileNetV2,
MobileNetV3-Small, RegNet (Xu et al., 2022), ConvNeXt (Liu
et al., 2022), and MobileViT (Mehta and Rastegari, 2021). The
results are presented in Table 2. (Dakwala et al., 2022) pointed out
that CNN architectures vary significantly in fruit classification
performance, providing the basis for our comparison. As shown
in Table 2, ENet-CAEM outperformed traditional CNNs on the
strawberry dataset, improving accuracy and recall by 4.29% and
4.09% over EfficientNetB0O, with only a 2.53 MB increase
in parameters.

As shown in Table 3, ENet-CAEM consistently outperformed
other models in strawberry disease recognition. For leaf diseases, it
achieved accuracies of 89.66%, 86.21%, and 83.87% for angular leaf
spot, powdery mildew, and leaf spot, respectively. It ranked among
the top across all models, indicating strong discriminative capability
in handling leaf diseases characterized by complex lesion
morphology and blurred boundaries. For fruit diseases, accuracies
reached 88.89% for anthracnose, 89.66% for gray mold, and 75.61%
for fruit powdery mildew. This indicated that the improved model
possessed high feature sensitivity and generalization capability. It
effectively handled complex characteristics such as small spots,
blurred diffusion, and powder-like textures on diseased fruit
surfaces. Healthy samples were also accurately classified, with
92.00% and 86.36% accuracy for healthy leaves and fruits,
respectively. This performance remained consistently high across

TABLE 2 Performance comparison of self-built dataset on different classification networks.

Model Accuracy (%) Precision (%) Recall (%) Fi1Score (%) Params (MB) Flops (GB)
AlexNet 69.00 69.00 69.00 69.00 14.60 0.310
ResNet 76.00 78.00 76.00 75.00 2129 3.680
VGG16 76.00 77.00 76.00 76.00 13429 15.470
GoogleNet 81.12 83.45 80.70 80.72 5.61 3.021
MobileNetV2 79.00 81.00 79.00 78.00 223 0.319
MobileNetV3-small 81.00 83.00 81.00 81.00 153 0.060
RegNet 8155 8252 8126 8135 2.32 0.249
ConvNeXt 82.83 83.61 8258 8270 27.80 4450
MobileViT 8326 8475 82.99 8339 0.95 0.270
EfficientNetB0 8155 81.60 8150 8152 402 0.410
ENet-CAEM 85.84 86.53 85.59 8575 6.55 0.461
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TABLE 3 Strawberry disease identification results.

Test set precision

Angular_  Powdery_ Powdery_ Healthy_

Leaf_spot Healthy_ Anthracnose_ Gray_mold

kf,jf)fs‘mt [2:??,}:‘)’- %) leaf (%) fruit_ rot (%) (%) ;:'L'}if?l’/f)— s
AlexNet 58.00 73.00 78.00 70.00 73.00 63.00 65.00 72.00
ResNet 79.00 79.00 78.00 95.00 77.00 84.00 67.00 61.00
VGG16 74.00 87.00 68.00 86.00 77.00 79.00 66.00 76.00
GoogleNet 77.78 86.67 100.00 92.59 75.00 82.14 65.91 87.50
MobileNetV2 76.00 72.00 82.00 92.00 81.00 79.00 70.00 92.00
:f;);;leNetV:i— 84.00 96.00 77.00 86.00 69.00 86.00 71.00 93.00
RegNet 83.33 83.33 80.00 88.00 88.00 82.76 69.05 85.71
ConvNeXt 78.79 92.86 81.48 88.00 85.19 92.86 71.43 78.26
MobileViT 89.29 83.33 92.00 96.00 89.29 92.31 61.90 7391
EfficientNetBO 89.66 93.10 77.42 89.66 70.00 82.76 74.19 76.00
ENet-CAEM 89.66 86.21 83.87 92.00 88.89 89.66 75.61 86.36

all models and effectively reduced the risk of misclassifying healthy  capture finer features through bilinear pooling. It achieved high
samples as diseased. accuracy and F1 scores on our dataset, ranking second only to

Overall, ENet-CAEM achieved superior precision and  ENet-CAEM. However, its high model complexity severely limits its
generalization compared to AlexNet, EfficientNet, MobileNetV3,  deployment potential on resource-constrained mobile or embedded
and RegNet, demonstrating enhanced robustness and reliability =~ devices.MS-DNet (Chen et al., 2022) uses depthwise separable

under complex agricultural conditions. convolutions and SE modules to reduce complexity while

maintaining moderate performance, but its accuracy and F1 score
4.3.2 Comparison with existing methods on self- lag behind ENet-CAEM, reflecting trade-offs in feature extraction.
built datasets In contrast, ENet-CAEM achieved superior performance while

To comprehensively evaluate the effectiveness and advanced ~ maintaining efficiency. Its parameter count was comparable to
capabilities of ENet-CAEM in strawberry disease identification, we  lightweight MS-DNet and far lower than G-ResNet50 and T-
compared it with three recent state-of-the-art models: G-ResNet50, ~ CNN, and its computational complexity was the lowest, with a
T-CNN, and MS-DNet. These models were fairly compared against ~ 52.6% reduction compared to MS-DNet, demonstrating the
our proposed ENet-CAEM model using the same strawberry  effectiveness of its architectural improvements.

disease dataset. Table 4 presented the performance metrics of

each model on the same test set. 4.3.3 Generalization ability verification on public
As shown in Table 4, G-ResNet50 (Wenchao and Zhi, 2022)  datasets
introduced Focal Loss and PlantVillage pre-trained weights, but To comprehensively evaluate the generalization performance of the

showed relatively low performance on our field dataset, with high ~ ENet-CAEM model, this study conducted rigorous cross-dataset
parameter count and computational cost, indicating limited  testing on the publicly available PlantVillage strawberry disease
generalization and efficiency in complex field scenarios. T-CNN  dataset from Kaggle. The dataset contains 2,500 high-quality images
(Wang et al., 2021) proposes a trilinear convolutional architecture  across seven strawberry disease categories: powdery_mildew_leaf,
that decouples crop identification from disease detection, aiming to  anthracnose_fruit_rot, leaf spot, blossom blight, angular_leafspot,

TABLE 4 Comparison with existing methods on self-built datasets.

Accuracy (%) Precision (%) Recall (%) FiScore (%) Params (MB) Flops (GB)
G-ResNet50 77.68 80.28 77.68 77.22 2557 4134
T-CNN 84.98 86.83 85.17 85.02 25.87 4494
MS-DNet 80.69 ‘ 81.97 ‘ 80.52 ‘ 80.72 6.01 0.973
ENet-CAEM 85.84 ‘ 86.53 ‘ 85.59 ‘ 85.75 6.55 0.461
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TABLE 5 Performance comparison of public datasets on different classification networks.

Model Accuracy (%) Precision (%) Recall (%) Fi1Score (%) Params (MB) Flops (GB)
AlexNet 73.00 71.00 67.00 66.00 14.60 0.310
ResNet 82.00 83.00 79.00 79.00 2129 3.680
VGG16 89.00 86.00 83.00 84.00 134.29 15.470
GoogleNet 86.66 9159 82.49 85.11 5.61 3.021
MobileNetV2 88.00 88.00 79.00 81.00 223 0.319
MobileNetV3-small 88.00 85.00 84.00 84.00 153 0.060
RegNet 89.00 87.00 81.00 83.00 232 0.249
ConvNeXt 94.74 93.99 91.69 9259 27.80 4450
MobileViT 92.18 90.88 88.73 89.53 0.95 0.270
EfficientNetB0 93.94 92.29 89.76 90.78 4.02 0.410
ENet-CAEM 97.39 94.95 92.49 93.60 6.55 0.461

gray mold, and powdery_mildew_fruit. The dataset differs from the
self-built one in data distribution and acquisition conditions, enabling
assessment of the model’s robustness under unseen scenarios. The
results are shown in Table 5.

ENet-CAEM achieved the highest accuracy, precision, recall,
and F1 score among all compared models, and maintained a lower
parameter count and computational complexity. These findings
confirm that the proposed improvements effectively enhance model
performance and efficiency.

4.4 Ablation experiment

We conducted ablation experiments to assess the contribution
of each module in ENet-CAEM, including MultiScaleECA, CCM,
Learnable DropPath, LightASPP, and Mixed Pooling. All
experiments used identical settings, with EfficientNetBO as the
baseline. The results are presented in Table 6.

As shown in Table 6, each module progressively improved
model performance. Adding MultiScaleECA increased accuracy

TABLE 6 Ablation experiment comparison of ENet-CAEM model.

Accuracy

Precision

from 81.55% to 81.97% and improved the F1 score by 0.84%,
demonstrating better multi-scale feature perception and
discrimination between visually similar disease features. After
integrating the CCM module, accuracy increased to 82.40%,
showing that channel-level context modeling improves the
network’s ability to capture key lesion features. Adding learnable
DropPath raised accuracy to 83.26%, demonstrating that adaptive
path dropping mitigates overfitting and adapts to complex lesion
patterns. Incorporating LightASPP further increased accuracy to
83.69%, reflecting an enhanced receptive field and better detection
of lesion edges and diffusion. Finally, Mixed Pooling achieved the
best overall results, with 85.84% accuracy, precision 86.53%, and
recall 85.59%—an improvement of 4.29 points in accuracy over the
baseline—while parameter count increased modestly from 4.02 MB
to 6.55 MB and computation rose by 12.4%. Although ENet-CAEM
slightly increases model complexity, it delivers substantial gains in
accuracy and robustness, confirming the effectiveness of the
proposed modules for strawberry disease recognition under
complex conditions.

Params

Recall (% Fi1Score (% Flops (GB

%) %) < G me) Fha
EfficientNetB0 81.55 81.60 81.50 81.52 4.02 0.410
EfficientNetB0+MultiScaleECA 81.97 85.01 81.84 82.36 1.97 0.244
EfficientNetBO+MultiScaleECA +CCM 82.40 84.56 82.16 82.65 1.97 0.244

EfficientNetB0+MultiScaleECA +CCM
83.26 84.51 82.96 83.03 1.97 0.244
+learnable Droppath
EfficientNetB0+MultiScaleECA +CCM 83.69 84.40 8322 8324 6.55 0461
+learnable Droppath+ASPP ' ' ’ ’ ’ '

ENet-CAEM 85.84 86.53 85.59 85.75 6.55 0.461
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TABLE 7 5-fold cross-validation results.

Accuracy (%)

Precision (%)

10.3389/fpls.2025.1701740

Recall (%) F1 Score (%)

1 84.81 85.30 84.81 84.71

2 85.50 85.99 85.50 85.60

3 85.56 85.85 85.56 85.49

4 86.30 86.45 86.30 86.20

5 85.56 86.10 85.56 85.54
Mean+Std 85.55+ 0.48 85.94+0.42 85.55+0.48 85.51+0.53

4.5 Cross-validation analysis

We evaluated the robustness and stability of the ENet-CAEM
model under limited data conditions through 5-fold cross-
validation, as shown in Table 7. The model achieved an average
accuracy of 85.55%, closely matching the 85.84% accuracy on the
independent test set, with only a 0.29% difference. All key metrics
showed minimal variation, with standard deviations within +0.5%,
indicating stable performance across folds and confirming the
model’s strong feature extraction capability and robustness.

4.6 Classification performance evaluation

This paper systematically evaluates ENet-CAEM using visual
analysis and confusion matrix comparison. Figure 11 presents
validation accuracy trends across epochs for different module
combinations, while Figure 12 depicts the fluctuations in
accuracy, precision, recall, and F1 score for the baseline
EfficientNetBO model and each improved model. Figure 13 shows
the curves of performance metrics for the EfficientNetB0 and ENet-
CAEM models for different diseases. Figure 14 employs confusion

Model Accuracy Over Epochs
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FIGURE 11
Comparison of validation accuracy across epochs.
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Model Performance Across Different Metrics
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FIGURE 12
Curves showing changes in various indicators after use of each module.

matrices to provide a detailed comparison of the classification
performance of the two models across various categories.

ENet-CAEM demonstrates clear advantages: (1) Higher final
accuracy: it outperforms other variants during 150-200 epochs,
reflecting enhanced feature extraction and performance on complex
data; (2) More stable convergence: its accuracy curve is smoother,
indicating improved training stability and reduced noise; (3) Faster
early-stage learning: it shows the fastest accuracy growth in the first
50 epochs, suggesting accelerated feature learning.

The ablation experiments confirm progressive performance
improvements from Model 1 to Model 6, with ENet-CAEM
achieving the best overall results. These findings validate the
effectiveness of the proposed architectural and parameter
optimizations, providing a reliable technical foundation for
practical strawberry disease diagnosis.

An analysis of precision, recall, and F1 score for EfficientNetB0
and ENet-CAEM in strawberry disease recognition shows that
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Model4 Model5 Model6

Model

ENet-CAEM consistently outperforms EfficientNetB0 across most
disease categories. Its higher precision indicates a more accurate
distinction between disease samples and background, reducing
misclassification. Higher and more stable recall demonstrates a
stronger capability to detect diverse disease types, minimizing
missed detections. Consequently, the F1 score also remains higher
and more consistent, reflecting a balanced and reliable performance
across all evaluated categories.

A comparative analysis of the confusion matrices reveals that
EfficientNetBO frequently misclassifies several strawberry disease
categories. For instance, angular leafspot, gray mold, and powdery
mildew fruit samples are often incorrectly predicted, indicating
challenges in distinguishing visually similar or complex diseases. The
relatively weak diagonal values reflect limited overall recognition
accuracy, with 190 images correctly classified. In contrast, the ENet-
CAEM confusion matrix shows clear improvements: the number of
correctly classified images increased to 200, a gain of 10 over the
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FIGURE 13
Curves showing changes in various indicators for different diseases before and after model improvement.
baseline, and misclassification rates for anthracnose_fruit_rot, gray 4.7 Explainabi [|ty ana[ysis
mold, leaf spot, and powdery_mildew_fruit were significantly reduced.
These results demonstrate that integrating modules such as CCM and To further validate the effectiveness of the improved model,

MultiScaleECA effectively enhances the model’s recognition of diverse  Grad-CAM++ (Chattopadhay et al., 2018) was employed to

strawberry disease categories. perform a visual analysis of the model’s discriminative regions.
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Confusion matrices of the two models before and after the improvement: (A) EfficientNetBO; (B) ENet-CAEM.

Figure 15 shows the class activation results for strawberry disease
images before and after model refinement, where red areas indicate
regions of high attention and blue areas indicate regions of
lower attention.

The visualization results reveal that, in some disease samples,
the EfficientNetBO model tends to focus on areas unrelated to

Input image

EfficientNetB0 Grad-CAM++

ENet-CAEM Grad-CAM++

FIGURE 15

Visualization of the class activation mapping for strawberry disease samples.
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lesions while overlooking critical disease information. In contrast,
the ENet-CAEM model accurately concentrates on diseased regions
with minimal interference from complex backgrounds. Overall, the
ENet-CAEM model effectively captures lesion features across
different locations and scales, demonstrating superior

discriminative power and interpretability.
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5 Discussion

This study proposes an innovative ENet-CAEM model that
systematically addresses key challenges in strawberry disease
recognition through the introduction of the CCM,
MultiScaleECA, and LightASPP modules.

To evaluate the model’s generalization ability and practical
application potential, rigorous cross-domain testing was first
conducted on public Kaggle datasets. The experimental results
demonstrate that ENet-CAEM maintains stable and excellent
recognition performance even when faced with new data differing
significantly from the training set distribution. This confirms the
model’s strong domain adaptability and cross-scenario robustness,
laying a solid foundation for its practical deployment under diverse
growth environments and imaging conditions.

Furthermore, a comprehensive evaluation of the ENet-CAEM
model was conducted on a self-constructed dataset covering six
common strawberry diseases and two healthy states. Compared
with the benchmark EfficientNetB0, ENet-CAEM achieved notable
improvements across all core metrics, with accuracy, precision,
recall, and F1 score increasing by 4.29%, 4.93%, 4.09%, and 4.23%,
respectively. Importantly, these gains were achieved while
maintaining a competitive parameter count of 6.55 million,
highlighting the model’s balanced trade-off between accuracy and
efficiency. This balance allows for effective deployment in resource-
limited environments.

To further validate the model’s broad applicability, this study
compared ENet-CAEM with classical CNN models such as
AlexNet, ResNet, and VGG16, as well as recent state-of-the-art
models including G-ResNet50, T-CNN, and MS-DNet. The results
showed that ENet-CAEM consistently outperformed all
competitors across key metrics, demonstrating higher recognition
accuracy and greater robustness in handling complex and variable
images of leaf and fruit diseases. Moreover, it effectively resolved the
performance-efficiency trade-off: ENet-CAEM achieved higher
accuracy and F1 scores than the lightweight MS-DNet, while
maintaining lower computational complexity and load than
models such as T-CNN and G-ResNet50. These findings highlight
the model’s superior capability to efficiently extract discriminative
features from complex field backgrounds.

In addition, to thoroughly analyze the practical effectiveness of
each innovative module, this study conducted detailed ablation
experiments. The results clearly demonstrate that modules such as
CCM, MultiScaleECA, and LightASPP each made significant
contributions to the overall performance improvement of the
model. This indicates that the integrated optimization strategy
proposed in this study is well-designed and effective, with each
component being an indispensable part of achieving high
final performance.

In summary, the proposed ENet-CAEM model not only
enriches the application of deep learning in agricultural disease
identification but also provides an efficient, accurate, and robust
technical solution for the intelligent management of the strawberry
industry. It holds significant research value and broad prospects for
agricultural applications.
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6 Conclusion

To address the challenges of strawberry disease identification
under complex backgrounds, this paper introduces an efficient
strawberry disease recognition model, ENet-CAEM, built upon an
enhanced EfficientNetBO architecture. By integrating the CCM,
MultiScaleECA, and ASPP modules and incorporating a learnable
DropPath regularization mechanism along with a mixed pooling
strategy, the model effectively enhances recognition accuracy while
maintaining control over parameter size and computational
complexity. The experiment was conducted using a self-built
dataset comprising images of strawberry diseases, covering six
common diseases and two healthy classes. The results
demonstrate that ENet-CAEM significantly outperforms the
baseline model in accuracy, precision, recall, and F1 score,
highlighting its superior recognition capabilities and practicality.

Although ENet-CAEM has demonstrated strong performance
in strawberry disease recognition, there is still room for expansion
in terms of data diversity and multimodal intelligent modeling.
Future research will proceed in two directions:

1. Constructing a more diverse and high-quality strawberry
disease image dataset to enhance the model’s ability to
recognize different varieties, growth stages, and
disease types.

. Exploring the integration of multimodal fusion
technologies and conducting disease progression trend
modeling based on temporal image sequences, thereby
improving the foresight and decision-support capabilities
of strawberry disease recognition.
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