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Introduction: Real-time diagnosis of strawberry diseases plays a key role in

sustaining yield and improving field management. However, achieving reliable

recognition remains challenging. Lesions often display irregular shapes and

appear at different scales, which complicates detection. Field images also

contain cluttered backgrounds, while many diseases look visually alike, making

differentiation more difficult. In addition, collecting data under real conditions is

not easy, resulting in small datasets on which deep learning models tend to

overfit and fail to generalize.

Methods: To address these issues, this study introduces ENet-CAEM, a

redesigned EfficientNetB0 framework equipped with modules tailored for

disease recognition. The Channel Context Module helps the network capture

key lesion features while suppressing background noise. The Multi-Scale Efficient

Channel Attention module applies multiple one-dimensional filters of varying

sizes in parallel, enabling the model to highlight critical patterns, tell apart similar

diseases, and adapt to lesions of different scales. A lightweight version of Atrous

Spatial Pyramid Pooling is further integrated, allowing the network to perceive

features at multiple spatial ranges. To balance local detail with global context, a

mixed pooling strategy is adopted, enhancing robustness when lesion shapes

change. Finally, Learnable DropPath and label smoothing are applied as

regularization strategies, reducing overfitting and improving generalization on

limited data.

Results: Experiments show that ENet-CAEM achieves 85.84% accuracy on a self-

built dataset, outperforming the baseline by 4.29%. On a public strawberry

dataset, the model reaches 97.39%, surpassing existing approaches.

Discussion: The proposed ENet-CAEM model shows superior accuracy and

robustness over existing methods, providing an effective solution for

strawberry disease recognition in practical field environments.
KEYWORDS

strawberry disease classification, EfficientNetB0, deep learning, multi-scale
featurefusion, image classification
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1 Introduction
China is the world’s largest strawberry producer and has the

greatest cultivation area (Liu et al., 2023). Strawberries have strong

economic and nutritional value, containing bioactive nutrients

linked to lower risks of cancer, high cholesterol, and heart disease

(Liu et al., 2020a). However, diseases are common during the leaf

and fruit stages, and inexperienced farmers often find it difficult to

identify them quickly and apply appropriate control measures.

Delays reduce quality and yield and cause major economic losses.

(Barbedo, 2022) pointed out that traditional manual diagnosis is

slow, labor-intensive, and subjective, making early and accurate

disease diagnosis difficult. Thus, an efficient and accurate strawberry

disease identification model is essential for timely detection, reliable

diagnosis, and precise management.

With advances in artificial intelligence, machine learning has

become essential for intelligent recognition, enabling computers to

learn from data (Bishop and Nasrabadi, 2006). Deep learning, using

multilayer neural networks, improves hierarchical feature

representation and generalization (Hinton and Salakhutdinov,

2006). Convolutional neural networks demonstrated success in

visual recognition, such as handwritten digit classification (LeCun

et al., 2002), and AlexNet (Krizhevsky et al., 2012) achieved

breakthroughs on ImageNet, popularizing deep convolutional

networks. Later models such as ZFNet (Zeiler and Fergus, 2014),

VGGNet (Simonyan and Zisserman, 2014), and GoogLeNet

(Szegedy et al., 2015) further enhanced performance through

architectural optimization and multi-scale feature fusion. These

advances have extended deep learning to applications like

agricultural image analysis.

Recent studies have made significant progress in plant disease

classification. (Ramdani and Suyanto, 2021) utilized convolutional

neural networks (CNNs) to detect strawberry leaf images,

comparing VGG16, ResNet50, and G-Net, with ResNet50

achieving the highest accuracy. (Hassan et al., 2021) classified 38

disease categories across 14 plants in the PlantVillage dataset using

Incept ionV3, Incept ionResNetV2, Mobi leNetV2, and

EfficientNetB0, achieving high accuracy. (Degadwala et al., 2023)

proposed a hop disease classification method based on transfer

learning, comparing AlexNet, VGG16, and ResNet50. However,

most of these approaches rely on “heavyweight” architectures with

large parameter counts and high computational demands, limiting

their deployment in resource-constrained agricultural scenarios.

In practical applications, disease recognition systems are often

deployed on mobile devices, edge platforms, or low-power

monitoring systems with limited computing resources, which

cannot support the high demands of complex deep neural

networks. Therefore, developing a lightweight strawberry disease

recognition model that maintains accuracy while reducing

computational cost and ensuring fast response is crucial for real-

world agricultural deployment.

To enhance recognition efficiency and deployment adaptability,

some studies focus on lightweight model design and architectural
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improvements. (Wang and Cui, 2024) proposed a strawberry

disease recognition method based on MobileNetV3-Small, using

data augmentation, an enhanced Inception_ A module, the ULSAM

attention mechanism, and CondConv replacement to achieve high

accuracy with fewer parameters. (Hossain et al., 2018) developed a

lightweight CNN framework with a fine-tuned VGG16, achieving

high fruit classification accuracy on two datasets. (Tian et al., 2019)

introduced a five-layer CNN for corn disease recognition, obtaining

relatively high accuracy. However, in natural environments, factors

such as noise and varying light conditions pose additional

challenges for image feature extraction and recognition.

In further research, (Wu et al., 2025) proposed D-YOLO, a

lightweight model for strawberry health recognition that achieves

an effective balance between accuracy and detection speed. (He

et al., 2024) developed KTD-YOLOv8, based on YOLOv8,

integrating KernelWarehouse convolution, the Triplet Attention

mechanism, and a DBB parameter-sharing structure to enhance

strawberry leaf disease detection. However, recognition robustness

and multi-scale adaptability remain limited in complex

environments with overlapping or unevenly distributed lesions.

(Xu et al., 2021) introduced TCI-ALEXN, an enhanced AlexNet

incorporating Inception modules, global pooling, and transfer

learning, which effectively identified four types of corn diseases

but still exhibited confusion among visually similar categories.

(Wongsila et al., 2021) designed a CNN-based system for

detecting mango anthracnose, achieving over 70% accuracy,

though its performance was constrained by limited training data

and low classification precision.

In summary, existing methods for strawberry disease

identification still face several challenges. First, the high visual

similarity between complex backgrounds and disease features in

natural environments often leads to misclassification. Second, the

irregular morphology and significant scale variation of lesions

restrict the effectiveness of traditional models in multi-scale

feature extraction. Third, limited sample availability and class

imbalance weaken the model’s generalization capability, reducing

its practicality in real-world agricultural applications.

Given the above limitations, this paper proposes a lightweight

strawberry disease recognition framework, ENet-CAEM, which

integrates multiple structural optimizations to enhance multi-

scale lesion detection, background suppression, and small-sample

learning. The main contributions are as follows: (1) A Channel

Context Module (CCM) is introduced to reduce background

interference through channel- level context modeling.

Additionally, a Multi-Scale Efficient Channel Attention

(MultiScaleECA) module with lightweight spatial attention

strengthens the model’s focus on lesion textures and edges while

suppressing background noise. (2) A Lightweight Atrous Spatial

Pyramid Pooling (LightASPP) module expands the receptive field

using different atrous rates and incorporates a Mixed Pooling (MP)

strategy to balance global and local features, improving robustness

to lesion variability and efficiency in resource-limited

environments. (3) A learnable DropPath regularization strategy is

applied to enhance generalization under small-sample conditions.
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2 Materials and methods

2.1 Image source and acquisition

The study collected images from the high-quality strawberry

planting park in Jinhe Town, Hohhot City, Inner Mongolia

Autonomous Region, chosen for its concentrated and representative

strawberry cultivation. The research team systematically acquired

diverse images of healthy and diseased strawberries in March 2025.

During the image acquisition phase, the research team selected

the OPPO OnePlus Ace3 smartphone as the capturing device. All

images were saved at a resolution of 4096 × 3512 pixels, ensuring

sufficient clarity for lesion identification. In total, 1,486 images were

obtained, including both healthy and diseased strawberry leaves and

fruits. The dataset covers six major disease types: angular leaf spot,

powdery mildew, and leaf spot on leaves, and anthracnose, powdery

mildew, and gray mold on fruits, along with corresponding healthy

samples. Representative examples are shown in Figure 1.
2.2 Data preprocessing

In this study, a systematic data preprocessing workflow was

developed to ensure that the strawberry disease image dataset was

high-quality, representative, and suitable for deep learning model

training. The workflow included image selection, data

augmentation, and class balancing with uniform resizing,

providing a robust foundation for subsequent model development.
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First, raw images were first carefully screened to remove non-

compliant samples, including those with abnormal lighting, motion

blur, or defocus, and visual interference such as occlusions or

reflections. Following this initial cleaning, images were labeled

based on authoritative references, such as the Strawberry Pest and

Disease Diagnosis and Control Atlas, and with guidance from

strawberry experts to ensure accurate category assignment. All

labeled results were then cross-checked by two experts, with

disputed images either re-evaluated or removed, thereby

guaranteeing both the consistency and reliability of the

annotations. This process resulted in 1,348 high-quality images

that preserved the diversity and representativeness of the dataset.

Secondly, to address the limited number of filtered images, data

augmentation was applied to expand the training dataset. Data

augmentation artificially expands the training dataset through

various transformations, and has been shown to effectively

mitigate model overfitting (Khosla and Saini, 2020; Maharana

et al., 2022). Geometric transformations included random

rotations (–45° to +45°), horizontal flips (50% probability), and

random cropping from 200×200 regions followed by resizing to

224×224 pixels. Image quality was enhanced with Gaussian blur

(kernel radius 0.5–1.5) and Gaussian noise (s = 10), while color

adjustments varied brightness (0.7–1.3×), contrast (0.8–1.2×), and

saturation (0.6–1.4×). In each augmentation cycle, two to three

transformations were randomly combined to generate two distinct

augmented versions per original image, increasing dataset diversity

and improving model generalization. Furthermore, class imbalance

was addressed using Scikit-learn’s resample method. Images were

organized by category and sampled with or without replacement to
FIGURE 1

Healthy and diseased strawberry leaves and fruits (a) angular_leafspot (b) powdery_mildew_leaf (c) leaf_spot (d) healthy_leaf (e)
anthracnose_fruit_rot (f) gray_mold (g) powdery_mildew_fruit (h) healthy_ripe_fruit.
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achieve target class sizes. Oversampling ensured adequate

representation for underrepresented categories, whereas

downsampling prevented bias from overrepresented classes. All

images were subsequently resized to 224×224 pixels and

converted to RGB format, ensuring consistent input for model

training. Figure 2 illustrates original and augmented images for
Frontiers in Plant Science 04
healthy and diseased strawberries, with the original images on the

left and the augmented images on the right.

The data augmentation process expanded the dataset to 2,261

samples (Table 1). Stratified random sampling divided the dataset

into training, validation, and test sets in an 8:1:1 ratio. The training

set facilitated feature learning and parameter optimization, the

validation set guided hyperparameter tuning and mitigated
FIGURE 2

Data augmented healthy and diseased strawberry leaves and fruits (a) angular_leafspot (b) powdery_mildew_leaf (c) leaf_spot (d) healthy_leaf (e)
anthracnose_fruit_rot (f) gray_mold (g) powdery_mildew_fruit (h) healthy_ripe_fruit.
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overfitting, and the test set provided an independent evaluation of

model performance and practical applicability. Dataset partitioning

is shown in Figure 3.
3 Strawberry disease classification
algorithm model

3.1 EfficientNet network architecture

In recent years, CNNs have achieved remarkable success in

plant disease recognition and dominate agricultural image analysis

(Abade et al., 2021). Classic architectures such as AlexNet,

VGGNet, and ResNet (He et al., 2016) are widely used due to

their strong feature extraction capabilities. The EfficientNet series is
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a lightweight architecture that jointly scales network width, depth,

and input resolution, reducing complexity while maintaining high

accuracy (Tan and Le, 2019). This makes it well-suited for resource-

constrained field applications (Wei et al., 2022; Wang et al., 2023).

Among them, EfficientNetB0, balancing accuracy and efficiency, has

shown strong performance in plant disease recognition (Liu et al.,

2020b) and was selected as the backbone for the strawberry disease

model. EfficientNetB0 consists of nine stages. Stage 1, also called

“stem_conv,” serves as the network’s input stage. It applies a 3×3

convolutional layer, followed by batch normalization (BN) (loffe

and Szegedy, 2015) and the Swish activation (Ramachandran et al.,

2017), performing the initial spatial downsampling and feature

mapping. Stages 2–8 stack MBConv blocks (Sandler et al., 2018)

for feature extraction, while Stage 9 forms the classification head

with a 1×1 convolution, BN, Swish, average pooling, and a fully

connected layer. Each MBConv block includes a 1×1 expansion

convolution, depthwise separable convolution (Chollet, 2017),

squeeze-and-excitation module, 1×1 reduction convolution, and

Dropout to reduce overfitting. The overall architecture is shown in

Figure 4, with the MBConv block detailed in Figure 5.
3.2 ENet-CAEM network architecture

Based on EfficientNetB0, this study proposes an enhanced network

architecture, ENet-CAEM, to address key challenges in strawberry

disease recognition, including complex background interference, lesion

scale diversity, and limited generalization under small sample

conditions. The overall architecture is shown in Figure 6. Through

several multi-level improvements, the model significantly enhances

disease recognition performance in complex agricultural environments.

It consists of the initial stem_conv layer followed by a sequence of

MBConv blocks. The enhancements are as follows:
1. Within each MBConv block, the original SE module is

replaced with the MultiScaleECABlock, which captures

lesion features at different scales via parallel multi-branch

convolutions (3×3, 5×5, 7×7), it also incorporates a

dynamic weight fusion mechanism to adjust feature

importance across scales.

2. In Stages 4–6, a Channel Context Module (CCM) is

embedded after the depthwise convolution of each

MBConv block to model channel-level contextual

information and enhance focus on critical lesion features.

To improve mobile deployment efficiency, the number of

MBConv blocks is reduced from 16 to 13, lowering

computational complexity while maintaining performance.

3. A Learnable DropPath mechanism is applied to MBConv

residual connections, a dynamic weight fusion mechanism

that adaptively adjusts the importance of features

across scales.

4. After MBConv feature extraction, a lightweight Atrous

Spatial Pyramid Pooling (LightASPP) module is

integrated. Its output passes through a Mixed Pooling

layer, combining average and max pooling, followed by a
TABLE 1 Strawberry disease dataset.

Category name
Category

label
Original
dataset

Augmented
dataset

angular_leafspot 0 146 288

powdery_mildew_leaf 1 157 299

leaf_spot 2 158 296

healthy_leaf 3 142 269

anthracnose_fruit_rot 4 143 266

powdery_mildew_fruit 5 286 293

gray_mold 6 191 284

healthy_ripe_fruit 7 125 266

sum 8 1348 2261
FIGURE 3

The number of training, validation, and test sets for different
diseases.
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Fron
Dropout layer and a fully connected layer to map features

to disease categories. The improved MBConv structure is

shown in Figure 7.
3.2.1 MultiScale efficient channel attention
To improve the model’s ability to detect lesions of varying sizes,

this paper proposes the MultiScaleECA module based on the

Efficient Channel Attention (ECA) mechanism (Wang et al.,

2020). While ECA efficiently captures inter-channel relationships

using 1D convolutions, single-scale kernels limit adaptability to

large lesion size variations. MultiScaleECA employs multiscale 1D

convolutions to model channel dependencies across different

receptive fields. It also integrates a lightweight spatial attention
tiers in Plant Science 06
mechanism to enhance focus on edges and textures, improving

lesion localization and suppressing background noise. The overall

architecture is shown in Figure 8, with pseudocode in Algorithm 1.

The module consists of two main components:
Input: Feature map X∈RB×C×H×W, Kernel sizes K={3,5,7}

Output: Xout

1 : F a v g ← G l o b a l A v g P o o l 2 d ( X ) / / C h a n n e l -

wise compression

2: Fvec←Transpose(Favg) //Reshape to [B,1,C]

3: for k∈K do

4: Fk←Conv1Dk(Fvec) //Multi-scale parallel processing

5: end for

6: Wc ←s( 1
Kj jokFk) //Multi-scale weight fusion
FIGURE 4

EfficientNet network architecture diagram.
FIGURE 5

MBConv architecture diagram.
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Fron
7: X′←X⊗Wc //Channel recalibration

8: if spatial_attention_enabled then

9: Fmax←MaxPoolchannel(X′) //Max pooling

10: Fmean←AvgPoolchannel(X′) //Avg pooling

1 1 : W s ← s ( C o n v 7 × 7 ( C o n c a t ( F m a x , F m e a n ) ) )

//Spatial attention

12: Xout←X′⊗Ws //Spatial weighting

13: end if

14: return Xout
Algorithm 1. MultiScaleECA module.

1. Multiscale Channel Attention

To enhance sensitivity to lesions of varying sizes, the module

models channel dependencies across multiple scales throughmultiscale

one-dimensional convolutions. The computation is as follows (see

Equations 1–6):

1. Global average pooling is applied to the input feature map

X ∈ RB�C�H�W (Lin et al., 2013) to extract channel-wise statistics
tiers in Plant Science 07
while compressing spatial dimensions:

Favg = AvgPool(X) ∈ RB�C�1�1 (1)

Here, B is the batch size, C   is the number of channels, and

H,W are spatial dimensions. This operation captures global

semantic information, enhancing the model’s ability to recognize

lesions of varying sizes.

2. To adapt to subsequent one-dimensional convolution

modeling,   Fvec is transposed to form a channel sequence:

Fvec = Transpose(Favg) ∈ RB�1�C (2)
This operation reshapes the feature representation, enabling

effective modeling of inter-channel dependencies through

subsequent 1D convolutions.

3. To capture multiscale channel context, parallel 1D

convolutions with kernel sizes of 3, 5, and 7 are applied to Fvec:
FIGURE 6

ENet-CAEM network architecture diagram.
FIGURE 7

Improved MBConv Architecture Diagram.
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F(k) = Conv1Dk(Fvec), k = 3, 5, 7 (3)

F(k) represents the channel attention at each scale, enabling the

model to capture dependencies across channels and better detect

lesions of varying sizes.

4. To integrate the multiscale channel information, the above

multi-scale convolution results are fused through averaging:

Fms =
1
ko

n

i=1
Conv1Dk(Fvec),n = 3 (4)

Here, n = 3 denotes three scales, and Fms is the fused multi-scale

channel response, enhancing attention robustness by aggregating

information across scales.

5. To obtain the importance score for each channel, use Sigmoid

activation to generate a weight vector for the fusion result:

Wc = s (Fms) ∈ RB�C�1�1 (5)

s(·) denotes the sigmoid function, and Wc represents the

attention weights of each channel, indicating its importance for

the current image and guiding channel-wise feature modulation.
Frontiers in Plant Science 08
6. Finally, the generated channel weights are multiplied by the

original input feature map in a channel-wise manner to perform

channel recalibration:

X0 = X · Wc (6)

X′ is the weighted feature map, enhancing informative features,

suppressing redundant channels, and improving the model’s ability

to distinguish lesions of different sizes.

2. Lightweight Spatial Attention

To capture spatial characteristics such as lesion edges and

textures, a lightweight spatial attention module is added after

channel attention. Max pooling and average pooling along the

channel dimension produce a two-channel feature map, which is

concatenated. This computation is detailed in Equation 7:

Fspatial = Concat½AvgPoolc(X0),MaxPoolc(X
0)� ∈ RB�2�H�W (7)

AvgPoolc(X
0)   and MaxPoolc(X

0) denote average and max

pooling along the channel dimension, and Fspatial   is their two-

channel concatenation, capturing spatial features for blurred or

overlapping lesions.
FIGURE 8

Multi-scale efficient channel attention.
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Ws = s (Conv7�7(Fspatial)) ∈ RB�2�H�W (8)

A 7×7 convolution followed by Sigmoid activation generates the

spatial weight mapWs, as defined in Equation 8, which is applied to

X0 to enhance lesion regions, suppress background, and improve

recognition accuracy and robustness (Woo et al., 2018).

3.2.2 Channel context module
To improve robustness against complex background

interference, a Channel Context Module (CCM) is added in

intermediate stages. Inspired by the SE mechanism (Hu et al.,

2018), it uses global channel statistics to recalibrate features,

thereby enhancing lesion regions and suppressing background

noise. For input X ∈ RC�H�W , global average pooling produces a

context vector, which passes through a 1×1 convolution to reduce

channels to C=r with ReLU, then a second 1×1 convolution restores

channels to C. Sigmoid activation generates context-aware weights

s (Z), applied to X via element-wise multiplication to yield X0.
Batch normalization is applied during compression and

reconstruction for stability. Figure 9 shows the structure, and

Algorithm 2 provides pseudocode.
Fron
Input: Feature map X∈RC×H×W, Reduction ratio r

Output: X'

1: Fgap←GlobalAvgPool2d(X) //Channel-wise statistics

2: Z1←Conv1x1(C, C/r)(Fgap) //Compress to C/r channels

3: Z1←BatchNorm(Z1) //Stabilize training

4: Z1←ReLU(Z1) //Add nonlinearity

5: Z2←Conv1x1(C/r,C)(Z1) //Recover original channels

6: Z2←BatchNorm(Z2) //BN for reconstruction

7: Wc← s(Z2) //Sigmoid attention weights

8: X'← X ⊗ Wc //Channel-wise scaling

9: return X'
Algorithm 2. Channel context module.

3.2.3 Lightweight atrous spatial pyramid pooling
In strawberry disease detection, lesions often exhibit multi-scale

variation, diffusion, and morphological diversity, challenging

traditional convolutions in capturing spatial context. The

LightASPP module uses a streamlined set of multi-scale dilated

convolutions to expand the receptive field and enhance multi-scale

representation while controlling computational cost. Compared

with standard ASPP (Chen et al., 2017), LightASPP introduces

three lightweight branches with dilation rates of 3, 6, and 9, each
tiers in Plant Science 09
comprising a 3×3 dilated convolution followed by BN and ReLU,

omitting redundant 1×1 convolutions. The global average pooling

path is retained, with output channels compressed to 128 and

aligned via bilinear interpolation, preserving global context

efficiently. Multi-scale features are fused through direct

concatenation without an additional 1×1 convolution.

This module is integrated into the top feature layer of

EfficientNetB0 to enhance adaptability to complex lesion

morphology while maintaining a lightweight design. The small

(rate=3), medium (rate=6), and large (rate=9) dilation branches

capture early, typical, and diffuse lesions, respectively, while the

global pooling path improves recognition of densely distributed

spots. The LightASPP structure is shown in Figure 10, and its

pseudocode is provided in Algorithm 3.
Input: Feature map X∈RB×C×H×W, Atrous rates R={3,6,9}

Output: X'

1: Flist←empty list //Initialize feature storage

2: for r∈R do // Process each dilated branch

3: Fr←Conv3x3_dilation=r(X) // 3×3 dilated conv (pad

= r)

4: Fr←BN(Fr)

5: Fr←ReLU(Fr)

6: Flist.append(Fr) // Add to feature list

7: end for

8: Fgap←GlobalAvgPool(X) // Global context [1×1]

9: Fgap←1×1 Conv(Fgap) to reduce channels to 128

//Compress to 128 channels

10: Fgap←BN(Fgap)

11: Fgap←ReLU(Fgap)

12: Fgap←BilinearUpsample(Fgap) to size H×W //

Bilinear interpolation

13: Flist.append(Fgap) // Add global feature

14: X'←Concat(Flist) // Channel-wise concatenation

15: return X'
Algorithm 3. LightASPP module.

3.2.4 Mixed pooling
To enhance feature extraction flexibility and robustness, a Mixed

Pooling strategy is introduced. Traditional pooling methods—max and

average pooling—each have limitations: max pooling highlights salient

features but neglects global context, while average pooling preserves

overall structure but weakens local detail sensitivity. Mixed Pooling
FIGURE 9

CCM module structure diagram.
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resolves this trade-off through a learnable weighted fusion of both

operations, controlled by a trainable parameter l ∈ ½0, 1�, which
adaptively balances local and global information. It also

complements regularization methods such as data augmentation,

dropout, and weight decay, improving model generalization (Gu

et al., 2018). The formulation is given in Equation 9 (Yu et al., 2014):

ykij = l · max
(p,q)∈Rij

xkpq + (1 − l) ·
1

Rij

�
�

�
� o
(p,q)∈Rij

xkpq (9)

Here, l determines the contribution of max and average

pooling, enabling the network to adaptively learn the optimal

pooling strategy for varying feature scales and data distributions.

This dynamic mechanism enhances the model’s robustness and

adaptability across complex visual tasks.

3.2.5 Learnable DropPath
DropPath is a regularization strategy that randomly removes

network paths—such as residual connections. This process
Frontiers in Plant Science 10
effectively creates an implicit ensemble and enhances model

generalization (Huang et al., 2016). In the traditional DropPath

method, paths are dropped with a fixed probability set by

hyperparameters, typically applied uniformly across all layers.

To achieve finer control over path activation during training,

the Learnable DropPath variant assigned to each block an

individually learnable drop probability (Tan and Le, 2021). This

adaptive mechanism allows the model to dynamically adjust path

importance. It overcomes the rigidity of fixed drop rates, thereby

enhancing both training flexibility and overall model performance.

4 Results and analysis

4.1 Experimental environment and
parameter settings

Experiments were conducted on a Windows 11 system with an

Intel Xeon Gold 6330 CPU and an NVIDIA RTX 3090 GPU,
FIGURE 10

LightASPP architecture diagram.
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implemented in PyTorch 2.4.1 with CUDA 12.8. The model was

trained for 200 epochs using the Adam optimizer with a batch size

of 32. To avoid convergence issues caused by a fixed learning rate, a

cosine annealing schedule was adopted for dynamic learning

rate adjustment.
4.2 Evaluation metrics

In this study, model performance is analyzed through four

commonly used metrics: Accuracy, Precision, Recall, and F1 Score.

Ahmed and Yadav pointed out that these metrics are of significant

importance for evaluating plant disease recognition models (Ahmed

and Yadav, 2024). The definitions and calculation formulas are

presented in Equations 10–13 (Fawcett, 2006):

1. Accuracy: the percentage of samples that the model predicts

correctly from the total set of samples:

Accuracy = TP+TN
TP+TN+FP+FN (10)

2. Precision: the proportion of predicted positive samples that

are actually positive:

Precision = TP
TP+FP (11)

3. Recall: the proportion of samples that are actually positive

and are correctly predicted as positive samples:

Recall = TP
TP+FN (12)

4. F1 Score: the balance between precision and recall, calculated

as their harmonic mean.

F1   Score = 2�Precision�Recall
Precision+Recall (13)

Here, TP denotes the number of positive samples correctly

identified as positive, TN denotes the number of negative samples

correctly identified as negative, FP denotes the number of negative
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samples incorrectly identified as positive, and FN denotes the

number of positive samples incorrectly identified as negative.
4.3 Comparative experiment

4.3.1 Model performance comparison on self-
built dataset

To evaluate the performance of the proposed model, we

compared ENet-CAEM with several classic architectures,

including AlexNet, VGG16, ResNet, GoogleNet, MobileNetV2,

MobileNetV3-Small, RegNet (Xu et al., 2022), ConvNeXt (Liu

et al., 2022), and MobileViT (Mehta and Rastegari, 2021). The

results are presented in Table 2. (Dakwala et al., 2022) pointed out

that CNN architectures vary significantly in fruit classification

performance, providing the basis for our comparison. As shown

in Table 2, ENet-CAEM outperformed traditional CNNs on the

strawberry dataset, improving accuracy and recall by 4.29% and

4.09% over EfficientNetB0, with only a 2.53 MB increase

in parameters.

As shown in Table 3, ENet-CAEM consistently outperformed

other models in strawberry disease recognition. For leaf diseases, it

achieved accuracies of 89.66%, 86.21%, and 83.87% for angular leaf

spot, powdery mildew, and leaf spot, respectively. It ranked among

the top across all models, indicating strong discriminative capability

in handling leaf diseases characterized by complex lesion

morphology and blurred boundaries. For fruit diseases, accuracies

reached 88.89% for anthracnose, 89.66% for gray mold, and 75.61%

for fruit powdery mildew. This indicated that the improved model

possessed high feature sensitivity and generalization capability. It

effectively handled complex characteristics such as small spots,

blurred diffusion, and powder-like textures on diseased fruit

surfaces. Healthy samples were also accurately classified, with

92.00% and 86.36% accuracy for healthy leaves and fruits,

respectively. This performance remained consistently high across
TABLE 2 Performance comparison of self-built dataset on different classification networks.

Model Accuracy (%) Precision (%) Recall (%) F1Score (%) Params (MB) Flops (GB)

AlexNet 69.00 69.00 69.00 69.00 14.60 0.310

ResNet 76.00 78.00 76.00 75.00 21.29 3.680

VGG16 76.00 77.00 76.00 76.00 134.29 15.470

GoogleNet 81.12 83.45 80.70 80.72 5.61 3.021

MobileNetV2 79.00 81.00 79.00 78.00 2.23 0.319

MobileNetV3-small 81.00 83.00 81.00 81.00 1.53 0.060

RegNet 81.55 82.52 81.26 81.35 2.32 0.249

ConvNeXt 82.83 83.61 82.58 82.70 27.80 4.450

MobileViT 83.26 84.75 82.99 83.39 0.95 0.270

EfficientNetB0 81.55 81.60 81.50 81.52 4.02 0.410

ENet-CAEM 85.84 86.53 85.59 85.75 6.55 0.461
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all models and effectively reduced the risk of misclassifying healthy

samples as diseased.

Overall, ENet-CAEM achieved superior precision and

generalization compared to AlexNet, EfficientNet, MobileNetV3,

and RegNet, demonstrating enhanced robustness and reliability

under complex agricultural conditions.

4.3.2 Comparison with existing methods on self-
built datasets

To comprehensively evaluate the effectiveness and advanced

capabilities of ENet-CAEM in strawberry disease identification, we

compared it with three recent state-of-the-art models: G-ResNet50,

T-CNN, and MS-DNet. These models were fairly compared against

our proposed ENet-CAEM model using the same strawberry

disease dataset. Table 4 presented the performance metrics of

each model on the same test set.

As shown in Table 4, G-ResNet50 (Wenchao and Zhi, 2022)

introduced Focal Loss and PlantVillage pre-trained weights, but

showed relatively low performance on our field dataset, with high

parameter count and computational cost, indicating limited

generalization and efficiency in complex field scenarios. T-CNN

(Wang et al., 2021) proposes a trilinear convolutional architecture

that decouples crop identification from disease detection, aiming to
Frontiers in Plant Science 12
capture finer features through bilinear pooling. It achieved high

accuracy and F1 scores on our dataset, ranking second only to

ENet-CAEM. However, its high model complexity severely limits its

deployment potential on resource-constrained mobile or embedded

devices.MS-DNet (Chen et al., 2022) uses depthwise separable

convolutions and SE modules to reduce complexity while

maintaining moderate performance, but its accuracy and F1 score

lag behind ENet-CAEM, reflecting trade-offs in feature extraction.

In contrast, ENet-CAEM achieved superior performance while

maintaining efficiency. Its parameter count was comparable to

lightweight MS-DNet and far lower than G-ResNet50 and T-

CNN, and its computational complexity was the lowest, with a

52.6% reduction compared to MS-DNet, demonstrating the

effectiveness of its architectural improvements.

4.3.3 Generalization ability verification on public
datasets

To comprehensively evaluate the generalization performance of the

ENet-CAEM model, this study conducted rigorous cross-dataset

testing on the publicly available PlantVillage strawberry disease

dataset from Kaggle. The dataset contains 2,500 high-quality images

across seven strawberry disease categories: powdery_mildew_leaf,

anthracnose_fruit_rot, leaf spot, blossom blight, angular_leafspot,
TABLE 4 Comparison with existing methods on self-built datasets.

Model Accuracy (%) Precision (%) Recall (%) F1Score (%) Params (MB) Flops (GB)

G-ResNet50 77.68 80.28 77.68 77.22 25.57 4.134

T-CNN 84.98 86.83 85.17 85.02 25.87 4.494

MS-DNet 80.69 81.97 80.52 80.72 6.01 0.973

ENet-CAEM 85.84 86.53 85.59 85.75 6.55 0.461
TABLE 3 Strawberry disease identification results.

Model

Test set precision

Angular_
leafspot
(%)

Powdery_
mildew_
leaf (%)

Leaf_spot
(%)

Healthy_
leaf (%)

Anthracnose_
fruit_ rot (%)

Gray_mold
(%)

Powdery_
mildew_
fruit (%)

Healthy_
ripe_
fruit (%)

AlexNet 58.00 73.00 78.00 70.00 73.00 63.00 65.00 72.00

ResNet 79.00 79.00 78.00 95.00 77.00 84.00 67.00 61.00

VGG16 74.00 87.00 68.00 86.00 77.00 79.00 66.00 76.00

GoogleNet 77.78 86.67 100.00 92.59 75.00 82.14 65.91 87.50

MobileNetV2 76.00 72.00 82.00 92.00 81.00 79.00 70.00 92.00

MobileNetV3-
small

84.00 96.00 77.00 86.00 69.00 86.00 71.00 93.00

RegNet 83.33 83.33 80.00 88.00 88.00 82.76 69.05 85.71

ConvNeXt 78.79 92.86 81.48 88.00 85.19 92.86 71.43 78.26

MobileViT 89.29 83.33 92.00 96.00 89.29 92.31 61.90 73.91

EfficientNetB0 89.66 93.10 77.42 89.66 70.00 82.76 74.19 76.00

ENet-CAEM 89.66 86.21 83.87 92.00 88.89 89.66 75.61 86.36
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gray mold, and powdery_mildew_fruit. The dataset differs from the

self-built one in data distribution and acquisition conditions, enabling

assessment of the model’s robustness under unseen scenarios. The

results are shown in Table 5.

ENet-CAEM achieved the highest accuracy, precision, recall,

and F1 score among all compared models, and maintained a lower

parameter count and computational complexity. These findings

confirm that the proposed improvements effectively enhance model

performance and efficiency.

4.4 Ablation experiment

We conducted ablation experiments to assess the contribution

of each module in ENet-CAEM, including MultiScaleECA, CCM,

Learnable DropPath, LightASPP, and Mixed Pooling. All

experiments used identical settings, with EfficientNetB0 as the

baseline. The results are presented in Table 6.

As shown in Table 6, each module progressively improved

model performance. Adding MultiScaleECA increased accuracy
Frontiers in Plant Science 13
from 81.55% to 81.97% and improved the F1 score by 0.84%,

demonstrating better multi-scale feature perception and

discrimination between visually similar disease features. After

integrating the CCM module, accuracy increased to 82.40%,

showing that channel-level context modeling improves the

network’s ability to capture key lesion features. Adding learnable

DropPath raised accuracy to 83.26%, demonstrating that adaptive

path dropping mitigates overfitting and adapts to complex lesion

patterns. Incorporating LightASPP further increased accuracy to

83.69%, reflecting an enhanced receptive field and better detection

of lesion edges and diffusion. Finally, Mixed Pooling achieved the

best overall results, with 85.84% accuracy, precision 86.53%, and

recall 85.59%—an improvement of 4.29 points in accuracy over the

baseline—while parameter count increased modestly from 4.02 MB

to 6.55 MB and computation rose by 12.4%. Although ENet-CAEM

slightly increases model complexity, it delivers substantial gains in

accuracy and robustness, confirming the effectiveness of the

proposed modules for strawberry disease recognition under

complex conditions.
TABLE 5 Performance comparison of public datasets on different classification networks.

Model Accuracy (%) Precision (%) Recall (%) F1Score (%) Params (MB) Flops (GB)

AlexNet 73.00 71.00 67.00 66.00 14.60 0.310

ResNet 82.00 83.00 79.00 79.00 21.29 3.680

VGG16 89.00 86.00 83.00 84.00 134.29 15.470

GoogleNet 86.66 91.59 82.49 85.11 5.61 3.021

MobileNetV2 88.00 88.00 79.00 81.00 2.23 0.319

MobileNetV3-small 88.00 85.00 84.00 84.00 1.53 0.060

RegNet 89.00 87.00 81.00 83.00 2.32 0.249

ConvNeXt 94.74 93.99 91.69 92.59 27.80 4.450

MobileViT 92.18 90.88 88.73 89.53 0.95 0.270

EfficientNetB0 93.94 92.29 89.76 90.78 4.02 0.410

ENet-CAEM 97.39 94.95 92.49 93.60 6.55 0.461
TABLE 6 Ablation experiment comparison of ENet-CAEM model.

Model
Accuracy

(%)
Precision

(%)
Recall (%) F1Score (%)

Params
(MB)

Flops (GB)

EfficientNetB0 81.55 81.60 81.50 81.52 4.02 0.410

EfficientNetB0+MultiScaleECA 81.97 85.01 81.84 82.36 1.97 0.244

EfficientNetB0+MultiScaleECA +CCM 82.40 84.56 82.16 82.65 1.97 0.244

EfficientNetB0+MultiScaleECA +CCM
+learnable Droppath

83.26 84.51 82.96 83.03 1.97 0.244

EfficientNetB0+MultiScaleECA +CCM
+learnable Droppath+ASPP

83.69 84.40 83.22 83.24 6.55 0.461

ENet-CAEM 85.84 86.53 85.59 85.75 6.55 0.461
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4.5 Cross-validation analysis

We evaluated the robustness and stability of the ENet-CAEM

model under limited data conditions through 5-fold cross-

validation, as shown in Table 7. The model achieved an average

accuracy of 85.55%, closely matching the 85.84% accuracy on the

independent test set, with only a 0.29% difference. All key metrics

showed minimal variation, with standard deviations within ±0.5%,

indicating stable performance across folds and confirming the

model’s strong feature extraction capability and robustness.
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4.6 Classification performance evaluation

This paper systematically evaluates ENet-CAEM using visual

analysis and confusion matrix comparison. Figure 11 presents

validation accuracy trends across epochs for different module

combinations, while Figure 12 depicts the fluctuations in

accuracy, precision, recall, and F1 score for the baseline

EfficientNetB0 model and each improved model. Figure 13 shows

the curves of performance metrics for the EfficientNetB0 and ENet-

CAEM models for different diseases. Figure 14 employs confusion
TABLE 7 5-fold cross-validation results.

Fold Accuracy (%) Precision (%) Recall (%) F1 Score (%)

1 84.81 85.30 84.81 84.71

2 85.50 85.99 85.50 85.60

3 85.56 85.85 85.56 85.49

4 86.30 86.45 86.30 86.20

5 85.56 86.10 85.56 85.54

Mean±Std 85.55± 0.48 85.94±0.42 85.55±0.48 85.51±0.53
FIGURE 11

Comparison of validation accuracy across epochs.
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matrices to provide a detailed comparison of the classification

performance of the two models across various categories.

ENet-CAEM demonstrates clear advantages: (1) Higher final

accuracy: it outperforms other variants during 150–200 epochs,

reflecting enhanced feature extraction and performance on complex

data; (2) More stable convergence: its accuracy curve is smoother,

indicating improved training stability and reduced noise; (3) Faster

early-stage learning: it shows the fastest accuracy growth in the first

50 epochs, suggesting accelerated feature learning.

The ablation experiments confirm progressive performance

improvements from Model 1 to Model 6, with ENet-CAEM

achieving the best overall results. These findings validate the

effectiveness of the proposed architectural and parameter

optimizations, providing a reliable technical foundation for

practical strawberry disease diagnosis.

An analysis of precision, recall, and F1 score for EfficientNetB0

and ENet-CAEM in strawberry disease recognition shows that
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ENet-CAEM consistently outperforms EfficientNetB0 across most

disease categories. Its higher precision indicates a more accurate

distinction between disease samples and background, reducing

misclassification. Higher and more stable recall demonstrates a

stronger capability to detect diverse disease types, minimizing

missed detections. Consequently, the F1 score also remains higher

and more consistent, reflecting a balanced and reliable performance

across all evaluated categories.

A comparative analysis of the confusion matrices reveals that

EfficientNetB0 frequently misclassifies several strawberry disease

categories. For instance, angular leafspot, gray mold, and powdery

mildew fruit samples are often incorrectly predicted, indicating

challenges in distinguishing visually similar or complex diseases. The

relatively weak diagonal values reflect limited overall recognition

accuracy, with 190 images correctly classified. In contrast, the ENet-

CAEM confusion matrix shows clear improvements: the number of

correctly classified images increased to 200, a gain of 10 over the
FIGURE 12

Curves showing changes in various indicators after use of each module.
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baseline, and misclassification rates for anthracnose_fruit_rot, gray

mold, leaf spot, and powdery_mildew_fruit were significantly reduced.

These results demonstrate that integrating modules such as CCM and

MultiScaleECA effectively enhances the model’s recognition of diverse

strawberry disease categories.
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4.7 Explainability analysis

To further validate the effectiveness of the improved model,

Grad-CAM++ (Chattopadhay et al., 2018) was employed to

perform a visual analysis of the model’s discriminative regions.
FIGURE 13

Curves showing changes in various indicators for different diseases before and after model improvement.
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Figure 15 shows the class activation results for strawberry disease

images before and after model refinement, where red areas indicate

regions of high attention and blue areas indicate regions of

lower attention.

The visualization results reveal that, in some disease samples,

the EfficientNetB0 model tends to focus on areas unrelated to
Frontiers in Plant Science 17
lesions while overlooking critical disease information. In contrast,

the ENet-CAEMmodel accurately concentrates on diseased regions

with minimal interference from complex backgrounds. Overall, the

ENet-CAEM model effectively captures lesion features across

different locations and scales, demonstrating superior

discriminative power and interpretability.
FIGURE 14

Confusion matrices of the two models before and after the improvement: (A) EfficientNetB0; (B) ENet-CAEM.
FIGURE 15

Visualization of the class activation mapping for strawberry disease samples.
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5 Discussion

This study proposes an innovative ENet-CAEM model that

systematically addresses key challenges in strawberry disease

recogni t ion through the in t roduct ion of the CCM,

MultiScaleECA, and LightASPP modules.

To evaluate the model’s generalization ability and practical

application potential, rigorous cross-domain testing was first

conducted on public Kaggle datasets. The experimental results

demonstrate that ENet-CAEM maintains stable and excellent

recognition performance even when faced with new data differing

significantly from the training set distribution. This confirms the

model’s strong domain adaptability and cross-scenario robustness,

laying a solid foundation for its practical deployment under diverse

growth environments and imaging conditions.

Furthermore, a comprehensive evaluation of the ENet-CAEM

model was conducted on a self-constructed dataset covering six

common strawberry diseases and two healthy states. Compared

with the benchmark EfficientNetB0, ENet-CAEM achieved notable

improvements across all core metrics, with accuracy, precision,

recall, and F1 score increasing by 4.29%, 4.93%, 4.09%, and 4.23%,

respectively. Importantly, these gains were achieved while

maintaining a competitive parameter count of 6.55 million,

highlighting the model’s balanced trade-off between accuracy and

efficiency. This balance allows for effective deployment in resource-

limited environments.

To further validate the model’s broad applicability, this study

compared ENet-CAEM with classical CNN models such as

AlexNet, ResNet, and VGG16, as well as recent state-of-the-art

models including G-ResNet50, T-CNN, and MS-DNet. The results

showed that ENet-CAEM consistently outperformed all

competitors across key metrics, demonstrating higher recognition

accuracy and greater robustness in handling complex and variable

images of leaf and fruit diseases. Moreover, it effectively resolved the

performance–efficiency trade-off: ENet-CAEM achieved higher

accuracy and F1 scores than the lightweight MS-DNet, while

maintaining lower computational complexity and load than

models such as T-CNN and G-ResNet50. These findings highlight

the model’s superior capability to efficiently extract discriminative

features from complex field backgrounds.

In addition, to thoroughly analyze the practical effectiveness of

each innovative module, this study conducted detailed ablation

experiments. The results clearly demonstrate that modules such as

CCM, MultiScaleECA, and LightASPP each made significant

contributions to the overall performance improvement of the

model. This indicates that the integrated optimization strategy

proposed in this study is well-designed and effective, with each

component being an indispensable part of achieving high

final performance.

In summary, the proposed ENet-CAEM model not only

enriches the application of deep learning in agricultural disease

identification but also provides an efficient, accurate, and robust

technical solution for the intelligent management of the strawberry

industry. It holds significant research value and broad prospects for

agricultural applications.
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6 Conclusion

To address the challenges of strawberry disease identification

under complex backgrounds, this paper introduces an efficient

strawberry disease recognition model, ENet-CAEM, built upon an

enhanced EfficientNetB0 architecture. By integrating the CCM,

MultiScaleECA, and ASPP modules and incorporating a learnable

DropPath regularization mechanism along with a mixed pooling

strategy, the model effectively enhances recognition accuracy while

maintaining control over parameter size and computational

complexity. The experiment was conducted using a self-built

dataset comprising images of strawberry diseases, covering six

common diseases and two healthy classes. The results

demonstrate that ENet-CAEM significantly outperforms the

baseline model in accuracy, precision, recall, and F1 score,

highlighting its superior recognition capabilities and practicality.

Although ENet-CAEM has demonstrated strong performance

in strawberry disease recognition, there is still room for expansion

in terms of data diversity and multimodal intelligent modeling.

Future research will proceed in two directions:
1. Constructing a more diverse and high-quality strawberry

disease image dataset to enhance the model’s ability to

recognize different varieties, growth stages, and

disease types.

2. Exploring the integration of multimodal fusion

technologies and conducting disease progression trend

modeling based on temporal image sequences, thereby

improving the foresight and decision-support capabilities

of strawberry disease recognition.
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