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Introduction: The Leaf Area Index (LAIl) is a critical biophysical parameter for
assessing crop canopy structure and health. Unmanned Aerial Vehicles (UAVs)
equipped with multispectral sensors offer a high-throughput solution for LAl
estimation, but flight altitude compromises between efficiency and image
resolution, ultimately impacting accuracy. This study investigates the
integration of super-resolution (SR) image reconstruction with multi-sensor
data to enhance LAl estimation for soybeans across varying UAV flight altitudes.
Methods: RGB and multispectral images were captured at four flight altitudes: 15
m, 30 m, 45 m, and 60 m. The acquired images were processed using several SR
algorithms (SwinlIR, Real-ESRGAN, SRCNN, and EDSR). Texture features were
extracted from the RGB images, and LAl estimation models were developed
using the XGBoost algorithm, testing data fusion strategies that included RGB-
only, multispectral-only, and a combined RGB-multispectral approach.
Results: (1) SR performance declined with increasing altitude, with SwinIR
achieving superior image reconstruction quality (PSNR and SSIM) over other
methods. (2) Texture features from RGB images showed strong sensitivity to LAI
The XGBoost model leveraging fused RGB and multispectral data achieved the
highest accuracy (relative error: 4.16%), outperforming models using only RGB
(5.25%) or only multispectral data (9.17%). (3) The application of SR techniques
significantly improved model accuracy at 30 m and 45 m altitudes. At 30 m,
models incorporating Real-ESRGAN and SwinIR achieved an average R? of 0.86,
while at 45 m, these methods yielded models with an average R? of 0.77.
Discussion: The results demonstrate that the fusion of SR-reconstructed
imagery with multi-sensor data can effectively mitigate the negative impact of
higher flight altitudes on LAl estimation accuracy. This approach provides a
robust and efficient framework for UAV-based crop monitoring, enhancing data-
driven decision-making in precision agriculture.
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1 Introduction

Soybean is a globally important food and oil crop that
contributes significantly to food security, serving as a major
source of high-quality vegetable protein and essential fatty acids
for both human and animal nutrition (Hartman et al., 2011). As
both a source of protein and oil, soybeans play a crucial role in
enhancing global food security and sustainable development (Chen
et al., 2022). The Leaf Area Index (LAI), defined as the area of leaves
per unit surface area of a field crop with flat leaves (Watson, 1947),
measures the density and extent of vegetation leaf cover (Su et al,
2019). LAI is a critical structural variable in vegetation, indicative of
crop growth and health, and is thus employed as an input variable
in models that predict crop growth and yield (Fang et al., 2019).

The measurement of crop LAI involves a range of techniques,
categorized into direct and indirect methods (Strachan et al., 2005).
The direct method typically requires personnel to collect leaf
samples from various locations and measure the length,
maximum width, and number of leaves. These data are then used
to calculate LAI (Shi et al., 2022). Indirect methods, on the other
hand, include close-range detection techniques such as the use of
handheld measuring devices and fisheye lens photography
(Confalonieri et al., 2013), among others. Both methods, however,
have limitations regarding sampling range and efficiency.

The adoption of remote sensing technology presents a more
effective approach to deriving crop LAI from spectral data (Sadeh
et al.,, 2021; Dhakar et al., 2021). Recent advances have
demonstrated that UAV-based multispectral imaging can
substantially improve the accuracy of crop LAI and chlorophyll
estimation, benefiting from its high spatial resolution and spectral
sensitivity (Parida et al., 2024). This technology significantly
mitigates the constraints of traditional measurement methods,
allowing researchers to economically and swiftly gather extensive
crop canopy data (Furbank and Tester, 2011). Nonetheless, the
temporal and spatial resolutions of most satellite data do not meet
the rigorous demands of precision agriculture. In this context,
Unmanned Aerial Vehicle (UAV) technology plays a pivotal role
by facilitating high-throughput phenotypic analysis (Chapman
et al, 2018). The integration of UAV-based LiDAR and
multispectral imaging has proven effective for high-throughput
phenotyping of dry bean, enabling accurate, non-destructive
estimation of plant height, lodging, and seed yield, highlighting
the potential of UAV-based phenotyping in precision agriculture
and crop breeding programs (Panigrahi et al., 2025).Offering lower
altitudes and capturing data with higher spatial resolution, UAV's
provide more detailed information compared to satellite data
(Araus and Cairns, 2014). Combining UAV RGB and
multispectral indices enables accurate field-scale monitoring of
nitrogen status and yield prediction (Chatraei Azizabadi et al,
2025).In addition, multi-source UAV data fusion frameworks
have been developed for real-time LAI estimation, highlighting
the importance of integrating structural and spectral information
(Du et al., 2024).

The flight efficiency of UAVs varies with flying altitude. In
summary, the time required for large-scale data collection presents
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significant challenges to precision agriculture. To reduce collection
costs, an increase in flying altitude is necessary; however, this
compromises image quality and decreases image resolution.
Previous studies have typically adjusted flight altitudes to balance
the relationship between flight duration and data accuracy (Jay
et al,, 2019). However, high-resolution sensors are often costly and
limited in coverage, while low-altitude flights are time-consuming
and less practical for large-scale monitoring. Therefore, a cost-
effective solution is needed to enhance image resolution without
additional flight or hardware costs. To address the issue of low
resolution in high-altitude imagery, employing Image Super-
Resolution (SR) algorithms is considered an appropriate method
(Jonak et al, 2024). Image SR involves reconstructing low-
resolution images (LR) into high-resolution images (HR) using
computer vision algorithms. In remote sensing, SR technology
enhances image detail, resolution, and quality through AI models,
proving to be of extensive and practical value in fields such as land
cover classification, crop monitoring, and object detection. In
particular, SR not only improves visual quality but also enhances
the extraction of fine textural and structural features from UAV
imagery, thereby potentially improving model robustness and
predictive accuracy for biophysical variables such as LAIL
Nevertheless, few studies have combined UAV-based SR imagery
with multispectral data for quantitative crop trait estimation such as
LA, especially for soybean canopies.

This study introduces a novel method that utilizes UAVs and
SR techniques to estimate the LAIL By enhancing the resolution of
the collected RGB images by a factor of four, the clarity of these
images is improved, thereby minimizing the impact of image
resolution on feature detection and enhancing the precision of the
model. Additionally, this research develops an integrated learning
regression model that combines light and multispectral (MS)
information, increasing both the model’s precision and
computational efficiency. This approach aims to address the
current gap in linking SR-enhanced UAV data with multispectral
information for high-accuracy soybean LAT estimation. The goals of
this study are to: (1) enhance the resolution of UAV imagery using
SR techniques and use these enhanced images to estimate the LAI of
soybeans, selecting an appropriate estimation model; (2) determine
the combination that yields the highest precision in a multivariate
remote sensing imagery dataset (RGB+MS, MS, RGB); (3) assess the
key features associated with the LAL

2 Material and methods

2.1 Study site

As shown in Figure 1, the study was conducted in 2024 at the
Xiangyang Farm, located in Harbin City, Heilongjiang Province,
China, within the Northeast Plain—one of the world’s three largest
black soil regions. This area is renowned for its fertile soil, which is
particularly well-suited for soybean cultivation. Heilongjiang
Province, where the site is located, is responsible for producing
over 50% of China’s soybean output (National Bureau of Statistics
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FIGURE 1

Location of the study area and experimental site design at the Xiangyang site of Northeast Agricultural University in Harbin, Heilongjiang Province,
China. (a) Geographic location of Heilongjiang Province (highlighted in blue) within China, (b) Map of Heilongjiang Province showing the specific
location of the study area, (c) Layout of the experimental areas and treatments at the Xiangyang site.

of China, 2022). The geographic coordinates of the site are 45°45’N
latitude and 126°54’E longitude, with an average elevation of
approximately 150 m. The region experiences a temperate
monsoon climate, characterized by an average annual precipitation
of 5529 mm and an average annual temperature of 3.8°C. The
majority of the rainfall, over 70%, occurs between May and August
(Wikipedia contributors, 2025). In May 2024, 100 soybean varieties,
selected for their suitability in Northeast China and varying in yield
and growth periods, were planted. These varieties were also used for
model validation to assess the robustness of the estimation results
across different genotypes. The names of all varieties are listed in
Appendix Table A2.The management of pesticides and fertilizers
adhered to local practices.

2.2 LAl estimation framework

This study developed a framework for estimating the LAI using
UAV-based imagery. As depicted in Figure 2, the framework
involves a comprehensive workflow that includes image
preprocessing using SR techniques, integrating three distinct types
of input features, and employing a regression model for LAI
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estimation. Initially, RGB images at four different altitudes were
captured using a UAV. These images underwent preprocessing,
which included stitching and segmentation. The segmented images
were then enhanced in resolution through four SR methods. The
next phase involved extracting features from these enhanced images
and determining three different combinations of input features for
LAI estimation.

2.3 Field data collection

From August to September 2024, during three distinct growth
stages—V6 (sixth trifoliate leaf), R1 (beginning bloom), and R3
(beginning pod)—the LAI of each soybean variety was measured
using an AccuPAR LP-80 Plant Canopy Analyzer (Decagon Devices
Inc., Pullman, WA, USA). Measurements were conducted between
10:00 a.m. and 1:00 p.m. local time on clear, calm days under stable
sunlight conditions to ensure consistent illumination and
measurement accuracy. For each of the 100 soybean varieties, the
experimental plot was divided into four sampling zones, and LAI
was measured once per zone to calculate the average LAL resulting
in 400 measurements per growth stage. Measurements were
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FIGURE 2

Workflow diagram of the proposed methodology. (a) UAV Images Preprocess, (b) Model Features Extraction, (c) Model Building & Validation.
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conducted at three different growth stages, yielding a total of 1,200
LAI measurements across all varieties, zones, and growth stages.
Figure 3 shows the distribution of LAl measurements across the
three periods. These measurements were performed concurrently
with the UAV flights.

2.4 UAV data collection

In this research, UAV data were collected using a DJI M300
drone (Shenzhen, China) equipped with a DJI ZENMUSE P1
camera and an MS600 Pro MS camera (Qingdao UVS
Technology Co., Ltd), as shown in Figure 4. The MS camera
features six monochromatic channels: near-infrared (NIR, 840 +
15 nm), red edge at 750 nm (RE750, 750 + 5 nm), red edge at 720
nm (RE720, 720 = 5 nm), red (R, 660 + 11 nm), green (G, 550 + 14
nm), and blue (B, 450 + 15 nm). The DJI M300 includes an
integrated Global Navigation Satellite System (GNSS) module for
recording the geolocation data of the imagery. The main
specifications of the multispectral camera, including each band
and its central wavelength range, are summarized in Table 1,
providing a clear reference for subsequent vegetation index
calculations and image analysis. Data collection flights were
conducted on August 7, August 23, and September 11, 2024,
between 10:00 a.m. and 1:00 p.m. local time, under low wind and
cloud-free conditions. The flight altitude was set at 15 m, 30 m,
45 m, and 60 m.

DJI M300 RTK

FIGURE 4

10.3389/fpls.2025.1700660

2.5 Image preprocessing

For MS images, standard reflectance calibration and
radiometric correction were performed using Yusense Map
software (Qingdao, China) to ensure comparability of images
collected at different growth stages. The raw MS images were
subsequently stitched together. To eliminate soil pixels, the
Normalized Difference Vegetation Index (NDVI) for each pixel
was calculated, and pixels with an NDVI value below 0.2 were
identified as soil and excluded from the orthoimages.

Following the experimental layout’s dimensions, images were
batched by varietal category to produce corresponding RGB and MS
images. As previously described, images were categorized based on
collection altitude and time, resulting in a total of 2400 images
(1200 RGB images and 1200 MS images) for model construction.

2.6 Image SR and feature extraction

Building on the regionally segmented RGB images, this study
explored four representative image SR techniques to enhance the
resolution and quality of soybean leaf images: Super-Resolution
Convolutional Neural Network (SRCNN), Enhanced Deep Super-
Resolution Network (EDSR), Real-Enhanced Super-Resolution
Generative Adversarial Network (Real-ESRGAN), and Swin
Transformer for Image Restoration (SwinIR). These methods span
from early con-volutional neural networks (CNNs) to recent generative

DJI ZENMUSE P1

©

MS600 Pro

UAV-based crop phenotyping observation platform. (a) DJI M300 RTK UAV; (b) Zenmuse P1 RGB camera; (c) MS600 Pro MS camera.
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TABLE 1 Spectral bands and wavelength ranges of the MS600 Pro
multispectral camera.

Central wavelength = Bandwidth
(nm) (nm)

1 Blue 475 + 16 32

2 Green 560 + 16 32

3 Red 668 + 16 32

4 Red Edge 717 + 10 40

5 NIR 842 = 26 52

6 NIR2 900 = 20 40

adversarial networks (GANs) and Transformer architectures,
providing a broad representation and complementarity suited to the
diversity and complexity of soybean leaf images. SRCNN serves as a
baseline model with a simple structure and high computational
efficiency. EDSR is noted for its superior performance in various SR
tasks, particularly excelling in the restoration of image details (Bashir
et al, 2021). Real-ESRGAN effectively addresses real-world image
degradation issues, enhancing texture details and improving visual
quality. SwinIR integrates local and global attention mechanisms,
effectively capturing both local and global features of images,
especially those with complex textures (Ali et al., 2023). This study
introduces these four distinct architectural SR algorithms to identify the
most suitable SR methods for this research context.

These four SR methods were chosen over other alternatives
because they collectively represent the main categories and
technical milestones in SR development—namely, the foundational
CNN-based models (SRCNN, EDSR), the GAN-based generative
model (Real-ESRGAN), and the Transformer-based attention model
(SwinIR). This selection ensures a comprehensive coverage of
methodological diversity, allowing the study to evaluate
performance differences across architectures with varying capacities
for detail enhancement, texture restoration, and noise suppression.
Such representativeness makes them particularly suitable for
assessing SR performance under the complex texture and
illumination conditions of soybean leaf imagery.

This study therefore employs these four distinct SR
architectures to identify the most suitable approach for high-
quality soybean leaf image reconstruction and analysis. To

10.3389/fpls.2025.1700660

provide a clear overview, the main characteristics of these four SR
methods are summarized in Table 2.

RGB images provide high-resolution spatial information,
capturing the morphological features of soybean leaves such as
edges, textures, and color variations. MS images, spanning multiple
bands from visible light to near-infrared, offer richer spectral
information. This is especially true in the near-infrared band,
where higher vegetation reflectance can effectively indicate the
physiological characteristics and health status of the leaves.
Utilizing these sources, this study extracted 15 features from RGB
image datasets and 15 features from MS images.

To accurately estimate the soybean LAI, we adopted a multi-
source remote sensing data fusion method. This approach combines
the morphological features from RGB images with the spectral
features from MS images to create an integrated RGB+MS dataset.
By leveraging the sensitivity of different bands to vegetation
characteristics, this method enhances the accuracy and stability of
LAI estimation. Consequently, the combined dataset features 15
morphological indicators from RGB and 15 spectral indicators from
MS, totaling 30 indicators. Table 3 summarizes the features used for
modeling, which were extracted from the RGB, MS, and combined
RGB+MS datasets. The full names and calculation formulas of these
features are provided in Appendix Table Al.

2.7 LAl regression models

In this research, two machine learning approaches—Random
Forest (RF) and Extreme Gradient Boosting (XGBoost)—were
applied to construct models for soybean leaf area index
estimation. RF (Natekin and Knoll, 2013), a well-known ensemble
algorithm, enhances the predictive power of individual decision
trees by aggregating them into a strong learner. Compared with
traditional single-tree models, RF reduces the risk of overfitting and
provides stable regression outcomes through the collective
contribution of multiple weak learners.

XGBoost, on the other hand, has gained wide attention in recent
years, particularly within agricultural studies. Unlike RF, it
introduces a regularization term () to penalize model
complexity, which effectively controls overfitting and improves
robustness when handling high-dimensional datasets. Beyond
accuracy, XGBoost is also capable of efficiently managing sparse
data and supports distributed parallel training, making it highly

TABLE 2 Comparison of the main characteristics of the four SR methods used in this study.

Method Model type Core architecture Key strength Year

SRCNN CNN-based Shallow 3-layer convolutional network Pioneer of deep learning SR, simple and effective 2014
NN-

EDSR ?R N dbai)e d Deep residual blocks without batch normalization High reconstruction accuracy and robustness 2017
esidual

Real- Enhanced ESRGAN with i d degradati

e GAN-based . an'ce With tmproved degradation Realistic detail and texture generation 2021
ESRGAN modeling
. i i X Excellent texture recovery and feature
SwinIR Transformer-based Swin Transformer with local and global attention . 2021
preservation
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TABLE 3 UAV image modeling features included in this study.

Sensors Modeling features

R_Mean, G_Mean, B_Mean, Variance, GRVI, MGRVI, RGBVI,

RGB ExG, BGI, BRI, GRL,GLLVARLNGRDLTGI
MS MSAVI2, RVI, NDVI, EVI, RERVI, SAVI, DVI, OSAVI, GVI,
TCARIL NDRE, ARI1, CRI2, GNDVI, RDVI
R_Mean, G_Mean, B_Mean, Variance, GRVI, MGRVI, RGBVI,
RGB+MS ExG, BGI, BRI, GRI, GLI, VARI, NGRDL,MSAVI2, RVI, NDVI,

EVI, RERVI, SAVI, DVI, OSAVI, GVI, TCARI, NDRE, ARIl,
CRI2, GNDVI, RDVI

suitable for large-scale regression problems (Karthikeyan and
Mishra, 2021).

To maximize predictive performance, a systematic hyperparameter
tuning procedure was adopted. Among the parameters, the learning
rate was given particular importance since it determines the step size of
error correction during training, directly influencing both convergence
stability and final model quality. A two-stage grid search combined
with 5-fold cross-validation was carried out: the initial stage identified
suitable parameter ranges, followed by a refined search for optimal
values. Model performance under each setting was assessed
using the loss function, where lower values indicated improved
prediction accuracy.

Given the stochastic nature of RF and XGBoost, the training
and validation process was repeated 10 times for each
hyperparameter configuration to account for variability due to
random initialization and data sampling. The performance
metrics, including loss and prediction accuracy, were averaged
across these repetitions to provide robust estimates, and the
standard deviations were calculated to quantify variability. This
procedure ensures that the reported model performance is
statistically reliable and not driven by random fluctuations in
individual runs.

This rigorous optimization process notably enhanced both
computational efficiency and generalization ability of the models.
The joint use of grid search and cross-validation is a widely accepted
practice for reducing overfitting and improving reliability in
complex regression or classification tasks. For example, Adnan
et al. (2022) reported significant improvements in model accuracy
when employing this strategy in combination with adaptive
boosting techniques.

2.8 Feature selection method

In machine learning, feature selection is the process of
identifying a subset of the most valuable features from an original
set for prediction tasks, aiming to eliminate redundant and
irrelevant features, simplify the model structure, improve training
efficiency, and enhance generalizability. Redundant features are
highly correlated with other features, providing information that
may already be contained elsewhere, while unrelated features have
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little or no significant impact on the target variable. Retaining such
features not only increases model complexity but can also introduce
noise, leading to overfitting and reduced performance on new data.

In this study, a model-based feature selection method was
adopted to improve the predictive performance of the model and
reduce computational burden. Specifically, the SelectFromModel
(SEM) class provided by the scikit-learn library in Python version
3.6.13 (https://scikit-learn.org) was utilized for feature selection.

This method trained a basic estimator (such as a linear model or
tree model), which evaluated the importance of each feature using its
provided feature importance index (Raschka, 2018).Subsequently,
based on the set threshold, features with importance higher than
the threshold were selected to form a new feature subset. This
approach integrates the feature selection process into model
training, avoiding the need to train multiple models repeatedly,
thus enhancing processing efficiency.

In this study, ‘mean’ was selected as the threshold, which means
retaining features with importance scores higher than the average
importance of all features. This strategy can be beneficial in
removing redundant or irrelevant features. Moreover, the strategy
can also reduce the risk of overfitting and improve the
model’s generalizability.

By applying the SelectFromModel method, the most
contributing features to the inversion of soybean LAI were
selected from the original feature set. These features can offer a
more streamlined and efficient data foundation for subsequent
modeling and analysis.

2.9 Evaluation index

For the verification of the LAl model’s estimation accuracy, 70%
of the samples and observed leaf age were randomly selected for
training the model. While the remaining 30% of the samples were
used to validate the performance and accuracy of the estimation
model. Coefficient of determination R* (Equation 1), root mean
square error (Equation 2), relative RMSE, and mean absolute error
were employed to assess the stability of the model in various aspects.
The calculation formula is formulated as follows:

n 2
ZI()AG- -7
R’ = ’;72 (1)
g,(yi -7
12 2
RMSE = ;E(}/i 2] (2)
i=1
n 2
%E(yl _yi)
RMSE= -+ 3)

2=
X =
2
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n
MAE =~ |7~ ;] )
nig

Among them, y; denotes the total number of samples. y; and y;
represent the LAI of the measured and estimated values of the
samples, respectively. y is the average value of measured LAIL
R’indicates the correlation between measured results and
estimated results. RMSE and rRMSE (Equation 3) represent the
loss and loss rate between measurement results and estimated
results. MAE (Equation 4) represents the absolute value between
measured result and estimated result. The lower the RMSE or
rRMSE, the better the model estimation accuracy.

To comprehensively assess the quality of image SR
reconstruction, two widely used objective evaluation metrics were
adopted: Peak Signal to Noise Ratio (PSNR, Equation 5) and
Structural Similarity Index (SSIM, Equation 6).

PSNR = 10 - log [ MAXT
=080\ s

()

10.3389/fpls.2025.1700660

(zlux,uy + Cl)(zo-xy + CZ)
W2+ 12+ C)(G2 + 07+ Cy)

SSIM(x, y) = (6)
PSNR is a commonly utilized metric for assessing the quality of
image reconstruction, primarily used to evaluate the differences
between reconstructed images and original images, based on mean
squared error (MSE). Here, MAX; represents the potential
maximum pixel value in an image, which for an 8-bit image is
MAX; = 255. PSNR is measured in decibels (dB), with higher values
indicating closer proximity of the reconstructed image to the
original, denoting better quality. SSIM is an image quality metric
more aligned with human visual perception, assessing similarity
between two images across three dimensions: luminance, contrast,
and structure. Here, f, and u, are the mean luminance values of
images x and y, respectively, 0; and o; are the variances, oy, is the
covariance, and C; and C, are small constants used to stabilize the
denominator. The SSIM value ranges from [-1, 1], with values
closer to 1 indicating greater similarity between the two images.

FIGURE 5

Results of resolution enhancement using SRCNN (a), EDSR (b), Real-ESRGAN (c),and SwinIR (d). Each panel presents the reconstructed soybean
canopy images after applying the corresponding model. SRCNN (a) and EDSR (b) improve overall clarity and detail definition compared to the
original low-resolution input. Real-ESRGAN (c), based on a generative adversarial network (GAN), effectively enhances texture realism and reduces
artifacts. SwinlIR (d), employing a Transformer architecture, produces visually sharp and natural results with well-preserved canopy structures.
Overall, both the GAN- and SwinIR-based methods exhibit superior enhancement quality compared with the other approaches

Frontiers in Plant Science

08

frontiersin.org


https://doi.org/10.3389/fpls.2025.1700660
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhao et al.

TABLE 4 Image metrics obtained from four SR methods.

10.3389/fpls.2025.1700660

Altitude Evaluation index = SRCNN
PSNR 27.95
30 m
SSIM 0.9295
PSNR 26.28
45 m
SSIM 0.9407
PSNR 25.77
60 m
SSIM 0.9427
3 Results

3.1 Super resolution results

The outcomes of applying four SR techniques to enhance the
resolution of RGB images are depicted in Figure 5, whereas Table 4
presents a comparative analysis of the metrics before and after the
application of these SR techniques. The data clearly indicates that
the best SR effects were achieved at a 30-meter altitude, with an
average PSNR of 28.09, surpassing the results at 45-meter (26.76
PSNR) and 60-meter (26.12 PSNR) altitudes. This suggests that the
effectiveness of SR techniques diminishes with increasing flight
altitude, with minimal enhancement in image quality observed at a
higher altitude of 60 m. Among the four SR methods evaluated,
SwinIR demonstrated superior performance, achieving enhanced
results in both PSNR and SSIM compared to the other three
methods. This underscores the advantages of SwinIR’s
hierarchical window-based attention mechanisms in processing
and restoring the edges of soybean leaves.

In general, a higher PSNR value (typically above 30 dB for high-
quality natural images) indicates better reconstruction fidelity,
whereas an SSIM value closer to 1.0 reflects greater structural
similarity between the reconstructed and reference images.
Therefore, the observed PSNR and SSIM values in this study
suggest that SwinIR achieved relatively higher image fidelity and
structural consistency compared with the other SR methods.

3.2 Feature selection results

A feature dataset comprising all input features was constructed
based on each cropped plot image. To mitigate the impact of inter-
feature correlation, feature selection was performed using the
SelectFromModel (SFM) method described in Section 2.8.In this
study, two machine learning methods were utilized; therefore, RF
and XGBoost models were employed for feature selection. Table
displays the subsets of features selected by the SFM method from
three types of input datasets, all chosen from images at a 15-meter
altitude without SR.

The data in Table 5 reveals that among the two SFM methods,
several features such as ExG, Variance, VARI, NIR, and G_Mean
were consistently selected across the three input datasets, indicating
a strong correlation with the LAI. Additionally, indices such as
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Real-ESRGAN SwinIR
28.01 28.10 28.33
0.9327 0.9363 0.9460
26.52 26.97 27.25
0.9434 0.9498 0.9579
25.94 26.25 26.50
0.9483 0.9565 0.9624

MSAVI2 and NDVI were prioritized in the modeling workflow due
to their established sensitivity to canopy structure and leaf area,
which makes them particularly informative for estimating LAIL The
relative contribution of each feature to the predictive performance
of the RF and XGBoost models is illustrated in Figure 6, where the
importance scores reflect the influence of each feature in the
modeling process. Overall, it is evident that both the textural and
spectral characteristics of soybean leaves are pertinent to the
construction of the model.

3.3 Modeling and validation of LAl
estimation

3.3.1 Evaluation of different sensors and
regression models

Table 6 presents the validation statistics for various input
combinations, specifically the coefficients of determination (RZ),
RMSE, and relative RMSE. All data within the table were derived
from images taken at an altitude of 15 m. It is evident that among
the three feature input combinations, the XGBoost model exhibited
the most proficient performance in regressions related to leaf area,
achieving the highest overall precision. When considering the
source of input variables, the combination of RGB and MS
sensors provided the most favorable outcomes. For the XGBoost
model, the R? varied between 0.8703 and 0.9173, while rRMSE
ranged from 4.26% to 6.17%. These metrics confirm the robustness
of the models developed in this study. Concurrently, the use of
XGBoost for feature selection and model construction, coupled with
the fusion of multiple data sources (RGB+MS), emerged as the most
precise approach.

3.3.2 Performance of different LAls on model
accuracy

In this section, the performance of the XGBoost model
combined with multisource information fusion (RGB+MS) was
evaluated across different periods for leaf area estimation.
Figure 7 displays the final evaluation results. In each panel, the
scatter plot on the left plots the estimated leaf area (x-axis) against
the residuals, which are the differences between the estimated and
true leaf areas (y-axis). On the right, a histogram illustrates the
distribution of these residuals. The analysis indicates that the model
adapts well to leaf area estimation, with absolute residuals less than
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TABLE 5 Feature combinations selected from the complete set of input
features from three sensors, using different feature selection methods.

Feature

selection SFM_RF SFM_XGBoost

Sensors

RGB ExG, VARI, GRVI, Variance, ExG, VARI, GRVI, Variance,
G_Mean, TGI, RGBVI G_Mean, TGI

MS NDVI, NDRE, EVI, SAV], NDVI, NDRE, EVI, SAVI,
NIR, DVI, MSAVI2 NIR, RVI, MSAVI2
NDVI, NDRE, EVI, ExG, NDVI, NDRE, EVI, ExG,

RGB+MS VARI, SAVI, MSAVI2,TGI, VARI, SAVI, MSAVI2,
Variance,G_Mean GRVI, Variance,G_Mean

0.25, and the residuals across three

normal distribution.

dates approximating a

3.3.3 Evaluation of various SR techniques
This study employed four distinct SR methods—SRCNN,

EDSR, Real-ESRGAN, and SwinIlR—to assess their efficacy in
estimating the LAI within a regression model. The original
altitudes evaluated were 30 m, 45 m, and 60 m. For each altitude,

10.3389/fpls.2025.1700660

the LAI was enhanced using the aforementioned SR techniques,
maintaining identical input features as those used at a baseline
altitude of 15 m. Figure 8 illustrates the relationship between the
measured LAI and the estimated LAI at an altitude of 30 m,
following optimization with the four algorithms. It was observed
that the introduction of SR techniques significantly enhanced the
overall precision of the model. Specifically, the SRCNN and EDSR
methods showed improvements in their R* values compared to the
original 30-meter images, although the increases were not
substantial. Conversely, the Real-ESRGAN and SwinIR methods
demonstrated a noticeable rise from an R* of approximately 0.80 to
around 0.86. Figure 8 also depicts the relationships between the LAI
values at an altitude of 45 m after optimization with the four
algorithms. At this altitude, the application of SR methods
continued to positively influence the model’s precision. The
performance enhancements with SRCNN and EDSR were similar
to those at 30 m, whereas the Real-ESRGAN and SwinIR methods
did not show as significant an increase as seen in the 30-meter
scenario, indicating a diminishing return in model precision
enhancement. Furthermore, Figure 8 displays the relationship
between the LAI values at 60 m following the application of the
four algorithms. At this altitude, none of the SR methods
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TABLE 6 Validation statistics for different soybean LAI estimation models.

10.3389/fpls.2025.1700660

Feature selection and modeling approach Metrics RGB MS RGB+MS
R’ 0.8553 0.8401 0.8635
All input features_RF RMSE 0.0926 0.0952 0.1074
rRMSE 7.87% 10.21% 5.86%
R’ 0.8592 0.8417 0.87014
All input features_XGBoost RMSE 0.0845 0.0917 0.0986
rRMSE 7.24% 9.86% 5.28%
R’ 0.8643 0.8446 0.8824
SFM_RF RMSE 0.0705 0.0725 0.0685
rRMSE 6.74% 11.02% 6.19%
R? 0.8703 0.8558 09173
SFM_XGBoost RMSE 0.0732 0.0903 0.0478
rRMSE 5.25% 9.17% 4.26%

Highlighted statistics represent the most accurate estimations of LAI by each sensor data source.

demonstrated a noticeable change in model precision compared to
the unprocessed data, suggesting that SR techniques did not
contribute to precision enhancement under these conditions.

4 Discussion
4.1 Evaluation metrics for SR algorithms

This study employs the PSNR and SSIM indices to evaluate the
SR effect. Despite their widespread use in image quality assessment,
PSNR and SSIM exhibit numerous limitations in the agricultural
sector. They struggle to reflect the semantic fidelity of key
agricultural features within images, respond sensitively to changes
in critical areas, and are highly sensitive to environmental variations
(Hore and Ziou, 2010; Nigam and Jain, 2020). Therefore, in
agricultural image processing, a comprehensive evaluation should
incorporate perceptual indices or task-related metrics. This study
evaluates the effect of SR based on the accuracy of the final
LAI evaluation.

4.2 Selection of data features for LAI
evaluation

In Table 6, the model performance was evaluated using the
coefficient of determination (R?*), RMSE, and relative RMSE
(rRMSE). These three indicators were selected because they
collectively assess both the accuracy and relative deviation of
model predictions, which are essential for comparing different
feature combinations and model configurations. In contrast, the
mean absolute error (MAE) was reserved for analyzing LAI
estimation performance across different growth stages (Section
4.4), where absolute differences provide more intuitive insights

Frontiers in Plant Science

11

into temporal variations. MAE is often preferred in such analyses
because it expresses the average absolute error in the same units as
the original data, allowing more straightforward interpretation of
deviations over time (Chai and Draxler, 2014).

These results underscore the importance of high spatial
resolution in revealing more details and enhancing the accuracy
of feature data, thereby confirming the significant role of SR
techniques in this study. Previous studies have shown that the
fusion of information from different sensors can significantly
enhance crop growth monitoring and yield prediction. For
example, incorporating both RGB and multispectral (MS) features
leads to more accurate estimation of rice LAI (Yang et al., 2021).

Although Table 6 indicates that the results using RGB data
alone are better than those using MS data alone, MS data remains of
great importance. The introduction of MS provides an additional
dimension of information for estimating leaf age from a
spectroscopic perspective. MS imagery can detect fine spectral
variations related to distinct physiological components of leaves
more effectively than RGB data, thanks to its narrowband sensitivity
(Reddy and Pawar, 2020). MS information offers critical insights for
tracking physiological, biochemical, and structural dynamics across
crop growth stages (Zhao et al., 2023). Leaf spectral reflectance is
influenced by factors such as chlorophyll concentration, equivalent
water thickness, and leaf inclination angle, which vary notably over
time (Zeng et al., 2022). As leaves mature, significant changes also
occur in water content, pigment levels, and other chemical
constituents (Sims and Gamon, 2002). These changes are
effectively captured through spectral imaging and feature
extraction, reflecting trends over time.

In addition, leaf spectral characteristics play a crucial role in
estimating LAI, as they capture both biochemical and structural
variations of the canopy. Spectral reflectance in the visible region,
particularly in the red and green bands, is primarily influenced by
pigment content. In contrast, reflectance in the near-infrared (NIR)
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FIGURE 7

Residual distribution of the XGBoost model for RGB sensor (a), MS sensor (b), and RGB+MS sensor (c). Train: Training dataset. Val: Validation dataset.
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FIGURE 8

Relationship between the estimated and measured LAl across three different altitudes and four SR methods within both training and validation
datasets. At 30-meter altitude: (a) without SR, (b) using SRCNN, (c) using EDSR, (d) using Real-ESRGAN, (e) using SwinIR. At 45-meter altitude:

(f) without SR, (g) using SRCNN, (h) using EDSR, (i) using Real-ESRGAN, (j) using SwinIR. At 60-meter altitude: (k) without SR, (1) using SRCNN,

(m) using EDSR, (n) using Real-ESRGAN, (o) using SwinIR. The color coding indicates the dates of LAl estimation: red for August 7, green for August
23, and blue for September 11. The data points in the figures are differentiated into training and validation datasets, as indicated by distinct shapes.
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region is affected by leaf internal structure and canopy density
(Haboudane et al, 2004). A higher LAI typically corresponds to
stronger absorption in the visible range and higher reflectance in the
NIR range, reflecting the integrated effects of canopy structure and
photosynthetic activity.

Therefore, incorporating spectral information from multiple
sensors provides a more comprehensive representation of canopy
characteristics. In this study, the multi-source data fusion approach
(RGB + MS) enabled the joint use of spectral and structural features,
effectively improving LAT estimation accuracy. This emphasizes the
importance of combining spectral indices with textural and canopy-
structural features in the inversion process, demonstrating the
advantage of multi-source fusion for capturing LAI-related
variability (Delegido et al., 2011).

The study investigated the impact of input image features on
model performance by incrementally adding modeling features. As
shown in Figure 9, in both the RF and XGBoost models, MSAVI2
and NDVI are the most influential features, underscoring their
pivotal roles in predicting target variables. These vegetation indices
collectively highlight the importance of spectral features in
estimating LAIL

4.3 Analysis of SR algorithms

Previous research, as summarized in Table 6, indicates that the
combination of the XGBoost model with multisource information

R _Mean

™ MSAVI2

FIGURE 9
Image feature importance based on stepwise regression analysis.
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fusion (RGB + MS) achieves the highest precision. Therefore, the
subsequent analyses in this study are based on this combination.
Following this determination, SR techniques were introduced
during the data preprocessing phase. To investigate the
enhancement effect of SR methods, flights were conducted at four
different altitudes: 15 m, 30 m, 45 m, and 60 m, corresponding to
spatial resolutions of 0.1875 c¢m, 0.375 c¢m, 0.5625 cm, and 0.75 c¢m,
respectively. The results show that SR methods positively impact
model precision. Among all four methods, Real-ESRGAN and
SwinIR performed better than SRCNN and EDSR. This
superiority is attributed to the intrinsic characteristics of
agricultural images, such as fine textures (e.g., leaf details and
crop textures) and repetitive leaf structures, which are prevalent
in the RGB images used in this study.

The application of CNNs in image SR tasks was initiated by
Dong et al. with the introduction of SRCNN, a three-layer, end-to-
end convolutional network (Dong et al., 2015). This architecture
demonstrated superior performance compared to traditional
methods based on interpolation or sparse representation. With
the rapid evolution of deep convolutional networks in the field of
SR, EDSR, proposed in 2017, incorporated residual modules and
deepened the network architecture to further improve SR
performance (Lim et al., 2017). Within a CNN, a single
convolutional kernel observes only a small local portion of the
input image. Despite stacking multiple convolutional layers, the
receptive field expands slowly. If a pixel is to perceive information
from a distant location, it must traverse numerous layers, which can

—— RF
—— XGBoost
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lead to attenuation or distortion of information during
transmission. Furthermore, downsampling operations such as
pooling, while capable of enlarging the receptive field, often result
in loss of detail and texture degradation, making them unsuitable
for restoring delicate structures in soybean RGB images.
Consequently, employing CNNs to enhance the SR of soybean
leaf images is not considered an appropriate approach.
Real-ESRGAN, introduced in 2021, builds upon EDSR by
incorporating a more complex GAN structure and enhancing the
training data degradation model to support more realistic low-
quality inputs (Wang et al., 2021). SwinIR, also from 2021, is based
on the Swin Transformer, a sliding window transformer that
naturally excels at modeling long-distance dependencies and
understanding distant texture correlations in images, which is
particularly crucial in crop imaging (e.g., the directionality of leaf
veins and textures) (Liang et al., 2021). Figure 10 illustrates the
structural differences among the four network architectures.
SRCNN and EDSR rely solely on local convolution to interpret
images, whereas Real-ESRGAN introduces a GAN structure that
establishes an adversarial process between the generator and the
discriminator. This process not only seeks numerical closeness but
also aims to visually deceive the discriminator, thereby generating
more natural images with high-frequency details (Zhang et al,
2023). SwinIR employs localized window attention and a sliding
window mechanism, allowing for regional modeling while also
capturing information from distant areas. Overall, Real-ESRGAN
exhibits significant advantages in realistic degradation modeling
and detail enhancement, while SwinIR achieves breakthroughs in

SRCNN EDSR

Conv
Conv
Conv

Bosidual
Block

Conv

FIGURE 10
Comparison of network architectures for four SR methods.
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feature modeling capability and distant texture reconstruction. Both
methods surpass traditional CNN approaches in terms of visual
perception quality and practical application results. These findings
are consistent with the conclusions of this study, which indicate that
models optimized with Real-ESRGAN and SwinIR exhibit higher
precision than those using traditional CNN techniques. The
differences in the network architectures of the four methods are
shown in Figure 10.

4.4 Comparative analysis of soybean LAI
across different time periods

To examine the influence of soybean LAI on the accuracy of
estimation models, Figure 11 illustrates the distribution of MAE for
LAI estimates over three distinct time periods. Statistical analysis of
the results revealed that the estimation model more accurately
reflected LAI during August. However, estimation precision
noticeably decreased during the late growth stage in September.
One plausible explanation for this decline is the reduced sensitivity
of vegetation indices, such as NDVI and EVT, to LAL As the growth
season progresses, leaf senescence and thinning occur, leading to a
situation in which, despite a reduction in LAI, changes in NDVIand
EVI become minimal, resulting in inaccurate model estimations.
Leaf discoloration and the concomitant decrease in chlorophyll
content cause vegetation indices to reflect not only leaf area but also
information indicative of physiological aging. With reduced
vegetation cover, more of the ground surface—including bare soil
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FIGURE 11
MAE of LAl estimates over three time periods.

and dry grass—is exposed, mixing soil signals with those received by
the sensors. Consequently, while vegetation indices may show a
decline, substantial leaf area may still remain, causing the model to
erroneously interpret a greater decrease in LAI. Moreover, spectral
information primarily originating from leaves reduces the MAE of
MS data used in LAI estimation.

To mitigate this limitation, future studies could incorporate
vegetation indices that are more sensitive to senescence and
pigment variation, such as the Red Edge Chlorophyll Index
(ClIred-edge) or the Normalized Difference Senescence Index
(NDSI), which may enhance model robustness during late growth
stages. In addition, although this study involved multiple soybean
varieties, the current model’s generalizability across different
genotypes, growth environments, and phenological stages remains
to be further validated. Future research should therefore consider
multi-environment and multi-temporal datasets to improve the
universality and adaptability of the proposed model.

4.5 Limitations and future prospects

This study employed multi-source remote sensing imagery to
estimate the LAI of soybean crops. The integration of SR techniques
during the data preprocessing phase yielded favorable outcomes.
However, the models’ ability to account for morphological and
phenological variations among soybean crops at different growth
stages and across varieties was not fully validated, which may limit
the generalizability of the estimation models. Future research
should incorporate multi-temporal and multi-varietal datasets to
better capture these variations, thereby enhancing the model’s

Frontiers in Plant Science

16

robustness and transferability under diverse field conditions.
Compared to traditional destructive methods for collecting
soybean LAI data, UAVs equipped with multiple sensors can
rapidly and efficiently gather extensive crop information. This
approach not only saves considerable labor and costs but also
achieves higher data accuracy. Although the study covered several
soybean varieties with identical sowing times, noticeable differences
in growth conditions were observed. The methods developed here
demonstrated strong adaptability in estimating LAI across different
soybean varieties, indicating significant practical value and
providing robust support for researchers.

The SR technique introduced at the data preprocessing stage
was designed to maintain data accuracy despite higher UAV flying
altitudes. It was demonstrated that within a specific altitude range,
the SR method significantly enhanced model precision. The
improvement in the resolution of RGB images at an altitude of
30 m was found to be comparable to that at the original flying
altitude of 15 m. This highlights the considerable potential of deep
learning models in agricultural surveillance. In future studies,
additional modules could be integrated to further optimize the SR
model, improving its ability to address texture and leaf-repetition
issues in soybean imagery. Such advancements could inspire new
approaches to enhance UAV data collection efficiency and model
generalization across phenological stages and varieties.

5 Conclusion

This study aimed to estimate the LAI of soybeans using UAV's
equipped with high spatial resolution RGB and MS imagery. We
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employed appropriate feature selection methods to enhance the
efficiency of the modeling process. The study identified the most
precise combinations of modeling techniques and datasets and
subsequently developed a high-precision model for estimating
the LAL

Additionally, SR techniques were introduced during the data
preprocessing stage to enhance the RGB image data before its
incorporation into the model, resulting in higher precision
outcomes. The key findings of this research are as follows:

1. The combination of features from both RGB and MS
imagery was superior to using either type of data alone.
Features derived from the MS data significantly enhanced
model precision.

. The use of feature selection methods improved the
operational efficiency of the model. Among the models
constructed in this study, namely Random Forest (RF) and
XGBoost, the latter proved more effective for both feature
selection and model construction.

3. The application of SR methods during data preprocessing
improved model precision. Specifically, data optimized
using the GAN-based Real-ESRGAN method and the
Transformer-based SwinIR method yielded better results
than those processed by CNN-based methods such as
SRCNN and EDSR.

The results of this research offer new insights into efficient UAV
crop monitoring. By leveraging the enhancement capabilities of SR
technology on UAV RGB images, UAVs can potentially operate at
higher altitudes while maintaining high model precision. Combined
with machine learning techniques, this provides an efficient method
for monitoring soybean growth and managing agricultural fields.
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