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Introduction: The Leaf Area Index (LAI) is a critical biophysical parameter for

assessing crop canopy structure and health. Unmanned Aerial Vehicles (UAVs)

equipped with multispectral sensors offer a high-throughput solution for LAI

estimation, but flight altitude compromises between efficiency and image

resolution, ultimately impacting accuracy. This study investigates the

integration of super-resolution (SR) image reconstruction with multi-sensor

data to enhance LAI estimation for soybeans across varying UAV flight altitudes.

Methods: RGB and multispectral images were captured at four flight altitudes: 15

m, 30 m, 45 m, and 60 m. The acquired images were processed using several SR

algorithms (SwinIR, Real-ESRGAN, SRCNN, and EDSR). Texture features were

extracted from the RGB images, and LAI estimation models were developed

using the XGBoost algorithm, testing data fusion strategies that included RGB-

only, multispectral-only, and a combined RGB-multispectral approach.

Results: (1) SR performance declined with increasing altitude, with SwinIR

achieving superior image reconstruction quality (PSNR and SSIM) over other

methods. (2) Texture features from RGB images showed strong sensitivity to LAI.

The XGBoost model leveraging fused RGB and multispectral data achieved the

highest accuracy (relative error: 4.16%), outperforming models using only RGB

(5.25%) or only multispectral data (9.17%). (3) The application of SR techniques

significantly improved model accuracy at 30 m and 45 m altitudes. At 30 m,

models incorporating Real-ESRGAN and SwinIR achieved an average R2 of 0.86,

while at 45 m, these methods yielded models with an average R2 of 0.77.

Discussion: The results demonstrate that the fusion of SR-reconstructed

imagery with multi-sensor data can effectively mitigate the negative impact of

higher flight altitudes on LAI estimation accuracy. This approach provides a

robust and efficient framework for UAV-based crop monitoring, enhancing data-

driven decision-making in precision agriculture.
KEYWORDS

UAV remote sensing, machine learning, super resolution, leaf area index, multi-source
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1 Introduction

Soybean is a globally important food and oil crop that

contributes significantly to food security, serving as a major

source of high-quality vegetable protein and essential fatty acids

for both human and animal nutrition (Hartman et al., 2011). As

both a source of protein and oil, soybeans play a crucial role in

enhancing global food security and sustainable development (Chen

et al., 2022). The Leaf Area Index (LAI), defined as the area of leaves

per unit surface area of a field crop with flat leaves (Watson, 1947),

measures the density and extent of vegetation leaf cover (Su et al.,

2019). LAI is a critical structural variable in vegetation, indicative of

crop growth and health, and is thus employed as an input variable

in models that predict crop growth and yield (Fang et al., 2019).

The measurement of crop LAI involves a range of techniques,

categorized into direct and indirect methods (Strachan et al., 2005).

The direct method typically requires personnel to collect leaf

samples from various locations and measure the length,

maximum width, and number of leaves. These data are then used

to calculate LAI (Shi et al., 2022). Indirect methods, on the other

hand, include close-range detection techniques such as the use of

handheld measuring devices and fisheye lens photography

(Confalonieri et al., 2013), among others. Both methods, however,

have limitations regarding sampling range and efficiency.

The adoption of remote sensing technology presents a more

effective approach to deriving crop LAI from spectral data (Sadeh

et al., 2021; Dhakar et al., 2021). Recent advances have

demonstrated that UAV-based multispectral imaging can

substantially improve the accuracy of crop LAI and chlorophyll

estimation, benefiting from its high spatial resolution and spectral

sensitivity (Parida et al., 2024). This technology significantly

mitigates the constraints of traditional measurement methods,

allowing researchers to economically and swiftly gather extensive

crop canopy data (Furbank and Tester, 2011). Nonetheless, the

temporal and spatial resolutions of most satellite data do not meet

the rigorous demands of precision agriculture. In this context,

Unmanned Aerial Vehicle (UAV) technology plays a pivotal role

by facilitating high-throughput phenotypic analysis (Chapman

et al., 2018). The integration of UAV-based LiDAR and

multispectral imaging has proven effective for high-throughput

phenotyping of dry bean, enabling accurate, non-destructive

estimation of plant height, lodging, and seed yield, highlighting

the potential of UAV-based phenotyping in precision agriculture

and crop breeding programs (Panigrahi et al., 2025).Offering lower

altitudes and capturing data with higher spatial resolution, UAVs

provide more detailed information compared to satellite data

(Araus and Cairns, 2014). Combining UAV RGB and

multispectral indices enables accurate field-scale monitoring of

nitrogen status and yield prediction (Chatraei Azizabadi et al.,

2025).In addition, multi-source UAV data fusion frameworks

have been developed for real-time LAI estimation, highlighting

the importance of integrating structural and spectral information

(Du et al., 2024).

The flight efficiency of UAVs varies with flying altitude. In

summary, the time required for large-scale data collection presents
Frontiers in Plant Science 02
significant challenges to precision agriculture. To reduce collection

costs, an increase in flying altitude is necessary; however, this

compromises image quality and decreases image resolution.

Previous studies have typically adjusted flight altitudes to balance

the relationship between flight duration and data accuracy (Jay

et al., 2019). However, high-resolution sensors are often costly and

limited in coverage, while low-altitude flights are time-consuming

and less practical for large-scale monitoring. Therefore, a cost-

effective solution is needed to enhance image resolution without

additional flight or hardware costs. To address the issue of low

resolution in high-altitude imagery, employing Image Super-

Resolution (SR) algorithms is considered an appropriate method

(Jonak et al., 2024). Image SR involves reconstructing low-

resolution images (LR) into high-resolution images (HR) using

computer vision algorithms. In remote sensing, SR technology

enhances image detail, resolution, and quality through AI models,

proving to be of extensive and practical value in fields such as land

cover classification, crop monitoring, and object detection. In

particular, SR not only improves visual quality but also enhances

the extraction of fine textural and structural features from UAV

imagery, thereby potentially improving model robustness and

predictive accuracy for biophysical variables such as LAI.

Nevertheless, few studies have combined UAV-based SR imagery

with multispectral data for quantitative crop trait estimation such as

LAI, especially for soybean canopies.

This study introduces a novel method that utilizes UAVs and

SR techniques to estimate the LAI. By enhancing the resolution of

the collected RGB images by a factor of four, the clarity of these

images is improved, thereby minimizing the impact of image

resolution on feature detection and enhancing the precision of the

model. Additionally, this research develops an integrated learning

regression model that combines light and multispectral (MS)

information, increasing both the model ’s precision and

computational efficiency. This approach aims to address the

current gap in linking SR-enhanced UAV data with multispectral

information for high-accuracy soybean LAI estimation. The goals of

this study are to: (1) enhance the resolution of UAV imagery using

SR techniques and use these enhanced images to estimate the LAI of

soybeans, selecting an appropriate estimation model; (2) determine

the combination that yields the highest precision in a multivariate

remote sensing imagery dataset (RGB+MS, MS, RGB); (3) assess the

key features associated with the LAI.
2 Material and methods

2.1 Study site

As shown in Figure 1, the study was conducted in 2024 at the

Xiangyang Farm, located in Harbin City, Heilongjiang Province,

China, within the Northeast Plain—one of the world’s three largest

black soil regions. This area is renowned for its fertile soil, which is

particularly well-suited for soybean cultivation. Heilongjiang

Province, where the site is located, is responsible for producing

over 50% of China’s soybean output (National Bureau of Statistics
frontiersin.org
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of China, 2022). The geographic coordinates of the site are 45°45’N

latitude and 126°54’E longitude, with an average elevation of

approximately 150 m. The region experiences a temperate

monsoon climate, characterized by an average annual precipitation

of 552.9 mm and an average annual temperature of 3.8°C. The

majority of the rainfall, over 70%, occurs between May and August

(Wikipedia contributors, 2025). In May 2024, 100 soybean varieties,

selected for their suitability in Northeast China and varying in yield

and growth periods, were planted. These varieties were also used for

model validation to assess the robustness of the estimation results

across different genotypes. The names of all varieties are listed in

Appendix Table A2.The management of pesticides and fertilizers

adhered to local practices.
2.2 LAI estimation framework

This study developed a framework for estimating the LAI using

UAV-based imagery. As depicted in Figure 2, the framework

involves a comprehensive workflow that includes image

preprocessing using SR techniques, integrating three distinct types

of input features, and employing a regression model for LAI
Frontiers in Plant Science 03
estimation. Initially, RGB images at four different altitudes were

captured using a UAV. These images underwent preprocessing,

which included stitching and segmentation. The segmented images

were then enhanced in resolution through four SR methods. The

next phase involved extracting features from these enhanced images

and determining three different combinations of input features for

LAI estimation.
2.3 Field data collection

From August to September 2024, during three distinct growth

stages—V6 (sixth trifoliate leaf), R1 (beginning bloom), and R3

(beginning pod)—the LAI of each soybean variety was measured

using an AccuPAR LP-80 Plant Canopy Analyzer (Decagon Devices

Inc., Pullman, WA, USA). Measurements were conducted between

10:00 a.m. and 1:00 p.m. local time on clear, calm days under stable

sunlight conditions to ensure consistent illumination and

measurement accuracy. For each of the 100 soybean varieties, the

experimental plot was divided into four sampling zones, and LAI

was measured once per zone to calculate the average LAI, resulting

in 400 measurements per growth stage. Measurements were
FIGURE 1

Location of the study area and experimental site design at the Xiangyang site of Northeast Agricultural University in Harbin, Heilongjiang Province,
China. (a) Geographic location of Heilongjiang Province (highlighted in blue) within China, (b) Map of Heilongjiang Province showing the specific
location of the study area, (c) Layout of the experimental areas and treatments at the Xiangyang site.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1700660
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhao et al. 10.3389/fpls.2025.1700660
FIGURE 2

Workflow diagram of the proposed methodology. (a) UAV Images Preprocess, (b) Model Features Extraction, (c) Model Building & Validation.
FIGURE 3

Histogram of LAI. The green dashed line represents a normal distribution fit, the red curve indicates the probability density function (PDF) fit, the
purple dashed line shows data within one standard deviation, and the black solid line represents the mean value.
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conducted at three different growth stages, yielding a total of 1,200

LAI measurements across all varieties, zones, and growth stages.

Figure 3 shows the distribution of LAI measurements across the

three periods. These measurements were performed concurrently

with the UAV flights.
2.4 UAV data collection

In this research, UAV data were collected using a DJI M300

drone (Shenzhen, China) equipped with a DJI ZENMUSE P1

camera and an MS600 Pro MS camera (Qingdao UVS

Technology Co., Ltd), as shown in Figure 4. The MS camera

features six monochromatic channels: near-infrared (NIR, 840 ±

15 nm), red edge at 750 nm (RE750, 750 ± 5 nm), red edge at 720

nm (RE720, 720 ± 5 nm), red (R, 660 ± 11 nm), green (G, 550 ± 14

nm), and blue (B, 450 ± 15 nm). The DJI M300 includes an

integrated Global Navigation Satellite System (GNSS) module for

recording the geolocation data of the imagery. The main

specifications of the multispectral camera, including each band

and its central wavelength range, are summarized in Table 1,

providing a clear reference for subsequent vegetation index

calculations and image analysis. Data collection flights were

conducted on August 7, August 23, and September 11, 2024,

between 10:00 a.m. and 1:00 p.m. local time, under low wind and

cloud-free conditions. The flight altitude was set at 15 m, 30 m,

45 m, and 60 m.
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2.5 Image preprocessing

For MS images, standard reflectance calibration and

radiometric correction were performed using Yusense Map

software (Qingdao, China) to ensure comparability of images

collected at different growth stages. The raw MS images were

subsequently stitched together. To eliminate soil pixels, the

Normalized Difference Vegetation Index (NDVI) for each pixel

was calculated, and pixels with an NDVI value below 0.2 were

identified as soil and excluded from the orthoimages.

Following the experimental layout’s dimensions, images were

batched by varietal category to produce corresponding RGB andMS

images. As previously described, images were categorized based on

collection altitude and time, resulting in a total of 2400 images

(1200 RGB images and 1200 MS images) for model construction.
2.6 Image SR and feature extraction

Building on the regionally segmented RGB images, this study

explored four representative image SR techniques to enhance the

resolution and quality of soybean leaf images: Super-Resolution

Convolutional Neural Network (SRCNN), Enhanced Deep Super-

Resolution Network (EDSR), Real-Enhanced Super-Resolution

Generative Adversarial Network (Real-ESRGAN), and Swin

Transformer for Image Restoration (SwinIR). These methods span

from early con-volutional neural networks (CNNs) to recent generative
FIGURE 4

UAV-based crop phenotyping observation platform. (a) DJI M300 RTK UAV; (b) Zenmuse P1 RGB camera; (c) MS600 Pro MS camera.
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adversarial networks (GANs) and Transformer architectures,

providing a broad representation and complementarity suited to the

diversity and complexity of soybean leaf images. SRCNN serves as a

baseline model with a simple structure and high computational

efficiency. EDSR is noted for its superior performance in various SR

tasks, particularly excelling in the restoration of image details (Bashir

et al., 2021). Real-ESRGAN effectively addresses real-world image

degradation issues, enhancing texture details and improving visual

quality. SwinIR integrates local and global attention mechanisms,

effectively capturing both local and global features of images,

especially those with complex textures (Ali et al., 2023). This study

introduces these four distinct architectural SR algorithms to identify the

most suitable SR methods for this research context.

These four SR methods were chosen over other alternatives

because they collectively represent the main categories and

technical milestones in SR development—namely, the foundational

CNN-based models (SRCNN, EDSR), the GAN-based generative

model (Real-ESRGAN), and the Transformer-based attention model

(SwinIR). This selection ensures a comprehensive coverage of

methodological diversity, allowing the study to evaluate

performance differences across architectures with varying capacities

for detail enhancement, texture restoration, and noise suppression.

Such representativeness makes them particularly suitable for

assessing SR performance under the complex texture and

illumination conditions of soybean leaf imagery.

This study therefore employs these four distinct SR

architectures to identify the most suitable approach for high-

quality soybean leaf image reconstruction and analysis. To
Frontiers in Plant Science 06
provide a clear overview, the main characteristics of these four SR

methods are summarized in Table 2.

RGB images provide high-resolution spatial information,

capturing the morphological features of soybean leaves such as

edges, textures, and color variations. MS images, spanning multiple

bands from visible light to near-infrared, offer richer spectral

information. This is especially true in the near-infrared band,

where higher vegetation reflectance can effectively indicate the

physiological characteristics and health status of the leaves.

Utilizing these sources, this study extracted 15 features from RGB

image datasets and 15 features from MS images.

To accurately estimate the soybean LAI, we adopted a multi-

source remote sensing data fusion method. This approach combines

the morphological features from RGB images with the spectral

features from MS images to create an integrated RGB+MS dataset.

By leveraging the sensitivity of different bands to vegetation

characteristics, this method enhances the accuracy and stability of

LAI estimation. Consequently, the combined dataset features 15

morphological indicators from RGB and 15 spectral indicators from

MS, totaling 30 indicators. Table 3 summarizes the features used for

modeling, which were extracted from the RGB, MS, and combined

RGB+MS datasets. The full names and calculation formulas of these

features are provided in Appendix Table A1.

2.7 LAI regression models

In this research, two machine learning approaches—Random

Forest (RF) and Extreme Gradient Boosting (XGBoost)—were

applied to construct models for soybean leaf area index

estimation. RF (Natekin and Knoll, 2013), a well-known ensemble

algorithm, enhances the predictive power of individual decision

trees by aggregating them into a strong learner. Compared with

traditional single-tree models, RF reduces the risk of overfitting and

provides stable regression outcomes through the collective

contribution of multiple weak learners.

XGBoost, on the other hand, has gained wide attention in recent

years, particularly within agricultural studies. Unlike RF, it

introduces a regularization term (W) to penalize model

complexity, which effectively controls overfitting and improves

robustness when handling high-dimensional datasets. Beyond

accuracy, XGBoost is also capable of efficiently managing sparse

data and supports distributed parallel training, making it highly
TABLE 2 Comparison of the main characteristics of the four SR methods used in this study.

Method Model type Core architecture Key strength Year

SRCNN CNN-based Shallow 3-layer convolutional network Pioneer of deep learning SR, simple and effective 2014

EDSR
CNN-based
(Residual)

Deep residual blocks without batch normalization High reconstruction accuracy and robustness 2017

Real-
ESRGAN

GAN-based
Enhanced ESRGAN with improved degradation
modeling

Realistic detail and texture generation 2021

SwinIR Transformer-based Swin Transformer with local and global attention
Excellent texture recovery and feature
preservation

2021
TABLE 1 Spectral bands and wavelength ranges of the MS600 Pro
multispectral camera.

Band
no.

Band
name

Central wavelength
(nm)

Bandwidth
(nm)

1 Blue 475 ± 16 32

2 Green 560 ± 16 32

3 Red 668 ± 16 32

4 Red Edge 717 ± 10 40

5 NIR 842 ± 26 52

6 NIR2 900 ± 20 40
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suitable for large-scale regression problems (Karthikeyan and

Mishra, 2021).

Tomaximize predictive performance, a systematic hyperparameter

tuning procedure was adopted. Among the parameters, the learning

rate was given particular importance since it determines the step size of

error correction during training, directly influencing both convergence

stability and final model quality. A two-stage grid search combined

with 5-fold cross-validation was carried out: the initial stage identified

suitable parameter ranges, followed by a refined search for optimal

values. Model performance under each setting was assessed

using the loss function, where lower values indicated improved

prediction accuracy.

Given the stochastic nature of RF and XGBoost, the training

and validation process was repeated 10 times for each

hyperparameter configuration to account for variability due to

random initialization and data sampling. The performance

metrics, including loss and prediction accuracy, were averaged

across these repetitions to provide robust estimates, and the

standard deviations were calculated to quantify variability. This

procedure ensures that the reported model performance is

statistically reliable and not driven by random fluctuations in

individual runs.

This rigorous optimization process notably enhanced both

computational efficiency and generalization ability of the models.

The joint use of grid search and cross-validation is a widely accepted

practice for reducing overfitting and improving reliability in

complex regression or classification tasks. For example, Adnan

et al. (2022) reported significant improvements in model accuracy

when employing this strategy in combination with adaptive

boosting techniques.
2.8 Feature selection method

In machine learning, feature selection is the process of

identifying a subset of the most valuable features from an original

set for prediction tasks, aiming to eliminate redundant and

irrelevant features, simplify the model structure, improve training

efficiency, and enhance generalizability. Redundant features are

highly correlated with other features, providing information that

may already be contained elsewhere, while unrelated features have
Frontiers in Plant Science 07
little or no significant impact on the target variable. Retaining such

features not only increases model complexity but can also introduce

noise, leading to overfitting and reduced performance on new data.

In this study, a model-based feature selection method was

adopted to improve the predictive performance of the model and

reduce computational burden. Specifically, the SelectFromModel

(SFM) class provided by the scikit-learn library in Python version

3.6.13 (https://scikit-learn.org) was utilized for feature selection.

This method trained a basic estimator (such as a linear model or

tree model), which evaluated the importance of each feature using its

provided feature importance index (Raschka, 2018).Subsequently,

based on the set threshold, features with importance higher than

the threshold were selected to form a new feature subset. This

approach integrates the feature selection process into model

training, avoiding the need to train multiple models repeatedly,

thus enhancing processing efficiency.

In this study, ‘mean’ was selected as the threshold, which means

retaining features with importance scores higher than the average

importance of all features. This strategy can be beneficial in

removing redundant or irrelevant features. Moreover, the strategy

can also reduce the risk of overfitting and improve the

model’s generalizability.

By applying the SelectFromModel method, the most

contributing features to the inversion of soybean LAI were

selected from the original feature set. These features can offer a

more streamlined and efficient data foundation for subsequent

modeling and analysis.
2.9 Evaluation index

For the verification of the LAI model’s estimation accuracy, 70%

of the samples and observed leaf age were randomly selected for

training the model. While the remaining 30% of the samples were

used to validate the performance and accuracy of the estimation

model. Coefficient of determination R2 (Equation 1), root mean

square error (Equation 2), relative RMSE, and mean absolute error

were employed to assess the stability of the model in various aspects.

The calculation formula is formulated as follows:

R2 =
o
n

i=1
(by i − y)

2

o
n

i=1
(yi − y)

2 (1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − by i)

2
s

(2)

rRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − by i)

2
s

1
no

n

i=1
y
i

(3)
TABLE 3 UAV image modeling features included in this study.

Sensors Modeling features

RGB
R_Mean, G_Mean, B_Mean, Variance, GRVI, MGRVI, RGBVI,
ExG, BGI, BRI, GRI,GLI,VARI,NGRDI,TGI

MS
MSAVI2, RVI, NDVI, EVI, RERVI, SAVI, DVI, OSAVI, GVI,
TCARI, NDRE, ARI1, CRI2, GNDVI, RDVI

RGB+MS

R_Mean, G_Mean, B_Mean, Variance, GRVI, MGRVI, RGBVI,
ExG, BGI, BRI, GRI, GLI, VARI, NGRDI,MSAVI2, RVI, NDVI,
EVI, RERVI, SAVI, DVI, OSAVI, GVI, TCARI, NDRE, ARI1,
CRI2, GNDVI, RDVI
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MAE =
1
no

n

i=1
∣ yi − by i ∣ (4)

Among them, yi denotes the total number of samples. yi and ŷ i

represent the LAI of the measured and estimated values of the

samples, respectively. y is the average value of measured LAI.

R2indicates the correlation between measured results and

estimated results. RMSE and rRMSE (Equation 3) represent the

loss and loss rate between measurement results and estimated

results. MAE (Equation 4) represents the absolute value between

measured result and estimated result. The lower the RMSE or

rRMSE, the better the model estimation accuracy.

To comprehensively assess the quality of image SR

reconstruction, two widely used objective evaluation metrics were

adopted: Peak Signal to Noise Ratio (PSNR, Equation 5) and

Structural Similarity Index (SSIM, Equation 6).

PSNR = 10 · log10
MAX2

I

MSE

� �
(5)
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SSIM(x, y) =
(2mxmy + C1)(2sxy + C2)

(m2
x + m2

y + C1)(s 2
x + s 2

y + C2)
(6)

PSNR is a commonly utilized metric for assessing the quality of

image reconstruction, primarily used to evaluate the differences

between reconstructed images and original images, based on mean

squared error (MSE). Here, MAXI represents the potential

maximum pixel value in an image, which for an 8-bit image is

MAXI = 255. PSNR is measured in decibels (dB), with higher values

indicating closer proximity of the reconstructed image to the

original, denoting better quality. SSIM is an image quality metric

more aligned with human visual perception, assessing similarity

between two images across three dimensions: luminance, contrast,

and structure. Here, mx and my are the mean luminance values of

images x and y, respectively, s 2
x and s 2

y are the variances, sxy is the
covariance, and C1 and C2 are small constants used to stabilize the

denominator. The SSIM value ranges from [–1, 1], with values

closer to 1 indicating greater similarity between the two images.
FIGURE 5

Results of resolution enhancement using SRCNN (a), EDSR (b), Real-ESRGAN (c),and SwinIR (d). Each panel presents the reconstructed soybean
canopy images after applying the corresponding model. SRCNN (a) and EDSR (b) improve overall clarity and detail definition compared to the
original low-resolution input. Real-ESRGAN (c), based on a generative adversarial network (GAN), effectively enhances texture realism and reduces
artifacts. SwinIR (d), employing a Transformer architecture, produces visually sharp and natural results with well-preserved canopy structures.
Overall, both the GAN- and SwinIR-based methods exhibit superior enhancement quality compared with the other approaches.
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3 Results

3.1 Super resolution results

The outcomes of applying four SR techniques to enhance the

resolution of RGB images are depicted in Figure 5, whereas Table 4

presents a comparative analysis of the metrics before and after the

application of these SR techniques. The data clearly indicates that

the best SR effects were achieved at a 30-meter altitude, with an

average PSNR of 28.09, surpassing the results at 45-meter (26.76

PSNR) and 60-meter (26.12 PSNR) altitudes. This suggests that the

effectiveness of SR techniques diminishes with increasing flight

altitude, with minimal enhancement in image quality observed at a

higher altitude of 60 m. Among the four SR methods evaluated,

SwinIR demonstrated superior performance, achieving enhanced

results in both PSNR and SSIM compared to the other three

methods. This underscores the advantages of SwinIR ’s

hierarchical window-based attention mechanisms in processing

and restoring the edges of soybean leaves.

In general, a higher PSNR value (typically above 30 dB for high-

quality natural images) indicates better reconstruction fidelity,

whereas an SSIM value closer to 1.0 reflects greater structural

similarity between the reconstructed and reference images.

Therefore, the observed PSNR and SSIM values in this study

suggest that SwinIR achieved relatively higher image fidelity and

structural consistency compared with the other SR methods.
3.2 Feature selection results

A feature dataset comprising all input features was constructed

based on each cropped plot image. To mitigate the impact of inter-

feature correlation, feature selection was performed using the

SelectFromModel (SFM) method described in Section 2.8.In this

study, two machine learning methods were utilized; therefore, RF

and XGBoost models were employed for feature selection. Table

displays the subsets of features selected by the SFM method from

three types of input datasets, all chosen from images at a 15-meter

altitude without SR.

The data in Table 5 reveals that among the two SFM methods,

several features such as ExG, Variance, VARI, NIR, and G_Mean

were consistently selected across the three input datasets, indicating

a strong correlation with the LAI. Additionally, indices such as
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MSAVI2 and NDVI were prioritized in the modeling workflow due

to their established sensitivity to canopy structure and leaf area,

which makes them particularly informative for estimating LAI. The

relative contribution of each feature to the predictive performance

of the RF and XGBoost models is illustrated in Figure 6, where the

importance scores reflect the influence of each feature in the

modeling process. Overall, it is evident that both the textural and

spectral characteristics of soybean leaves are pertinent to the

construction of the model.
3.3 Modeling and validation of LAI
estimation

3.3.1 Evaluation of different sensors and
regression models

Table 6 presents the validation statistics for various input

combinations, specifically the coefficients of determination (R2),

RMSE, and relative RMSE. All data within the table were derived

from images taken at an altitude of 15 m. It is evident that among

the three feature input combinations, the XGBoost model exhibited

the most proficient performance in regressions related to leaf area,

achieving the highest overall precision. When considering the

source of input variables, the combination of RGB and MS

sensors provided the most favorable outcomes. For the XGBoost

model, the R² varied between 0.8703 and 0.9173, while rRMSE

ranged from 4.26% to 6.17%. These metrics confirm the robustness

of the models developed in this study. Concurrently, the use of

XGBoost for feature selection and model construction, coupled with

the fusion of multiple data sources (RGB+MS), emerged as the most

precise approach.
3.3.2 Performance of different LAIs on model
accuracy

In this section, the performance of the XGBoost model

combined with multisource information fusion (RGB+MS) was

evaluated across different periods for leaf area estimation.

Figure 7 displays the final evaluation results. In each panel, the

scatter plot on the left plots the estimated leaf area (x-axis) against

the residuals, which are the differences between the estimated and

true leaf areas (y-axis). On the right, a histogram illustrates the

distribution of these residuals. The analysis indicates that the model

adapts well to leaf area estimation, with absolute residuals less than
TABLE 4 Image metrics obtained from four SR methods.

Altitude Evaluation index SRCNN EDSR Real-ESRGAN SwinIR

30 m
PSNR 27.95 28.01 28.10 28.33

SSIM 0.9295 0.9327 0.9363 0.9460

45 m
PSNR 26.28 26.52 26.97 27.25

SSIM 0.9407 0.9434 0.9498 0.9579

60 m
PSNR 25.77 25.94 26.25 26.50

SSIM 0.9427 0.9483 0.9565 0.9624
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0.25, and the residuals across three dates approximating a

normal distribution.

3.3.3 Evaluation of various SR techniques
This study employed four distinct SR methods—SRCNN,

EDSR, Real-ESRGAN, and SwinIR—to assess their efficacy in

estimating the LAI within a regression model. The original

altitudes evaluated were 30 m, 45 m, and 60 m. For each altitude,
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the LAI was enhanced using the aforementioned SR techniques,

maintaining identical input features as those used at a baseline

altitude of 15 m. Figure 8 illustrates the relationship between the

measured LAI and the estimated LAI at an altitude of 30 m,

following optimization with the four algorithms. It was observed

that the introduction of SR techniques significantly enhanced the

overall precision of the model. Specifically, the SRCNN and EDSR

methods showed improvements in their R2 values compared to the

original 30-meter images, although the increases were not

substantial. Conversely, the Real-ESRGAN and SwinIR methods

demonstrated a noticeable rise from an R2 of approximately 0.80 to

around 0.86. Figure 8 also depicts the relationships between the LAI

values at an altitude of 45 m after optimization with the four

algorithms. At this altitude, the application of SR methods

continued to positively influence the model’s precision. The

performance enhancements with SRCNN and EDSR were similar

to those at 30 m, whereas the Real-ESRGAN and SwinIR methods

did not show as significant an increase as seen in the 30-meter

scenario, indicating a diminishing return in model precision

enhancement. Furthermore, Figure 8 displays the relationship

between the LAI values at 60 m following the application of the

four algorithms. At this altitude, none of the SR methods
FIGURE 6

Feature importance of 30 selected features evaluated using two tree-based ensemble methods: (a) Random Forest (RF) and (b) XGBoost. The
importance scores shown reflect the relative contribution of each feature to the model’s predictive performance. Differences between RF and
XGBoost reflect variations in how each method assesses feature relevance.
TABLE 5 Feature combinations selected from the complete set of input
features from three sensors, using different feature selection methods.

Feature
selection
sensors

SFM_RF SFM_XGBoost

RGB
ExG, VARI, GRVI, Variance,
G_Mean, TGI, RGBVI

ExG, VARI, GRVI, Variance,
G_Mean, TGI

MS
NDVI, NDRE, EVI, SAVI,
NIR, DVI, MSAVI2

NDVI, NDRE, EVI, SAVI,
NIR, RVI, MSAVI2

RGB+MS
NDVI, NDRE, EVI, ExG,
VARI, SAVI, MSAVI2,TGI,
Variance,G_Mean

NDVI, NDRE, EVI, ExG,
VARI, SAVI, MSAVI2,
GRVI, Variance,G_Mean
frontiersin.org

https://doi.org/10.3389/fpls.2025.1700660
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhao et al. 10.3389/fpls.2025.1700660
demonstrated a noticeable change in model precision compared to

the unprocessed data, suggesting that SR techniques did not

contribute to precision enhancement under these conditions.
4 Discussion

4.1 Evaluation metrics for SR algorithms

This study employs the PSNR and SSIM indices to evaluate the

SR effect. Despite their widespread use in image quality assessment,

PSNR and SSIM exhibit numerous limitations in the agricultural

sector. They struggle to reflect the semantic fidelity of key

agricultural features within images, respond sensitively to changes

in critical areas, and are highly sensitive to environmental variations

(Hore and Ziou, 2010; Nigam and Jain, 2020). Therefore, in

agricultural image processing, a comprehensive evaluation should

incorporate perceptual indices or task-related metrics. This study

evaluates the effect of SR based on the accuracy of the final

LAI evaluation.
4.2 Selection of data features for LAI
evaluation

In Table 6, the model performance was evaluated using the

coefficient of determination (R²), RMSE, and relative RMSE

(rRMSE). These three indicators were selected because they

collectively assess both the accuracy and relative deviation of

model predictions, which are essential for comparing different

feature combinations and model configurations. In contrast, the

mean absolute error (MAE) was reserved for analyzing LAI

estimation performance across different growth stages (Section

4.4), where absolute differences provide more intuitive insights
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into temporal variations. MAE is often preferred in such analyses

because it expresses the average absolute error in the same units as

the original data, allowing more straightforward interpretation of

deviations over time (Chai and Draxler, 2014).

These results underscore the importance of high spatial

resolution in revealing more details and enhancing the accuracy

of feature data, thereby confirming the significant role of SR

techniques in this study. Previous studies have shown that the

fusion of information from different sensors can significantly

enhance crop growth monitoring and yield prediction. For

example, incorporating both RGB and multispectral (MS) features

leads to more accurate estimation of rice LAI (Yang et al., 2021).

Although Table 6 indicates that the results using RGB data

alone are better than those using MS data alone, MS data remains of

great importance. The introduction of MS provides an additional

dimension of information for estimating leaf age from a

spectroscopic perspective. MS imagery can detect fine spectral

variations related to distinct physiological components of leaves

more effectively than RGB data, thanks to its narrowband sensitivity

(Reddy and Pawar, 2020). MS information offers critical insights for

tracking physiological, biochemical, and structural dynamics across

crop growth stages (Zhao et al., 2023). Leaf spectral reflectance is

influenced by factors such as chlorophyll concentration, equivalent

water thickness, and leaf inclination angle, which vary notably over

time (Zeng et al., 2022). As leaves mature, significant changes also

occur in water content, pigment levels, and other chemical

constituents (Sims and Gamon, 2002). These changes are

effectively captured through spectral imaging and feature

extraction, reflecting trends over time.

In addition, leaf spectral characteristics play a crucial role in

estimating LAI, as they capture both biochemical and structural

variations of the canopy. Spectral reflectance in the visible region,

particularly in the red and green bands, is primarily influenced by

pigment content. In contrast, reflectance in the near-infrared (NIR)
TABLE 6 Validation statistics for different soybean LAI estimation models.

Feature selection andmodeling approach Metrics RGB MS RGB+MS

All input features_RF

R2 0.8553 0.8401 0.8635

RMSE 0.0926 0.0952 0.1074

rRMSE 7.87% 10.21% 5.86%

All input features_XGBoost

R2 0.8592 0.8417 0.87014

RMSE 0.0845 0.0917 0.0986

rRMSE 7.24% 9.86% 5.28%

SFM_RF

R2 0.8643 0.8446 0.8824

RMSE 0.0705 0.0725 0.0685

rRMSE 6.74% 11.02% 6.19%

SFM_XGBoost

R2 0.8703 0.8558 0.9173

RMSE 0.0732 0.0903 0.0478

rRMSE 5.25% 9.17% 4.26%
Highlighted statistics represent the most accurate estimations of LAI by each sensor data source.
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FIGURE 7

Residual distribution of the XGBoost model for RGB sensor (a), MS sensor (b), and RGB+MS sensor (c). Train: Training dataset. Val: Validation dataset.
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FIGURE 8

Relationship between the estimated and measured LAI across three different altitudes and four SR methods within both training and validation
datasets. At 30-meter altitude: (a) without SR, (b) using SRCNN, (c) using EDSR, (d) using Real-ESRGAN, (e) using SwinIR. At 45-meter altitude:
(f) without SR, (g) using SRCNN, (h) using EDSR, (i) using Real-ESRGAN, (j) using SwinIR. At 60-meter altitude: (k) without SR, (l) using SRCNN,
(m) using EDSR, (n) using Real-ESRGAN, (o) using SwinIR. The color coding indicates the dates of LAI estimation: red for August 7, green for August
23, and blue for September 11. The data points in the figures are differentiated into training and validation datasets, as indicated by distinct shapes.
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region is affected by leaf internal structure and canopy density

(Haboudane et al., 2004). A higher LAI typically corresponds to

stronger absorption in the visible range and higher reflectance in the

NIR range, reflecting the integrated effects of canopy structure and

photosynthetic activity.

Therefore, incorporating spectral information from multiple

sensors provides a more comprehensive representation of canopy

characteristics. In this study, the multi-source data fusion approach

(RGB +MS) enabled the joint use of spectral and structural features,

effectively improving LAI estimation accuracy. This emphasizes the

importance of combining spectral indices with textural and canopy-

structural features in the inversion process, demonstrating the

advantage of multi-source fusion for capturing LAI-related

variability (Delegido et al., 2011).

The study investigated the impact of input image features on

model performance by incrementally adding modeling features. As

shown in Figure 9, in both the RF and XGBoost models, MSAVI2

and NDVI are the most influential features, underscoring their

pivotal roles in predicting target variables. These vegetation indices

collectively highlight the importance of spectral features in

estimating LAI.
4.3 Analysis of SR algorithms

Previous research, as summarized in Table 6, indicates that the

combination of the XGBoost model with multisource information
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fusion (RGB + MS) achieves the highest precision. Therefore, the

subsequent analyses in this study are based on this combination.

Following this determination, SR techniques were introduced

during the data preprocessing phase. To investigate the

enhancement effect of SR methods, flights were conducted at four

different altitudes: 15 m, 30 m, 45 m, and 60 m, corresponding to

spatial resolutions of 0.1875 cm, 0.375 cm, 0.5625 cm, and 0.75 cm,

respectively. The results show that SR methods positively impact

model precision. Among all four methods, Real-ESRGAN and

SwinIR performed better than SRCNN and EDSR. This

superiority is attributed to the intrinsic characteristics of

agricultural images, such as fine textures (e.g., leaf details and

crop textures) and repetitive leaf structures, which are prevalent

in the RGB images used in this study.

The application of CNNs in image SR tasks was initiated by

Dong et al. with the introduction of SRCNN, a three-layer, end-to-

end convolutional network (Dong et al., 2015). This architecture

demonstrated superior performance compared to traditional

methods based on interpolation or sparse representation. With

the rapid evolution of deep convolutional networks in the field of

SR, EDSR, proposed in 2017, incorporated residual modules and

deepened the network architecture to further improve SR

performance (Lim et al., 2017). Within a CNN, a single

convolutional kernel observes only a small local portion of the

input image. Despite stacking multiple convolutional layers, the

receptive field expands slowly. If a pixel is to perceive information

from a distant location, it must traverse numerous layers, which can
FIGURE 9

Image feature importance based on stepwise regression analysis.
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lead to attenuation or distortion of information during

transmission. Furthermore, downsampling operations such as

pooling, while capable of enlarging the receptive field, often result

in loss of detail and texture degradation, making them unsuitable

for restoring delicate structures in soybean RGB images.

Consequently, employing CNNs to enhance the SR of soybean

leaf images is not considered an appropriate approach.

Real-ESRGAN, introduced in 2021, builds upon EDSR by

incorporating a more complex GAN structure and enhancing the

training data degradation model to support more realistic low-

quality inputs (Wang et al., 2021). SwinIR, also from 2021, is based

on the Swin Transformer, a sliding window transformer that

naturally excels at modeling long-distance dependencies and

understanding distant texture correlations in images, which is

particularly crucial in crop imaging (e.g., the directionality of leaf

veins and textures) (Liang et al., 2021). Figure 10 illustrates the

structural differences among the four network architectures.

SRCNN and EDSR rely solely on local convolution to interpret

images, whereas Real-ESRGAN introduces a GAN structure that

establishes an adversarial process between the generator and the

discriminator. This process not only seeks numerical closeness but

also aims to visually deceive the discriminator, thereby generating

more natural images with high-frequency details (Zhang et al.,

2023). SwinIR employs localized window attention and a sliding

window mechanism, allowing for regional modeling while also

capturing information from distant areas. Overall, Real-ESRGAN

exhibits significant advantages in realistic degradation modeling

and detail enhancement, while SwinIR achieves breakthroughs in
Frontiers in Plant Science 15
feature modeling capability and distant texture reconstruction. Both

methods surpass traditional CNN approaches in terms of visual

perception quality and practical application results. These findings

are consistent with the conclusions of this study, which indicate that

models optimized with Real-ESRGAN and SwinIR exhibit higher

precision than those using traditional CNN techniques. The

differences in the network architectures of the four methods are

shown in Figure 10.
4.4 Comparative analysis of soybean LAI
across different time periods

To examine the influence of soybean LAI on the accuracy of

estimation models, Figure 11 illustrates the distribution of MAE for

LAI estimates over three distinct time periods. Statistical analysis of

the results revealed that the estimation model more accurately

reflected LAI during August. However, estimation precision

noticeably decreased during the late growth stage in September.

One plausible explanation for this decline is the reduced sensitivity

of vegetation indices, such as NDVI and EVI, to LAI. As the growth

season progresses, leaf senescence and thinning occur, leading to a

situation in which, despite a reduction in LAI, changes in NDVI and

EVI become minimal, resulting in inaccurate model estimations.

Leaf discoloration and the concomitant decrease in chlorophyll

content cause vegetation indices to reflect not only leaf area but also

information indicative of physiological aging. With reduced

vegetation cover, more of the ground surface—including bare soil
IGURE 10F

Comparison of network architectures for four SR methods.
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and dry grass—is exposed, mixing soil signals with those received by

the sensors. Consequently, while vegetation indices may show a

decline, substantial leaf area may still remain, causing the model to

erroneously interpret a greater decrease in LAI. Moreover, spectral

information primarily originating from leaves reduces the MAE of

MS data used in LAI estimation.

To mitigate this limitation, future studies could incorporate

vegetation indices that are more sensitive to senescence and

pigment variation, such as the Red Edge Chlorophyll Index

(CIred-edge) or the Normalized Difference Senescence Index

(NDSI), which may enhance model robustness during late growth

stages. In addition, although this study involved multiple soybean

varieties, the current model’s generalizability across different

genotypes, growth environments, and phenological stages remains

to be further validated. Future research should therefore consider

multi-environment and multi-temporal datasets to improve the

universality and adaptability of the proposed model.
4.5 Limitations and future prospects

This study employed multi-source remote sensing imagery to

estimate the LAI of soybean crops. The integration of SR techniques

during the data preprocessing phase yielded favorable outcomes.

However, the models’ ability to account for morphological and

phenological variations among soybean crops at different growth

stages and across varieties was not fully validated, which may limit

the generalizability of the estimation models. Future research

should incorporate multi-temporal and multi-varietal datasets to

better capture these variations, thereby enhancing the model’s
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robustness and transferability under diverse field conditions.

Compared to traditional destructive methods for collecting

soybean LAI data, UAVs equipped with multiple sensors can

rapidly and efficiently gather extensive crop information. This

approach not only saves considerable labor and costs but also

achieves higher data accuracy. Although the study covered several

soybean varieties with identical sowing times, noticeable differences

in growth conditions were observed. The methods developed here

demonstrated strong adaptability in estimating LAI across different

soybean varieties, indicating significant practical value and

providing robust support for researchers.

The SR technique introduced at the data preprocessing stage

was designed to maintain data accuracy despite higher UAV flying

altitudes. It was demonstrated that within a specific altitude range,

the SR method significantly enhanced model precision. The

improvement in the resolution of RGB images at an altitude of

30 m was found to be comparable to that at the original flying

altitude of 15 m. This highlights the considerable potential of deep

learning models in agricultural surveillance. In future studies,

additional modules could be integrated to further optimize the SR

model, improving its ability to address texture and leaf-repetition

issues in soybean imagery. Such advancements could inspire new

approaches to enhance UAV data collection efficiency and model

generalization across phenological stages and varieties.
5 Conclusion

This study aimed to estimate the LAI of soybeans using UAVs

equipped with high spatial resolution RGB and MS imagery. We
FIGURE 11

MAE of LAI estimates over three time periods.
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employed appropriate feature selection methods to enhance the

efficiency of the modeling process. The study identified the most

precise combinations of modeling techniques and datasets and

subsequently developed a high-precision model for estimating

the LAI.

Additionally, SR techniques were introduced during the data

preprocessing stage to enhance the RGB image data before its

incorporation into the model, resulting in higher precision

outcomes. The key findings of this research are as follows:
Fron
1. The combination of features from both RGB and MS

imagery was superior to using either type of data alone.

Features derived from the MS data significantly enhanced

model precision.

2. The use of feature selection methods improved the

operational efficiency of the model. Among the models

constructed in this study, namely Random Forest (RF) and

XGBoost, the latter proved more effective for both feature

selection and model construction.

3. The application of SR methods during data preprocessing

improved model precision. Specifically, data optimized

using the GAN-based Real-ESRGAN method and the

Transformer-based SwinIR method yielded better results

than those processed by CNN-based methods such as

SRCNN and EDSR.
The results of this research offer new insights into efficient UAV

crop monitoring. By leveraging the enhancement capabilities of SR

technology on UAV RGB images, UAVs can potentially operate at

higher altitudes while maintaining high model precision. Combined

with machine learning techniques, this provides an efficient method

for monitoring soybean growth and managing agricultural fields.
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Exploiting the centimeter resolution of UAV multispectral imagery to improve remote
sensing estimates of canopy structure and biochemistry in sugar beet crops. Remote
Sens Environ. 231, 110898. doi: 10.1016/j.rse.2018.11.038

Jonak, M., Mucha, J., Jezek, S., Kovac, D., and Cziria, K. (2024). SPAGRI AI: Smart
precision agriculture dataset of aerial images at different heights for crop and weed
detection using super resolution. Agric. Syst. 216, 103876. doi: 10.1016/
j.agsy.2023.103876

Karthikeyan, L., and Mishra, A. K. (2021). Multi-layer high resolution soil moisture
estimation using machine learning over the United States. Remote Sens Environ. 266,
112706. doi: 10.1016/j.rse.2021.112706

Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., and Timofte, R. (2021). “SwinIR:
Image restoration using swin transformer,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). 1833–1844 (Montreal, QC:
IEEE). doi: 10.1109/ICCVW54120.2021.00204

Lim, B., Son, S., Kim, H., Nah, S., and Mu Lee, K. (2017). “Enhanced deep residual
networks for single image super-resolution,” in Proceedings of the IEEE Conference on
Frontiers in Plant Science 18
Computer Vision and Pattern Recognition Workshops (CVPRW). 136–144 (Honolulu,
HI: IEEE). doi: 10.1109/CVPRW.2017.151

Natekin, A., and Knoll, A. (2013). Gradient boosting machines, a tutorial. Front.
Neurorobot 7. doi: 10.3389/fnbot.2013.00021

National Bureau of Statistics of China (2022). Soybean production in Heilongjiang
Province in 2022. Available online at: https://english.www.gov.cn/news/topnews/
202212/18/content_WS639e757fc6d0a757729e48f1.html (Accessed October 8, 2025).

Nigam, S., and Jain, R. (2020). Plant disease identification using deep learning: A
review. Indian J. Agric. Sci. 90, 249–257. doi: 10.56093/ijas.v90i2.98996

Panigrahi, S. S., Singh, K. D., Balasubramanian, P., Wang, H., Natarajan, M., and
Ravichandran, P. (2025). UAV-based liDAR and multispectral imaging for estimating
dry bean plant height, lodging and seed yield. Sensors 25, 3535. doi: 10.3390/s25113535

Parida, P. K., Somasundaram, E., Krishnan, R., Radhamani, S., Sivakumar, U.,
Parameswari, E., et al. (2024). Unmanned aerial vehicle-measured multispectral
vegetation indices for predicting LAI, SPAD chlorophyll, and yield of maize.
Agriculture 14, 1110. doi: 10.3390/agriculture14071110

Raschka, S. (2018). Model evaluation, model selection, and algorithm selection in
machine learning. arXiv. 1811.12808. doi: 10.48550/arXiv.1811.12808

Reddy, P. L., and Pawar, S. (2020). Multispectral image denoising methods: A
li terature review. Mater . Today Proc . 33, 4666–4670. doi : 10.1016/
j.matpr.2020.02.958

Sadeh, Y., Zhu, X., Dunkerley, D., Walker, J. P., Zhang, Y., Rozenstein, O., et al.
(2021). Fusion of Sentinel-2 and PlanetScope time series data into daily 3 m surface
reflectance and wheat LAI monitoring. Int. J. Appl. Earth Obs Geoinf 96, 102260.
doi: 10.1016/j.jag.2020.102260

Shi, M., Du, Q., Fu, S., Yang, X., Zhang, J., Ma, L., et al. (2022). Improved estimation
of canopy water status in maize using UAV-based digital and hyperspectral images.
Comput. Electron. Agric. 197, 106982. doi: 10.1016/j.compag.2022.106982

Sims, D. A., and Gamon, J. A. (2002). Relationships between leaf pigment content
and spectral reflectance across a wide range of species, leaf structures and
developmental stages. Remote Sens Environ. 81, 337–354. doi: 10.1016/S0034-4257
(02)00010-X

Strachan, I. B., Stewart, D. W., and Pattey, E. (2005). Determination of leaf area index
in agricultural systems. Micrometeorol. Agric. Syst. 47, 179–198. doi: 10.2134/
agronmonogr47.c9

Su, W., Huang, J., Liu, D., and Zhang, M. (2019). Retrieving corn canopy leaf area
index frommultitemporal Landsat imagery and terrestrial LiDAR data. Remote Sens 11,
572. doi: 10.3390/rs11050572

Wang, X., Xie, L., Dong, C., and Shan, Y. (2021). “Real-ESRGAN: Training real-
world blind super-resolution with pure synthetic data,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). 1905–1914 (Montreal, QC:
IEEE). doi: 10.1109/ICCVW54120.2021.00216

Watson, D. J. (1947). Comparative physiological studies on the growth of field crops:
I. Variation in net assimilation rate and leaf area between species and varieties, and
w i t h i n and be twe en y e a r s . Ann . Bo t . 11 , 4 1–76 . do i : 1 0 . 1 093 /
oxfordjournals.aob.a083148

Wikipedia contributors (2025). “Heilongjiang,” in Wikipedia. (San Francisco, CA:
Wikimedia Foundation). Available online at: https://en.wikipedia.org/wiki/
Heilongjiang.

Yang, K., Gong, Y., Fang, S., Duan, B., Yuan, N., Peng, Y., et al. (2021). Combining
spectral and texture features of UAV images for the remote estimation of rice LAI
throughout the entire growing season. Remote Sens 13, 3001. doi: 10.3390/
rs13153001

Zeng, Z., Sun, H., Wang, X., Zhang, S., and Huang, W. (2022). Regulation of leaf
angle protects photosystem I under fluctuating light in tobacco young leaves. Cells 11,
252. doi: 10.3390/cells11020252

Zhang, Y., Tian, Y., Kong, Y., Zhong, B., and Fu, Y. (2023). Deep learning for image
super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 3–39.
doi: 10.1109/TPAMI.2022.3147986

Zhao, J., Pan, F., Xiao, X., Hu, L., Wang, X., Yan, Y., et al. (2023). Summer maize
growth estimation based on near-surface multisource data. Agronomy 13, 532.
doi: 10.3390/agronomy13020532
frontiersin.org

https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.3390/rs17111860
https://doi.org/10.3390/land11050734
https://doi.org/10.1016/j.compag.2013.04.019
https://doi.org/10.3390/s110707063
https://doi.org/10.1080/10106049.2019.1655715
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.3390/rs16071138
https://doi.org/10.3390/rs16071138
https://doi.org/10.1029/2018RG000608
https://doi.org/10.1016/j.tplants.2011.09.005
https://doi.org/10.1016/j.tplants.2011.09.005
https://doi.org/10.1016/j.rse.2002.10.022
https://doi.org/10.1007/s12571-010-0108-x
https://doi.org/10.1109/ICPR.2010.579
https://doi.org/10.1016/j.rse.2018.11.038
https://doi.org/10.1016/j.agsy.2023.103876
https://doi.org/10.1016/j.agsy.2023.103876
https://doi.org/10.1016/j.rse.2021.112706
https://doi.org/10.1109/ICCVW54120.2021.00204
https://doi.org/10.1109/CVPRW.2017.151
https://doi.org/10.3389/fnbot.2013.00021
https://english.www.gov.cn/news/topnews/202212/18/content_WS639e757fc6d0a757729e48f1.html
https://english.www.gov.cn/news/topnews/202212/18/content_WS639e757fc6d0a757729e48f1.html
https://doi.org/10.56093/ijas.v90i2.98996
https://doi.org/10.3390/s25113535
https://doi.org/10.3390/agriculture14071110
https://doi.org/10.48550/arXiv.1811.12808
https://doi.org/10.1016/j.matpr.2020.02.958
https://doi.org/10.1016/j.matpr.2020.02.958
https://doi.org/10.1016/j.jag.2020.102260
https://doi.org/10.1016/j.compag.2022.106982
https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.2134/agronmonogr47.c9
https://doi.org/10.2134/agronmonogr47.c9
https://doi.org/10.3390/rs11050572
https://doi.org/10.1109/ICCVW54120.2021.00216
https://doi.org/10.1093/oxfordjournals.aob.a083148
https://doi.org/10.1093/oxfordjournals.aob.a083148
https://en.wikipedia.org/wiki/Heilongjiang
https://en.wikipedia.org/wiki/Heilongjiang
https://doi.org/10.3390/rs13153001
https://doi.org/10.3390/rs13153001
https://doi.org/10.3390/cells11020252
https://doi.org/10.1109/TPAMI.2022.3147986
https://doi.org/10.3390/agronomy13020532
https://doi.org/10.3389/fpls.2025.1700660
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	UAV multi-source data fusion with super-resolution for accurate soybean leaf area index estimation
	1 Introduction
	2 Material and methods
	2.1 Study site
	2.2 LAI estimation framework
	2.3 Field data collection
	2.4 UAV data collection
	2.5 Image preprocessing
	2.6 Image SR and feature extraction
	2.7 LAI regression models
	2.8 Feature selection method
	2.9 Evaluation index

	3 Results
	3.1 Super resolution results
	3.2 Feature selection results
	3.3 Modeling and validation of LAI estimation
	3.3.1 Evaluation of different sensors and regression models
	3.3.2 Performance of different LAIs on model accuracy
	3.3.3 Evaluation of various SR techniques


	4 Discussion
	4.1 Evaluation metrics for SR algorithms
	4.2 Selection of data features for LAI evaluation
	4.3 Analysis of SR algorithms
	4.4 Comparative analysis of soybean LAI across different time periods
	4.5 Limitations and future prospects

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


