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non-uniform agriculture
and forestry information
multi-robot active gathering
Jun Chen1,2,3*, Mingjia Chen3, Jun Wang1,2, Qi Mao3,
Fei Xie3 and Philip Dames4

1Wenzhou Vocational College of Science and Technology, Wenzhou, China, 2Wenzhou Key
Laboratory of Al Agents for Agriculture, Wenzhou, China, 3School of Electrical and Automation
Engineering, Nanjing Normal University, Nanjing, China, 4Department of Mechanical Engineering,
Temple University, Philadelphia, PA, United States
Active information gathering is a fundamental task in multi-robot systems in

agriculture, with applications in precision planting and sowing, field management

and inspection, intelligent weeding and pest control, etc. Traditional distributed

strategies often struggle to adapt to environments where information of interest

are unevenly clustered, leading to slow detection and inefficient coverage. In this

paper, we reformulate the information gathering problem as a multi-armed

bandit (MAB) problem and propose a novel distributed Bernoulli Thompson

Sampling algorithm. Our approach enables robots to make exploration-

exploitation decisions while sharing probabilistic information across the team,

thus improving global coordination without centralized control. We further

combine the distributed Bernoulli Thompson Sampling policy with Lloyd’s

algorithm for dynamic target tracking and introduce a goal swapping strategy

to improve task allocation efficiency. Extensive simulations demonstrate that our

method significantly outperforms baseline approaches in terms of search speed

and target coverage, particularly in scenarios with clustered target distributions.
KEYWORDS

multi-robot systems, active information gathering, Thompson sampling, multi-target
tracking, distributed control
1 Introduction

Information gathering plays an essential role in agriculture, including fruit picking and

farmland monitoring (Ma et al., 2025). Multi-robot information gathering enhances the

quality of agricultural products while reducing labor costs by advancing agricultural

automation and precision farming technologies (Mao et al., 2021). Effective operation in

such settings relies on two fundamental components: an estimation module that detects
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and tracks the dynamic state of multiple targets, and a motion

control module that coordinates robot motion for efficient target

exploration and tracking. However, in environments characterized

by sparse observations or spatially clustered targets, conventional

estimation-control frameworks often lead to inefficient exploration

and delayed target acquisition, limiting overall system performance.
1.1 Multi-target state estimation

We focus on the set of problems where robots must detect and

track a large number of discrete objects (e.g., people, vehicles,

landmarks), which is often modeled as a multi-target tracking

(MTT) problem. Different from single target tracking, the main

challenge of MTT is matching detections to target tracks, especially

in the precense of false negative and false positive detections, a

process known as data association. There are a number of standard

MTT algorithms, each of which solve data association in a different

way: global nearest neighbor [GNN; (Konstantinova et al., 2003)],

joint probabilistic data association [JPDA; (Hamid Rezatofighi et al.,

2015)], multiple hypothesis tracking [MHT; (Blackman, 2004)], and

particle filters (Doucet et al., 2002). Each of these trackers propagates

the posterior of target states over time and solves the data association

problem prior to tracking. Learning-based methods such as the graph

neural network [GNN; (Yang et al., 2022)] have also been shown to

solve the data association problem in dense scenes.

Another class of MTT techniques, derived from random finite

set (RFS) statistics [RFS; (Mahler, 2007)] simultaneously solves both

data association and tracking. We use the probability hypothesis

density (PHD) filter (Mahler, 2003), which tracks the spatial density

of targets. This approach is best suited for situations where targets

do not require a unique identity., e.g., a rescue robot only needs to

know where all of the people are located. Our previousv work

developed a distributed PHD filter that is provably equivalent to the

centralized solution (Dames, 2020).
1.2 Sensor-based control of MRSs

While simultaneous search and tracking for information that

remains static over time is well-studied (Papaioannou et al., 2019),

unknown and time-varying number of moving targets still leave

challenge for MRSs. Lloyd’s algorithm (Lloyd, 1982) is one of the

best-known control algorithms for distributed target search and

tracking, the idea of which is to represent target states by a

weighting function over the task space and to drive each robot to

the weighted centroid of its Voronoi cell (Cortes et al., 2004). In our

prior work, we use the PHD as the weighting function to realize

sensor-based control of MRSs, driving robots to actively track

targets (Dames, 2020). However, when no target is within a

robot’s Voronoi cell, the robots move erratically, reacting to any

false positive detections as well as the dynamically changing shape

of their Voronoi cells. As a result, robots often stay within empty

sub-regions instead of purposefully seeking out untracked targets,

slowing down the rate at which they find targets. This problem is
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further exacerbated when a majority of targets gather within some

small subsets of the environment, as is often the case in real life, e.g.,

animals cluster around water sources within large nature reserves.

Our recent work (Chen et al., 2025b) develops a cumulative

state estimation strategy to build-up a long-term belief of target

distribution alongside the instantaneous state estimation, i.e., the

PHD. By weighting each cell with the short- and long-term belief,

robots tend to gather around areas with dense information. Yet, in

this paper, we further investigate a lighter and more straight

forward algorithm that can trade-off between exploring sparse

areas and exploiting dense areas without relying on maintaining

full cumulative posterior map over the entire task space.

One way to trade-off is to have idle robots (i.e., those not

tracking targets) sample the task space in a way that balances

between searching low-density areas for undetected targets

(exploration) and high-density areas to increase the probability of

finding a target (exploitation). This coincides with the multi-armed

bandit (MAB) problem (Auer et al., 2002), in which a gambler must

decide which arm of. nonidentical slot machines to play to

maximize the reward. MABs have been applied to multi-robot

task allocation (Pini et al., 2012) and sensing (Luo and Sycara,

2018; Best et al., 2019; Shi et al., 2020) problems, though their use is

not widespread. There are many methods for solving MAB

problems, though the most common family of approaches is

based on upper confidence bounds (UCBs). UCBs have been

applied to Gaussian processes to map a scalar field over an

environment (Luo and Sycara, 2018; Shi et al., 2020) and as the

basis for a distributed Monte Carlo tree search algorithm for active

perception (Best et al., 2019). Another MAB solution is Thompson

sampling [TS; (Thompson, 1933)], which has recently proven

successful in solving MAB problem in a stochastic manner (Russo

et al., 2017). In fact, Chapelle and Li (2011) show that TS is among

the most effective and easy-implemented MAB solvers algorithms.

TS also allows for delayed feedback after sampling, which best fits

distributed MRS scenarios since robots do not receive rewards until

they reach their goal. In this paper, we choose to use a dynamic

variation of TS (Gupta et al., 2011) for active target search, which

handles the temporal variations of the target distribution.
1.3 Contributions

In this work, we develop a novel control policy that enables

robots to actively gathering information, i.e., search for and track

unknown targets, over a given task space. We have three primary

contributions: 1) we introduce a distributed active search algorithm

based on dynamic TS, 2) we combine the TS-based search with

Lloyd’s algorithm for active tracking, 3) we propose a goal swapping

algorithm to more effectively assign goals to each robot, and 4) we

demonstrate in a series of simulated experiments that a team of

robots using the combined TS and Lloyd’s algorithmsmore effectively

finds and tracks targets than a team that uses only Lloyd’s algorithm.

The remainder of this paper is structured as follows. In

Section 2, we address the problem of distributed target search and

tracking, introduce the proposed distributed control strategy for
frontiersin.org
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idle robots to actively explore the environment, and present a novel

algorithm that allows coordination of idle robots and tracking

robots in looking for and tracking targets. In Section 3, we

validate the proposed algorithms through a series of simulation

results. Finally, we conclude in Section 4.
2 Method

2.1 Problem formulation

A set of nt targets with states X = x1,…, xntf g are located within
a convex open task space denoted by E ⊂ R2. A team of nr

(possibly heterogeneous) robots R = r1,…, rnrf g are tasked with

determining nt and X, both of which are unknown and may vary

over time. We assume that each robot knows its location qi in a

global reference frame (e.g., from GPS), though our proposed

method can be immediately extended to handle localization

uncertainty using the algorithms from our previous work (Chen

and Dames, 2023). At each time step, a robot receives a set of noisy

measurements Zi of targets within the field of view (FoV) of its

onboard sensor. Note that the sensor may experience false negative

or false positive detections so the number of detections may not

match the true number of targets.

2.1.1 PHD filter
The sets X and Zi from above contain a random number of

random elements, and thus are realization of random finite sets

[RFSs; (Mahler, 2007)]. The first order moment of an RFS is known

as the Probability Hypothesis Density (PHD) (which we denote v (x)

) and takes the form of a density function over the state space of a

single target or measurement. The PHD filter recursively updates

this target density function in order to track the distribution over

target sets (Mahler, 2003).

The PHD filter uses three models to describe the motion of the

targets: 1) The motion model, f (x x)j , describes the likelihood of an

individual target transitioning from an initial state x to a new state x.

2) The survival probability model, ps(x), describes the likelihood that

a target with state x will continue to exist from one time step to the

next. 3) The birth PHD, b(x), encodes both the number and locations

of the new targets that may appear in the environment.

The PHD filter also uses three models to describe the ability of

robots to detect targets: 1) The detection model, pd(x q)j , gives the

probability of a robot with state q successfully detecting a target with

state x. Note that the probability of detection is identically zero for all

x outside the sensor FoV. 2) The measurement model, g(z x,  q)j , gives

the likelihood of a robot with state q receiving a measurement z from

a target with state x. 3) The false positive (or clutter) PHD, c(z q)j ,

describes both the number and locations of the clutter measurements.

Using these target and sensor models, the PHD filter prediction

and update equations are shown as Equations 1–4:

�vt(x) = b(x) +
Z
E
f (x x)ps(x)vt−1(x) dxj (1)
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vt(x) = (1 − pd(xjq))�vt(x) +o
z∈Zt

yz,q(x)�vt(x)

hz(�v
t)

(2)

hz(v) = c(zjq) +
Z
E
yz,q(x)v(x) dx (3)

yz,q(x) = g(z x, q)pd(xj jq), (4)

where yz,q(x) is the probability of a sensor at q receiving

measurement z from a target with state x. The PHD filter

recursively propagates the spatial density vt(x) of targets over

time through prediction and update steps, accounting for target

motion, births, deaths, and sensor measurements. In our

implementation, we use the distributed version from (Dames,

2020) where each robot maintains the PHD within its Voronoi

cell Vi. Three algorithms then account for motion of the robots (to

update the subsets Vi), motion of the targets (in (1)), and

measurement updates (in (2)).

2.1.2 Lloyd’s algorithm
Lloyd’s algorithm minimizes the value of the functional shown

as Equation 5:

H( q1,…, qnrf g) =
Z
E
min
r∈R

f (d(x, qr))f(x) dx, (5)

where d(x, q) measures the distances between elements in E, f ( · )

is a monotonically increasing function, and f(x) is a non-negative

weighting function. We use f (x) = x2, a standard choice. The

minimum inside of the integral induces a partition on the

environment Vr = x d(x, qr) ≤ d(x, qi),∀ i ≠ rj gf . This is the

Voronoi partition, and these Vr are the Voronoi cells. Cortes et al.

(2004) show that the gradient of (5) with respect to the state of each

robot is independent of the states of the other robots, and that

iteratively moving each robot r to its weighted centroid, shown as

Equation 6:

q*r =

Z
Vr

xf(x)dxZ
Vr

f(x)dx
, (6)

achieves a local minimum of H in a distributed manner. The

control input for robot r is then ur(q*r ), shown as Equation 7 where

ur(g) = min (dstep, g − qrk k) g − qr
g − qrk k , (7)

g is an arbitrary goal location, and dstep > 0 is the distance a robot

can move during one time step. By following this control law, robots

asymptotically converge to the weighted centroids of their Voronoi

cells. Note that Lloyd’s algorithm assumes a convex environment,

though this restriction has been lifted in recent works (Breitenmoser

et al., 2010) to allow for exploration in environments with obstacles.

Our previous work effectively coupled tracking and control by using
frontiersin.org
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the distributed PHD as the weighting function (i.e., f(x) = v(x)) and

using the Voronoi cells as the subsets Vi (Dames, 2020).
2.2 Distributed Bernoulli Thompson
sampling

While our prior work allowed robots to effectively track any

detected targets, individuals do not actively search for a target and

could often spend a long time locating targets that appeared in

underexplored regions of the environment. This paper addresses

this flaw in our prior work by proposing a new strategy for target

search based on Thompson sampling. To do this, we divide the

team into two subteams, a searching team Rs = r ∈ R Zr = ∅j gf
(idle robots) and a tracking team Rt = R ∖Rs (busy robots), based on

whether a robot is actively tracking at least one target. Tracking

robots use the same Lloyd’s algorithm-based controller from

(Dames, 2020) while searching robots use an active search

strategy based on a novel distributed Bernoulli Thompson

sampling method, detailed below.
2.2.1 Modeling search as a MAB problem
We formulate the search task as a multi-armed bandit (MAB)

problem, where the players (i.e., robots) select actions among K

resources with the goal of maximizing the expected reward. The

number of resources, K, is fixed and finite, and a player instantly

receives a reward rwk after completing an action k ∈ 1,…,Kf g.
In our context, each action k represents traveling to a specific

region of the environment and the reward policy is a binary value

(i.e., we have Bernoulli bandits) based on the observation received at

that location, shown as Equation 8:

rwk =
0 Z = ∅

1 else
,

(
(8)

i.e., the reward is 0 if the robot detects nothing at the goal

location and 1 otherwise. To partition the environment E into K

fixed regions, we assume that sensors are homogeneous and

isotropic with FoV radii rf . We then find the edge length of the

inscribed square, i.e.,
ffiffiffi
2

p
rf . We tile these squares to completely

cover E, discarding any squares that lie outside of the environment,

as Figure 1 shows. The center of each resulting square corresponds

to a sampling position sk and the set of actions is then S =

s1,…, sKf g. This segmentation is conducted prior to the search

task and is known by all robots.

There are several important points to note. First, our

formulation is slightly different from the traditional MAB

problem in that rewards are not immediately received after

selecting an action. Instead, there is a time delay between

selecting an action and receiving a reward due to the time it takes

for a robot to travel to its goal sk. Second, any inscribed polygon that

can create a regular planar tiling would also work (i.e., equilateral

triangle or regular hexagon). Third, our approach can be extended

to handle anisotropic or heterogeneous sensors by applying the

similar strategy from our recent work (Chen and Dames, 2021),
Frontiers in Plant Science 04
where we map each sensor to an isotropic FoV with equivalent

detection capability then setting rf = minr∈Rrf ,r .

2.2.2 Thompson sampling
Thompson sampling (TS), also known as posterior sampling,

has proven successful in solving the MAB problem in recent

decades (Russo et al., 2017). A Bernoulli bandit generates either a

zero or a positive unit reward, i.e., rw ∈ 0, 1f g, from each resource

with a fixed and unknown probability qk ∈ ½0, 1�. TS sequentially

recommends an action for the next resource to sample from at each

discrete time step t ∈ T using Algorithm 1, where beta(a , b)
denotes the beta distribution with parameters a and b .
1: for t = 1, 2,… do

2: for k = 1,…, K do

3: Sample q̂ k ∼ beta(ak, bk)

4: end for

5: k* ← arg maxkq̂ k ▹ Recommend action

6: Apply action sk* and observe rwk*

7: Update ak*, bk*

8: end for
Algorithm 1. BernTS(K, a, b).
FIGURE 1

The hexagonal blue environment E is segmented by a set of black
squares, each of which can be inscribed in a sensor FoV (green
circle). The set of actions is represented by the red dots.
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The algorithm takes the inputs of the number of resources K

and initial parameters for the beta distributions for each resource,

i.e., a = ½a1,…,aK � and b = ½b1,…, bK �. At each discrete time step

t, the reward posterior of each resource is sampled and the resource

with the highest reward is selected (lines 2-5). The player takes the

recommended action, receives the corresponding reward, and uses

the reward to update the distribution parameters for the selected

action (lines 6-7). The standard update equations for the parameters

of the beta distribution are shown as Equation 9:

ak = ak + rwk

bk = bk + (1 − rwk),
(9)

where ak and bk are called pseudo-counts since they increase by
1 after receiving a reward of 1 or 0, respectively (Russo et al., 2017).

The beta functions then encode the posterior of getting a reward

from each resource, allowing each resource to be sampled with a

time-varying probability depending on current knowledge of the

posterior distributions and resulting in an exploration behavior. As

a growing number of observations are accumulated, the posterior

distributions tend to congregate at true expected rewards and the

recommended actions approach optimal, bringing about an

exploitation behavior.

Traditional TS relies on a key assumption that the reward

probabilities qk are fixed. However, this is not valid in our

situation, where rewards depend on the presence on moving

targets in certain regions of the environment. Using (9) can cause

an irreversible loss of ability to react to future changes of reward

probability. A variation of TS for dynamic reward probabilities was

proposed by Gupta et al (Gupta et al., 2011), who replaced (9) with

Equation 10:

(ak, bk) =
(ak + rwk, bk + (1 − rwk)), ak + bk < C

C
C+1 (ak + rwk, bk + (1 − rwk)), otherwise

,

(
(10)

where C is a constant threshold which axt + bxt never exceeds.
Such a strategy provides exponential weights to each update,

weakening the impact from old samples so as to allow recent

samples to dominate action selection. In this paper, we use (10)

for beta distribution update in order to have robots to work in a

potentially changeable environment.

Thompson sampling is also designed for a single player,

however in our setting we have multiple cooperative players. To

create a distributed TS algorithm, we maintain a consistent global a
and b across the team, which each robot can use to independently

sample actions when it enters the idle state. This requires robots to

share their received rewards with one another, which happens once

a robot reaches its goal location s
k* . More specifically, after

receiving a reward a robot will broadcast the tuple (i, t, k*, rw) to

its neighbors, which contains the robot ID, time stamp, action, and

reward. Each robot then uses these tuples to update their local

copies of a and b and rebroadcasts the tuple until all robots in the

team have received it. This is guaranteed to happen in at most nr

rounds since we assume that the communication graph

is connected.
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2.3 Multi-target information gathering

Our final control algorithm combines Lloyd’s algorithm and

distributed Thompson sampling. Robots toggle between these two

behaviors depending on whether they are busy or idle, i.e., whether

they are actively tracking a target, which we measure using Z ≠ ∅.

In the busy state, a robot uses the standard Lloyd’s algorithm, which

effectively follows any targets within the current field of view. In the

idle state, a robot uses TS to select a region to explore in search of a

new target. Our formulation of the TS algorithm will bias robots to

search areas which were recently known to contain targets while still

allowing robots to visit unexplored regions. To enable a distributed

coordination framework, we denote Remark 1.

Remark 1 (Distributed Voronoi Construction). By assuming

that each sensor is aware of the boundaries of E, and that the robot

team contains more than one robot node and is connected, Vr can be

constructed iteratively in a distributed fashion using Algorithm 2 in

(Bash and Desnoyers, 2007) that computes provably exact Voronoi

cells without necessarily contacting the entire members of the team.

This method requires that the communication graph is sufficiently

dense, typically requiring a communication range at least twice the

sensing or environment size scale, to ensure neighbors can exchange

necessary boundary information.

Algorithm 2 outlines our strategy, where gi is the goal for robot

ri andN i are the neighbors of robot ri in the communication graph,

i.e., the set of robots that it can directly communicate with. The

“ParFor” block indicates that all robots execute their internal logic

concurrently and asynchronously. All robots are initialized with

their goal as the current location and with ak = bk = 1,∀ k ∈
1,…,Kf g ( l ines 1-6) . As robots explore , they receive

measurements. At each time step, robots must exchange states

with their neighbors in order to compute Voronoi cells Vi and

update the distributed PHD (lines 9-12). Robot also use the

measurements to update the beta distribution parameters for the

nearest action point and broadcasts this information to all

neighbors in the communication graph to ensure that all robots

have identical information (lines 13-16). Once a robot reaches its

goal, each robot will then enter either the idle or busy state,

depending on the reward received, and select its next goal. In the

idle state a robot uses the TS algorithm from Sec. 2.2 (lines 19-20),

while in the busy state a robot uses Lloyd’s algorithm (6) (lines 22-

23). If a robot is in the idle state, it has the option to swap goal with a

neighbor in order to decrease the total distance traveled by the team

(lines 26-28), the details of which are described in the next

subsection. Finally, each robot moves towards it current goal

(lines 29-30).
1: for ri ∈ R do ▹ Initialize robots

2: gi = qi
frontiersin.org
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Fron
3: for k ∈{1,…, K} do ▹ Initialize beta functions

4: ak ← 1, bk ← 1

5: end for

6: end for

7: for t = 1, 2,… do

8: parfor ri∈ R do

9: Receive measurement set Zi

10: Exchange state qi with neighbors N i

11: Compute Voronoi cell Vi

12: Update distributed PHD using method from (Dames,

2020)

13: Find nearest action index k̂ = arg mink ∥ qi − sk∥

14:Compute rwk̂ i
using (8) ▹ Map measurements to reward

15: Update ak̂ i
, bk̂ i

using (10)

16: Broadcast (i, k̂ i, rwk̂ i
)

17: if qi = gi then ▹ Reached goal

18: if rwk̂ i
= 0 then ▹ Idle state

19: Select k*i using Algorithm 1

20: Set goal gi = s
k*i

21: else ▹ Busy state

22: k*i = ∅

23: Set goal gi = q*i using (6)

24: end if

25: end if

26: if k*i ≠ ∅ then ▹ In idle state

27: SwapGoals(i, qi, gi) using Algorithm 3

28: end if

29: Compute ui using (7)
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30: qi ← qi + ui ▹ Move towards goal

31: end parfor

32: t ← t + 1

33:
Algorithm 2. Distributed Search and Tracking.
1: for j ∈ N i do

2: if k*j ≠ ∅ AND d(qi − gj)< d(qj − gi) then

3: gi, gj ← gj, gi ▹ Swap goals

4: SwapGoals(j, qj, gj)

5: end if

6: end for=0
Algorithm 3. SwapGoals(i, qi, gi).

2.3.1 Optimized goal assignment
Since actions sampled from the TS algorithm can be anywhere

in the environment, it is possible that robots may select points in

inefficient ways, e.g., two robots swapping places. To remedy this,

we propose a goal reassignment strategy in which robots swap goals

with a neighbor if both robots are in the idle state and if the swap

will decrease the total distance traveled by the team, i.e., ∃ j ≠

i s : t : d(qi − gj) < d(qj − gi). Once a goal swap occurs, the

swapped robot continues to check the necessity of goal swapping

in its neighborhood, as outlined in Algorithm 3. As a result of this,

the distance between a robot and an assigned goal is always closer

than the other pairs.

Remark 2 (Communication Load). In a Voronoi diagram, the

average number of neighbors for a cell is bounded by 6, though it can

vary (Boots et al., 1999). Therefore, at each time step, a robot ri
exchanges T = qi, i, k̂ i, rwk̂ i

, gi
n o

and partial PHD (Algorithm 2,

line 12), i.e., PHD within its partition, with limited number of

neighbors. Since T is an array with length of 6 in a 2D space and

the partial PHD is of low bandwidth referred to (Dames, 2020), our

a l g o r i t hms r e qu i r e s on l y l ow commun i ca t i on l oad

within neighborhoods.
3 Results

Algorithm 3 boosts the performance of our previous methods

(Dames, 2020) in that it allows the team to actively explore the
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environment and learn the characteristics of the target distribution.

In particular, robots are now able to use a combination of detailed

local information (coming from the PHD) and coarse global

information (coming from a , b) to inform their actions. The

advantages of adding this global information are especially
Frontiers in Plant Science 07
pronounced when targets are not uniformly distributed in the

space but are instead grouped together within small regions. Under

these circumstances, idle robots are especially helpful in learning the

difference in target density among sub-regions and optimizing the

assignment of tracking effort in different sub-regions.
FIGURE 2

Figures show target distributions in two different environments. Black lines are boundaries of the 100 m × 100 m task spaces. Targets are only
distributed within 33 m × 33 m dark gray areas and the numbers indicate the original numbers of targets in these areas respectively.
FIGURE 3

Figures show comparison of applying pure Lloyd’s algorithm and a combined Lloyd’s algorithm with Thompson sampling after 100 s. In (a-d), green
squares and circles show robot locations and sensor footprints, respectively. Orange diamonds show the locations of targets. (e) maps a values in (d)
by darkness, with a darker color indicating a higher value.
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3.1 Simulation environment

We test our proposed algorithms via MATLAB simulations. The

task space is a 100 × 100 m square. Targets may either be static or

moving within their sub-regions at a maximum speed of 3 m/s.

Existing targets may disappear (i.e., leave the environment) and new

targets may appear (i.e., enter the environment) so that the number

of targets may change over time.

All robots begin each trial at randomized locations within a

20 ×10 m box at the bottom center of the environment. Robots have

a maximum speed of 10 m/s and are equipped with isotropic

sensors with a sensing radius rf = 5 m. Thus, the environment is

segmented into a grid of 14 ×14 points, using the method from Sec.

2.2.1. We use C = 10 in (10).

In the PHD filter, we assume the robots do not have any prior

knowledge of the targets. Thus, the robots use a Gaussian random

walk (with s = 0:35 m/s) for the motion models f, set the survival

probability to 1, and the birth PHD to 0. We use the same

measurement model for sensors as in (Dames, 2020), with the

exception of assuming that sensors are all homogeneous and

produce no missed or false detections. Note that our proposed

method is compatible with heterogeneous sensing network (Chen

et al., 2025a) and false alarms (Dames, 2020), we just make this
Frontiers in Plant Science 08
choice to simplify the tests and highlight the improvement relative

to our previous method.
3.2 Qualitative comparison

We first show how active search using TS qualitatively improves

multi-target tracking using a single trial. There are 40 robots

searching for 40 targets, where 30 targets are located in a 33 × 33

m square sub-region at the lower-left corner of E, and another 10

targets in a 33 × 33 m squared sub-region at the top-right corner, as

shown in Figure 2a. Targets locations are drawn uniformly at

random within each sub-region. For simplicity, the targets are

stationary and the number of targets is constant over time (note:

the robots still use a Gaussian motion model within the PHD filter).

Figure 3 shows the locations of robots and targets at various

points during exploration using both our previous (Dames, 2020)

and new methods. When using our previous method, which only

used Lloyd’s algorithm, a large portion of robots are idle even when

a fair amount of targets are not tracked after 40 s, as the centroids of

these orange diamonds are not located in any of the green circles.

After 60 s, robots tend to move towards the two corners with targets

but a large portion of them have still not found any targets. We also
FIGURE 4

Boxplots show median OSPA errors and the 95% rise time for robot teams tracking targets distributed as in Figure 2a.
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see that robots get stuck on the boundary of target clusters, never

reaching the interior targets. The result demonstrates the weakness

of pure Lloyd’s algorithm that idle robots do not actively search for

targets, causing an inefficient use of the total sensing capability of

the team while searching for untracked targets.

On the other hand, the team using distributed Thompson

sampling is able to quickly learn the target distribution and

cluster in regions likely to contain targets. As the figure shows,

after 40 s a large number of the robots have already gathered at the

large cluster of targets while a handful of other robots continue to

search unexplored areas. After 40 s, most of the robots have found a

target while a few continue to maintain coverage of these unlikely

regions. The resulting emergent robot distribution is consistent with

the target distribution, as the lower-left corner contains a higher

number of robots than the upper-right corner (28 vs. 9, which

closely match the number of targets in each region), while 3 robots

monitor the rest of the area. This helps the team to track the targets

more quickly as the more individuals are needed in an area, the

more likely it is that an individual will be assigned to that region.

The final panel reflects the value of a for each sampling candidates

after 60 s, showing that the team has received more reward in areas

with higher target concentrations.
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3.3 Quantitative comparison

To quantify the improvement in performance, we will use the

first order Optimal SubPattern Assignment (OSPA) metric

(Schuhmacher et al., 2008), a commonly-used approach in MTT.

The error between two sets X, Y, where Xj j = m ≤ Yj j = n without

loss of generality, is Equation 11

d(X,Y) =
1
n
min
p∈Pn

om
i=1dc(xi, yp(i))

p + cp(n −m)
� �� �1=p

, (11)

where c is a cutoff distance, dc(x, y) = min (c, x − yk k), and Pn is

the set of all permutations of the set 1, 2,…, nf g. This gives the average
error in matched targets, where OSPA considers all possible

assignments between elements x ∈ X and y ∈ Y that are within

distance c of each other. This can be efficiently computed in

polynomial time using the Hungarian algorithm (Kuhn, 1955). We

use c = 10 m, p = 1, and measure the error between the true and

estimated target sets. Note that a lower OSPA value indicates a more

accurate tracking of the target set. We report the median OSPA value

over the final 150 s of each trial, allowing the team to reach a steady

state and smoothing out the effects of spurious measurements that
FIGURE 5

Boxplots show median OSPA errors and the 95% rise time for robot teams tracking targets distributed as in Figure 2b.
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cause the OSPA to fluctuate. We also show the 95% rise time of the

OSPA error metric, i.e., the time it takes for the OSPA error to reach a

value within 5% of the final value, to measure the speed at which robots

reach steady state.

3.3.1 Tests design
To test the efficacy of our proposed approach, we conduct a

series of trials in two environments, shown in Figures 2a, b, and in

situations where targets are either all stationary or all dynamic

(note: the robots always use the same target models in the PHD).

For each environment and each target motion type, we test a range

of team sizes (from 10 to 40 robots) and both search strategies (from

(Dames, 2020) and the new method). For each configuration

(environment, target type, team size) we run 10 trials, with the

results aggregated into boxplots showing the steady state OSPA (to

measure accuracy) and the 95% rise time (to measure speed).

Figure 4 shows the results from the first environment (Figure 2a). As

we see in the OSPA plots, the median OSPA decreases as the number of

robots increases. This agrees with intuition asmore robots should be able

to better locate targets and there should be diminishing rewards with

each added robot, i.e., going from 10 to 15 robots ismore significant than

35 to 40 robots. We see that for static targets, our proposed method

shows significantly lower OSPA error and rise time and that the

variation of both parameters across trials is smaller, meaning it more

accurate, faster, and more reliable. For dynamic targets, the OSPA error

of teams using our proposed method are comparable or slightly higher

and exhibit slightly more variation across trials, though neither effect is

significant. Like the static case, our new method decreases both the

magnitude and variation of the rise time, meaning it faster and more

repeatable. We hypothesize that these differences in behavior are due to

the ability of robots to actively sample the environment using coarse

global information. We also believe that the primary cause of the slight

increase in OSPA error in the case of dynamic targets is because robots

do not exit the idle state until they reach their destination. This means

that if a robot observes a target en route to its goal, it will continue

towards the goal instead of actively tracking the newly found target.

Figure 5 shows the results in the second environment (Figure 2b).

The results are consistent with those from previous tests, except we

now see a slight improvement in OSPA error for dynamic targets. We

believe this is due to the high density of targets reducing the total cost

of moving towards sampling points. We also see that the reduction of

the rise time is more pronounced in every case than it was in Figure 4,

supporting our argument that the proposed control algorithm is

more beneficial when targets are more tightly congregated.
4 Conclusions

We develop an active information gathering algorithm for

distributed MRSs combining a novel distributed Thompson sampling

algorithm with Lloyd’s algorithm to allow robots to effectively search

for and track multiple moving targets without having any prior

knowledge about targets. In particular, we see that the addition of TS

allows robots to share coarse global information about recently

detected targets in an efficient and scalable manner. As a result,
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teams using TS are able to more accurately track targets, locate

targets more quickly, and increase the consistency in performance.

These trends are more pronounced in situations where targets are

unevenly distributed within the search space.
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