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Active information gathering is a fundamental task in multi-robot systems in
agriculture, with applications in precision planting and sowing, field management
and inspection, intelligent weeding and pest control, etc. Traditional distributed
strategies often struggle to adapt to environments where information of interest
are unevenly clustered, leading to slow detection and inefficient coverage. In this
paper, we reformulate the information gathering problem as a multi-armed
bandit (MAB) problem and propose a novel distributed Bernoulli Thompson
Sampling algorithm. Our approach enables robots to make exploration-
exploitation decisions while sharing probabilistic information across the team,
thus improving global coordination without centralized control. We further
combine the distributed Bernoulli Thompson Sampling policy with Lloyd's
algorithm for dynamic target tracking and introduce a goal swapping strategy
to improve task allocation efficiency. Extensive simulations demonstrate that our
method significantly outperforms baseline approaches in terms of search speed
and target coverage, particularly in scenarios with clustered target distributions.

KEYWORDS

multi-robot systems, active information gathering, Thompson sampling, multi-target
tracking, distributed control

1 Introduction

Information gathering plays an essential role in agriculture, including fruit picking and
farmland monitoring (Ma et al., 2025). Multi-robot information gathering enhances the
quality of agricultural products while reducing labor costs by advancing agricultural
automation and precision farming technologies (Mao et al., 2021). Effective operation in
such settings relies on two fundamental components: an estimation module that detects
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and tracks the dynamic state of multiple targets, and a motion
control module that coordinates robot motion for efficient target
exploration and tracking. However, in environments characterized
by sparse observations or spatially clustered targets, conventional
estimation-control frameworks often lead to inefficient exploration
and delayed target acquisition, limiting overall system performance.

1.1 Multi-target state estimation

We focus on the set of problems where robots must detect and
track a large number of discrete objects (e.g., people, vehicles,
landmarks), which is often modeled as a multi-target tracking
(MTT) problem. Different from single target tracking, the main
challenge of MTT is matching detections to target tracks, especially
in the precense of false negative and false positive detections, a
process known as data association. There are a number of standard
MTT algorithms, each of which solve data association in a different
way: global nearest neighbor [GNN; (Konstantinova et al., 2003)],
joint probabilistic data association [JPDA; (Hamid Rezatofighi et al.,
2015)], multiple hypothesis tracking [MHT; (Blackman, 2004)], and
particle filters (Doucet et al., 2002). Each of these trackers propagates
the posterior of target states over time and solves the data association
problem prior to tracking. Learning-based methods such as the graph
neural network [GNN; (Yang et al., 2022)] have also been shown to
solve the data association problem in dense scenes.

Another class of MTT techniques, derived from random finite
set (RFS) statistics [RFS; (Mahler, 2007)] simultaneously solves both
data association and tracking. We use the probability hypothesis
density (PHD) filter (Mahler, 2003), which tracks the spatial density
of targets. This approach is best suited for situations where targets
do not require a unique identity., e.g., a rescue robot only needs to
know where all of the people are located. Our previousv work
developed a distributed PHD filter that is provably equivalent to the
centralized solution (Dames, 2020).

1.2 Sensor-based control of MRSs

While simultaneous search and tracking for information that
remains static over time is well-studied (Papaioannou et al., 2019),
unknown and time-varying number of moving targets still leave
challenge for MRSs. Lloyd’s algorithm (Lloyd, 1982) is one of the
best-known control algorithms for distributed target search and
tracking, the idea of which is to represent target states by a
weighting function over the task space and to drive each robot to
the weighted centroid of its Voronoi cell (Cortes et al., 2004). In our
prior work, we use the PHD as the weighting function to realize
sensor-based control of MRSs, driving robots to actively track
targets (Dames, 2020). However, when no target is within a
robot’s Voronoi cell, the robots move erratically, reacting to any
false positive detections as well as the dynamically changing shape
of their Voronoi cells. As a result, robots often stay within empty
sub-regions instead of purposefully seeking out untracked targets,
slowing down the rate at which they find targets. This problem is
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further exacerbated when a majority of targets gather within some
small subsets of the environment, as is often the case in real life, e.g.,
animals cluster around water sources within large nature reserves.

Our recent work (Chen et al.,, 2025b) develops a cumulative
state estimation strategy to build-up a long-term belief of target
distribution alongside the instantaneous state estimation, i.e., the
PHD. By weighting each cell with the short- and long-term belief,
robots tend to gather around areas with dense information. Yet, in
this paper, we further investigate a lighter and more straight
forward algorithm that can trade-off between exploring sparse
areas and exploiting dense areas without relying on maintaining
full cumulative posterior map over the entire task space.

One way to trade-off is to have idle robots (i.e., those not
tracking targets) sample the task space in a way that balances
between searching low-density areas for undetected targets
(exploration) and high-density areas to increase the probability of
finding a target (exploitation). This coincides with the multi-armed
bandit (MAB) problem (Auer et al., 2002), in which a gambler must
decide which arm of. nonidentical slot machines to play to
maximize the reward. MABs have been applied to multi-robot
task allocation (Pini et al, 2012) and sensing (Luo and Sycara,
2018; Best et al., 2019; Shi et al., 2020) problems, though their use is
not widespread. There are many methods for solving MAB
problems, though the most common family of approaches is
based on upper confidence bounds (UCBs). UCBs have been
applied to Gaussian processes to map a scalar field over an
environment (Luo and Sycara, 2018; Shi et al., 2020) and as the
basis for a distributed Monte Carlo tree search algorithm for active
perception (Best et al., 2019). Another MAB solution is Thompson
sampling [TS; (Thompson, 1933)], which has recently proven
successful in solving MAB problem in a stochastic manner (Russo
et al., 2017). In fact, Chapelle and Li (2011) show that TS is among
the most effective and easy-implemented MAB solvers algorithms.
TS also allows for delayed feedback after sampling, which best fits
distributed MRS scenarios since robots do not receive rewards until
they reach their goal. In this paper, we choose to use a dynamic
variation of TS (Gupta et al., 2011) for active target search, which
handles the temporal variations of the target distribution.

1.3 Contributions

In this work, we develop a novel control policy that enables
robots to actively gathering information, i.e., search for and track
unknown targets, over a given task space. We have three primary
contributions: 1) we introduce a distributed active search algorithm
based on dynamic TS, 2) we combine the TS-based search with
Lloyd’s algorithm for active tracking, 3) we propose a goal swapping
algorithm to more effectively assign goals to each robot, and 4) we
demonstrate in a series of simulated experiments that a team of
robots using the combined TS and Lloyd’s algorithms more effectively
finds and tracks targets than a team that uses only Lloyd’s algorithm.

The remainder of this paper is structured as follows. In
Section 2, we address the problem of distributed target search and
tracking, introduce the proposed distributed control strategy for
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idle robots to actively explore the environment, and present a novel
algorithm that allows coordination of idle robots and tracking
robots in looking for and tracking targets. In Section 3, we
validate the proposed algorithms through a series of simulation
results. Finally, we conclude in Section 4.

2 Method
2.1 Problem formulation

A set of nt targets with states X = {xy,...,x,, } are located within
a convex open task space denoted by E C R*. A team of nr
(possibly heterogeneous) robots R = {ry,...,r,,} are tasked with
determining nt and X, both of which are unknown and may vary
over time. We assume that each robot knows its location ¢; in a
global reference frame (e.g., from GPS), though our proposed
method can be immediately extended to handle localization
uncertainty using the algorithms from our previous work (Chen
and Dames, 2023). At each time step, a robot receives a set of noisy
measurements Z; of targets within the field of view (FoV) of its
onboard sensor. Note that the sensor may experience false negative
or false positive detections so the number of detections may not
match the true number of targets.

2.1.1 PHD filter

The sets X and Z; from above contain a random number of
random elements, and thus are realization of random finite sets
[RESs; (Mahler, 2007)]. The first order moment of an RFS is known
as the Probability Hypothesis Density (PHD) (which we denote v (x)
) and takes the form of a density function over the state space of a
single target or measurement. The PHD filter recursively updates
this target density function in order to track the distribution over
target sets (Mahler, 2003).

The PHD filter uses three models to describe the motion of the
targets: 1) The motion model, f(x|&), describes the likelihood of an
individual target transitioning from an initial state £ to a new state x.
2) The survival probability model, p,(x), describes the likelihood that
a target with state x will continue to exist from one time step to the
next. 3) The birth PHD, b(x), encodes both the number and locations
of the new targets that may appear in the environment.

The PHD filter also uses three models to describe the ability of
robots to detect targets: 1) The detection model, p;(x|q), gives the
probability of a robot with state q successfully detecting a target with
state x. Note that the probability of detection is identically zero for all
x outside the sensor FoV. 2) The measurement model, g(z|x, g), gives
the likelihood of a robot with state g receiving a measurement z from
a target with state x. 3) The false positive (or clutter) PHD, c(z|q),
describes both the number and locations of the clutter measurements.

Using these target and sensor models, the PHD filter prediction
and update equations are shown as Equations 1-4:

5,0 = ble) + é FEOPEWAE) e M)
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V(%) = (1 = pa(x|q) v, (x) + E Vel

x)V(x)
= Z(T/t’) (2)
n.(v) = cz|q) + A Vg () v(x) dx 3)
V(%) = g(z|x, @)pa(x|q), 4)

where Y, ,(x) is the probability of a sensor at q receiving
measurement z from a target with state x. The PHD filter
recursively propagates the spatial density v,(x) of targets over
time through prediction and update steps, accounting for target
motion, births, deaths, and sensor measurements. In our
implementation, we use the distributed version from (Dames,
2020) where each robot maintains the PHD within its Voronoi
cell V;. Three algorithms then account for motion of the robots (to
update the subsets V;), motion of the targets (in (1)), and
measurement updates (in (2)).

2.1.2 Lloyd's algorithm
Lloyd’s algorithm minimizes the value of the functional shown

as Equation 5:

K ondod) = [ minfdxg Do dn )
E T

where d(x, g) measures the distances between elements in E, f( -)
is a monotonically increasing function, and @(x) is a non-negative

2, a standard choice. The

weighting function. We use f(x) = x
minimum inside of the integral induces a partition on the
environment V, = {x|d(x,q,) < d(x,q;),V i #r}. This is the
Voronoi partition, and these V, are the Voronoi cells. Cortes et al.
(2004) show that the gradient of (5) with respect to the state of each
robot is independent of the states of the other robots, and that
iteratively moving each robot r to its weighted centroid, shown as

Equation 6:

ECcE
" /, otoas

achieves a local minimum of H in a distributed manner. The

(6)

control input for robot r is then u,(q:), shown as Equation 7 where

1,(g) = min (dyepn [1g - qu)”ii—‘” (7)

all’

g is an arbitrary goal location, and d, > 0 is the distance a robot
can move during one time step. By following this control law, robots
asymptotically converge to the weighted centroids of their Voronoi
cells. Note that Lloyd’s algorithm assumes a convex environment,
though this restriction has been lifted in recent works (Breitenmoser
et al,, 2010) to allow for exploration in environments with obstacles.
Our previous work effectively coupled tracking and control by using
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the distributed PHD as the weighting function (i.e., ¢(x) = v(x)) and
using the Voronoi cells as the subsets V; (Dames, 2020).

2.2 Distributed Bernoulli Thompson
sampling

While our prior work allowed robots to effectively track any
detected targets, individuals do not actively search for a target and
could often spend a long time locating targets that appeared in
underexplored regions of the environment. This paper addresses
this flaw in our prior work by proposing a new strategy for target
search based on Thompson sampling. To do this, we divide the
team into two subteams, a searching team R, = {r € R|Z, = @}
(idle robots) and a tracking team R, = R\ R; (busy robots), based on
whether a robot is actively tracking at least one target. Tracking
robots use the same Lloyd’s algorithm-based controller from
(Dames, 2020) while searching robots use an active search
strategy based on a novel distributed Bernoulli Thompson
sampling method, detailed below.

2.2.1 Modeling search as a MAB problem

We formulate the search task as a multi-armed bandit (MAB)
problem, where the players (i.e., robots) select actions among K
resources with the goal of maximizing the expected reward. The
number of resources, K, is fixed and finite, and a player instantly
receives a reward rwj after completing an action k € {1,...,K}.

In our context, each action k represents traveling to a specific
region of the environment and the reward policy is a binary value
(i.e., we have Bernoulli bandits) based on the observation received at
that location, shown as Equation 8:

0Z2Z=0Q
Wy = , (8)
1 else

i.e., the reward is 0 if the robot detects nothing at the goal
location and 1 otherwise. To partition the environment E into K
fixed regions, we assume that sensors are homogeneous and
isotropic with FoV radii py. We then find the edge length of the
inscribed square, i.e., \/fpf. We tile these squares to completely
cover E, discarding any squares that lie outside of the environment,
as Figure 1 shows. The center of each resulting square corresponds
to a sampling position s, and the set of actions is then S=
{s1,....sg}. This segmentation is conducted prior to the search
task and is known by all robots.

There are several important points to note. First, our
formulation is slightly different from the traditional MAB
problem in that rewards are not immediately received after
selecting an action. Instead, there is a time delay between
selecting an action and receiving a reward due to the time it takes
for a robot to travel to its goal s;. Second, any inscribed polygon that
can create a regular planar tiling would also work (i.e., equilateral
triangle or regular hexagon). Third, our approach can be extended
to handle anisotropic or heterogeneous sensors by applying the
similar strategy from our recent work (Chen and Dames, 2021),
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FIGURE 1

The hexagonal blue environment E is segmented by a set of black
squares, each of which can be inscribed in a sensor FoV (green
circle). The set of actions is represented by the red dots.

where we map each sensor to an isotropic FoV with equivalent
detection capability then setting py = min,cgpy,,-

2.2.2 Thompson sampling

Thompson sampling (TS), also known as posterior sampling,
has proven successful in solving the MAB problem in recent
decades (Russo et al,, 2017). A Bernoulli bandit generates either a
zero or a positive unit reward, i.e., rw € {0,1}, from each resource
with a fixed and unknown probability 6, € [0,1]. TS sequentially
recommends an action for the next resource to sample from at each
discrete time step t € T using Algorithm 1, where beta(c, )
denotes the beta distribution with parameters ¢ and f3.

1:fort=1,2,.do

2:fork=1,., Kdo

3: Sample 64 ~beta(a, B)

4: end for

5: k* « arg max,6, > Recommend action
6: Apply action s« and observe rw,«
7: Update oy, B~

8: end for

Algorithm 1. BernTS(K, o, f).
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The algorithm takes the inputs of the number of resources K
and initial parameters for the beta distributions for each resource,
ie,a=|a,...,0x] and B = [B,,..., Bx]. At each discrete time step
t, the reward posterior of each resource is sampled and the resource
with the highest reward is selected (lines 2-5). The player takes the
recommended action, receives the corresponding reward, and uses
the reward to update the distribution parameters for the selected
action (lines 6-7). The standard update equations for the parameters
of the beta distribution are shown as Equation 9:

O = O + 1wy

%)
B = B + (1 = rwy),

where oy and f3; are called pseudo-counts since they increase by
1 after receiving a reward of 1 or 0, respectively (Russo et al., 2017).
The beta functions then encode the posterior of getting a reward
from each resource, allowing each resource to be sampled with a
time-varying probability depending on current knowledge of the
posterior distributions and resulting in an exploration behavior. As
a growing number of observations are accumulated, the posterior
distributions tend to congregate at true expected rewards and the
recommended actions approach optimal, bringing about an
exploitation behavior.

Traditional TS relies on a key assumption that the reward
probabilities 6, are fixed. However, this is not valid in our
situation, where rewards depend on the presence on moving
targets in certain regions of the environment. Using (9) can cause
an irreversible loss of ability to react to future changes of reward
probability. A variation of TS for dynamic reward probabilities was
proposed by Gupta et al (Gupta et al., 2011), who replaced (9) with
Equation 10:

((Xk + Wi, ﬁk + (1 - er)), o + ﬁk <C

(o4, Be) ={ c , (10)

oo (04 + 1wp B + (1 = rwy)), otherwise

where C is a constant threshold which ¢, + B, never exceeds.
Such a strategy provides exponential weights to each update,
weakening the impact from old samples so as to allow recent
samples to dominate action selection. In this paper, we use (10)
for beta distribution update in order to have robots to work in a
potentially changeable environment.

Thompson sampling is also designed for a single player,
however in our setting we have multiple cooperative players. To
create a distributed TS algorithm, we maintain a consistent global o
and f3 across the team, which each robot can use to independently
sample actions when it enters the idle state. This requires robots to
share their received rewards with one another, which happens once
a robot reaches its goal location sx. More specifically, after
receiving a reward a robot will broadcast the tuple (i, t,k*,rw) to
its neighbors, which contains the robot ID, time stamp, action, and
reward. Each robot then uses these tuples to update their local
copies of & and f3 and rebroadcasts the tuple until all robots in the
team have received it. This is guaranteed to happen in at most nr
rounds since we assume that the communication graph
is connected.
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2.3 Multi-target information gathering

Our final control algorithm combines Lloyd’s algorithm and
distributed Thompson sampling. Robots toggle between these two
behaviors depending on whether they are busy or idle, i.e., whether
they are actively tracking a target, which we measure using Z # @.
In the busy state, a robot uses the standard Lloyd’s algorithm, which
effectively follows any targets within the current field of view. In the
idle state, a robot uses TS to select a region to explore in search of a
new target. Our formulation of the TS algorithm will bias robots to
search areas which were recently known to contain targets while still
allowing robots to visit unexplored regions. To enable a distributed
coordination framework, we denote Remark 1.

Remark 1 (Distributed Voronoi Construction). By assuming
that each sensor is aware of the boundaries of E, and that the robot
team contains more than one robot node and is connected, V, can be
constructed iteratively in a distributed fashion using Algorithm 2 in
(Bash and Desnoyers, 2007) that computes provably exact Voronoi
cells without necessarily contacting the entire members of the team.
This method requires that the communication graph is sufficiently
dense, typically requiring a communication range at least twice the
sensing or environment size scale, to ensure neighbors can exchange
necessary boundary information.

Algorithm 2 outlines our strategy, where g; is the goal for robot
r; and NV, are the neighbors of robot r; in the communication graph,
i.e., the set of robots that it can directly communicate with. The
“ParFor” block indicates that all robots execute their internal logic
concurrently and asynchronously. All robots are initialized with
their goal as the current location and with o =, =1,V k€<
{1,..,K} (lines 1-6). As robots explore, they receive
measurements. At each time step, robots must exchange states
with their neighbors in order to compute Voronoi cells V; and
update the distributed PHD (lines 9-12). Robot also use the
measurements to update the beta distribution parameters for the
nearest action point and broadcasts this information to all
neighbors in the communication graph to ensure that all robots
have identical information (lines 13-16). Once a robot reaches its
goal, each robot will then enter either the idle or busy state,
depending on the reward received, and select its next goal. In the
idle state a robot uses the TS algorithm from Sec. 2.2 (lines 19-20),
while in the busy state a robot uses Lloyd’s algorithm (6) (lines 22-
23).Ifarobot is in the idle state, it has the option to swap goal with a
neighbor in order to decrease the total distance traveled by the team
(lines 26-28), the details of which are described in the next
subsection. Finally, each robot moves towards it current goal
(lines 29-30).

1: forr; eRdor Initialize robots

2:09;=0q;
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3: forke{1,.., K} dop Initialize beta functions

4:(Zk<—1,ﬁk<—1

5: end for

6: end for

7:fort=1,2,.do

8: parfor r;e R do

9: Receive measurement set Z;

10: Exchange state g; with neighbors A;

11: Compute Voronoi cell V;

12: Update distributed PHD using method from (Dames,

2020)

13: Find nearest action index k = arg miny || g; - k||

14 :Compute g using (8) > Map measurements to reward
15: Update o , B using (10)

16: Broadcast (1, k;, rkal)

17: if g; = g; then > Reached goal
18: if rw, =@ then > Idle state
19: Select k; using Algorithm 1

20: Set goal g; = S, *

27: else > Busy state

22:k; =@

23: Set goal g; = g, using (6)

24: end if

25: end if

26: if k; = @ then > In idle state

27: SwapGoals(1i, g;, g;) using Algorithm 3
28: end if

29: Compute u; using (7)
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30:q; < g; +u; > Move towards goal

31: end parfor

32: t—t+1

33:

Algorithm 2. Distributed Search and Tracking.

1: for jeN; do

2:if kj #@AND d(q; - g;)<d(g; - g;) then

3:9:, g5 < 9;, g9; > Swap goals
4: SwapGoals(j, g5, g;)
5:endif
6: end for=0

Algorithm 3. SwapGoals(i, g, gi).

2.3.1 Optimized goal assignment

Since actions sampled from the TS algorithm can be anywhere
in the environment, it is possible that robots may select points in
inefficient ways, e.g., two robots swapping places. To remedy this,
we propose a goal reassignment strategy in which robots swap goals
with a neighbor if both robots are in the idle state and if the swap
will decrease the total distance traveled by the team, ie., Jj#
i s.t. d(g;—g)<d(g—-g) Once a goal swap occurs, the
swapped robot continues to check the necessity of goal swapping
in its neighborhood, as outlined in Algorithm 3. As a result of this,
the distance between a robot and an assigned goal is always closer
than the other pairs.

Remark 2 (Communication Load). In a Voronoi diagram, the
average number of neighbors for a cell is bounded by 6, though it can
vary (Boots et al., 1999). Therefore, at each time step, a robot r;
exchanges T = 4 q;, i,lzi,rw,;x,gig and partial PHD (Algorithm 2,
line 12), i.e, PHD within its partition, with limited number of
neighbors. Since T is an array with length of 6 in a 2D space and
the partial PHD is of low bandwidth referred to (Dames, 2020), our
algorithms requires only low communication load
within neighborhoods.

3 Results

Algorithm 3 boosts the performance of our previous methods
(Dames, 2020) in that it allows the team to actively explore the
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environment and learn the characteristics of the target distribution. ~ pronounced when targets are not uniformly distributed in the
In particular, robots are now able to use a combination of detailed  space but are instead grouped together within small regions. Under
local information (coming from the PHD) and coarse global these circumstances, idle robots are especially helpful in learning the
information (coming from ¢, 8) to inform their actions. The  difference in target density among sub-regions and optimizing the
advantages of adding this global information are especially  assignment of tracking effort in different sub-regions.

10

30

FIGURE 2
Figures show target distributions in two different environments. Black lines are boundaries of the 100 m x 100 m task spaces. Targets are only
distributed within 33 m x 33 m dark gray areas and the numbers indicate the original numbers of targets in these areas respectively.

(a) Lloyds 40s (b) Lloyds 60s (c) Lloyds+TS 40s

®

i

|
(d) Lloyds+TS 60s (e) @ Values

FIGURE 3

Figures show comparison of applying pure Lloyd's algorithm and a combined Lloyd's algorithm with Thompson sampling after 100 s. In (a-d), green
squares and circles show robot locations and sensor footprints, respectively. Orange diamonds show the locations of targets. () maps o values in (d)
by darkness, with a darker color indicating a higher value.
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3.1 Simulation environment

We test our proposed algorithms via MatLap simulations. The
task space is a 100 x 100 m square. Targets may either be static or
moving within their sub-regions at a maximum speed of 3 m/s.
Existing targets may disappear (i.e., leave the environment) and new
targets may appear (i.e., enter the environment) so that the number
of targets may change over time.

All robots begin each trial at randomized locations within a
20 x10 m box at the bottom center of the environment. Robots have
a maximum speed of 10 m/s and are equipped with isotropic
sensors with a sensing radius pr=5m. Thus, the environment is
segmented into a grid of 14 x14 points, using the method from Sec.
2.2.1. We use C = 10 in (10).

In the PHD filter, we assume the robots do not have any prior
knowledge of the targets. Thus, the robots use a Gaussian random
walk (with o = 0.35 m/s) for the motion models £, set the survival
probability to 1, and the birth PHD to 0. We use the same
measurement model for sensors as in (Dames, 2020), with the
exception of assuming that sensors are all homogeneous and
produce no missed or false detections. Note that our proposed
method is compatible with heterogeneous sensing network (Chen
et al, 2025a) and false alarms (Dames, 2020), we just make this

10
[ Lloyd + TS
5 8l Lioyd
1 lr
& 6 ,
o | . B
S 10 +
c 4r 1 i
© & + o
3 D g I -D i
=2 T ig
L : : : ; ; :
10 15 20 25 30 35 40
(a) OSPA Static
S 150
= [ JLloyd + TS
L = . Euioyd
< ! !
%100 7 - :
I
S SRR
‘09 i U |T B > .*
1
R
— I $
Z L A i i 1
L
X o
10 15 20 25 30 35 40
(c) Rise Time Static

FIGURE 4

10.3389/fpls.2025.1699124

choice to simplify the tests and highlight the improvement relative
to our previous method.

3.2 Qualitative comparison

We first show how active search using TS qualitatively improves
multi-target tracking using a single trial. There are 40 robots
searching for 40 targets, where 30 targets are located in a 33 x 33
m square sub-region at the lower-left corner of E, and another 10
targets in a 33 x 33 m squared sub-region at the top-right corner, as
shown in Figure 2a. Targets locations are drawn uniformly at
random within each sub-region. For simplicity, the targets are
stationary and the number of targets is constant over time (note:
the robots still use a Gaussian motion model within the PHD filter).

Figure 3 shows the locations of robots and targets at various
points during exploration using both our previous (Dames, 2020)
and new methods. When using our previous method, which only
used Lloyd’s algorithm, a large portion of robots are idle even when
a fair amount of targets are not tracked after 40 s, as the centroids of
these orange diamonds are not located in any of the green circles.
After 60 s, robots tend to move towards the two corners with targets
but a large portion of them have still not found any targets. We also
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Boxplots show median OSPA errors and the 95% rise time for robot teams tracking targets distributed as in Figure 2a.
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see that robots get stuck on the boundary of target clusters, never
reaching the interior targets. The result demonstrates the weakness
of pure Lloyd’s algorithm that idle robots do not actively search for
targets, causing an inefficient use of the total sensing capability of
the team while searching for untracked targets.

On the other hand, the team using distributed Thompson
sampling is able to quickly learn the target distribution and
cluster in regions likely to contain targets. As the figure shows,
after 40 s a large number of the robots have already gathered at the
large cluster of targets while a handful of other robots continue to
search unexplored areas. After 40 s, most of the robots have found a
target while a few continue to maintain coverage of these unlikely
regions. The resulting emergent robot distribution is consistent with
the target distribution, as the lower-left corner contains a higher
number of robots than the upper-right corner (28 vs. 9, which
closely match the number of targets in each region), while 3 robots
monitor the rest of the area. This helps the team to track the targets
more quickly as the more individuals are needed in an area, the
more likely it is that an individual will be assigned to that region.
The final panel reflects the value of ¢ for each sampling candidates
after 60 s, showing that the team has received more reward in areas
with higher target concentrations.
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3.3 Quantitative comparison

To quantify the improvement in performance, we will use the
first order Optimal SubPattern Assignment (OSPA) metric
(Schuhmacher et al., 2008), a commonly-used approach in MTT.
The error between two sets X, Y, where |X| = m < |Y| = n without
loss of generality, is Equation 11

1/p
mm{ﬁymemm%wﬂ, (11)

where c is a cutoft distance, d.(x,y) = min (¢, ||x — y||), and I1,, is
the set of all permutations of the set {1,2, ..., n}. This gives the average
error in matched targets, where OSPA considers all possible
assignments between elements x & X and y &€ Y that are within
distance ¢ of each other. This can be efficiently computed in
polynomial time using the Hungarian algorithm (Kuhn, 1955). We
use ¢ =10 m, p = 1, and measure the error between the true and
estimated target sets. Note that a lower OSPA value indicates a more
accurate tracking of the target set. We report the median OSPA value
over the final 150 s of each trial, allowing the team to reach a steady
state and smoothing out the effects of spurious measurements that
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Boxplots show median OSPA errors and the 95% rise time for robot teams tracking targets distributed as in Figure 2b.
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cause the OSPA to fluctuate. We also show the 95% rise time of the
OSPA error metric, i.e., the time it takes for the OSPA error to reach a
value within 5% of the final value, to measure the speed at which robots
reach steady state.

3.3.1 Tests design

To test the efficacy of our proposed approach, we conduct a
series of trials in two environments, shown in Figures 2a, b, and in
situations where targets are either all stationary or all dynamic
(note: the robots always use the same target models in the PHD).
For each environment and each target motion type, we test a range
of team sizes (from 10 to 40 robots) and both search strategies (from
(Dames, 2020) and the new method). For each configuration
(environment, target type, team size) we run 10 trials, with the
results aggregated into boxplots showing the steady state OSPA (to
measure accuracy) and the 95 % rise time (to measure speed).

Figure 4 shows the results from the first environment (Figure 2a). As
we see in the OSPA plots, the median OSPA decreases as the number of
robots increases. This agrees with intuition as more robots should be able
to better locate targets and there should be diminishing rewards with
each added robot, i.e., going from 10 to 15 robots is more significant than
35 to 40 robots. We see that for static targets, our proposed method
shows significantly lower OSPA error and rise time and that the
variation of both parameters across trials is smaller, meaning it more
accurate, faster, and more reliable. For dynamic targets, the OSPA error
of teams using our proposed method are comparable or slightly higher
and exhibit slightly more variation across trials, though neither effect is
significant. Like the static case, our new method decreases both the
magnitude and variation of the rise time, meaning it faster and more
repeatable. We hypothesize that these differences in behavior are due to
the ability of robots to actively sample the environment using coarse
global information. We also believe that the primary cause of the slight
increase in OSPA error in the case of dynamic targets is because robots
do not exit the idle state until they reach their destination. This means
that if a robot observes a target en route to its goal, it will continue
towards the goal instead of actively tracking the newly found target.

Figure 5 shows the results in the second environment (Figure 2b).
The results are consistent with those from previous tests, except we
now see a slight improvement in OSPA error for dynamic targets. We
believe this is due to the high density of targets reducing the total cost
of moving towards sampling points. We also see that the reduction of
the rise time is more pronounced in every case than it was in Figure 4,
supporting our argument that the proposed control algorithm is
more beneficial when targets are more tightly congregated.

4 Conclusions

We develop an active information gathering algorithm for
distributed MRSs combining a novel distributed Thompson sampling
algorithm with Lloyd’s algorithm to allow robots to effectively search
for and track multiple moving targets without having any prior
knowledge about targets. In particular, we see that the addition of TS
allows robots to share coarse global information about recently
detected targets in an efficient and scalable manner. As a result,
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teams using TS are able to more accurately track targets, locate
targets more quickly, and increase the consistency in performance.
These trends are more pronounced in situations where targets are
unevenly distributed within the search space.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

JC: Formal Analysis, Data curation, Methodology, Visualization,
Software, Validation, Funding acquisition, Conceptualization,
Writing - original draft, Investigation, Writing - review & editing.
JW: Writing - review & editing, Funding acquisition. MC: Data
curation, Writing — review & editing. QM: Resources, Writing —
review & editing. FX: Writing - review & editing, Resources. PD:
Methodology, Funding acquisition, Supervision, Conceptualization,
Project administration, Writing — review & editing.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This work was supported
by the Wenzhou Key Laboratory of Agricultural Embodied Intelligence
(Project No. AIAA2509), the Natural Science Research Project of
Jiangsu Higher Education Institutions under Grant 24KJD510007,
the Research Start Fund of Nanjing Normal University under Grant
184080H201B60, NSF Grant IIS-1830419, the Natural Science
Foundation of Jiangsu Province of China under Grant BK20250630,
the Natural Science Research Project of Jiangsu Higher Education
Institutions under Grant 24KJB120009, and the Research Start Fund of
Nanjing Normal University under Grant 184080H201B68.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1699124
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chen et al.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

References

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the
multiarmed bandit problem. Mach. Learn. 47, 235-256. doi: 10.1023/A:1013689704352

Bash, B. A., and Desnoyers, P. J. (2007). Exact distributed voronoi cell computation
in sensor networks. Proc. Proc. 6th. Int. Conf. Inf. Process. Sensor. Networks, 236-243.
doi: 10.1145/1236360.1236393

Best, G., Cliff, O. M., Patten, T., Mettu, R. R, and Fitch, R. (2019). Dec-MCTS:
Decentralized planning for multi-robot active perception. Int. J. Robot. Res. 38, 316-
337. doi: 10.1177/0278364918755924

Blackman, S. S. (2004). Multiple hypothesis tracking for multiple target tracking.
IEEE Aerospace. Electron. Syst. Magazine. 19, 5-18. doi: 10.1109/MAES.2004.1263228

Boots, B., Okabe, A., and Sugihara, K. (1999). Spatial tessellations. Geograph. Inf.
Syst. 1, 503-526.

Breitenmoser, A., Schwager, M., Metzger, J. C., Siegwart, R., and Rus, D. (2010).
“Voronoi coverage of non-convex environments with a group of networked robots,” in
In Proceedings of the IEEE International Conference on Robotics and Automation.
4982-4989 (Anchorage, AK, USA: IEEE).

Chapelle, O., and Li, L. (2011). An empirical evaluation of Thompson sampling. Adv.
Neural Inf. Process. Syst. 24, 2249-2257.

Chen, J., Abugurain, M., Dames, P., and Park, S. (2025a). “Distributed multi-robot
multi-target tracking using heterogeneous limited-range sensors,” in IEEE Transactions
on Robotics. United States: IEEE.

Chen, J., and Dames, P. (2021). “Distributed multi-target tracking for heterogeneous
mobile sensing networks with limited field of views,” in Proceedings of the IEEE
International Conference Robotics and Automation, Xi'an, China: IEEE, Under review.
doi: 10.1109/ICRA48506.2021.9561888

Chen, J., and Dames, P. (2023). The convex uncertain voronoi diagram for safe
multi-robot multi-target tracking under localization uncertainty. J. Intelligent. Robot.
Syst. 109, 78. doi: 10.1007/s10846-023-01986-0

Chen, J., Dames, P., and Park, S. (2025b). Effective tracking of unknown clustered
targets using a distributed team of mobile robots. Autonomous. Robots. 49, 1-16.
doi: 10.1007/s10514-025-10200-z

Cortes, J., Martinez, S., Karatas, T., and Bullo, F. (2004). Coverage control for mobile
sensing networks. IEEE Trans. Robot. Automation. 20, 243-255. doi: 10.1109/
TRA.2004.824698

Dames, P. M. (2020). Distributed multi-target search and tracking using the PHD
filter. Autonomous. Robots. 44, 673-689. doi: 10.1007/s10514-019-09840-9

Doucet, A., Vo, B. N., Andrieu, C., and Davy, M. (2002). “Particle filtering for multi-
target tracking and sensor management,” in Proceedings of the Proceedings of the Fifth
International Conference on Information Fusion, Vol. 1. 474-481 (Annapolis, MD,
USA: IEEE).

Gupta, N., Granmo, O. C., and Agrawala, A. (2011). “Thompson sampling for
dynamic multi-armed bandits,” in Proceedings of the International Conference on
Machine Learning and Applications and Workshops, Vol. 1. 484-489 (Honolulu, HI,
USA: IEEE).

Hamid Rezatofighi, S., Milan, A., Zhang, Z., Shi, Q., Dick, A., and Reid, I. (2015).
“Joint probabilistic data association revisited,” in Proceedings of the Proceedings of the
IEEE International Conference on Computer Vision. Santiago, Chile: ICCV 3047-3055.

Frontiers in Plant Science

11

10.3389/fpls.2025.1699124

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Konstantinova, P., Udvarev, A., and Semerdjiev, T. (2003). “A study of a target
tracking algorithm using global nearest neighbor approach,” in Proceedings of the
Proceedings of the International Conference on Computer Systems and Technologies
(CompSysTech03). 290-295.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval. Res.
Logist. Q. 2, 83-97. doi: 10.1002/nav.3800020109

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Trans. Inf. Theory 28,
129-137. doi: 10.1109/TIT.1982.1056489

Luo, W, and Sycara, K. (2018). “Adaptive sampling and online learning in multi-
robot sensor coverage with mixture of Gaussian processes,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). 6359-6364 (Brisbane,
QLD, Australia: IEEE).

Ma, N, Sun, Y, Li, C, Liu, Z, and Song, H. (2025). AHG-YOLO: multi-category
detection for occluded pear fruits in complex orchard scenes. Front. Plant Sci. 16 - 2025.
doi: 10.3389/fpls.2025.1580325

Mahler, R. P. (2003). Multitarget Bayes filtering via first-order multitarget
moments. [EEE Trans. Aerospace. Electron. Syst. 39, 1152-1178. doi: 10.1109/
TAES.2003.1261119

Mabhler, R. P. (2007). Statistical multisource-multitarget information fusion Vol. 685
(Artech House Norwood, MA).

Mao, W, Liu, Z., Liu, H,, Yang, F., and Wang, M. (2021). Research progress on
synergistic technologies of agricultural multi-robots. Appl. Sci. 11(4), 1448.
doi: 10.3390/app11041448

Papaioannou, S., Kolios, P., Theocharides, T., Panayiotou, C. G., and Polycarpou, M.
M. (2019). “Decentralized search and track with multiple autonomous agents,” in
Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC). 909-915
(Nice, France: IEEE).

Pini, G., Brutschy, A., Francesca, G., Dorigo, M., and Birattari, M. (2012). “Multi-
armed bandit formulation of the task partitioning problem in swarm robotics,” in
Proceedings of the International Conference on Swarm Intelligence. 109-120 (Berlin/
Heidelberg, Germany: Springer).

Russo, D., Van Roy, B., Kazerouni, A., Osband, I., and Wen, Z. A. (2017). tutorial on
thompson sampling. arXiv. preprint. arXiv:1707.02038. 11(1), 1-96. doi: 10.1561/
2200000070

Schuhmacher, D., Vo, B. T., and Vo, B. N. (2008). A consistent metric for
performance evaluation of multi-object filters. IEEE Trans. Signal Process. 56, 3447—
3457. doi: 10.1109/TSP.2008.920469

Shi, Y., Wang, N., Zheng, J., Zhang, Y., Yi, S., Luo, W, et al. (2020). “Adaptive
informative sampling with environment partitioning for heterogeneous multi-robot
systems,” in Proceedings of the IEEE/RS] International Conference on Intelligent Robots
and Systems. Las Vegas, NV, USA: IEEE

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika 25, 285-294. doi: 10.1093/
biomet/25.3-4.285

Yang, Y., Yang, F., Sun, L, Xiang, T., and Lv, P. (2022). Multi-target association
algorithm of AIS-radar tracks using graph matching-based deep neural network.
Ocean. Eng. 266, 112208. doi: 10.1016/j.0ceaneng.2022.112208

frontiersin.org


https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1145/1236360.1236393
https://doi.org/10.1177/0278364918755924
https://doi.org/10.1109/MAES.2004.1263228
https://doi.org/10.1109/ICRA48506.2021.9561888
https://doi.org/10.1007/s10846-023-01986-0
https://doi.org/10.1007/s10514-025-10200-z
https://doi.org/10.1109/TRA.2004.824698
https://doi.org/10.1109/TRA.2004.824698
https://doi.org/10.1007/s10514-019-09840-9
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.3389/fpls.2025.1580325
https://doi.org/10.1109/TAES.2003.1261119
https://doi.org/10.1109/TAES.2003.1261119
https://doi.org/10.3390/app11041448
https://doi.org/10.1561/2200000070
https://doi.org/10.1561/2200000070
https://doi.org/10.1109/TSP.2008.920469
https://doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.1016/j.oceaneng.2022.112208
https://doi.org/10.3389/fpls.2025.1699124
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Distributed multi-robot active gathering for non-uniform agriculture and forestry information multi-robot active gathering
	1 Introduction
	1.1 Multi-target state estimation
	1.2 Sensor-based control of MRSs
	1.3 Contributions

	2 Method
	2.1 Problem formulation
	2.1.1 PHD filter
	2.1.2 Lloyd’s algorithm

	2.2 Distributed Bernoulli Thompson sampling
	2.2.1 Modeling search as a MAB problem
	2.2.2 Thompson sampling

	2.3 Multi-target information gathering
	2.3.1 Optimized goal assignment


	3 Results
	3.1 Simulation environment
	3.2 Qualitative comparison
	3.3 Quantitative comparison
	3.3.1 Tests design


	4 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


