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tracking the number of maize

plants and leaves information

from UAV image
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In modern agricultural production, accurate monitoring of maize growth and leaf
counting is crucial for precision management and crop breeding optimization.
Current UAV-based methods for detecting maize seedlings and leaves often face
challenges in achieving high accuracy due to issues such as low spatial-
resolution, complex field environments, variations in plant scale and
orientation. To address these challenges, this study develops an integrated
detection and visualization software, DP-MaizeTrack, which incorporates the
DP-YOLOvV8 model based on YOLOvV8. The DP-YOLOvV8 model integrates three
key improvements. The Multi-Scale Feature Enhancement (MSFE) module
improves detection accuracy across different scales. The Optimized Spatial
Pyramid Pooling—Fast (OSPPF) module enhances feature extraction in diverse
field conditions. Experimental results in single-plant detection show that the DP-
YOLOV8 model outperforms the baseline YOLOV8 with improvements of 3.9% in
Precision (95.1%), 4.1% in Recall (91.5%), and 4.0% in mAP50 (94.9%). The software
also demonstrates good accuracy in the visualization results for single-plant and
leaf detection tasks. Furthermore, DP-MaizeTrack not only automates the
detection process but also integrates agricultural analysis tools, including
region segmentation and data statistics, to support precision agricultural
management and leaf-age analysis. The source code and models are available
at https://github.com/clhclhc/project.
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1 Introduction

With the continuous growth of the global population and the
rising demand for food, achieving simultaneous improvements in
crop yield and quality under limited arable land has become a
pressing challenge for modern agricultural science (Yu and Wang,
2025). Maize (Zea mays L.), as one of the world’s three major staple
crops, plays a pivotal role in ensuring food security and supporting
agricultural economic development (Feng et al., 2025). Among the
many factors affecting maize yield, seedling-stage population
structure and individual traits—particularly plant density
distribution and leaf development—directly determine subsequent
photosynthetic efficiency, canopy architecture, and stress resistance
(Jia et al., 2024). Therefore, the rapid and accurate acquisition of key
phenotypic traits during the seedling stage is essential for
optimizing planting density, improving resource-use efficiency,
and advancing precision agriculture.

Traditional field-based phenotyping methods rely heavily on
manual investigation, which is inefficient, subjective, and incapable
of meeting the demand for large-scale, multi-site, and dynamic
monitoring (Helia et al., 2025). In recent years, the rapid
development of unmanned aerial vehicles (UAVs) and high-
throughput phenotyping technologies has greatly expanded the
application of low-altitude remote sensing in agriculture (Chang
et al,, 2023). UAVs are characterized by strong maneuverability,
ease of operation, and wide coverage, enabling efficient acquisition
of high-resolution RGB, multispectral, and thermal imagery for
crop monitoring (Bo et al,, 2021). Against this backdrop, deep
learning-based object detection methods applied to UAV-derived
RGB imagery have demonstrated strong potential in tasks such as
seedling distribution mapping, canopy structure analysis, and leaf
identification (Jia et al., 2023).

Nevertheless, achieving high-precision detection under
complex field conditions remains challenging due to illumination
variation, background interference, plant overlap, and
morphological diversity. The YOLO (You Only Look Once)
family of algorithms (Liu et al., 2025), known for its end-to-end
design, high speed, and accuracy, has been widely adopted for
agricultural vision tasks. However, the latest version, YOLOV8 (Cai
et al., 2025), still suffers from insufficient robustness when applied
to real-world field environments. Compared to industrial datasets,
agricultural imagery often features large variations in object scale,
dense occlusion, and complex backgrounds, leading to degraded
detection performance. Moreover, (Islam et al., 2025) algorithmic
improvements alone are insufficient to address practical needs;
there is an urgent demand for an integrated software platform
that not only incorporates detection but also provides data analysis
and visualization capabilities, thereby enabling field-level
deployment and delivering actionable insights for agricultural
research and production.

Previous studies have attempted to enhance YOLO’s
adaptability to agricultural scenarios through lightweight
backbone networks (Liu and Li, 2025; Udeh et al., 2025),
attention mechanisms (Yan et al.,, 2024; Zhang et al., 2025; Zhou
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et al,, 2025), improved feature fusion structures (Liu et al., 2024;
Wenming et al., 2024), and optimized regression loss functions
(Joshi and Diwakar, 2024). However, most of these efforts have
focused on single-object detection tasks such as fruit counting or
disease spot recognition (Xie et al., 2025), while research on “maize
seedling-leaf” dual-object detection remains limited (Pu et al,
2023) and insufficiently validated in real-world field environments
(Yue and Zhang, 2025). More critically, these works remain
confined to model-level experimentation and lack supporting
software tools for agricultural application. Without an integrated
software system, users cannot perform interactive management of
detection results, regional segmentation, statistical analysis, or
visualization, thereby constraining the scalability and applicability
of such approaches in precision agriculture. Future research must
therefore focus not only on algorithmic optimization of YOLOv8
but also on the development of practical software platforms that
enable a complete pipeline from detection to application.

To this end, we developed an integrated detection and
visualization system, DP-MaizeTrack, with two main contributions:
(1) we propose a maize seedling detection model, DP-YOLOVS,
specifically tailored for UAV remote sensing imagery of small
objects, by incorporating a Multi-Scale Feature Enhancement
(MSFE) module, an Optimized Spatial Pyramid Pooling Fast
(OSPPF) module, and a dynamic IoU compression mechanism
(Focaler-IoU), thereby significantly improving model performance
under complex field conditions; and (2) we build a deployable
software platform that embeds the improved detection model into
an intuitive interface, enabling automated UAV image processing,
visualization of detection results, and rapid leaf counting, thus
bridging the gap from academic algorithm to practical tool.
Collectively, this study advances both algorithmic performance and
software applicability, providing a feasible solution for precision crop
management and intelligent decision-making in agriculture.

2 Materials and methods

To facilitate efficient detection of maize seedlings and their leaves,
this study conducted UAV-based image acquisition in a
representative maize cultivation area of Yuanyang County, Henan
Province. The region is characterized by flat terrain and concentrated
maize planting, making it well-suited for UAV operations. Data
collection was carried out during the seedling growth stage, when
the morphological features of maize plants and leaves are most
distinct and inter-plant occlusion is minimal, thus providing
optimal conditions for training and validating detection models.

2.1 Data collection and dataset
construction
Image acquisition was conducted using a high-resolution

Zenmuse P1 UAV-mounted camera with high pixel density and
minimal distortion, enabling clear capture of maize seedling details.
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Flight altitude and speed were carefully adjusted to ensure sufficient
spatial resolution and coverage. The specific imaging parameters
were as follows: Zenmuse P1 camera with a resolution of 8192 x
5460 pixels, 35 mm lens focal length, flight altitude of 20 m, and
flight speed of 2 m s™'. To minimize shadow interference caused by
low solar elevation, all images were captured at 11:00 a.m. during
the maize seedling stage.Plant-detection experiments were
conducted directly on the original high-resolution images (8192 x
5460 pixels), as the overall plant structure was sufficiently salient to
be clearly identified. Given the relatively simple plant morphology,
spatial distribution, and limited background interference, no
complex preprocessing was required. In contrast, leaf-detection
experiments imposed greater demands: the collected images
underwent a series of preprocessing steps to improve data quality
and enhance training performance. Specifically, each image was
cropped to remove superfluous background regions while retaining
only the areas containing maize plants and leaves. The cropped
patches were subsequently resized to a uniform resolution of 1024 x
1024 pixels to meet the input requirements of the YOLOv8 model.
The study area and acquisition method are illustrated in Figure 1.

Data annotation is a pivotal step in object detection, as its
quality directly determines the effectiveness of model training. In
this study, manual annotation was conducted on pre-cropped
images, including the location of each maize plant, the number of

(a
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(b

000N

FIGURE 1
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leaves, and the position of individual leaves. Labellmg was
employed as the annotation tool owing to its simplicity and
efficiency. All annotations were stored in YOLO format to
facilitate subsequent training and validation. For plant detection,
which uses high-resolution images, 50 annotated samples were
sufficient for the experiments, whereas for leaf detection,
conducted on lower-resolution images, 200 annotated samples
were provided.To evaluate model performance, the annotated
dataset was divided into training, validation, and test subsets in
an 8:1:1 ratio. Specifically, 80% of the data were allocated for
training, 10% for validation, and 10% for testing. This allocation
ensured adequate data for training while enabling reliable
performance assessment during validation and testing. Random
sampling was employed to partition the dataset, ensuring uniform
distribution and preventing performance bias due to uneven
data representation.

Through these data acquisition and processing steps, we
established a high-quality dataset for maize seedling and leaf
detection, providing a solid foundation for subsequent model
development. The dataset not only encompasses diverse
morphological characteristics of maize seedlings at the seedling
stage but also enhances diversity and usability through data
augmentation and meticulous annotation, thereby offering strong
support for efficient training and accurate model detection.

Experimental area, data-collection equipment, and original data illustration. Panels (a, b) show maize seedling data collection in Yuanyang County,
Henan Province, China. Panel (c) presents the DJI UAV and high-resolution visible-light camera used for image acquisition. Panel (d) depicts the
orthomosaic of the experimental field generated from UAV imagery, with the field subdivided into 728 plots representing 360 maize varieties.
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2.2 Model improvements

2.2.1 DP-YOLOV8 model design

YOLOVS is an efficient object detection model (Song and Li,
2025) that inherits the YOLO family’s strength in balancing real-
time speed and detection accuracy. Its network architecture
comprises three primary components (Qu et al., 2025): the
Backbone, the Neck (feature-fusion module), and the Head
(detection layer). The Backbone is responsible for extracting
image features, the Neck fuses features across different
hierarchical levels, and the Head performs final object detection
and classification. Through an improved anchor mechanism and
refined loss functions (Gong et al., 2025), YOLOVS further enhances
both detection accuracy and speed, delivering strong performance
across diverse object detection tasks.

Despite its advantages, detecting maize plants and leaves in
complex field environments remains challenging (Yu et al., 2025).
Background clutter, variable illumination, plant occlusion, and
large-scale leaf variation can all reduce detection accuracy.
Therefore, task-specific improvements to YOLOvV8 are essential
for maize seedling and leaf detection.

To address these challenges, we optimize the YOLOvVS
Backbone by integrating a Multi-Scale Feature Enhancement
(MSFE) module and an Optimized Spatial Pyramid Pooling—Fast
(OSPPF) module. These modifications strengthen the model’s
perception of multi-scale features, particularly for small objects
and large-scale variations.To provide an intuitive overview of the

10.3389/fpls.2025.1698847

improved YOLOV8 architecture, the overall network diagram is
presented in Figure 2.

The figure illustrates the Backbone, Neck, and Head
components and explicitly highlights the integration points of
MSFE and OSPPF. With this structural design, the model is
better equipped for maize plant and leaf detection in complex
field environments.

2.2.2 MSFE module

The MSFE module significantly improves multi-scale target
perception by combining the Efficient Channel Attention (ECA)
mechanism (Liu et al., 2025) with multi-branch feature extraction
(Wang et al., 2025). ECA dynamically adjusts channel weights based
on inter-channel relationships, thereby emphasizing salient
features. Placing the ECA module before multi-branch extraction
first filters the channels and then extracts features, effectively
reducing redundant computation and improving efficiency. The
multi-branch section employs sliding windows with different
receptive fields to capture fine-grained leaf details, further
enhancing the model’s ability to distinguish leaves. The structure
of the MSFE module is illustrated in Figure 3.

2.2.3 OSPPF module

To enhance the model’s robustness in complex backgrounds
and improve sensitivity to small maize seedling objects, we propose
an Optimized Spatial Pyramid Pooling-Fast (OSPPF) module. The
design modifies the original SPPF block (Wang et al., 2025) by

Conv ) 2 - Conv
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FIGURE 2

Architecture of the DP-YOLOvV8 model for in-field maize plant detection. The network integrates two key enhancements: (i) incorporation of Global
Average Pooling (GAP) and Global Max Pooling (GMP) branches into the SPPF module to strengthen multi-scale feature extraction, and (ii)
introduction of the Multi-Scale Feature Enhancement (MSFE) module, which combines the ECA channel-attention mechanism with a multi-branch

convolution structure to improve perception of fine-grained leaf details.
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FIGURE 3

Structure of the Multi-Scale Feature Enhancement (MSFE) module. The module first applies the ECA channel-attention mechanism to adaptively
recalibrate input features, and then employs three parallel branches to extract complementary information: a 1x1 convolution branch for channel
compression and interaction, a 3x3 average-pooling branch for global context capture, and an asymmetric-convolution branch (cascaded 3x1 and
1x3 convolutions) for spatial feature extraction with reduced parameters. Finally, channel concatenation (Concat) integrates the outputs to achieve
multi-scale feature fusion.

appending a Global Average Pooling (GAP) layer (Jin et al., 2025)  aggregation, thereby strengthening the model’s multi-scale
and a Global Max Pooling (GMP) layer (Ruyu et al,, 2023). By

combining global statistical information (GAP) with salient local

representation. The architecture of OSPPF is illustrated in Figure 4.
In the OSPPF module, GAP and GMP are inserted alongside

responses (GMP), OSPPF provides more comprehensive feature  the SPPF structure, and their outputs are concatenated. This
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FIGURE 4

Structure of the optimized SPPF (OSPPF) module. Based on the original SPPF, an additional parallel branch is introduced at the input, incorporating
Global Average Pooling (GAP) and Global Max Pooling (GMP). The global-context features generated by these two layers are concatenated (Concat)
with the multi-scale local features extracted by the serial pooling path, thereby enhancing the model's global perception capability.
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modification effectively fuses global and local features, thereby
enhancing the model’s ability to perceive targets at different scales
and improving performance in complex field backgrounds with
plants of varying sizes.

With these refinements, the proposed UAV-based maize
seedling plant-and-leaf detection method, built upon the DP-
YOLOvV8 model, achieves strong performance in complex field
environments and provides robust technical support for precision
agricultural management. Future research will focus on extending
this approach to additional crops and more challenging
environments, thereby promoting the continued advancement of
agricultural intelligence technologies.

2.2.4 Loss function optimization strategy

To enhance the model’s ability to learn from hard samples—
such as partially occluded leaves or leaves in unevenly illuminated
backgrounds—we optimized the loss function by integrating a
dynamic IoU compression mechanism, termed Focaler-IoU, on
top of the conventional CIoU (Complete Intersection over Union)
loss (Dang et al., 2024). This mechanism dynamically re-weights
the loss contribution of each sample, compelling the network
to focus more on difficult instances and thereby improving
overall robustness.

The CIoU loss function is an extension of the traditional IoU
loss that not only considers the overlapping area between the
predicted and ground-truth boxes but also introduces penalty
terms for shape and scale. As a result, it provides a more
comprehensive measure of the discrepancy between predicted and
ground-truth boxes. The formula for the CIoU loss function is given
as follows:

IoU

CloU=1-(——
l+a-v

) 1)

In Equation 1, IoU denotes the overlap-area ratio between the
predicted and ground-truth boxes, o is a balancing parameter, and
v is the penalty term for shape and scale. By incorporating these
penalty terms, the CloU loss function optimizes localization
accuracy more effectively.

Dynamic IoU Compression Mechanism (Focaler-IoU).
Although the CIoU loss performs well in many scenarios, the
model may still fail to capture sufficient features when dealing
with hard samples. To further strengthen its ability to learn from
difficult instances, we introduce a dynamic IoU compression
mechanism, termed Focaler-IoU. This mechanism adaptively
adjusts the weighting of the loss function, compelling the model
to pay greater attention to hard-to-detect samples. Specifically, the
CIoU loss is restructured using a linear-interval-mapping strategy,
expressed as follows:

0,IoU<d
Ionocaler _ Ioli—d d<IoU<u (2)
u-d

1,IoU > U

In Equation 2, IoUfocaler refers to the restructured dynamic
IoU loss value, IoU denotes the original IoU value, and d and u are
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parameters within [0, 1] that control the range of dynamic
adjustment. By tuning d and u, the emphasis of IoUfocaler can be
shifted. Specifically, when IoU is low (indicating hard samples), the
value of IoUfocaler increases, thereby raising the loss weight
assigned to these difficult instances. Conversely, when IoU is high
(indicating easy samples), the value of IoUfocaler decreases,
reducing the loss weight assigned to these easier cases.

This dynamic adjustment mechanism enables the model to
concentrate its learning on hard-to-detect samples during training,
thereby improving overall robustness. In particular, when handling
partially occluded leaves or leaves under uneven illumination, both
detection accuracy and robustness are significantly enhanced.

2.2.5 Model training and experimental parameter
setting

The experiments were conducted on a workstation equipped
with an NVIDIA GeForce RTX 3060 Ti GPU, 64 GB RAM, and an
Intel Core i7 CPU, running Ubuntu 20.04. The deep learning
framework was PyTorch 1.10 with CUDA 11.3. Model training
was performed using the Adam optimizer with an initial learning
rate of 0.01, momentum of 0.937, and weight decay of 0.0005. The
learning-rate scheduler employed a warm-up phase followed by
linear decay, instead of cosine annealing. The batch size was set to 4,
with input image sizes of 8192x5460 for the plant dataset and
1024x1024 for the leaf dataset. Training was conducted for 500
epochs. To mitigate overfitting, early stopping with a patience of 50
epochs was applied, and a warm-up of 3 epochs was introduced at
the start of training. Model generalization was evaluated through
cross-validation and error analysis, while hyperparameters such as
learning rate, optimizer, and batch size were further tuned to
improve performance.

2.2.6 Model performance evaluation indicators

To comprehensively evaluate the performance of the DP-
YOLOvV8 model on maize seedling plant and leaf detection, three
primary evaluation metrics were adopted (Juntao et al., 2023): mean
Average Precision (mAP), Precision, and Recall. These indicators
jointly reflect the model’s detection accuracy and robustness from
different perspectives.

Mean Average Precision (mAP). mAP is a comprehensive
metric that measures detection accuracy across object categories.
It is computed by first calculating the Average Precision (AP) for
each class and then averaging these values. For each class, the model
generates detection results with associated confidence scores. By
varying the confidence threshold, a Precision-Recall curve is
constructed, and AP is defined as the area under this curve,
capturing performance across all confidence levels. The mAP is
then obtained by averaging the AP of all classes, providing an
overall performance indicator. A higher mAP indicates stronger
detection accuracy across categories.

Precision measures the proportion of correctly detected objects
among all objects predicted as positive by the model. It reflects the
reliability of detection results, showing how many of the predicted
positives are true positives. The formula is expressed as:
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TP

Precision = ————
recision TP + FP

3)

In Equation 3 TP (True Positives) denotes the number of
correctly detected targets and FP (False Positives) denotes the
number of incorrectly detected targets. A higher Precision value
indicates more accurate detection results and a lower false-
positive rate.

Recall measures the proportion of correctly detected objects
relative to the total number of actual objects. It reflects the
completeness of detection, showing how many of the true targets
present in the dataset are successfully identified by the model. The
formula is expressed as:

TP

Recall = ——
AT TP+ EN

4

In Equation 4 TP (True Positives) denotes the number of
correctly detected targets, and FN (False Negatives) denotes the
number of targets that were not detected. A higher Recall value
indicates that the model can detect a greater proportion of actual
targets, corresponding to a lower missed-detection rate.

By jointly employing mAP, Precision, and Recall, a
comprehensive evaluation of the model’s performance on maize
seedling plant and leaf detection is obtained. mAP provides an
overall measure of detection accuracy across categories, while
Precision and Recall offer complementary perspectives on
detection reliability and completeness, respectively. The combined
use of these metrics enables a holistic assessment of the model,
revealing both its strengths and limitations and providing a solid
foundation for further optimization.

2.3 Software design

To address the limitations of traditional agricultural monitoring
methods in complex field environments, we developed an
integrated automation platform, DP-MaizeTrack. This software
combines the enhanced DP-YOLOv8 model for accurate maize
seedling and leaf detection, target localization, and data analysis.
DP-MaizeTrack is designed to provide an efficient and user-friendly
tool for agricultural professionals, enabling automated detection,
real-time visualization, and precise data analysis, thereby advancing
precision agriculture applications.

The software architecture of DP-MaizeTrack is modular,
consisting of key components: image input and processing, object
detection, result visualization, statistical analysis, and data
management. Each module is clearly defined and works
synergistically to ensure efficient and stable performance when
processing large-scale UAV images.The image input and
processing module supports the acquisition of high-resolution
RGB images from various UAVs, such as the DJI Zenmuse P1.
To ensure data quality, this module applies preprocessing
techniques, including cropping, resizing, and background noise
reduction, optimizing the input for subsequent detection. By
removing redundant background elements and enhancing the
features of the targets, this module ensures that the images meet
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the requirements of the object detection model, providing high-
quality input for further analysis.The object detection module is the
core component of DP-MaizeTrack, integrating the improved DP-
YOLOV8 model. This model has been optimized specifically for
agricultural scenarios, particularly for detecting maize seedlings and
leaves in complex field environments. DP-YOLOVS is designed to
address challenges such as background clutter, plant occlusion, and
lighting variation. With the incorporation of the Multi-Scale
Feature Enhancement (MSFE) module and the Optimized Spatial
Pyramid Pooling (OSPPF) module, the model achieves enhanced
detection accuracy, especially for small objects and large-scale
variations. It automatically generates bounding boxes for each
detected target and outputs corresponding confidence scores,
ensuring precise detection results.The result visualization module
is designed to present detection outcomes in a user-friendly,
graphical format. This module displays the location and class of
each detected maize seedling and leaf, allowing users to quickly
assess crop distribution and growth conditions. Additionally, the
module supports region segmentation, generating statistical
analysis reports for different regions. Through this functionality,
users can better understand key data related to crop growth, aiding
decision-making in agricultural production.For data management,
DP-MaizeTrack automatically stores detection results, images, and
analysis reports in a local database, facilitating easy retrieval of
historical data. The software also supports data export in formats
such as CSV and PDF, enabling users to share results with other
agricultural management systems or conduct further analysis. To
ensure data security and integrity, the software employs an efficient
data storage structure with backup and recovery options.

To optimize performance, DP-MaizeTrack has been fine-tuned
to run efficiently on standard PC configurations. The software
optimizes memory usage and computational resources, enabling
rapid image processing and ensuring real-time detection. It is
compatible with both Windows and Linux operating systems,
providing flexibility in deployment across different hardware
environments.Furthermore, DP-MaizeTrack adopts a plugin-
based architecture, allowing users to extend its functionality by
integrating additional modules, such as crop health monitoring or
pest and disease recognition. This modular design makes the
software adaptable to new agricultural needs and extends its use
to the detection and analysis of additional crops.

In summary, DP-MaizeTrack not only automates maize
seedling and leaf detection but also provides a comprehensive
data analysis platform for precision agriculture. By integrating
image processing, object detection, result visualization, and data
management, the software offers a powerful tool for agricultural
monitoring and decision-making, contributing to the advancement
of intelligent agriculture.

3 Results

To validate the performance of the DP-YOLOv8 model on
maize seedling plant and leaf detection, a series of experiments were
designed, including ablation studies and comparative evaluations.
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All experiments were conducted on the high-resolution UAV image
dataset collected in Yuanyang County, Henan Province, under
identical hardware and software environments to ensure
comparability of results. Both ablation and comparative
experiments were performed on maize seedling plants, with
outcomes evaluated on the test set. Maize seedling leaf detection
experiments are presented separately as specialized tests in
Section 3.

3.1 Performance comparison experiments
of mainstream object detection models

To comprehensively assess the performance of the DP-YOLOvS
model on maize seedling detection, detailed comparative
experiments were conducted. The improved YOLOv8 was
benchmarked against several state-of-the-art object detection
models, including RT-DETR (Zhou and Wei, 2025), YOLOvV5
(Xia et al, 2024), YOLOv8n, YOLOv1On (An et al, 2025),
YOLOv1ln (Wu et al, 2025), and YOLOvI2n (Ge et al., 2025).
These models have all demonstrated strong detection accuracy and
computational efficiency in the field of object detection. Comparing
their performance provides an intuitive demonstration of the
advantages of the improved YOLOVS. The results obtained on the
test set are summarized in Figure 5, which reports Precision, Recall,
and mAP50 for each model.

As shown in Figure 5, the DP-YOLOv8 model achieves the best
overall performance among all compared models. Specifically, it
reaches 94.9% in mAP50, 95.1% in Precision, and 91.5% in Recall,
all of which are significantly higher than those of the other methods.
Compared with the baseline model, DP-YOLOvV8 improves mAP50,
Precision, and Recall by 4.0, 3.9, and 4.1 percentage points,

10.3389/fpls.2025.1698847

respectively. Relative to YOLOvI2n, the improvements are 1.4,
2.5, and 0.8 percentage points, while compared with YOLOv11n,
the gains are 2.1, 1.7, and 2.3 percentage points. In comparison with
YOLOvV10n, DP-YOLOVS achieves even larger increases of 4.7, 5.0,
and 4.6 percentage points in the three metrics. These results
demonstrate that DP-YOLOVS delivers substantial advantages in
both detection accuracy and robustness, enabling more precise
recognition and localization of maize seedlings.

3.2 Ablation analysis of the model
improvement module

Ablation experiments were conducted to isolate and evaluate
the individual contributions of each proposed component. The
modules—MSFE, OSPPF, and Focaler-loU—were incorporated
incrementally. To quantify their specific effects, each module was
tested independently as well as in all possible combinations. The
corresponding results on the test set are summarized in Table 1.

As shown in Table 1, each proposed module contributes to a
clear performance improvement. MSFE markedly enhances the
model’s perception of multi-scale targets, particularly small
objects and large-scale variations. With MSFE alone, Precision
increases from 0.912 to 0.939, Recall from 0.874 to 0.906, and
mAP50 from 0.909 to 0.940, underscoring its pivotal role in multi-
scale perception. Building on MSFE, the addition of OSPPF further
improves performance: Precision rises from 0.939 to 0.946, Recall
from 0.906 to 0.942, and mAP50 from 0.940 to 0.942, indicating
that OSPPF strengthens the model’s adaptation to complex
backgrounds, especially under background clutter or plant-size
variations. Finally, incorporating Focaler-IoU on top of MSFE +
OSPPF yields the best results: Precision increases from 0.946 to
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FIGURE 5

Comparative performance of the DP-YOLOvV8 model and other state-of-the-art object detection models on maize seedling detection. The baseline
is the original YOLOv8 model, and the improved version integrates MSFE, OSPPF, and Focaler-loU.
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TABLE 1 Results of the ablation study.

Model Precision Recall mAP50
YOLOVS8n (baseline) 0.912 0.874 0.909
YOLOv8n-MSFE 0.939 0.906 0.94
YOLOv8n-MSFE+OSPPF 0.946 0.942 0.942
Ours 0.951 0.915 0.949

Baseline denotes the original YOLOv8; +MSFE refers to the insertion of the Multi-Scale
Feature Enhancement module into the Backbone; +OSPPF replaces the original SPPF with the
Optimized Spatial Pyramid Pooling-Fast module; and +Focaler-IoU substitutes the CIoU loss
with the Focaler-IoU loss. Some bolded indicators indicate that in the improved model, these
indicators are the best among all the comparison models.

0.951, Recall from 0.942 to 0.915, and mAP50 from 0.942 to 0.949.
This demonstrates that Focaler-IoU significantly enhances the
model’s ability to learn from hard samples and improves
robustness, particularly for partially occluded leaves and leaves
under uneven illumination.

Overall, the ablation study clearly delineates the role of each
module: MSFE enhances multi-scale perception, OSPPF
strengthens adaptation to complex backgrounds, and Focaler-IoU
facilitates learning from hard samples. Their synergistic integration
enables the improved YOLOVS to substantially outperform the
baseline and competing models on maize seedling detection tasks.

To further analyze the specific role of each improved module
and to present their effects more intuitively, Grad-CAM was

10.3389/fpls.2025.1698847

employed for the visualization of the ablation experiments. This
approach enables a clear illustration of how different model variants
behave in complex field environments and reveals the evolution of
detection performance as new modules are introduced. Compared
with relying solely on quantitative metrics, Grad-CAM-based
visualizations directly reflect the stability of bounding box
distributions, the accuracy of target localization, and the
suppression of background interference, thereby providing
stronger empirical support for the effectiveness of each
improvement. The visualization results are shown in Figure 6.

As illustrated in Figure 6, the baseline YOLOv8 model exhibits
notable limitations under complex field conditions, characterized
by scattered bounding boxes, insufficient localization accuracy of
maize seedlings, and a high false detection rate in regions with dense
weeds or complex soil textures. This indicates that the baseline
model struggles with multi-scale feature extraction, with its
receptive field unable to effectively distinguish subtle differences
between target objects and background noise. After incorporating
the MSFE module, the model’s ability to perceive multi-scale
features improves substantially, resulting in tighter bounding box
fitting and stronger responses in seedling regions. Nevertheless,
background interference remains evident near field edges and in
non-plant areas, suggesting that MSFE alone cannot fully suppress
environmental noise. When combined with the optimized SPPF, the
model demonstrates stronger robustness in feature fusion and
spatial information aggregation, further enhancing detection

FIGURE 6

Visualization results of the ablation experiments. (a) Baseline YOLOv8 model; (b) YOLOvV8 with the MSFE module; (c) YOLOV8 with the MSFE module
and optimized SPPF; (d) DP-YOLOvV8 with the MSFE module, optimized SPPF, and improved loss function.
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consistency and stability, though slight noise can still be observed in
highly complex regions. Finally, with the integration of MSFE, the
optimized SPPF, and the Focaler-IoU loss function, the complete
DP-YOLOv8 model achieves significant improvements: it
consistently captures seedling features across multiple scales,
effectively suppresses background interference, and produces
bounding boxes that are uniformly distributed and highly aligned
with the actual positions of maize seedlings. These comparative
results clearly validate the progressive contributions and synergistic
effects of the proposed modules, demonstrating the effectiveness
and robustness of DP-YOLOVS8 for high-precision detection in
complex field environments.

3.3 Special experiment on corn leaf
detection

To further validate the model’s performance on a specialized
task and to support subsequent leaf-age analysis, a dedicated maize
leaf-tip detection experiment was conducted. Leaf-tip detection
poses unique challenges—such as strong background interference
and pronounced morphological variation—making this task
considerably more difficult (Zhou et al., 2025). The improved
model was benchmarked against the state-of-the-art YOLOv12
model for leaf detection and additionally compared with single-
plant detection. The corresponding results are summarized
in Table 2.

As shown in Table 2, the results indicate that in the single-plant
detection task, the improved model consistently outperforms the
alternatives, achieving 0.951 Precision, 0.915 Recall, and 0.949
mAP50. These represent gains of 3.9, 4.1, and 4.0 percentage
points over the baseline YOLOvV8n, and also surpass YOLOv12’s
corresponding scores of 0.926, 0.907, and 0.935. By contrast, all
models exhibit a substantial performance decline on the leaf-tip
detection task. The improved model reaches 0.638 Precision, 0.519
Recall, and 0.528 mAP50, slightly exceeding YOLOv12’s values of
0.581, 0.577, and 0.581 in Precision, but remaining far below the
plant-level results. This highlights that detecting small objects such
as leaf tips remains highly challenging and requires further
optimization. The performance gap primarily arises from the
irregularity of leaf annotations: the training set labels only the leaf
tips, whose variable lengths and widths lack a consistent standard,
thereby reducing training effectiveness.

3.4 Development and application of
software platform for corn seedling plant
and leaf detection

To enable deployment of the DP-YOLOv8 model in real-world
agricultural monitoring, an integrated software platform was
developed that unifies maize seedling plant detection and leaf
detection within a user-friendly interface. The platform provides
agricultural researchers and practitioners with an efficient tool for
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TABLE 2 Comparison of leaf-level and single-plant detection.

Model Precision Recall mAP50
YOLOVI2 (leaf) 0.581 0.577 0.581
YOLOVS (leaf) 0.647 0.551 0.517

Ours (leaf) 0.638 0.519 0.528

YOL

OLOVI2 0.926 0.907 0.935
(plant)
YOLOv8n
0.912 0.874 0.909
(plant)
Ours (plant) 0.951 0.915 0.949

YOLOV12, the baseline YOLOVS, and the improved YOLOv8 were applied to both leaf-tip and
single-plant detection. The table reports each model’s performance on the two tasks and
highlights the relative effectiveness of leaf-level versus single-plant detection. Some bolded
indicators indicate that in the improved model, these indicators are the best among all the
comparison models.

rapid assessment and analysis of maize seedling growth, delivering
foundational data for subsequent leaf-age analysis experiments.

The platform offers multiple functions, including image import
and preprocessing, plot segmentation and detection, result
visualization, and data export. Users can import high-resolution
UAV images and perform preprocessing operations such as plot
segmentation, plant detection, and leaf detection. The software
detects and counts maize seedling plants and leaves within user-
selected regions, with detection results displayed in an intuitive
graphical interface that clearly shows bounding boxes and class
labels. Results can be exported to Excel for further analysis and
record-keeping. In addition, the platform provides basic data-analysis
functions, such as counting the number of plants and leaves, thereby
offering essential data support for subsequent leaf-age analysis (Yang
et al,, 2025). The software interface is shown in Figure 7.

Figure 7 illustrates the main interface of the software. Through
the navigation bar, users can access different functional modules.
The interface consists of two primary sections: the left-hand image-
display area, where images can be viewed and manipulated, and the
right-hand control panel. In the image-display area, users can select
a specific region (plot) by clicking and dragging; the software then
detects and counts maize seedling plants and leaves within that
region. The control panel includes modules for model status, image
control, region statistics, image list, and data export. Using the
control panel, users can load images, rerun detection, delete or clear
regions, and export detection results.

The software platform was developed to bring state-of-the-art
object detection into practical agricultural scenarios, thereby
providing robust support for precision farm management. By
integrating the DP-YOLOvV8 model, the application enables rapid
and accurate detection of both maize seedlings and their individual
leaves. The resulting visualizations are shown in Figure 8.

Following the visualization results, a user validation study was
conducted to evaluate the quantitative performance of the software
in practical applications. The seedling and leaf counting outputs
generated by the platform were compared with manually annotated
ground-truth data. As shown in Table 3, seedling counting
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FIGURE 7

Main functional modules of the maize seedling analysis platform. (a) Data import and preprocessing: supports the import of high-resolution UAV
images and provides basic operations such as cropping and preprocessing; (b) Plot segmentation and automatic ID assignment: divides field images
into plots and automatically assigns a unique identifier to each plot for subsequent statistical analysis; (c) Seedling and leaf detection with counting:
automatically detects maize seedlings and their leaves within user-selected plots and visualizes the results with bounding boxes and labels; (d) Data
export and statistical reporting: exports detection results and plot-level statistics to Excel for further analysis and record-keeping.

maintained consistently high accuracy across different growth
stages, with values exceeding 96%. In contrast, leaf counting
accuracy gradually decreased as the number of leaves increased,
from approximately 85.0% at the 2-leaf stage to about 76.0% at the
8-leaf stage. This indicates that the platform provides stable and
reliable performance at the seedling level, whereas leaf-level
counting is more affected by factors such as occlusion, overlap,

FIGURE 8

Visualization of maize seedling detection results across the 2-leaf to 6-leaf stages. Blue bounding boxes indicate individual maize seedlings, and red

dots mark the detected leaf tips.
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and variations in leaf morphology. Overall, although leaf detection
remains a challenging task, the high accuracy of seedling
detection and the overall reliability of the platform have been
validated, confirming its effectiveness in supporting real-time field
monitoring and leaf-age analysis.

By leveraging the platform’s semi-automated workflow, growers
can rapidly segment field plots, count individual maize seedlings and
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TABLE 3 Accuracy of maize seedling and leaf counting using the
analysis platform.

Growth Seedling counting Leaf counting

stage accuracy (%) accuracy (%)
2-leaf 98.1 85.0
4-leaf 97.6 82.0
6-leaf 97.1 79.0
8-leaf 96.4 76.0
Average 97.3 80.5

Seedling detection maintained consistently high accuracy (>96%) across growth stages, while
leaf counting accuracy declined from about 85% at the 2-leaf stage to 76% at the 8-leaf stage,
reflecting the increased challenges caused by occlusion and overlap. Some bolded indicators
indicate that in the improved model, these indicators are the best among all the comparison
models.

their leaves during the seedling stage, and monitor crop status in real
time—thereby enabling timely, data-driven decision-making. With
its intuitive interface and high efficiency, the platform represents a
valuable tool for agricultural monitoring and management.

4 Discussion

The DP-YOLOv8 model demonstrates significant detection
accuracy and robustness across diverse and complex field
environments. In the maize seedling single-plant detection task, it
achieves 95.1% Precision, 91.5% Recall, and 94.9% mAP. Compared
with the baseline YOLOV8n, Precision increases by 3.9%, Recall by
4.1%, and mAP by 4.0%. Compared with the latest YOLOVI12,
Precision increases by 2.5%, Recall by 0.8%, and mAP by 1.4%.
These results indicate that the proposed model outperforms existing
methods in both accuracy and stability, showing stronger reliability
under challenging conditions such as complex backgrounds, uneven
illumination, and partial occlusion. Based on this model, the DP-
MaizeTrack software platform transforms high-precision detection
results into intuitive visualizations and statistical information. Users
can not only obtain single-plant level recognition but also
monitor the number of seedlings and leaves across larger field
regions, enabling the research outcomes to directly serve field
management and breeding practices.

From a methodological perspective, the proposed
improvements introduce clear technical innovations and provide
solutions to multiple challenges in field environments. The MSFE
module enhances multi-scale perception by combining the ECA
attention mechanism with multi-branch feature extraction,
effectively addressing differences in seedling scale at various
growth stages and imaging heights. The ECA mechanism
dynamically adjusts channel weights before feature extraction,
highlighting relevant features while suppressing redundant
information, whereas the multi-branch structure with different
receptive flelds captures both fine-grained and large-scale features,
maintaining detection stability under significant scale variations.
The OSPPF module strengthens adaptability to complex
backgrounds. In field scenarios where soil textures, weeds, and
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shadows may easily confuse the model, OSPPF introduces Global
Average Pooling (GAP) and Global Max Pooling (GMP) into the
traditional SPPF structure and fuses them with local features. GAP
extracts overall semantic information to reduce false detections,
while GMP emphasizes prominent local regions, together forming a
more robust feature representation. Meanwhile, the Focaler-IoU
loss function improves the model’s ability to learn from hard
samples. By dynamically re-weighting the loss, it directs attention
to partially occluded or poorly illuminated samples, preventing
them from being overlooked during training and thereby enhancing
robustness under challenging conditions. Overall, these three
improvements address the issues of large scale variation, complex
background interference, and insufficient learning of hard samples,
resulting in a detection framework better suited for real field
applications. At the same time, the DP-MaizeTrack software
platform integrates these model improvements into an automated
pipeline for detection, segmentation, and statistical analysis,
ensuring that high-accuracy results can be directly utilized
without requiring complex programming, thereby increasing the
practicality and applicability of the system.

Despite these advances, certain limitations remain. While the
model performs strongly at the seedling level, leaf-level detection
shows considerably lower Precision, Recall, and mAP, revealing
limitations in fine-grained feature extraction. Leaf tips, in particular,
exhibit substantial morphological variability, slender and irregular
structures, and are more susceptible to background interference and
uneven illumination, which often lead to false detections and
missed detections. Another possible reason is insufficient effective
learning of leaf data during training. Although the dataset contains
many leaf annotations, the labeling focuses only on leaf tips, which
are variable in size, irregular in shape, and subject to strong
subjectivity. The lack of a unified annotation standard reduces
stability during feature learning and weakens the model’s
generalization ability for leaf detection. Although the MSFE and
OSPPF modules are effective for seedling detection, they do not
fully capture the fine-grained features required at the leaf level,
further exposing the limitations of the current method.
Correspondingly, the DP-MaizeTrack platform, which relies on
the model output for leaf-level visualization and statistical analysis,
is also constrained in accuracy and stability, highlighting the need
for further improvements to the leaf-detection module.

Future research should proceed along two main directions. On
the model side, increasing the diversity and volume of leaf
annotations, refining annotation strategies to reduce subjectivity
in scale and orientation, and adopting network architectures and
instance segmentation methods tailored (Yu et al.,, 2024) to fine-
grained detection are expected to improve accuracy and robustness
for leaf detection. On the software side, the DP-MaizeTrack
platform can be further expanded to incorporate additional
functions, such as dynamic growth monitoring based on temporal
UAV imagery or integration with agricultural IoT systems to enable
automated seedling assessment and intelligent decision support.
Through the dual advancement of model optimization and software
extension, the proposed framework has the potential to be widely
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applied to crop monitoring and precision agriculture management,
thereby contributing to the development of smart and efficient
agricultural systems.

5 Conclusions

This study develops DP-MaizeTrack, a UAV-based intelligent
detection and visualization platform for maize seedlings and leaves,
which integrates the improved detection model DP-YOLOVS as its
core. The model incorporates a Multi-Scale Feature Enhancement
(MSFE) module and an Optimized Spatial Pyramid Pooling-Fast
(OSPPF) module into the backbone, together with a dynamic IoU-
compression loss function (Focaler-IoU). Experiments on a field-
collected dataset demonstrate that DP-YOLOV8 significantly
outperforms both the baseline YOLOv8n and the latest
YOLOVI12, achieving 95.1% Precision, 91.5% Recall, and 94.9%
mAP50, thereby improving robustness under complex
backgrounds, uneven illumination, and plant occlusion. The DP-
MaizeTrack platform further integrates region segmentation,
statistical analysis, and visualization functions, enabling high-
accuracy detection results to be transformed into actionable
agricultural information, and providing practical support for
precision crop management and breeding research. Although
challenges remain in leaf-level detection, particularly for
extremely small targets such as leaf tips (with Precision, Recall,
and mAP50 of 63.8%, 51.9%, and 52.8%, respectively), the overall
findings confirm the effectiveness of DP-MaizeTrack in handling
multi-scale targets and cluttered field environments. This work lays
a solid foundation for subsequent leaf-age analysis, population-
structure modeling, and cross-crop extension, and highlights the
potential of UAV-based deep learning software platforms to
advance intelligent and data-driven agricultural monitoring.
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