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DP-MaizeTrack: a software for
tracking the number of maize
plants and leaves information
from UAV image
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Na Jiang1* and XinYu Guo2,3*

1College of Information Engineering, Capital Normal University, Beijing, China, 2Information
Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,
3Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in
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In modern agricultural production, accurate monitoring of maize growth and leaf

counting is crucial for precision management and crop breeding optimization.

Current UAV-based methods for detecting maize seedlings and leaves often face

challenges in achieving high accuracy due to issues such as low spatial-

resolution, complex field environments, variations in plant scale and

orientation. To address these challenges, this study develops an integrated

detection and visualization software, DP-MaizeTrack, which incorporates the

DP-YOLOv8 model based on YOLOv8. The DP-YOLOv8 model integrates three

key improvements. The Multi-Scale Feature Enhancement (MSFE) module

improves detection accuracy across different scales. The Optimized Spatial

Pyramid Pooling–Fast (OSPPF) module enhances feature extraction in diverse

field conditions. Experimental results in single-plant detection show that the DP-

YOLOv8 model outperforms the baseline YOLOv8 with improvements of 3.9% in

Precision (95.1%), 4.1% in Recall (91.5%), and 4.0% inmAP50 (94.9%). The software

also demonstrates good accuracy in the visualization results for single-plant and

leaf detection tasks. Furthermore, DP-MaizeTrack not only automates the

detection process but also integrates agricultural analysis tools, including

region segmentation and data statistics, to support precision agricultural

management and leaf-age analysis. The source code and models are available

at https://github.com/clhclhc/project.
KEYWORDS

YOLOv8 improvement, UAV imagery, maize seedlings, object detection, multi-scale
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1698847/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1698847/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1698847/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1698847/full
https://github.com/clhclhc/project
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1698847&domain=pdf&date_stamp=2025-11-10
mailto:jiangna@cnu.edu.cn
mailto:guoxy@nercita.org.cn
https://doi.org/10.3389/fpls.2025.1698847
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1698847
https://www.frontiersin.org/journals/plant-science


Chen et al. 10.3389/fpls.2025.1698847
1 Introduction

With the continuous growth of the global population and the

rising demand for food, achieving simultaneous improvements in

crop yield and quality under limited arable land has become a

pressing challenge for modern agricultural science (Yu and Wang,

2025). Maize (Zea mays L.), as one of the world’s three major staple

crops, plays a pivotal role in ensuring food security and supporting

agricultural economic development (Feng et al., 2025). Among the

many factors affecting maize yield, seedling-stage population

structure and individual traits—particularly plant density

distribution and leaf development—directly determine subsequent

photosynthetic efficiency, canopy architecture, and stress resistance

(Jia et al., 2024). Therefore, the rapid and accurate acquisition of key

phenotypic traits during the seedling stage is essential for

optimizing planting density, improving resource-use efficiency,

and advancing precision agriculture.

Traditional field-based phenotyping methods rely heavily on

manual investigation, which is inefficient, subjective, and incapable

of meeting the demand for large-scale, multi-site, and dynamic

monitoring (Helia et al., 2025). In recent years, the rapid

development of unmanned aerial vehicles (UAVs) and high-

throughput phenotyping technologies has greatly expanded the

application of low-altitude remote sensing in agriculture (Chang

et al., 2023). UAVs are characterized by strong maneuverability,

ease of operation, and wide coverage, enabling efficient acquisition

of high-resolution RGB, multispectral, and thermal imagery for

crop monitoring (Bo et al., 2021). Against this backdrop, deep

learning–based object detection methods applied to UAV-derived

RGB imagery have demonstrated strong potential in tasks such as

seedling distribution mapping, canopy structure analysis, and leaf

identification (Jia et al., 2023).

Nevertheless, achieving high-precision detection under

complex field conditions remains challenging due to illumination

variation, background interference, plant overlap, and

morphological diversity. The YOLO (You Only Look Once)

family of algorithms (Liu et al., 2025), known for its end-to-end

design, high speed, and accuracy, has been widely adopted for

agricultural vision tasks. However, the latest version, YOLOv8 (Cai

et al., 2025), still suffers from insufficient robustness when applied

to real-world field environments. Compared to industrial datasets,

agricultural imagery often features large variations in object scale,

dense occlusion, and complex backgrounds, leading to degraded

detection performance. Moreover, (Islam et al., 2025) algorithmic

improvements alone are insufficient to address practical needs;

there is an urgent demand for an integrated software platform

that not only incorporates detection but also provides data analysis

and visualization capabilities, thereby enabling field-level

deployment and delivering actionable insights for agricultural

research and production.

Previous studies have attempted to enhance YOLO’s

adaptability to agricultural scenarios through lightweight

backbone networks (Liu and Li, 2025; Udeh et al., 2025),

attention mechanisms (Yan et al., 2024; Zhang et al., 2025; Zhou
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et al., 2025), improved feature fusion structures (Liu et al., 2024;

Wenming et al., 2024), and optimized regression loss functions

(Joshi and Diwakar, 2024). However, most of these efforts have

focused on single-object detection tasks such as fruit counting or

disease spot recognition (Xie et al., 2025), while research on “maize

seedling–leaf” dual-object detection remains limited (Pu et al.,

2023) and insufficiently validated in real-world field environments

(Yue and Zhang, 2025). More critically, these works remain

confined to model-level experimentation and lack supporting

software tools for agricultural application. Without an integrated

software system, users cannot perform interactive management of

detection results, regional segmentation, statistical analysis, or

visualization, thereby constraining the scalability and applicability

of such approaches in precision agriculture. Future research must

therefore focus not only on algorithmic optimization of YOLOv8

but also on the development of practical software platforms that

enable a complete pipeline from detection to application.

To this end, we developed an integrated detection and

visualization system, DP-MaizeTrack, with two main contributions:

(1) we propose a maize seedling detection model, DP-YOLOv8,

specifically tailored for UAV remote sensing imagery of small

objects, by incorporating a Multi-Scale Feature Enhancement

(MSFE) module, an Optimized Spatial Pyramid Pooling Fast

(OSPPF) module, and a dynamic IoU compression mechanism

(Focaler-IoU), thereby significantly improving model performance

under complex field conditions; and (2) we build a deployable

software platform that embeds the improved detection model into

an intuitive interface, enabling automated UAV image processing,

visualization of detection results, and rapid leaf counting, thus

bridging the gap from academic algorithm to practical tool.

Collectively, this study advances both algorithmic performance and

software applicability, providing a feasible solution for precision crop

management and intelligent decision-making in agriculture.
2 Materials and methods

To facilitate efficient detection of maize seedlings and their leaves,

this study conducted UAV-based image acquisition in a

representative maize cultivation area of Yuanyang County, Henan

Province. The region is characterized by flat terrain and concentrated

maize planting, making it well-suited for UAV operations. Data

collection was carried out during the seedling growth stage, when

the morphological features of maize plants and leaves are most

distinct and inter-plant occlusion is minimal, thus providing

optimal conditions for training and validating detection models.
2.1 Data collection and dataset
construction

Image acquisition was conducted using a high-resolution

Zenmuse P1 UAV-mounted camera with high pixel density and

minimal distortion, enabling clear capture of maize seedling details.
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Flight altitude and speed were carefully adjusted to ensure sufficient

spatial resolution and coverage. The specific imaging parameters

were as follows: Zenmuse P1 camera with a resolution of 8192 ×

5460 pixels, 35 mm lens focal length, flight altitude of 20 m, and

flight speed of 2 m s-¹. To minimize shadow interference caused by

low solar elevation, all images were captured at 11:00 a.m. during

the maize seedling stage.Plant-detection experiments were

conducted directly on the original high-resolution images (8192 ×

5460 pixels), as the overall plant structure was sufficiently salient to

be clearly identified. Given the relatively simple plant morphology,

spatial distribution, and limited background interference, no

complex preprocessing was required. In contrast, leaf-detection

experiments imposed greater demands: the collected images

underwent a series of preprocessing steps to improve data quality

and enhance training performance. Specifically, each image was

cropped to remove superfluous background regions while retaining

only the areas containing maize plants and leaves. The cropped

patches were subsequently resized to a uniform resolution of 1024 ×

1024 pixels to meet the input requirements of the YOLOv8 model.

The study area and acquisition method are illustrated in Figure 1.

Data annotation is a pivotal step in object detection, as its

quality directly determines the effectiveness of model training. In

this study, manual annotation was conducted on pre-cropped

images, including the location of each maize plant, the number of
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leaves, and the position of individual leaves. LabelImg was

employed as the annotation tool owing to its simplicity and

efficiency. All annotations were stored in YOLO format to

facilitate subsequent training and validation. For plant detection,

which uses high-resolution images, 50 annotated samples were

sufficient for the experiments, whereas for leaf detection,

conducted on lower-resolution images, 200 annotated samples

were provided.To evaluate model performance, the annotated

dataset was divided into training, validation, and test subsets in

an 8:1:1 ratio. Specifically, 80% of the data were allocated for

training, 10% for validation, and 10% for testing. This allocation

ensured adequate data for training while enabling reliable

performance assessment during validation and testing. Random

sampling was employed to partition the dataset, ensuring uniform

distribution and preventing performance bias due to uneven

data representation.

Through these data acquisition and processing steps, we

established a high-quality dataset for maize seedling and leaf

detection, providing a solid foundation for subsequent model

development. The dataset not only encompasses diverse

morphological characteristics of maize seedlings at the seedling

stage but also enhances diversity and usability through data

augmentation and meticulous annotation, thereby offering strong

support for efficient training and accurate model detection.
FIGURE 1

Experimental area, data-collection equipment, and original data illustration. Panels (a, b) show maize seedling data collection in Yuanyang County,
Henan Province, China. Panel (c) presents the DJI UAV and high-resolution visible-light camera used for image acquisition. Panel (d) depicts the
orthomosaic of the experimental field generated from UAV imagery, with the field subdivided into 728 plots representing 360 maize varieties.
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2.2 Model improvements

2.2.1 DP-YOLOv8 model design
YOLOv8 is an efficient object detection model (Song and Li,

2025) that inherits the YOLO family’s strength in balancing real-

time speed and detection accuracy. Its network architecture

comprises three primary components (Qu et al., 2025): the

Backbone, the Neck (feature-fusion module), and the Head

(detection layer). The Backbone is responsible for extracting

image features, the Neck fuses features across different

hierarchical levels, and the Head performs final object detection

and classification. Through an improved anchor mechanism and

refined loss functions (Gong et al., 2025), YOLOv8 further enhances

both detection accuracy and speed, delivering strong performance

across diverse object detection tasks.

Despite its advantages, detecting maize plants and leaves in

complex field environments remains challenging (Yu et al., 2025).

Background clutter, variable illumination, plant occlusion, and

large-scale leaf variation can all reduce detection accuracy.

Therefore, task-specific improvements to YOLOv8 are essential

for maize seedling and leaf detection.

To address these challenges, we optimize the YOLOv8

Backbone by integrating a Multi-Scale Feature Enhancement

(MSFE) module and an Optimized Spatial Pyramid Pooling–Fast

(OSPPF) module. These modifications strengthen the model’s

perception of multi-scale features, particularly for small objects

and large-scale variations.To provide an intuitive overview of the
Frontiers in Plant Science 04
improved YOLOv8 architecture, the overall network diagram is

presented in Figure 2.

The figure illustrates the Backbone, Neck, and Head

components and explicitly highlights the integration points of

MSFE and OSPPF. With this structural design, the model is

better equipped for maize plant and leaf detection in complex

field environments.

2.2.2 MSFE module
The MSFE module significantly improves multi-scale target

perception by combining the Efficient Channel Attention (ECA)

mechanism (Liu et al., 2025) with multi-branch feature extraction

(Wang et al., 2025). ECA dynamically adjusts channel weights based

on inter-channel relationships, thereby emphasizing salient

features. Placing the ECA module before multi-branch extraction

first filters the channels and then extracts features, effectively

reducing redundant computation and improving efficiency. The

multi-branch section employs sliding windows with different

receptive fields to capture fine-grained leaf details, further

enhancing the model’s ability to distinguish leaves. The structure

of the MSFE module is illustrated in Figure 3.

2.2.3 OSPPF module
To enhance the model’s robustness in complex backgrounds

and improve sensitivity to small maize seedling objects, we propose

an Optimized Spatial Pyramid Pooling–Fast (OSPPF) module. The

design modifies the original SPPF block (Wang et al., 2025) by
FIGURE 2

Architecture of the DP-YOLOv8 model for in-field maize plant detection. The network integrates two key enhancements: (i) incorporation of Global
Average Pooling (GAP) and Global Max Pooling (GMP) branches into the SPPF module to strengthen multi-scale feature extraction, and (ii)
introduction of the Multi-Scale Feature Enhancement (MSFE) module, which combines the ECA channel-attention mechanism with a multi-branch
convolution structure to improve perception of fine-grained leaf details.
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appending a Global Average Pooling (GAP) layer (Jin et al., 2025)

and a Global Max Pooling (GMP) layer (Ruyu et al., 2023). By

combining global statistical information (GAP) with salient local

responses (GMP), OSPPF provides more comprehensive feature
Frontiers in Plant Science 05
aggregation, thereby strengthening the model’s multi-scale

representation. The architecture of OSPPF is illustrated in Figure 4.

In the OSPPF module, GAP and GMP are inserted alongside

the SPPF structure, and their outputs are concatenated. This
FIGURE 4

Structure of the optimized SPPF (OSPPF) module. Based on the original SPPF, an additional parallel branch is introduced at the input, incorporating
Global Average Pooling (GAP) and Global Max Pooling (GMP). The global-context features generated by these two layers are concatenated (Concat)
with the multi-scale local features extracted by the serial pooling path, thereby enhancing the model’s global perception capability.
FIGURE 3

Structure of the Multi-Scale Feature Enhancement (MSFE) module. The module first applies the ECA channel-attention mechanism to adaptively
recalibrate input features, and then employs three parallel branches to extract complementary information: a 1×1 convolution branch for channel
compression and interaction, a 3×3 average-pooling branch for global context capture, and an asymmetric-convolution branch (cascaded 3×1 and
1×3 convolutions) for spatial feature extraction with reduced parameters. Finally, channel concatenation (Concat) integrates the outputs to achieve
multi-scale feature fusion.
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modification effectively fuses global and local features, thereby

enhancing the model’s ability to perceive targets at different scales

and improving performance in complex field backgrounds with

plants of varying sizes.

With these refinements, the proposed UAV-based maize

seedling plant-and-leaf detection method, built upon the DP-

YOLOv8 model, achieves strong performance in complex field

environments and provides robust technical support for precision

agricultural management. Future research will focus on extending

this approach to additional crops and more challenging

environments, thereby promoting the continued advancement of

agricultural intelligence technologies.

2.2.4 Loss function optimization strategy
To enhance the model’s ability to learn from hard samples—

such as partially occluded leaves or leaves in unevenly illuminated

backgrounds—we optimized the loss function by integrating a

dynamic IoU compression mechanism, termed Focaler-IoU, on

top of the conventional CIoU (Complete Intersection over Union)

loss (Dang et al., 2024). This mechanism dynamically re-weights

the loss contribution of each sample, compelling the network

to focus more on difficult instances and thereby improving

overall robustness.

The CIoU loss function is an extension of the traditional IoU

loss that not only considers the overlapping area between the

predicted and ground-truth boxes but also introduces penalty

terms for shape and scale. As a result, it provides a more

comprehensive measure of the discrepancy between predicted and

ground-truth boxes. The formula for the CIoU loss function is given

as follows:

CIoU = 1 − ð IoU
1 + a · υ

Þ (1)

In Equation 1, IoU denotes the overlap-area ratio between the

predicted and ground-truth boxes, a is a balancing parameter, and

υ is the penalty term for shape and scale. By incorporating these

penalty terms, the CIoU loss function optimizes localization

accuracy more effectively.

Dynamic IoU Compression Mechanism (Focaler-IoU).

Although the CIoU loss performs well in many scenarios, the

model may still fail to capture sufficient features when dealing

with hard samples. To further strengthen its ability to learn from

difficult instances, we introduce a dynamic IoU compression

mechanism, termed Focaler-IoU. This mechanism adaptively

adjusts the weighting of the loss function, compelling the model

to pay greater attention to hard-to-detect samples. Specifically, the

CIoU loss is restructured using a linear-interval-mapping strategy,

expressed as follows:

IoUfocaler =

0, IoU < d

IoU−d
u−d , d ≤ IoU ≤ u

1, IoU > U

8>><
>>:

(2)

In Equation 2, IoUfocaler refers to the restructured dynamic

IoU loss value, IoU denotes the original IoU value, and d and u are
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parameters within [0, 1] that control the range of dynamic

adjustment. By tuning d and u, the emphasis of IoUfocaler can be

shifted. Specifically, when IoU is low (indicating hard samples), the

value of IoUfocaler increases, thereby raising the loss weight

assigned to these difficult instances. Conversely, when IoU is high

(indicating easy samples), the value of IoUfocaler decreases,

reducing the loss weight assigned to these easier cases.

This dynamic adjustment mechanism enables the model to

concentrate its learning on hard-to-detect samples during training,

thereby improving overall robustness. In particular, when handling

partially occluded leaves or leaves under uneven illumination, both

detection accuracy and robustness are significantly enhanced.
2.2.5 Model training and experimental parameter
setting

The experiments were conducted on a workstation equipped

with an NVIDIA GeForce RTX 3060 Ti GPU, 64 GB RAM, and an

Intel Core i7 CPU, running Ubuntu 20.04. The deep learning

framework was PyTorch 1.10 with CUDA 11.3. Model training

was performed using the Adam optimizer with an initial learning

rate of 0.01, momentum of 0.937, and weight decay of 0.0005. The

learning-rate scheduler employed a warm-up phase followed by

linear decay, instead of cosine annealing. The batch size was set to 4,

with input image sizes of 8192×5460 for the plant dataset and

1024×1024 for the leaf dataset. Training was conducted for 500

epochs. To mitigate overfitting, early stopping with a patience of 50

epochs was applied, and a warm-up of 3 epochs was introduced at

the start of training. Model generalization was evaluated through

cross-validation and error analysis, while hyperparameters such as

learning rate, optimizer, and batch size were further tuned to

improve performance.
2.2.6 Model performance evaluation indicators
To comprehensively evaluate the performance of the DP-

YOLOv8 model on maize seedling plant and leaf detection, three

primary evaluation metrics were adopted (Juntao et al., 2023): mean

Average Precision (mAP), Precision, and Recall. These indicators

jointly reflect the model’s detection accuracy and robustness from

different perspectives.

Mean Average Precision (mAP). mAP is a comprehensive

metric that measures detection accuracy across object categories.

It is computed by first calculating the Average Precision (AP) for

each class and then averaging these values. For each class, the model

generates detection results with associated confidence scores. By

varying the confidence threshold, a Precision–Recall curve is

constructed, and AP is defined as the area under this curve,

capturing performance across all confidence levels. The mAP is

then obtained by averaging the AP of all classes, providing an

overall performance indicator. A higher mAP indicates stronger

detection accuracy across categories.

Precision measures the proportion of correctly detected objects

among all objects predicted as positive by the model. It reflects the

reliability of detection results, showing how many of the predicted

positives are true positives. The formula is expressed as:
frontiersin.org
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Precision =
TP

TP + FP
(3)

In Equation 3 TP (True Positives) denotes the number of

correctly detected targets and FP (False Positives) denotes the

number of incorrectly detected targets. A higher Precision value

indicates more accurate detection results and a lower false-

positive rate.

Recall measures the proportion of correctly detected objects

relative to the total number of actual objects. It reflects the

completeness of detection, showing how many of the true targets

present in the dataset are successfully identified by the model. The

formula is expressed as:

Recall =
TP

TP + FN
(4)

In Equation 4 TP (True Positives) denotes the number of

correctly detected targets, and FN (False Negatives) denotes the

number of targets that were not detected. A higher Recall value

indicates that the model can detect a greater proportion of actual

targets, corresponding to a lower missed-detection rate.

By jointly employing mAP, Precision, and Recall, a

comprehensive evaluation of the model’s performance on maize

seedling plant and leaf detection is obtained. mAP provides an

overall measure of detection accuracy across categories, while

Precision and Recall offer complementary perspectives on

detection reliability and completeness, respectively. The combined

use of these metrics enables a holistic assessment of the model,

revealing both its strengths and limitations and providing a solid

foundation for further optimization.
2.3 Software design

To address the limitations of traditional agricultural monitoring

methods in complex field environments, we developed an

integrated automation platform, DP-MaizeTrack. This software

combines the enhanced DP-YOLOv8 model for accurate maize

seedling and leaf detection, target localization, and data analysis.

DP-MaizeTrack is designed to provide an efficient and user-friendly

tool for agricultural professionals, enabling automated detection,

real-time visualization, and precise data analysis, thereby advancing

precision agriculture applications.

The software architecture of DP-MaizeTrack is modular,

consisting of key components: image input and processing, object

detection, result visualization, statistical analysis, and data

management. Each module is clearly defined and works

synergistically to ensure efficient and stable performance when

processing large-scale UAV images.The image input and

processing module supports the acquisition of high-resolution

RGB images from various UAVs, such as the DJI Zenmuse P1.

To ensure data quality, this module applies preprocessing

techniques, including cropping, resizing, and background noise

reduction, optimizing the input for subsequent detection. By

removing redundant background elements and enhancing the

features of the targets, this module ensures that the images meet
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the requirements of the object detection model, providing high-

quality input for further analysis.The object detection module is the

core component of DP-MaizeTrack, integrating the improved DP-

YOLOv8 model. This model has been optimized specifically for

agricultural scenarios, particularly for detecting maize seedlings and

leaves in complex field environments. DP-YOLOv8 is designed to

address challenges such as background clutter, plant occlusion, and

lighting variation. With the incorporation of the Multi-Scale

Feature Enhancement (MSFE) module and the Optimized Spatial

Pyramid Pooling (OSPPF) module, the model achieves enhanced

detection accuracy, especially for small objects and large-scale

variations. It automatically generates bounding boxes for each

detected target and outputs corresponding confidence scores,

ensuring precise detection results.The result visualization module

is designed to present detection outcomes in a user-friendly,

graphical format. This module displays the location and class of

each detected maize seedling and leaf, allowing users to quickly

assess crop distribution and growth conditions. Additionally, the

module supports region segmentation, generating statistical

analysis reports for different regions. Through this functionality,

users can better understand key data related to crop growth, aiding

decision-making in agricultural production.For data management,

DP-MaizeTrack automatically stores detection results, images, and

analysis reports in a local database, facilitating easy retrieval of

historical data. The software also supports data export in formats

such as CSV and PDF, enabling users to share results with other

agricultural management systems or conduct further analysis. To

ensure data security and integrity, the software employs an efficient

data storage structure with backup and recovery options.

To optimize performance, DP-MaizeTrack has been fine-tuned

to run efficiently on standard PC configurations. The software

optimizes memory usage and computational resources, enabling

rapid image processing and ensuring real-time detection. It is

compatible with both Windows and Linux operating systems,

providing flexibility in deployment across different hardware

environments.Furthermore, DP-MaizeTrack adopts a plugin-

based architecture, allowing users to extend its functionality by

integrating additional modules, such as crop health monitoring or

pest and disease recognition. This modular design makes the

software adaptable to new agricultural needs and extends its use

to the detection and analysis of additional crops.

In summary, DP-MaizeTrack not only automates maize

seedling and leaf detection but also provides a comprehensive

data analysis platform for precision agriculture. By integrating

image processing, object detection, result visualization, and data

management, the software offers a powerful tool for agricultural

monitoring and decision-making, contributing to the advancement

of intelligent agriculture.
3 Results

To validate the performance of the DP-YOLOv8 model on

maize seedling plant and leaf detection, a series of experiments were

designed, including ablation studies and comparative evaluations.
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All experiments were conducted on the high-resolution UAV image

dataset collected in Yuanyang County, Henan Province, under

identical hardware and software environments to ensure

comparability of results. Both ablation and comparative

experiments were performed on maize seedling plants, with

outcomes evaluated on the test set. Maize seedling leaf detection

experiments are presented separately as specialized tests in

Section 3.
3.1 Performance comparison experiments
of mainstream object detection models

To comprehensively assess the performance of the DP-YOLOv8

model on maize seedling detection, detailed comparative

experiments were conducted. The improved YOLOv8 was

benchmarked against several state-of-the-art object detection

models, including RT-DETR (Zhou and Wei, 2025), YOLOv5

(Xia et al., 2024), YOLOv8n, YOLOv10n (An et al., 2025),

YOLOv11n (Wu et al., 2025), and YOLOv12n (Ge et al., 2025).

These models have all demonstrated strong detection accuracy and

computational efficiency in the field of object detection. Comparing

their performance provides an intuitive demonstration of the

advantages of the improved YOLOv8. The results obtained on the

test set are summarized in Figure 5, which reports Precision, Recall,

and mAP50 for each model.

As shown in Figure 5, the DP-YOLOv8 model achieves the best

overall performance among all compared models. Specifically, it

reaches 94.9% in mAP50, 95.1% in Precision, and 91.5% in Recall,

all of which are significantly higher than those of the other methods.

Compared with the baseline model, DP-YOLOv8 improves mAP50,

Precision, and Recall by 4.0, 3.9, and 4.1 percentage points,
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respectively. Relative to YOLOv12n, the improvements are 1.4,

2.5, and 0.8 percentage points, while compared with YOLOv11n,

the gains are 2.1, 1.7, and 2.3 percentage points. In comparison with

YOLOv10n, DP-YOLOv8 achieves even larger increases of 4.7, 5.0,

and 4.6 percentage points in the three metrics. These results

demonstrate that DP-YOLOv8 delivers substantial advantages in

both detection accuracy and robustness, enabling more precise

recognition and localization of maize seedlings.
3.2 Ablation analysis of the model
improvement module

Ablation experiments were conducted to isolate and evaluate

the individual contributions of each proposed component. The

modules—MSFE, OSPPF, and Focaler-IoU—were incorporated

incrementally. To quantify their specific effects, each module was

tested independently as well as in all possible combinations. The

corresponding results on the test set are summarized in Table 1.

As shown in Table 1, each proposed module contributes to a

clear performance improvement. MSFE markedly enhances the

model’s perception of multi-scale targets, particularly small

objects and large-scale variations. With MSFE alone, Precision

increases from 0.912 to 0.939, Recall from 0.874 to 0.906, and

mAP50 from 0.909 to 0.940, underscoring its pivotal role in multi-

scale perception. Building on MSFE, the addition of OSPPF further

improves performance: Precision rises from 0.939 to 0.946, Recall

from 0.906 to 0.942, and mAP50 from 0.940 to 0.942, indicating

that OSPPF strengthens the model’s adaptation to complex

backgrounds, especially under background clutter or plant-size

variations. Finally, incorporating Focaler-IoU on top of MSFE +

OSPPF yields the best results: Precision increases from 0.946 to
FIGURE 5

Comparative performance of the DP-YOLOv8 model and other state-of-the-art object detection models on maize seedling detection. The baseline
is the original YOLOv8 model, and the improved version integrates MSFE, OSPPF, and Focaler-IoU.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1698847
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2025.1698847
0.951, Recall from 0.942 to 0.915, and mAP50 from 0.942 to 0.949.

This demonstrates that Focaler-IoU significantly enhances the

model’s ability to learn from hard samples and improves

robustness, particularly for partially occluded leaves and leaves

under uneven illumination.

Overall, the ablation study clearly delineates the role of each

module: MSFE enhances multi-scale perception, OSPPF

strengthens adaptation to complex backgrounds, and Focaler-IoU

facilitates learning from hard samples. Their synergistic integration

enables the improved YOLOv8 to substantially outperform the

baseline and competing models on maize seedling detection tasks.

To further analyze the specific role of each improved module

and to present their effects more intuitively, Grad-CAM was
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employed for the visualization of the ablation experiments. This

approach enables a clear illustration of how different model variants

behave in complex field environments and reveals the evolution of

detection performance as new modules are introduced. Compared

with relying solely on quantitative metrics, Grad-CAM–based

visualizations directly reflect the stability of bounding box

distributions, the accuracy of target localization, and the

suppression of background interference, thereby providing

stronger empirical support for the effectiveness of each

improvement. The visualization results are shown in Figure 6.

As illustrated in Figure 6, the baseline YOLOv8 model exhibits

notable limitations under complex field conditions, characterized

by scattered bounding boxes, insufficient localization accuracy of

maize seedlings, and a high false detection rate in regions with dense

weeds or complex soil textures. This indicates that the baseline

model struggles with multi-scale feature extraction, with its

receptive field unable to effectively distinguish subtle differences

between target objects and background noise. After incorporating

the MSFE module, the model’s ability to perceive multi-scale

features improves substantially, resulting in tighter bounding box

fitting and stronger responses in seedling regions. Nevertheless,

background interference remains evident near field edges and in

non-plant areas, suggesting that MSFE alone cannot fully suppress

environmental noise. When combined with the optimized SPPF, the

model demonstrates stronger robustness in feature fusion and

spatial information aggregation, further enhancing detection
FIGURE 6

Visualization results of the ablation experiments. (a) Baseline YOLOv8 model; (b) YOLOv8 with the MSFE module; (c) YOLOv8 with the MSFE module
and optimized SPPF; (d) DP-YOLOv8 with the MSFE module, optimized SPPF, and improved loss function.
TABLE 1 Results of the ablation study.

Model Precision Recall mAP50

YOLOv8n (baseline) 0.912 0.874 0.909

YOLOv8n-MSFE 0.939 0.906 0.94

YOLOv8n-MSFE+OSPPF 0.946 0.942 0.942

Ours 0.951 0.915 0.949
Baseline denotes the original YOLOv8; +MSFE refers to the insertion of the Multi-Scale
Feature Enhancement module into the Backbone; +OSPPF replaces the original SPPF with the
Optimized Spatial Pyramid Pooling–Fast module; and +Focaler-IoU substitutes the CIoU loss
with the Focaler-IoU loss. Some bolded indicators indicate that in the improved model, these
indicators are the best among all the comparison models.
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consistency and stability, though slight noise can still be observed in

highly complex regions. Finally, with the integration of MSFE, the

optimized SPPF, and the Focaler-IoU loss function, the complete

DP-YOLOv8 model achieves significant improvements: it

consistently captures seedling features across multiple scales,

effectively suppresses background interference, and produces

bounding boxes that are uniformly distributed and highly aligned

with the actual positions of maize seedlings. These comparative

results clearly validate the progressive contributions and synergistic

effects of the proposed modules, demonstrating the effectiveness

and robustness of DP-YOLOv8 for high-precision detection in

complex field environments.
3.3 Special experiment on corn leaf
detection

To further validate the model’s performance on a specialized

task and to support subsequent leaf-age analysis, a dedicated maize

leaf-tip detection experiment was conducted. Leaf-tip detection

poses unique challenges—such as strong background interference

and pronounced morphological variation—making this task

considerably more difficult (Zhou et al., 2025). The improved

model was benchmarked against the state-of-the-art YOLOv12

model for leaf detection and additionally compared with single-

plant detection. The corresponding results are summarized

in Table 2.

As shown in Table 2, the results indicate that in the single-plant

detection task, the improved model consistently outperforms the

alternatives, achieving 0.951 Precision, 0.915 Recall, and 0.949

mAP50. These represent gains of 3.9, 4.1, and 4.0 percentage

points over the baseline YOLOv8n, and also surpass YOLOv12’s

corresponding scores of 0.926, 0.907, and 0.935. By contrast, all

models exhibit a substantial performance decline on the leaf-tip

detection task. The improved model reaches 0.638 Precision, 0.519

Recall, and 0.528 mAP50, slightly exceeding YOLOv12’s values of

0.581, 0.577, and 0.581 in Precision, but remaining far below the

plant-level results. This highlights that detecting small objects such

as leaf tips remains highly challenging and requires further

optimization. The performance gap primarily arises from the

irregularity of leaf annotations: the training set labels only the leaf

tips, whose variable lengths and widths lack a consistent standard,

thereby reducing training effectiveness.
3.4 Development and application of
software platform for corn seedling plant
and leaf detection

To enable deployment of the DP-YOLOv8 model in real-world

agricultural monitoring, an integrated software platform was

developed that unifies maize seedling plant detection and leaf

detection within a user-friendly interface. The platform provides

agricultural researchers and practitioners with an efficient tool for
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rapid assessment and analysis of maize seedling growth, delivering

foundational data for subsequent leaf-age analysis experiments.

The platform offers multiple functions, including image import

and preprocessing, plot segmentation and detection, result

visualization, and data export. Users can import high-resolution

UAV images and perform preprocessing operations such as plot

segmentation, plant detection, and leaf detection. The software

detects and counts maize seedling plants and leaves within user-

selected regions, with detection results displayed in an intuitive

graphical interface that clearly shows bounding boxes and class

labels. Results can be exported to Excel for further analysis and

record-keeping. In addition, the platform provides basic data-analysis

functions, such as counting the number of plants and leaves, thereby

offering essential data support for subsequent leaf-age analysis (Yang

et al., 2025). The software interface is shown in Figure 7.

Figure 7 illustrates the main interface of the software. Through

the navigation bar, users can access different functional modules.

The interface consists of two primary sections: the left-hand image-

display area, where images can be viewed and manipulated, and the

right-hand control panel. In the image-display area, users can select

a specific region (plot) by clicking and dragging; the software then

detects and counts maize seedling plants and leaves within that

region. The control panel includes modules for model status, image

control, region statistics, image list, and data export. Using the

control panel, users can load images, rerun detection, delete or clear

regions, and export detection results.

The software platform was developed to bring state-of-the-art

object detection into practical agricultural scenarios, thereby

providing robust support for precision farm management. By

integrating the DP-YOLOv8 model, the application enables rapid

and accurate detection of both maize seedlings and their individual

leaves. The resulting visualizations are shown in Figure 8.

Following the visualization results, a user validation study was

conducted to evaluate the quantitative performance of the software

in practical applications. The seedling and leaf counting outputs

generated by the platform were compared with manually annotated

ground-truth data. As shown in Table 3, seedling counting
TABLE 2 Comparison of leaf-level and single-plant detection.

Model Precision Recall mAP50

YOLOv12 (leaf) 0.581 0.577 0.581

YOLOv8 (leaf) 0.647 0.551 0.517

Ours (leaf) 0.638 0.519 0.528

YOLOv12
(plant)

0.926 0.907 0.935

YOLOv8n
(plant)

0.912 0.874 0.909

Ours (plant) 0.951 0.915 0.949
YOLOv12, the baseline YOLOv8, and the improved YOLOv8 were applied to both leaf-tip and
single-plant detection. The table reports each model’s performance on the two tasks and
highlights the relative effectiveness of leaf-level versus single-plant detection. Some bolded
indicators indicate that in the improved model, these indicators are the best among all the
comparison models.
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maintained consistently high accuracy across different growth

stages, with values exceeding 96%. In contrast, leaf counting

accuracy gradually decreased as the number of leaves increased,

from approximately 85.0% at the 2-leaf stage to about 76.0% at the

8-leaf stage. This indicates that the platform provides stable and

reliable performance at the seedling level, whereas leaf-level

counting is more affected by factors such as occlusion, overlap,
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and variations in leaf morphology. Overall, although leaf detection

remains a challenging task, the high accuracy of seedling

detection and the overall reliability of the platform have been

validated, confirming its effectiveness in supporting real-time field

monitoring and leaf-age analysis.

By leveraging the platform’s semi-automated workflow, growers

can rapidly segment field plots, count individual maize seedlings and
FIGURE 8

Visualization of maize seedling detection results across the 2-leaf to 6-leaf stages. Blue bounding boxes indicate individual maize seedlings, and red
dots mark the detected leaf tips.
FIGURE 7

Main functional modules of the maize seedling analysis platform. (a) Data import and preprocessing: supports the import of high-resolution UAV
images and provides basic operations such as cropping and preprocessing; (b) Plot segmentation and automatic ID assignment: divides field images
into plots and automatically assigns a unique identifier to each plot for subsequent statistical analysis; (c) Seedling and leaf detection with counting:
automatically detects maize seedlings and their leaves within user-selected plots and visualizes the results with bounding boxes and labels; (d) Data
export and statistical reporting: exports detection results and plot-level statistics to Excel for further analysis and record-keeping.
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their leaves during the seedling stage, and monitor crop status in real

time—thereby enabling timely, data-driven decision-making. With

its intuitive interface and high efficiency, the platform represents a

valuable tool for agricultural monitoring and management.

4 Discussion

The DP-YOLOv8 model demonstrates significant detection

accuracy and robustness across diverse and complex field

environments. In the maize seedling single-plant detection task, it

achieves 95.1% Precision, 91.5% Recall, and 94.9% mAP. Compared

with the baseline YOLOv8n, Precision increases by 3.9%, Recall by

4.1%, and mAP by 4.0%. Compared with the latest YOLOv12,

Precision increases by 2.5%, Recall by 0.8%, and mAP by 1.4%.

These results indicate that the proposed model outperforms existing

methods in both accuracy and stability, showing stronger reliability

under challenging conditions such as complex backgrounds, uneven

illumination, and partial occlusion. Based on this model, the DP-

MaizeTrack software platform transforms high-precision detection

results into intuitive visualizations and statistical information. Users

can not only obtain single-plant level recognition but also

monitor the number of seedlings and leaves across larger field

regions, enabling the research outcomes to directly serve field

management and breeding practices.

From a methodological perspect ive , the proposed

improvements introduce clear technical innovations and provide

solutions to multiple challenges in field environments. The MSFE

module enhances multi-scale perception by combining the ECA

attention mechanism with multi-branch feature extraction,

effectively addressing differences in seedling scale at various

growth stages and imaging heights. The ECA mechanism

dynamically adjusts channel weights before feature extraction,

highlighting relevant features while suppressing redundant

information, whereas the multi-branch structure with different

receptive fields captures both fine-grained and large-scale features,

maintaining detection stability under significant scale variations.

The OSPPF module strengthens adaptability to complex

backgrounds. In field scenarios where soil textures, weeds, and
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shadows may easily confuse the model, OSPPF introduces Global

Average Pooling (GAP) and Global Max Pooling (GMP) into the

traditional SPPF structure and fuses them with local features. GAP

extracts overall semantic information to reduce false detections,

while GMP emphasizes prominent local regions, together forming a

more robust feature representation. Meanwhile, the Focaler-IoU

loss function improves the model’s ability to learn from hard

samples. By dynamically re-weighting the loss, it directs attention

to partially occluded or poorly illuminated samples, preventing

them from being overlooked during training and thereby enhancing

robustness under challenging conditions. Overall, these three

improvements address the issues of large scale variation, complex

background interference, and insufficient learning of hard samples,

resulting in a detection framework better suited for real field

applications. At the same time, the DP-MaizeTrack software

platform integrates these model improvements into an automated

pipeline for detection, segmentation, and statistical analysis,

ensuring that high-accuracy results can be directly utilized

without requiring complex programming, thereby increasing the

practicality and applicability of the system.

Despite these advances, certain limitations remain. While the

model performs strongly at the seedling level, leaf-level detection

shows considerably lower Precision, Recall, and mAP, revealing

limitations in fine-grained feature extraction. Leaf tips, in particular,

exhibit substantial morphological variability, slender and irregular

structures, and are more susceptible to background interference and

uneven illumination, which often lead to false detections and

missed detections. Another possible reason is insufficient effective

learning of leaf data during training. Although the dataset contains

many leaf annotations, the labeling focuses only on leaf tips, which

are variable in size, irregular in shape, and subject to strong

subjectivity. The lack of a unified annotation standard reduces

stability during feature learning and weakens the model’s

generalization ability for leaf detection. Although the MSFE and

OSPPF modules are effective for seedling detection, they do not

fully capture the fine-grained features required at the leaf level,

further exposing the limitations of the current method.

Correspondingly, the DP-MaizeTrack platform, which relies on

the model output for leaf-level visualization and statistical analysis,

is also constrained in accuracy and stability, highlighting the need

for further improvements to the leaf-detection module.

Future research should proceed along two main directions. On

the model side, increasing the diversity and volume of leaf

annotations, refining annotation strategies to reduce subjectivity

in scale and orientation, and adopting network architectures and

instance segmentation methods tailored (Yu et al., 2024) to fine-

grained detection are expected to improve accuracy and robustness

for leaf detection. On the software side, the DP-MaizeTrack

platform can be further expanded to incorporate additional

functions, such as dynamic growth monitoring based on temporal

UAV imagery or integration with agricultural IoT systems to enable

automated seedling assessment and intelligent decision support.

Through the dual advancement of model optimization and software

extension, the proposed framework has the potential to be widely
TABLE 3 Accuracy of maize seedling and leaf counting using the
analysis platform.

Growth
stage

Seedling counting
accuracy (%)

Leaf counting
accuracy (%)

2-leaf 98.1 85.0

4-leaf 97.6 82.0

6-leaf 97.1 79.0

8-leaf 96.4 76.0

Average 97.3 80.5
Seedling detection maintained consistently high accuracy (>96%) across growth stages, while
leaf counting accuracy declined from about 85% at the 2-leaf stage to 76% at the 8-leaf stage,
reflecting the increased challenges caused by occlusion and overlap. Some bolded indicators
indicate that in the improved model, these indicators are the best among all the comparison
models.
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applied to crop monitoring and precision agriculture management,

thereby contributing to the development of smart and efficient

agricultural systems.
5 Conclusions

This study develops DP-MaizeTrack, a UAV-based intelligent

detection and visualization platform for maize seedlings and leaves,

which integrates the improved detection model DP-YOLOv8 as its

core. The model incorporates a Multi-Scale Feature Enhancement

(MSFE) module and an Optimized Spatial Pyramid Pooling–Fast

(OSPPF) module into the backbone, together with a dynamic IoU-

compression loss function (Focaler-IoU). Experiments on a field-

collected dataset demonstrate that DP-YOLOv8 significantly

outperforms both the baseline YOLOv8n and the latest

YOLOv12, achieving 95.1% Precision, 91.5% Recall, and 94.9%

mAP50, thereby improving robustness under complex

backgrounds, uneven illumination, and plant occlusion. The DP-

MaizeTrack platform further integrates region segmentation,

statistical analysis, and visualization functions, enabling high-

accuracy detection results to be transformed into actionable

agricultural information, and providing practical support for

precision crop management and breeding research. Although

challenges remain in leaf-level detection, particularly for

extremely small targets such as leaf tips (with Precision, Recall,

and mAP50 of 63.8%, 51.9%, and 52.8%, respectively), the overall

findings confirm the effectiveness of DP-MaizeTrack in handling

multi-scale targets and cluttered field environments. This work lays

a solid foundation for subsequent leaf-age analysis, population-

structure modeling, and cross-crop extension, and highlights the

potential of UAV-based deep learning software platforms to

advance intelligent and data-driven agricultural monitoring.
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Helia, O., Matúsǒvá, B., Havlová, K., Hýsková, A., Lyčka, M., Beying, N., et al. (2025).
Chromosome engineering points to the cis-acting mechanism of chromosome arm-
specific telomere length setting and robustness of plant phenotype, chromatin structure
and gene expression. Plant journal: Cell Mol. Biol. 121, e70024.

Islam, M. S. B., Chowdhury, M. E. H., Zia, M. H., Kashem, S. B. A., Majid, M. E.,
Ansaruddin Kunju, A. K., et al. (2025). VisioDECT: a novel approach to drone detection
using CBAM-integrated YOLO and GELAN-E models. Neural Computing Appl., 1–24.

Jia, L., Wang, T., Chen, Y., Zang, Y., Li, X., Shi, H., et al. (2023). MobileNet-CA-
YOLO: an improved YOLOv7 based on the mobileNetV3 and attention mechanism for
rice pests and diseases detection. Agriculture 13. doi: 10.3390/agriculture13071285

Jia, Y., Fu, K., Lan, H., Wang, X., and Su, Z. (2024). Maize tassel detection with CA-
YOLO for UAV images in complex field environments. Comput. Electron. Agric.,
217108562. doi: 10.1016/j.compag.2023.108562

Jin, Y., Gan, H., Li, J., and Zhang, T. (2025). ResEff-YOLO: accuracy enhancement of
YOLOv8 through integration of resNet, SPPF, and efficientHead modules. Int. Core J.
Eng. 11, 23–34.

Joshi, A., and Diwakar, M. (2024). CGMA: An improved multi-attribute CIoU-
guided enabled pedestrian detection. Multimedia Tools Appl., 1–30. doi: 10.1007/
s11042-024-20335-3

Juntao, L., Xin, C., Changjiang, L., Teng, L., Xinyu, T., Zhenmiao, S., et al. (2023). A
detection approach for late-autumn shoots of litchi based on unmanned aerial vehicle
(UAV) remote sensing. Comput. Electron. Agric. 204.

Liu, B., Cui, W., and Tao, Y. (2025). DTSR-YOLO: traffic sign detection based on
improved YOLOv8. IAENG Int. J. Comput. Sci 52.

Liu, G., Jin, C., Ni, Y., Yang, T., and Liu, Z. (2025). UCIW-YOLO: Multi-category
and high-precision obstacle detection model for agricultural machinery in unstructured
farmland environments. Expert Syst. With Appl. 294, 128686. doi: 10.1016/
j.eswa.2025.128686

Liu, X., and Li, J. (2025). Defect detection of prefabricated building components with
integrated YOLOv5s-ghostNet. Concurrency Computation: Pract. Exp. 37, e70145.

Liu, S., Yang, Y., Cao, T., and Zhu, Y. (2024). A BiFPN-SECA detection network for
foreign objects on top of railway freight vehicles. Signal Image Video Process., 1–9.
doi: 10.1007/s11760-024-03527-0

Pu, H., Chen, X., Yang, Y., Tang, R., Luo, J., Wang, Y., et al. (2023). Tassel-YOLO: A
new high-precision and real-time method for maize tassel detection and counting based
on UAV aerial images. Drones 7, 492. doi: 10.3390/drones7080492
Frontiers in Plant Science 14
Qu, F., Li, H., Wang, P., Guo, S., Wang, L., and Li, X. (2025). Rice spike identification
and number prediction in different periods based on UAV imagery and improved
YOLOv8. Computers Materials Continua 84, 3911–3925. doi: 10.32604/
cmc.2025.063820

Ruyu, X., Yueyang, Z., Xiaoming, W., and Dong, L. (2023). Person re-identification
based on improved attention mechanism and global pooling method. J. Visual
Communication Image Representation 94.

Song, C., and Li, Y. (2025). A YOLOv8 algorithm for safety helmet wearing detection
in complex environment. Sci. Rep. 15, 24236.

Udeh, C. P., Chen, L., Du, S., Liu, Y., Li, M., andWu, M. (2025). Improved ShuffleNet
V2 network with attention for speech emotion recognition. Inf. Sci. 689, 121488.
doi: 10.1016/j.ins.2024.121488

Wang, X., Xu, W., Cui, Q., Yin, X., Hao, L., Zhang, H., et al. (2025). Detection of fan
blade defects based on improved YOLOv8n. Int. J. High Speed Electron. Syst.
doi: 10.1142/S012915642540378X

Wang, Y., Yang, X., Wang, H., Wang, H., Chen, Z., Yun, L., et al. (2025). RSWD-
YOLO: A walnut detection method based on UAV remote sensing images.
Horticulturae 11, 419. doi: 10.3390/horticulturae11040419

Wenming, C., Tianyuan, L., Qifan, L., and Zhiquan, H. (2024). PANet: pluralistic
attention network for few-shot image classification. Neural Process. Lett. 56.

Wu, Q., Huang, H., Song, D., and Zhou, J. (2025). YOLO-PGC: A tomato maturity
detection algorithm based on improved YOLOv11. Appl. Sci. 15, 5000. doi: 10.3390/
app15095000

Xia, Y., Shen, A., Che, T., Liu, W., Kang, J., and Tang, W. (2024). Early detection of
surface mildew in maize kernels using machine vision coupled with improved YOLOv5
deep learning model. Appl. Sci. 14, 10489. doi: 10.3390/app142210489

Xie, J., Liu, J., Chen, S., Gao, Q., Chen, Y., Wu, J., et al. (2025). Research on inferior
litchi fruit detection in orchards based on YOLOv8n-BLS. Comput. Electron. Agric. 237,
110736. doi: 10.1016/j.compag.2025.110736

Yan, Z., Hao, L., Yang, J., and Zhou, J. (2024). Real-time underwater fish detection
and recognition based on CBAM-YOLO network with lightweight design. J. Mar. Sci
Eng. 12, 1302. doi: 10.3390/jmse12081302

Yang, Z., Liao, Y., Chen, Z., Lin, Z., Huang, W., Liu, Y., et al. (2025). StomaYOLO: A
lightweight maize phenotypic stomatal cell detector based on multi-task training.
Plants 14, 2070. doi: 10.3390/plants14132070

Yu, H., Ling, X., Chen, Z., Bi, C., and Zhang, W. (2025). Detection of aging maize
seed vigor and calculation of germ growth speed using an improved YOLOv8-seg
network. Agriculture 15, 325. doi: 10.3390/agriculture15030325

Yu, D., andWang, F. (2025). Intergovernmental competition and agricultural science
and technology innovation efficiency: evidence from China agriculture. Agriculture, 15,
530. doi: 10.3390/agriculture15050530

Yu, Q., Zhang, M., Wang, L., Liu, X., Zhu, L., Liu, L., et al. (2024). Research on fine-
grained phenotypic analysis of temporal root systems - improved yoloV8seg applied for
fine-grained analysis of in situ root temporal phenotypes. Advanced Sci (Weinheim
Baden-Wurttemberg Germany) 12, e2408144.

Yue, Y., and Zhang, W. (2025). Detection and counting model of soybean at the
flowering and podding stage in the field based on improved YOLOv5. Agriculture 15,
528. doi: 10.3390/agriculture15050528

Zhang, X., Lu, L., Luo, H., and Wang, L. (2025). Improvement in pavement defect
scenarios using an improved YOLOv10 with ECA attention, refConv andWIoU.World
Electric Vehicle J. 16, 328. doi: 10.3390/wevj16060328

Zhou, M., Fu, H., Zhao, Y., Wang, Z., and Chen, J. (2025). A rock joint roughness
coefficient determination method incorporating the SE-Net attention mechanism and
CNN. Environ. Earth Sci. 84, 411. doi: 10.1007/s12665-025-12414-x

Zhou, Y., and Wei, Y. (2025). UAV-DETR: an enhanced RT-DETR architecture for
efficient small object detection in UAV imagery. Sensors 25, 4582. doi: 10.3390/
s25154582

Zhou, C., Zhou, C., Yao, L., Du, Y., Fang, X., Chen, Z., et al. (2025). An improved
YOLOv5s-based method for detecting rice leaves in the field. Front. Plant Sci 16,
1561018. doi: 10.3389/fpls.2025.1561018
frontiersin.org

https://doi.org/10.1038/s41598-025-14880-6
https://doi.org/10.1088/2631-8695/ade02c
https://doi.org/10.3390/rs15133275
https://doi.org/10.32604/cmc.2025.065152
https://doi.org/10.3390/app15116090
https://doi.org/10.3390/app15105518
https://doi.org/10.3390/agriculture13071285
https://doi.org/10.1016/j.compag.2023.108562
https://doi.org/10.1007/s11042-024-20335-3
https://doi.org/10.1007/s11042-024-20335-3
https://doi.org/10.1016/j.eswa.2025.128686
https://doi.org/10.1016/j.eswa.2025.128686
https://doi.org/10.1007/s11760-024-03527-0
https://doi.org/10.3390/drones7080492
https://doi.org/10.32604/cmc.2025.063820
https://doi.org/10.32604/cmc.2025.063820
https://doi.org/10.1016/j.ins.2024.121488
https://doi.org/10.1142/S012915642540378X
https://doi.org/10.3390/horticulturae11040419
https://doi.org/10.3390/app15095000
https://doi.org/10.3390/app15095000
https://doi.org/10.3390/app142210489
https://doi.org/10.1016/j.compag.2025.110736
https://doi.org/10.3390/jmse12081302
https://doi.org/10.3390/plants14132070
https://doi.org/10.3390/agriculture15030325
https://doi.org/10.3390/agriculture15050530
https://doi.org/10.3390/agriculture15050528
https://doi.org/10.3390/wevj16060328
https://doi.org/10.1007/s12665-025-12414-x
https://doi.org/10.3390/s25154582
https://doi.org/10.3390/s25154582
https://doi.org/10.3389/fpls.2025.1561018
https://doi.org/10.3389/fpls.2025.1698847
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	DP-MaizeTrack: a software for tracking the number of maize plants and leaves information from UAV image
	1 Introduction
	2 Materials and methods
	2.1 Data collection and dataset construction
	2.2 Model improvements
	2.2.1 DP-YOLOv8 model design
	2.2.2 MSFE module
	2.2.3 OSPPF module
	2.2.4 Loss function optimization strategy
	2.2.5 Model training and experimental parameter setting
	2.2.6 Model performance evaluation indicators

	2.3 Software design

	3 Results
	3.1 Performance comparison experiments of mainstream object detection models
	3.2 Ablation analysis of the model improvement module
	3.3 Special experiment on corn leaf detection
	3.4 Development and application of software platform for corn seedling plant and leaf detection

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


