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Introduction: The yield of ginkgo biloba leaves serves as a critical indicator for

assessing their growth and health status. However, current assessment methods

primarily rely on manual harvesting and weighing, which are time-consuming,

labor-intensive, inefficient, and costly.

Methods: To address these limitations, this study designed an algorithm-based

yield estimation approach: by employing airborne hyperspectral imaging

technology at a research base to replace traditional manual measurements, a

canopy hyperspectral dataset and Region of Interest Pixel (ROP) sets were

constructed. Five preprocessing methods, Multiplicative Scatter Correction

(MSC), Standard Normal Variate (SNV), Savitzky-Golay (SG), First Derivative (FD),

and Standard Scaling (SS), were employed to develop Partial Least Squares

Regression (PLSR) models, identifying the optimal hyperspectral data

preprocessing approach. The optimal preprocessing model was subsequently

integrated with Particle Swarm Optimization (PSO), Successive Projections

Algorithm (SPA), Principal Component Analysis (PCA), Least Absolute Shrinkage

and Selection Operator (LASSO), Competitive Adaptive Reweighted Sampling

(CARS) and Particle Swarm Attention Mechanism Algorithm (PSAMA) for feature

band selection. Traditional spectral vegetation indices were refined through

random forest stepwise regression and spectral index correlation analysis,

ultimately determining Soil-Adjusted Vegetation Index (SAVI), Modified Soil-

Adjusted Vegetation Index (MSAVI), Normalized Difference Red Edge Index

(NDRE), Structure Insensitive Pigment Index (SIPI) as the final indices. The

selected spectral bands and vegetation indices were then incorporated with

PLSR, Random Forest (RF), K-Nearest Neighbors Regression (KNNR), Long Short-

Term Memory (LSTM), Support Vector Regression (SVR), Bidirectional LSTM

(BiLSTM), and BiLSTM- Grid SearchCV (BiLSTM-GS) machine learning models

for yield prediction.

Results: Results demonstrated that the SNV-PLSR model achieved superior

performance (R2
p = 0.7831, RMSEP = 0.0325). The optimal SNV- (SAVI - MSAVI

- NDRE - SIPI - ROP) - (BiLSTM-GS) model, combining PSAMA-selected feature

bands with vegetation index and ROP, yielded outstanding prediction accuracy

(R2
p = 0.8795, RMSEP= 0.1021).
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Discussion: This airborne hyperspectral canopy-based estimation technology

provides an accurate, non-destructive solution for monitoring ginkgo leaf yield in

field cultivation.
KEYWORDS

hyperspectral imaging, analysis, spectral index, ginkgo biloba leaves, non-
destructive solution
1 Introduction

As an economically important medicinal plant, Ginkgo biloba is

cultivated worldwide for its leaves, which serve as the primary raw

material for pharmaceutical and health products (Liu et al., 2022; Lu

et al., 2024). According to modern pharmacological research,

Ginkgo biloba has a promoting effect on protecting nerve cells,

anti-oxidation and scavenging free radicals at the body (Vitor et al.,

2023; Sen et al., 2025). In the growth process of Ginkgo biloba, its

yield plays a vital role, which is one of the important factors that

determine the growth of Ginkgo biloba (Li et al., 2024). Traditional

ginkgo leaf yield test methods, such as scale weighing method, are

usually only suitable for small plot experiments, and there are

problems such as time-consuming, laborious operation, and

destruction of plant growth. To address the above problems,

researchers have proposed a new detection method, that is,

airborne hyperspectral canopy ginkgo leaf image to predict

ginkgo leaf yield. This method not only saves time, effort and

protects plant growth, but also is suitable for the detection of large-

scale plots.

Research on the detection of plant yield based on hyperspectral

technology has gradually increased. Different plant yield estimation

models are established mainly through hyperspectral image data

preprocessing (Jin et al., 2023), feature band selection, and machine

learning model algorithms (Li et al., 2025; Yan et al., 2025). For

example, Qin et al. (2025) used the ASD hyperspectral sensor to

collect the hyperspectral yield data of apple tree canopy in the whole

growth stage of spring and autumn. First, the convolution Savitzky-

Golay (SG) was used to preprocess the hyperspectral data. Second,

the sensitive bands in hyperspectral data were screened by Genetic

Algorithm (GA) and Successive Projections Algorithm (SPA).

Finally, the selected bands were combined with machine learning

models such as PLSR, RF, and XGBoost to predict the hyperspectral

yield data of apple trees collected in spring and autumn. The results

showed that the data collected in autumn performed better in

prediction performance. The best model combination was SG-

(VISSA-CARS) -RF, with R2 of 0.78 and RMSE of 6.03 in the

validation set.

Burglewski et al. (2024) used a hyperspectral imager to collect

spectral data of corn straw, aiming to estimate the yield of corn as

silage. In the study, seven spectral bands including red edge bands
02
and multiple near-infrared bands were used to predict the yield

combined with the Support Vector Regression (SVR) model. The

results show that the method can achieve more than 90% prediction

accuracies (Mao et al., 2024). predicted wheat yield and yield loss

under water and nitrogen stress using hyperspectral remote sensing

data and Partial Least Squares Regression (PLSR) models. In this

study, researchers paired canopy hyperspectral data from the same

location, at the same growth stage but under different stress

conditions with yield data to form a data combination for

verifying the performance of the model. The results showed that

compared with the traditional PLSR model, the MRE-PLSR model

significantly improved the prediction accuracy, and the Pearson

correlation coefficient increased by an average of 14.5%.

Ceriani et al. (2025) integrated hyperspectral and LiDAR space-

borne data to estimate forest volume and biomass in mountainous

regions. By combining LiDAR-derived metrics (e.g., canopy height)

with hyperspectral indices, they used machine learning models like

Random Forest (RF) and Support Vector Regression (SVR) to

predict aboveground biomass and forest volume. The results

showed that the fusion of both datasets improved accuracy, with

an R2 value above 0.85 and a 20% reduction in root mean square

error. This highlights the potential of using integrated remote

sensing data for large-scale forest assessments. Miettinen et al.

(2024) utilized hyperspectral imaging to reveal the spatiotemporal

dynamics of chlorophyll and carotenoids in Scots pine under water

stress. Among the multiple machine learning models evaluated, the

Random Forest Regression (RFR) model demonstrated the best

predictive performance, with predictions most closely aligned with

measured values and the lowest Root Mean Square Error (RMSE).

Tougas et al. (2025)captured the weak spectral features of the early

stage of beech tree disease by hyperspectral imaging technology, and

systematically evaluated the classification performance of various

machine learning models. The results showed that the random

forest (RF) model performed best in this task, with a classification

accuracy of 85%, which was significantly ahead of other models,

confirming the effectiveness and application potential of

hyperspectral technology combined with RF model in early

diagnosis of forest diseases.

While previous studies have extensively applied hyperspectral

remote sensing to crop monitoring, research on ginkgo leaf yield

prediction by integrating hyperspectral technology with machine
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learning remains relatively scarce. Building on existing

methodologies, this study employs airborne hyperspectral imaging

and electronic weighing for efficient and non-destructive data

acquisition of ginkgo leaf spectra and yield. The proposed

approach is operationally straightforward, time-efficient, and

suitable for field applications. The main innovations of this work

are summarized as follows:
Fron
1. To achieve the efficient screening of hyperspectral features,

an attention mechanism model is integrated into the

Particle Swarm Optimization (PSO) algorithm, leading to

the construction of the PSAMA optimization algorithm.

2. The integration of optimally selected feature bands, refined

spectral vegetation indices, and ginkgo canopy Region of

Interest Pixel (ROP) sets can significantly enhance both the

accuracy and reliability of yield prediction models.

3. A novel SNV- (SAVI - MSAVI – NDRE - SIPI - ROP) -

(BiLSTM-GS) prediction model is proposed, which

achieves excellent detection performance through

innovative architecture design and optimization training.
2 Materials and methods

The overall workflow of this study is illustrated in Figure 1, which

outlines the complete process of hyperspectral data acquisition,

preprocessing, feature extraction, and model construction for

Ginkgo biloba leaf yield estimation. This schematic provides an
tiers in Plant Science 03
overview of how canopy hyperspectral reflectance, ginkgo leaf yield,

and the prediction model are interrelated.
2.1 Experimental site and period

Hyperspectral remote sensing images of Ginkgo biloba canopy

were acquired for yield acquisition. The experimental site was Xuzhou

Changrong Agricultural Development Co., Ltd. (34°8 ‘ 42’N, 117°2

‘45’E). A total of 10,000 Ginkgo biloba trees were planted in the

scientific research base, covering a plot size of 0.8 × 4 m2. The

experimental involved three-year-old ginkgo trees cultivated at the

scientific research base. The trees were spaced 1 m between rows and

0.3 m between plants. Figure 2 shows the geographical location of the

experimental site and the contour characteristics of the ginkgo

tree canopy.
2.2 Hyperspectral remote sensing image
acquisition of canopy ginkgo leaves

In this study, ginkgo leaves in the experimental site were

selected as the research object, and the remote sensing data of

ginkgo leaf canopy were obtained by using an airborne

hyperspectral imaging system (GaiaSky-mini3-VN, Double-profit

Hepu Technology Co., Ltd., China). The hyperspectral imaging

system used in this study has a spectral response range of 400 ~

1000 nm, equipped with 224 spectral channels and 1024 spatial

channels, which can achieve a spatial resolution of 1024 × 1003
frontiersin.or
FIGURE 1

The overall flow chart of the experiment. The schematic diagram illustrates the relationship between the obtained hyperspectral canopy ginkgo leaf
reflectance, canopy ginkgo leaf yield and the prediction model.
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pixels and a spectral resolution of 5 nm. The lens carried by the

imaging system has an optical resolution of 16 nm, and the overall

power consumption of the system is 45 W. The UAV was used as

the data acquisition platform, and the flight height was fixed at 50 m

(DJI M350, DJI Innovation Technology Co., Ltd., China). During

data acquisition, the drone maintains a hover for 10 s, and

continuous image acquisition is performed through the built-in

push-scanning mode of the hyperspectral imager to ensure spatial

continuity and spectral consistency of the data. The hyperspectral

canopy images of ginkgo leaves were acquired on July 19,2024 and

September 15,2024. The weather was sunny, with temperatures of

30 °C and 24 °C, relative humidities of 75% and 68%, and wind

speeds of 8.6 km/h and 6.4 km/h, respectively.
2.3 Field measurement of ginkgo leaf yield

From July 19 to 26, 2024 and from September 15 to 21, 2024, the

laboratory team successfully completed the acquisition of

hyperspectral images of ginkgo tree canopy leaves at the research

base. Upon concluding the image collection, the team grouped the

leaves from every twenty ginkgo trees into one sample unit, obtaining

a total of 200 sample datasets. Subsequently, an electronic balance

(manufactured by Kunshan Toptech Electronic Co., Ltd., featuring

functions such as counting, pricing, and weighing) was used to
Frontiers in Plant Science 04
precisely weigh the leaves from all 200 samples, and the

corresponding weight data was systematically recorded.
2.4 Hyperspectral image correction

Hyperspectral imagery, comprising hundreds of contiguous

spectral bands, is inherently susceptible to degradation from

environmental conditions (Yue et al., 2024), atmospheric effects

(Andrei et al., 2023), and sensor-related errors (Settembre et al.,

2025). To mitigate these impacts, a series of radiometric and

atmospheric corrections are essential (Black et al., 2024). For

instance, a fundamental step entails converting raw digital

numbers (DN) to surface reflectance using methods such as the

Empirical Line Method (ELM), which can be represented by the

linear transformation in Equation 1:

r = G� DN + O (1)

Where r is the derived surface reflectance, G is the gain

coefficient, DN is the raw digital number from the sensor, and O

is the offset coefficient.

These correction procedures significantly enhance the data’s

radiometric accuracy and spectral fidelity, thereby establishing a

reliable foundation for subsequent quantitative analysis and image

processing (Gila et al., 2024).
FIGURE 2

Ginkgo biloba scientific research base and ginkgo leaf collection method.
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https://doi.org/10.3389/fpls.2025.1698830
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zuo et al. 10.3389/fpls.2025.1698830
2.5 ROI extraction of hyperspectral image

The ROI (Region of Interest) tool in ENVI 5.3 was used to

extract the target regions from the hyperspectral canopy images of

Ginkgo biloba, thereby obtaining the ROP sets. By using the average

value method to aggregate the spectral data of the target area, a

high-quality data set representing the spectral characteristics of

ginkgo canopy was constructed. This method effectively eliminates

the interference of background noise and abnormal pixels,

significantly improves the reliability and representativeness of the

data, and lays a solid data foundation for subsequent spectral

feature analysis and model construction (Wang X, et al., 2024).
2.6 Hyperspectral data preprocessing

Hyperspectral images are often influenced by environmental

and instrumental factors such as temperature, humidity, light

intensity, and illumination angle, which can introduce noise into

the data. To improve data quality, a series of preprocessing steps

were applied, including Multiplicative Scatter Correction (MSC)

(Xu et al., 2024), Savitzky–Golay smoothing (SG) (Bing et al., 2018),

Standard Normal Variate (SNV) (Jong et al., 2024), First Derivative

(FD) (Xunlan et al., 2023), and Standard Scaling (SS)

(Faehn et al., 2024).
2.7 Construction method of spectral
vegetation index

Among the alternative spectral indices, those with a high

correlation to ginkgo leaves and a weak intercorrelation were

selected. Based on the spectral indices used in relevant references,

seven commonly used spectral indices are chosen as alternative

indices, and their respective calculation formulas are shown in

Table 1. The Normalized Difference Vegetation Index (NDVI),

obtained by the ratio of the near-infrared to the red band, reflects

the vegetation coverage and Leaf Area Index (LAI), and is often used

to assess the health status and biomass of vegetation (Wang et al.,

2024). The Red Edge Chlorophyll Index (ReCI), taking advantage of

the sensitivity of the red edge band to chlorophyll content, directly

reflects the chlorophyll concentration in leaves (Xueyu et al., 2021).

The NDRE, calculated as the ratio of the near-infrared to the red edge

band, is more sensitive to changes in chlorophyll content, especially

in the later stages of vegetation growth. The Green Normalized

Difference Vegetation Index (GNDVI), which replaces the red band

with the green band, is more sensitive to changes in chlorophyll

content (Ge et al., 2019). The SAVI, by introducing a soil adjustment

factor, reduces the influence of the soil background on the vegetation

index and more accurately reflects the vegetation coverage (Tooley

et al., 2024). The SIPI is insensitive to changes in leaf structure and

mainly reflects the ratio of carotenoids to chlorophyll (Srivastava

et al., 2020). The MSAVI further optimizes the impact of the soil

background and is applicable to areas with low vegetation coverage
Frontiers in Plant Science 05
(Shezhou et al., 2015). These seven spectral indices have a high

correlation in the prediction of ginkgo leaf yield and a relatively weak

correlation with each other. By covering key factors such as leaf area

and chlorophyll content, they can effectively evaluate the health

status, photosynthetic efficiency, and biomass of ginkgo leaves,

providing a scientific basis for yield prediction.
2.8 Characteristic band screening

To effectively reduce the complexity and redundancy of

hyperspectral data, this study employs feature band selection

methods to enhance data processing efficiency and improve the

accuracy and reliability of yield prediction models by identifying

key bands most relevant to ginkgo leaf yield. The hyperspectral

dataset was first divided into training, validation, and test sets in a

70%:15%:15% ratio to ensure the independence of model

evaluation. Subsequently, feature band selection was performed

using Particle Swarm Optimization (PSO) (Wei et al., 2024),

Successive Projections Algorithm (SPA) (Souza et al., 2025),

Principal Component Analysis (PCA) (Matinfar et al., 2025),

Least Absolute Shrinkage and Selection Operator (LASSO) (

(Stevens et al., 2025), Competitive Adaptive Reweighted Sampling

(CARS) (Shi et al., 2024), Spectral Index (SI) (Wang et al., 2024),

and the Particle Swarm Attention Mechanism Algorithm

(PSAMA). The working principles of all algorithms will be

systematically elaborated below, with particular emphasis on PSO

and its improved version, PSAMA.

The core idea of PSO is to explore and find the optimal solution

by simulating a group of particles in the search space. Each particle

represents a possible solution. Through ‘flying’ in the search space,

the particle swarm gradually adjusts its position by using its own

historical experience and group collaboration information, and

finally converges to the global optimal solution (Ren et al., 2024),

as shown in Equations 2 and 3.

vdi = w ∗ vd−1i + c1 ∗ r1 ∗ pbestdi − xdi
� �

+ c2 ∗ r2 ∗ gbestdi − xdi
� �

(2)

xd+1i = xdi + vdi (3)

Where c1 is individual learning factor, c2  social learning factor,

w velocity inertia weight, vdi the speed of the d th iteration of the i th

particle, xdi the position of the d th iteration of the i th particle, pb

estdi  the i th particle iterates to the best position of the d th iteration,

gbestdi all particles iterate to the best position by d times.

PSAMA mainly introduces the Attention Mechanism into the

PSO algorithm, which dynamically adjusts the attention degree of

information by adjusting the position of particles. The core idea is

to calculate the weight coefficient of each key ‘s corresponding value

(Value) according to the correlation between Query and Key, and

then obtain the final output by weighted summation, that is, the

final Attention values. In essence, the Attention mechanism is the

weighted summation of the Value values of the elements in the

Source, and Query and Key are used to calculate the weight
frontiersin.org
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coefficient of the corresponding value (Lang et al., 2024). Its

working principle is shown in Figure 3 and Equation 4.

According to the principle of attention mechanism, the

calculation formula is as follows:

Attention(Query, Source) =o
Lx

i=1
Similarity(Query,Keyi) ∗Valuei (4)

Where Lx = ∥ Source ∥ denotes the length of Source.
Frontiers in Plant Science 06
2.9 Machine learning and model validation

The optimal model was selected from seven machine learning

regression methods, all employing Grid Search Cross-Validation

(GridSearchCV) for hyperparameter optimization. The methods

and their respective tuned hyperparameters include: PLSR (Sun

et al., 2024) with n_components; RF (Sun et al., 2024) with

n_estimators; KNNR (Song et al., 2025) with n_neighbors; LSTM

(Satyabrata et al., 2024) with learning rate; SVR (Tian et al., 2025)
TABLE 1 Operation formula of spectral vegetation index.

Spectral Index Computing Formula

NDVI (NIR801 – RED682)/(NIR801 + RED682)

ReCI (NIR801/RED701) -1

NDRE (NIR801 – RED EDGE720)/(NIR801 + RED EDGE720)

GNDVI (NIR801 – GREEN561)/(NIR801 + GREEN561)

SAVI ((NIR820 – RED680)/(NIR820 + RED680 + L)) * (1 + L)

SIPI (NIR820 – BLUE462)/(NIR820 – RED712)

MSAVI 0.5[(2NIR801 + 1 – SQRT((2NIR801 + 1)2 – 8 (NIR801– RED682))]
Where because ginkgo biloba belongs to the low green vegetation area, L = 1.
TABLE 2 Comparative analysis of different pretreatment methods and the original spectral PLSR model.

Different regression
models

Pretreatment
method

Calibration set Prediction set

R2
C RMSEc R2

P RMSEp

PLSR

Original 0.9217 0.0312 0.7658 0.0218

MSC 0.9345 0.0217 0.7532 0.0445

SNV 0.9624 0.0232 0.7831 0.0325

SG 0.9021 0.0147 0.6957 0.0544

FD 0.8912 0.0322 0.6621 0.0467

SS 0.8845 0.0455 0.6327 0.0171
TABLE 3 Feature bands selected by different algorithms.

Algorithm of feature
band screening

Filtered bands/nm Number of bands

Particle Swarm Optimization
(PSO)

408,438,446,535,685,691,701,
728,892,951

10

Particle Swarm Attention
Mechanism Algorithm (PSAMA)

440,446,473,491,545,551,645,666,672,704,723,
734,766,800,884,925,930,962,970,989

20

Successive Projections Algorithm
(SPA)

400,403,680,730,760,920,930,950,980,1000 10

Principal Component Analysis
(PCA)

400,403,406,408,409,411,413,416,419,421,424,426,429,432,434,437,440,442,445,448,450 21

Least Absolute Shrinkage and
Selection Operator (LASSO)

408,411,424,432,440,446,456,462,465,470,473,491,500,766,906,933,946,957,970,973 20

Competitive Adaptive Reweighted
Sampling (CARS)

408,416,422,443,454,470,473,481,502,540,607,610,736,739,900,903,906,914,916,919,922,925,956 23
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with regularization parameter C; BiLSTM (Sun X, et al., 2024) with

learning rate; and BiLSTM-GS, which simultaneously optimizes

both learning_rate and hidden_layer sizes.

The BiLSTM-GS model integrates the BiLSTM architecture

with the GridSearchCV algorithm (Liang et al., 2024). While the

standard BiLSTM model only tunes the learning rate, BiLSTM-GS

introduces an additional hyperparameter—hidden layer size—to

achieve more comprehensive optimization. As an enhanced LSTM

variant, BiLSTM processes sequences bidirectionally (forward and

backward), enabling more effective capture of contextual

dependencies (Zhang et al., 2025). GridSearchCV automates

hyperparameter selection through systematic cross-validation,

significantly improving model performance. The architecture of

the BiLSTM-GS model is illustrated in Figure 4.

Building upon the bidirectional processing capability of

BiLSTM, this study leverages its strength in modeling the

continuous spectral-temporal sequences of ginkgo leaves. The

network architecture enables integrated learning of both forward

and backward dependencies within the spectral data, effectively

capturing the cumulative physiological changes during leaf growth.

This approach significantly enhances the characterization of long-

term developmental trends, thereby improving the robustness of

yield prediction.

During model configuration, particular attention was given to

the interaction between hidden layer dimensionality and learning

rate (Nikzad et al., 2025). The hidden layer structure governs the

model’s capacity to represent complex spectral patterns, while the

learning rate regulates the convergence behavior during training.

Proper coordination between these two parameters ensures stable
Frontiers in Plant Science 07
gradient propagation while preventing either underfitting due to

insufficient model expressivity or overfitting caused by excessive

parameterization, ultimately leading to optimized generalization

performance (Wan et al., 2024).

The determination coefficient R2 and the root mean square

error RMSE are used as the evaluation indexes of the regression

model. The larger the R2 of the model, the smaller the RMSE, and

the better the training effect of the model (Long et al., 2024), where

R2
c , RMSEc is the results of the training set, and R2

p, RMSEp is the

results of the calibration set. The calculation formulas are shown in

Equations 5 and 6.

R2 = 1 −o
N
i=1(yi − byi)2

oN
i=1(yi − y)2

(5)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(yi − byi)2

s
(6)

Where N is the number of samples, yi   is the actual value of the i

th sample, ŷ i is the actual value of the ith sample, and �y is the actual

mean value of all samples.
2.10 Experimental platform and computing
environment

All experiments were conducted on a workstation equipped

with an Intel Core i7-12700H CPU and 32 GB of RAM. The entire

training and hyperparameter tuning process for all models was
FIGURE 3

PSAMA working principle diagram. Where Source b is composed of a series of <Key, Value> key-value pairs, Query is a given Target element, Key is
the Key value of the element in Source, Value is the value of the element in Source, Similarity or correlation between Query and key, the weight
coefficient is Similarity (Query, Keyi), Attention Value is a weighted sum of Value values.
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performed on this CPU platform without GPU acceleration. The

software environment utilized PyCharm 2023.2.4 (Community

Edition) with Python 3.9, incorporating key libraries such as

PyTorch (1.8), scikit-learn (1.2.2), and TensorFlow (2.10.0). The

complete workflow required approximately 10 minutes on the

specified hardware, demonstrating the computational efficiency of

the proposed methodology on standard computing resources.
3 Results and discussion

3.1 Spectral pretreatment

Five spectral data preprocessing methods (MSC, SNV, SG, FD,

and SS) and PLSR were used to establish regression models for leaf

yield of different Ginkgo trees. The prediction results of each model

are shown in Table 2. The R2
c and R

2
P of different models were higher

than the original spectrum, which can be used to detect the yield of

ginkgo leaves. Among these models, the SNV model exhibited the

highest accuracy with R2
P   = 0.7831 and RMSEp = 0.0325. Therefore,

the SNV pretreatment model was used as the basis for subsequent

data processing. The hyperspectral original reflectance and the best

pretreatment reflectance are shown in Figure 5. The weak

absorption peak near 820 nm was related to the stretching

vibration of the N-H triplet state (Chitra et al., 2022). A smaller

absorption peak appears near 930 nm, mainly due to the dual-

frequency absorption of O-H (Chitra et al., 2022). The peaks and

troughs near 560 nm and 690 nm were caused by chlorophyll and

carotenoids at ginkgo leaves (Marchese et al., 2024). These spectral

characteristics further confirmed the intrinsic relationship between

the chemical composition of Ginkgo biloba leaves and their spectral
Frontiers in Plant Science 08
information, providing strong support for further understanding

the spectral characteristics of Ginkgo biloba leaves.
3.2 Spectral vegetation index selection

In this study, the random forest stepwise regression method was

used to select the vegetation index with less redundant information

between each other to construct the vegetation index combination

for ginkgo leaf yield estimation. Figure 6a is the ranking of the

importance of 7 vegetation index features. It can be seen from the

graph that the ReCI vegetation index exhibited the highest

importance of 0.3367, followed by the NDVI vegetation index,

and the vegetation index with the smallest feature importance is

GNDVI. Figure 6b depicts five main vegetation indices selected by

random forest stepwise regression method, which are ReCI, NDVI,

GNDVI, SAVI and MSAI.

The correlation analysis results of Figure 7 show that GNDVI

and NDRE were highly positively correlated (r = 0.93), indicating

that they have similar spectral response characteristics and can be

used interchangeably to reduce data redundancy. However, GNDVI

and SIPI (r = -0.90), SAVI and MSAVI (r = -0.98), and SIPI and

NDRE (r = -0.99) showed significant negative correlations. These

index combinations may represent different vegetation

physiological characteristics or environmental stress responses.

Therefore, SAVI, MSAVI, NDRE and SIPI were finally selected as

the representative vegetation index combination, which can not

only fully reflect the vegetation status, but also effectively avoid

information redundancy.

Based on the above analysis, the spectral indices suitable for

model input include SAVI, MSAVI, NDRE and SIPI. The
IGURE 4F

(BiLSTM-GS) working principle diagram.
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combination of these indices has low redundancy information,

which can effectively reflect the characteristic information of

vegetation from multiple dimensions, and provides a more

comprehensive and accurate input variable for the estimation of

ginkgo leaf yield.
3.3 Feature band extraction

In this study, a variety of feature band screening methods were

used to analyze the spectral data preprocessed by SNV. Among

them PSO, SPA, PSAMA, LASSO and CARS were used to filter the

characteristic bands (10,10,20,20 and 23, respectively), which were

evenly distributed in the range of 400 ~ 1000 nm, effectively

reducing redundant information and retaining the most

representative spectral features. In contrast, the 21 characteristic
Frontiers in Plant Science 09
bands screened by PCA were mainly concentrated in the short-wave

region of 400 ~ 450 nm, showing unique wavelength selection

characteristics. The results are shown in Table 3. Different feature

selection methods have both commonalities in band distribution

(most methods select wide spectral range features) and their own

characteristics (PCA focusing on shortwave regions), which

provides a variety of feature selection schemes for subsequent

spectral analysis.
3.4 Prediction results using different
machine learning and feature band
screening methods

This study utilized full-band spectra, vegetation indices, and

feature-selected spectral bands as input variables for a suite of
FIGURE 5

(a) shows the original hyperspectral reflectance of ginkgo canopy leaves, and (b) shows the hyperspectral reflectance after optimal pretreatment.
FIGURE 6

(a) shows the vegetation indices screened based on importance ranking, and (b) shows the reasonable vegetation indices selected by the stepwise
regression method.
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machine learning and deep learning models. Specifically, A1

represents the complete set of 224 bands, while A2 to A8

correspond to features selected by vegetation indices, Particle

Swarm Optimization (PSO), PSO with an attention mechanism,

Successive Projections Algorithm (SPA), Principal Component

Analysis (PCA), Least Absolute Shrinkage and Selection Operator

(LASSO), and Competitive Adaptive Reweighted Sampling (CARS),

respectively. To enhance estimation accuracy, A2 (spectral indices)

and the Region of Interest Pixel set (denoted as B) were systematically

combined with A1 and the bands from A3 to A8. Through systematic

pairing with models including PLSR, RF, KNNR, LSTM, SVR,

BiLSTM, and BiLSTM-GS, a total of 168 distinct data-model

combinations were generated. All model hyperparameters were

optimized via grid search cross-validation, with the final

configurations established as follows: PLSR (n_components=10),

RF (n_estimators=200), KNNR (n_neighbors=10), SVR (C = 10),

LSTM (learning_rate=0.01), BiLSTM (learning_rate=0.01), and

BiLSTM-GS (learning_rate=0.01, hidden_layer_sizes=50).

As shown in Table 4, when A4A2B was used as the input

variable, the BiLSTM-GS model achieved the highest prediction

accuracy (R2
P   = 0. 8795, RMSEp = 0.1021). To visually illustrate the

optimal prediction yield models corresponding to the combination

of A1 ~ A8 bands and spectral vegetation indices, eight regression

diagrams were used, as shown in Figure 8.

To obtain the best accuracy of the model (BiLSTM-GS), the grid

SearchCV algorithm was used to optimize the hyper-parameters of

the BiLSTM model, and the hyper-parameter learning rate and the

size of the hidden layer was used as input. The (BiLSTM-GS) model

determination coefficient (R2
P) is the output to draw the heat map.

The results are shown in Figure 9. The deeper the red color, the

higher the determination coefficient (R2
P) corresponding to the
Frontiers in Plant Science 10
(BiLSTM-GS) model, and the better the fitting performance.

When the (BiLSTM-GS) model obtained the best R2
P = 0. 8795,

the corresponding optimal learning rate and hidden layer size were

0.01 and 50, respectively.
3.5 Model generalization ability validation

To validate the model’s generalization performance, an external

public dataset, LOPEX1993, was employed. LOPEX1993 is an open

spectral data set focusing on vegetation research, with rich spectral

information of vegetation. In this study, PLSR, RF, KNNR, SVR,

BiLSTM and BiLSTM-GS were used to detect the chemical

component content of the data set. Table 5 shows that the

(BiLSTM-GS) model achieved the highest detection accuracy.

Through the above comparative analysis, it can be found that

BiLSTM has the following advantages over models such as PLSR,

RF, KNNR and SVR. First, as the only model that can capture

sequence context information in both directions, BiLSTM does not

need to rely on manual design features (such as RF requires feature

engineering, KNNR needs to define distance metrics). Second, its

unique forgetting gate, input gate and output gate mechanism can

dynamically adjust the information flow and effectively solve the

long-term dependence problem (better than PLSR). In addition, in

sequence data tasks such as natural language processing, BiLSTM

performs significantly better than traditional methods (such as

SVR). The hyperparameters optimized by Grid SearchCV further

improve the performance of the model, so that the trained model

can achieve higher prediction accuracy. Therefore, the prediction

effect of the (BiLSTM-GS) model on the LOPEX1993 public dataset

is significantly better than other comparison models.
FIGURE 7

Autocorrelation analysis of vegetation index.
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3.6 Discussion

This study systematically developed and validated a

hyperspectral inversion model for ginkgo leaf yield prediction by

integrating advanced preprocessing, feature selection, and machine

learning techniques. The optimal SNV- (SAVI - MSAVI – NDRE -

SIPI - ROP) - (BiLSTM-GS) model achieved superior performance
Frontiers in Plant Science 11
(R2
P = 0.8795), demonstrating the significant potential of airborne

hyperspectral imaging for non-destructive yield assessment in

economic forestry.

Our findings reveal that SNV preprocessing yielded optimal

PLSR performance (R2
P   = 0.7831), aligning with regarding its

robustness in mitigating scattering effects (Jin et al., 2023). The

proposed PSAMA algorithm effectively identified 20 key bands
FIGURE 8

(a–h) represent the optimal yield prediction models corresponding to the combinations of the selected spectral bands (A1 to A8), the filtered
vegetation indices, and the ROP (Region of Interest Pixels).
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FIGURE 9

BILSTM hyperparameter optimization. The deeper the red color, the better the fitting effect and the better the prediction performance.
TABLE 4 Ginkgo biloba leaf chlorophyll content prediction model results.

Input variable Modeling method R2
C RMSEc R2

P RMSEp

A1

PLSR 0.9324 0.0221 0.7831 0.0318

RF 0.9421 0.0181 0.7902 0.0221

KNNR 0.8234 0.0003 0.6911 0.0005

LSTM 0.2443 0.0012 0.1846 0.0011

SVR 0.9669 0.0001 0.8053 0.0001

BiLSTM 0.8824 0.0112 0.7621 0.0332

(BiLSTM-GS) 0.9354 0.0181 0.7541 0.0423

A1B

PLSR 0.9256 0.0021 0.7654 0.0211

RF 0.9624 0.0079 0.6652 0.0213

KNNR 0.8121 0.0003 0.6832 0.0005

LSTM 0.2425 0.0013 0.1845 0.0011

SVR 0.9534 0.0001 0.7821 0.0001

BiLSTM 0.9345 0.1071 0.7956 0.1456

(BiLSTM-GS) 0.9324 0.1545 0.7733 0.1517

A1A2

PLSR 0.9347 0.0079 0.7315 0.0119

RF 0.9417 0.0077 0.6012 0.2181

KNNR 0.8323 0.0003 0.7012 0.0005

LSTM 0.3356 0.0012 0.2956 0.0016

SVR 0.9521 0.0001 0.6984 0.0001

BiLSTM 0.9447 0.1145 0.7322 0.1458

(Continued)
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TABLE 4 Continued

Input variable Modeling method R2
C RMSEc R2

P RMSEp

(BiLSTM-GS) 0.9347 0.1046 0.8256 0.1704

A1A2B

PLSR 0.9627 0.0078 0.7258 0.0124

RF 0.9356 0.0076 0.6145 0.0256

KNNR 0.8458 0.0003 0.7815 0.0005

LSTM 0.3357 0.0012 0.2856 0.0016

SVR 0.9625 0.0001 0.6856 0.0001

BiLSTM 0.9432 0.1025 0.7232 0.0225

(BiLSTM-GS) 0.9458 0.1033 0.7811 0.1625

A2

PLSR 0.9021 0.0201 0.4350 0.0282

RF 0.9570 0.0080 0.6287 0.0231

KNNR 0.8325 0.0003 0.7625 0.0005

LSTM 0.3343 0.0012 0.2928 0.0016

SVR 0.9322 0.0001 0.6654 0.0001

BiLSTM 0.9174 0.0256 0.7200 0.3561

(BiLSTM-GS) 0.9344 0.3838 0.7902 0.3579

A2B

PLSR 0.9334 0.0168 0.6678 0.0045

RF 0.9541 0.0276 0.7215 0.0258

KNNR 0.8856 0.0003 0.7659 0.0005

LSTM 0.3459 0.0012 0.2859 0.0016

SVR 0.9542 0.0001 0.6854 0.0001

BiLSTM 0.9324 0.0217 0.7542 0.0215

(BiLSTM-GS) 0.9657 0.025 0.8214 0.2417

A3

PLSR 0.8855 0.0140 0.7921 0.0212

RF 0.9051 0.0278 0.6453 0.0576

KNNR 0.8845 0.0003 0.7589 0.0005

LSTM 0.3357 0.0012 0.2757 0.0016

SVR 0.9534 0.0001 0.6751 0.0001

BiLSTM 0.8845 0.0384 0.7014 0.0332

(BiLSTM-GS) 0.9533 0.0257 0.7845 0.0323

A3B

PLSR 0.9425 0.0317 0.6954 0.0325

RF 0.9514 0.0068 0.6957 0.0151

KNNR 0.8824 0.0003 0.7589 0.0005

LSTM 0.3468 0.0012 0.2958 0.0016

SVR 0.9457 0.0001 0.6578 0.0001

BiLSTM 0.9633 0.1122 0.7832 0.0189

(BiLSTM-GS) 0.9422 0.0256 0.7789 0.1659

A3A2
PLSR 0.8327 0.0334 0.6241 0.0229

RF 0.9499 0.0086 0.5064 0.0267

(Continued)
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TABLE 4 Continued

Input variable Modeling method R2
C RMSEc R2

P RMSEp

KNNR 0.8853 0.0003 0.7128 0.0005

LSTM 0.3365 0.0012 0.2845 0.0016

SVR 0.9247 0.0001 0.6941 0.0001

BiLSTM 0.9212 0.1165 0.7602 0.2146

(BiLSTM-GS) 0.8656 0.1544 0.7659 0.2142

A3A2B

PLSR 0.8485 0.0225 0.5921 0.0265

RF 0.9321 0.0078 0.6214 0.0325

KNNR 0.8826 0.0003 0.7133 0.0005

LSTM 0.3345 0.0012 0.2625 0.0016

SVR 0.9326 0.0001 0.7556 0.0001

BiLSTM 0.9215 0.1026 0.7626 0.2021

(BiLSTM-GS) 0.8854 0.1577 0.8340 0.1638

A4

PLSR 0.8911 0.3154 0.7751 0.4273

RF 0.9355 0.0102 0.6972 0.0206

KNNR 0.8832 0.0003 0.7142 0.0005

LSTM 0.3256 0.0012 0.2524 0.0016

SVR 0.9235 0.0001 0.7332 0.0001

BiLSTM 0.8933 0.0246 0.7712 0.0421

(BiLSTM-GS) 0.9512 0.0117 0.7969 0.0235

A4B

PLSR 0.8824 0.0217 0.6325 0.0256

RF 0.9145 0.0088 0.6954 0.0227

KNNR 0.8825 0.0003 0.7132 0.0005

LSTM 0.3326 0.0012 0.2845 0.0016

SVR 0.9247 0.0001 0.7569 0.0001

BiLSTM 0.9215 0.1031 0.8254 0.0332

(BiLSTM-GS) 0.9256 0.0795 0.8341 0.1897

A4A2

PLSR 0.8541 0.0217 0.6874 0.0213

RF 0.9321 0.0121 0.6789 0.0258

KNNR 0.8844 0.0003 0.7245 0.0005

LSTM 0.3318 0.0012 0.2832 0.0016

SVR 0.9312 0.0001 0.7421 0.0001

BiLSTM 0.9328 0.0545 0.7427 0.1032

(BiLSTM-GS) 0.9425 0.0617 0.8021 0.0856

A4A2B

PLSR 0.8625 0.0218 0.6562 0.0217

RF 0.9256 0.0129 0.6654 0.0235

KNNR 0.8838 0.0003 0.7238 0.0005

LSTM 0.3412 0.0012 0.2858 0.0016

SVR 0.9314 0.0001 0.7325 0.0001

(Continued)
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TABLE 4 Continued

Input variable Modeling method R2
C RMSEc R2

P RMSEp

BiLSTM 0.9456 0.0325 0.7328 0.0256

(BiLSTM-GS) 0.9422 0.0817 0.8795 0.1021

PLSR 0.9324 0.0221 0.7831 0.0318

RF 0.9421 0.0181 0.7902 0.0221

A5

KNNR 0.8603 0.0002 0.7436 0.0004

LSTM 0.3418 0.0012 0.2842 0.0016

SVR 0.9315 0.0001 0.7412 0.0001

BiLSTM 0.8824 0.0112 0.7621 0.0332

(BiLSTM-GS) 0.9354 0.0181 0.7541 0.0423

A5B

PLSR 0.9324 0.0115 0.7624 0.0312

RF 0.9425 0.0141 0.7617 0.0125

KNNR 0.8633 0.0017 0.7512 0.0021

LSTM 0.2754 0.0158 0.2944 0.0451

SVR 0.9321 0.0001 0.7418 0.0001

BiLSTM 0.9345 0.0121 0.7578 0.0158

(BiLSTM-GS) 0.9358 0.0178 0.8208 0.0224

A5A2

PLSR 0.9524 0.0325 0.7415 0.0135

RF 0.9316 0.0124 0.7352 0.0164

KNNR 0.8066 0.0003 0.7021 0.0005

LSTM 0.3021 0.0012 0.2854 0.0010

SVR 0.9326 0.0001 0.7215 0.0001

BiLSTM 0.9433 0.0154 0.7435 0.0158

(BiLSTM-GS) 0.9447 0.0125 0.8622 0.0426

A5A2B

PLSR 0.9625 0.0244 0.7423 0.0323

RF 0.9416 0.0132 0.7456 0.0118

KNNR 0.8356 0.0003 0.6868 0.0005

LSTM 0.3029 0.0012 0.2824 0.0010

SVR 0.9521 0.0001 0.7524 0.0001

BiLSTM 0.9332 0.0156 0.7318 0.0118

(BiLSTM-GS) 0.9254 0.0135 0.8327 0.0565

A6

PLSR 0.9324 0.0221 0.7831 0.0318

RF 0.9421 0.0181 0.7902 0.0221

KNNR 0.9276 0.0001 0.8487 0.0003

LSTM 0.0287 0.0016 0.0192 0.0014

SVR 0.9524 0.0001 0.7621 0.0001

BiLSTM 0.8824 0.0112 0.7621 0.0332

(BiLSTM-GS) 0.9354 0.0181 0.7541 0.0423

A6B PLSR 0.9526 0.0225 0.7354 0.0156
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TABLE 4 Continued

Input variable Modeling method R2
C RMSEc R2

P RMSEp

RF 0.9421 0.0146 0.7541 0.0236

KNNR 0.9468 0.0001 0.8145 0.0001

LSTM 0.3716 0.0011 0.3059 0.0010

SVR 0.9417 0.0001 0.7456 0.0001

BiLSTM 0.8625 0.0113 0.7754 0.0364

(BiLSTM-GS) 0.9521 0.0145 0.8215 0.0336

A6A2

PLSR 0.7547 0.0204 0.7457 0.0115

RF 0.9538 0.0232 0.7459 0.0118

KNNR 0.8094 0.0003 0.6486 0.0006

LSTM 0.3720 0.0011 0.3089 0.0010

SVR 0.9357 0.0001 0.7425 0.0001

BiLSTM 0.8818 0.0154 0.7457 0.0112

(BiLSTM-GS) 0.9627 0.0134 0.8151 0.0325

A6A2B

PLSR 0.7857 0.0145 0.7326 0.0135

RF 0.9524 0.0136 0.7638 0.0115

KNNR 0.8635 0.0003 0.6745 0.0006

LSTM 0.3457 0.0011 0.3159 0.0010

SVR 0.9356 0.0001 0.7021 0.0001

BiLSTM 0.8847 0.0135 0.7326 0.0145

(BiLSTM-GS) 0.9547 0.0121 0.8025 0.0184

A7

PLSR 0.9324 0.0221 0.7831 0.0318

RF 0.9421 0.0181 0.7902 0.0221

KNNR 0.8325 0.0002 0.7188 0.0005

LSTM 0.3453 0.0011 0.3145 0.0010

SVR 0.9478 0.0001 0.7126 0.0001

BiLSTM 0.8824 0.0112 0.7621 0.0332

(BiLSTM-GS) 0.9354 0.0181 0.7541 0.0423

A7B

PLSR 0.7625 0.0201 0.7357 0.0185

RF 0.9524 0.0145 0.7625 0.0136

KNNR 0.8725 0.0002 0.7012 0.0005

LSTM 0.3852 0.0010 0.3025 0.0009

SVR 0.9524 0.0001 0.7212 0.0001

BiLSTM 0.8856 0.0124 0.7627 0.0103

(BiLSTM-GS) 0.9457 0.0118 0.8225 0.0147

A7A2

PLSR 0.7644 0.0201 0.7325 0.0133

RF 0.9623 0.0115 0.7221 0.0115

KNNR 0.8316 0.0002 0.7223 0.0005

LSTM 0.2904 0.0012 0.2535 0.0010
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TABLE 4 Continued

Input variable Modeling method R2
C RMSEc R2

P RMSEp

SVR 0.9670 0.0001 0.8569 0.0001

BiLSTM 0.8835 0.0118 0.7326 0.0108

(BiLSTM-GS) 0.9533 0.0221 0.8225 0.0223

A7A2B

PLSR 0.7856 0.0214 0.7315 0.0115

RF 0.9514 0.0124 0.7216 0.0135

KNNR 0.8354 0.0002 0.7235 0.0005

LSTM 0.2963 0.0012 0.2215 0.0011

SVR 0.9554 0.0001 0.7956 0.0001

BiLSTM 0.8824 0.0152 0.7456 0.0125

(BiLSTM-GS) 0.9623 0.0203 0.8213 0.0263

A8

PLSR 0.7634 0.0202 0.7301 0.0103

RF 0.9621 0.0135 0.7214 0.0124

KNNR 0.8025 0.0003 0.6270 0.0006

LSTM -0.0046 0.0014 -0.0100 0.0017

SVR 0.9622 0.0001 0.8297 0.0001

BiLSTM 0.8812 0.0145 0.7432 0.0115

(BiLSTM-GS) 0.9615 0.0201 0.8323 0.0154

A8B

PLSR 0.7425 0.0200 0.6524 0.0223

RF 0.9515 0.0045 0.7545 0.0094

KNNR 0.8195 0.0003 0.7054 0.0005

LSTM 0.2952 0.0013 0.1854 0.0012

SVR 0.9554 0.0001 0.7951 0.0001

BiLSTM 0.8826 0.0115 0.7225 0.0125

(BiLSTM-GS) 0.9626 0.0225 0.8245 0.0126

A8A2

PLSR 0.7123 0.0200 0.6824 0.0228

RF 0.9635 0.0045 0.7621 0.0094

KNNR 0.8157 0.0003 0.6910 0.0005

LSTM 0.2441 0.0013 0.1847 0.0011

SVR 0.9671 0.0001 0.8593 0.0001

BiLSTM 0.8812 0.0123 0.7456 0.0128

(BiLSTM-GS) 0.9565 0.0233 0.8245 0.0217

A8A2B

PLSR 0.7236 0.0196 0.6926 0.0216

RF 0.9618 0.0043 0.7413 0.0078

KNNR 0.8821 0.0003 0.6215 0.0006

LSTM 0.3521 0.0013 0.2854 0.0011

SVR 0.9514 0.0001 0.7852 0.0001

BiLSTM 0.8884 0.1406 0.8241 0.1592

(BiLSTM-GS) 0.9624 0.2198 0.8651 0.1652
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across 400–1000 nm, demonstrating superior convergence and

computational efficiency compared to traditional methods,

consistent with recent trends in combining optimization

algorithms with attention mechanisms (Lang et al., 2024). To

effectively capture key yield-related physiological traits and

minimize redundancy, we selected SAVI, MSAVI, NDRE, and

SIPI as the optimal vegetation indices through random forest

regression (Wang et al., 2024; Tooley et al., 2024).

The model’s superior performance stems from a strategic data

fusion of feature bands, vegetation indices, and Ginkgo canopy

region of interest pixel (ROP) sets, an approach consistent with

established research (Ceriani et al., 2025). The BiLSTM-GS

component particularly outperformed traditional methods due to

its ability to capture bidirectional contextual dependencies in

spectral sequences, a capability aligned with established

mechanistic principles (Zhang et al., 2025). Comparative analysis

shows our results exceed in apple yield prediction (R2
P  =0.78) but

trail in corn silage monitoring (>90%), highlighting the crop-

specific nature of model performance (Burglewski et al., 2024).

While promising results have been achieved, this study has

several limitations: limited generalizability due to single-site

validation, the high computational demands of the BiLSTM-GS

model, and the time-consuming manual ROI extraction. Future

work should prioritize: 1) multi-site and multi-temporal validation

to assess model robustness; 2) model lightweighting through

compression techniques; 3) automated ROI extraction using deep

learning; 4) multi-modal data fusion with LiDAR and meteorological

data; 5) applying explainable AI methods to bridge the gap between

model performance and biological insight; and 6) integrating various

vegetation indices (e.g., TVI, MCARI, MTVI, NDI) to leverage their

complementarity for enhancing the model’s characterization of

multidimensional vegetation physio-biochemical traits.

In conclusion, while the proposed framework shows strong

innovation and performance, addressing these limitations through

integrated approaches will be crucial for its operational adoption in

precision forestry and agriculture.
4 Conclusion

In this study, an innovative method based on hyperspectral

imaging technology (400 ~ 1000 nm spectral range) was proposed to

realize the non-destructive yield prediction of Ginkgo biloba leaves by
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integrating canopy spectral data and measured yield values. Through

the systematic evaluation offive spectral preprocessing methods (MSC,

SG, SNV, FD, SS), SNV was determined as the optimal preprocessing

scheme and used as the basis for subsequent model training. PSO,

PSAMA, SPA, PCA, LASSO and CARS algorithms were used for

feature selection, and 10, 20, 10, 21, 20 and 23 characteristic

wavelengths were extracted respectively. Additionally, the most

representative SAVI, MSAVI, NDRE and SIPI vegetation indices

were selected from the seven candidate indices by random forest

regression analysis. The SNV- (SAVI - MSAVI –NDRE - SIPI - ROP)

- (BiLSTM-GS) prediction model is constructed by innovatively fusing

the Region of Interest Pixel (ROP) data, and the BiLSTM is optimized

by Grid SearchCV (learning rate: 0.01, Hidden layers: 50). The model

showed a prediction accuracy of R2
c = 0.9422 (RMSEc   = 0.0817) for

the calibration set performance index and R2
P = 0.8795 (RMSEp   =

0.1021) for the prediction set result, thus establishing a robust technical

framework for the non-destructive yield assessment of ginkgo planting.
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