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Introduction: The yield of ginkgo biloba leaves serves as a critical indicator for
assessing their growth and health status. However, current assessment methods
primarily rely on manual harvesting and weighing, which are time-consuming,
labor-intensive, inefficient, and costly.

Methods: To address these limitations, this study designed an algorithm-based
yield estimation approach: by employing airborne hyperspectral imaging
technology at a research base to replace traditional manual measurements, a
canopy hyperspectral dataset and Region of Interest Pixel (ROP) sets were
constructed. Five preprocessing methods, Multiplicative Scatter Correction
(MSC), Standard Normal Variate (SNV), Savitzky-Golay (SG), First Derivative (FD),
and Standard Scaling (SS), were employed to develop Partial Least Squares
Regression (PLSR) models, identifying the optimal hyperspectral data
preprocessing approach. The optimal preprocessing model was subsequently
integrated with Particle Swarm Optimization (PSO), Successive Projections
Algorithm (SPA), Principal Component Analysis (PCA), Least Absolute Shrinkage
and Selection Operator (LASSO), Competitive Adaptive Reweighted Sampling
(CARS) and Particle Swarm Attention Mechanism Algorithm (PSAMA) for feature
band selection. Traditional spectral vegetation indices were refined through
random forest stepwise regression and spectral index correlation analysis,
ultimately determining Soil-Adjusted Vegetation Index (SAVI), Modified Soil-
Adjusted Vegetation Index (MSAVI), Normalized Difference Red Edge Index
(NDRE), Structure Insensitive Pigment Index (SIPI) as the final indices. The
selected spectral bands and vegetation indices were then incorporated with
PLSR, Random Forest (RF), K-Nearest Neighbors Regression (KNNR), Long Short-
Term Memory (LSTM), Support Vector Regression (SVR), Bidirectional LSTM
(BILSTM), and BiLSTM- Grid SearchCV (BiLSTM-GS) machine learning models
for yield prediction.

Results: Results demonstrated that the SNV-PLSR model achieved superior
performance (Rf7 = 0.7831, RMSEp = 0.0325). The optimal SNV- (SAVI - MSAVI
- NDRE - SIPI - ROP) - (BiLSTM-GS) model, combining PSAMA-selected feature
bands with vegetation index and ROP, yielded outstanding prediction accuracy
(R2 = 0.8795, RMSEp= 0.1021).
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Discussion: This airborne hyperspectral canopy-based estimation technology
provides an accurate, non-destructive solution for monitoring ginkgo leaf yield in

field cultivation.
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hyperspectral imaging, analysis, spectral index, ginkgo biloba leaves, non-

destructive solution

1 Introduction

As an economically important medicinal plant, Ginkgo biloba is
cultivated worldwide for its leaves, which serve as the primary raw
material for pharmaceutical and health products (Liu et al., 2022; Lu
et al., 2024). According to modern pharmacological research,
Ginkgo biloba has a promoting effect on protecting nerve cells,
anti-oxidation and scavenging free radicals at the body (Vitor et al.,
2023; Sen et al., 2025). In the growth process of Ginkgo biloba, its
yield plays a vital role, which is one of the important factors that
determine the growth of Ginkgo biloba (Li et al., 2024). Traditional
ginkgo leaf yield test methods, such as scale weighing method, are
usually only suitable for small plot experiments, and there are
problems such as time-consuming, laborious operation, and
destruction of plant growth. To address the above problems,
researchers have proposed a new detection method, that is,
airborne hyperspectral canopy ginkgo leaf image to predict
ginkgo leaf yield. This method not only saves time, effort and
protects plant growth, but also is suitable for the detection of large-
scale plots.

Research on the detection of plant yield based on hyperspectral
technology has gradually increased. Different plant yield estimation
models are established mainly through hyperspectral image data
preprocessing (Jin et al., 2023), feature band selection, and machine
learning model algorithms (Li et al., 2025; Yan et al., 2025). For
example, Qin et al. (2025) used the ASD hyperspectral sensor to
collect the hyperspectral yield data of apple tree canopy in the whole
growth stage of spring and autumn. First, the convolution Savitzky-
Golay (SG) was used to preprocess the hyperspectral data. Second,
the sensitive bands in hyperspectral data were screened by Genetic
Algorithm (GA) and Successive Projections Algorithm (SPA).
Finally, the selected bands were combined with machine learning
models such as PLSR, RF, and XGBoost to predict the hyperspectral
yield data of apple trees collected in spring and autumn. The results
showed that the data collected in autumn performed better in
prediction performance. The best model combination was SG-
(VISSA-CARS) -RF, with R? of 0.78 and RMSE of 6.03 in the
validation set.

Burglewski et al. (2024) used a hyperspectral imager to collect
spectral data of corn straw, aiming to estimate the yield of corn as
silage. In the study, seven spectral bands including red edge bands
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and multiple near-infrared bands were used to predict the yield
combined with the Support Vector Regression (SVR) model. The
results show that the method can achieve more than 90% prediction
accuracies (Mao et al., 2024). predicted wheat yield and yield loss
under water and nitrogen stress using hyperspectral remote sensing
data and Partial Least Squares Regression (PLSR) models. In this
study, researchers paired canopy hyperspectral data from the same
location, at the same growth stage but under different stress
conditions with yield data to form a data combination for
verifying the performance of the model. The results showed that
compared with the traditional PLSR model, the MRE-PLSR model
significantly improved the prediction accuracy, and the Pearson
correlation coefficient increased by an average of 14.5%.

Ceriani et al. (2025) integrated hyperspectral and LiDAR space-
borne data to estimate forest volume and biomass in mountainous
regions. By combining LiDAR-derived metrics (e.g., canopy height)
with hyperspectral indices, they used machine learning models like
Random Forest (RF) and Support Vector Regression (SVR) to
predict aboveground biomass and forest volume. The results
showed that the fusion of both datasets improved accuracy, with
an R” value above 0.85 and a 20% reduction in root mean square
error. This highlights the potential of using integrated remote
sensing data for large-scale forest assessments. Micttinen et al.
(2024) utilized hyperspectral imaging to reveal the spatiotemporal
dynamics of chlorophyll and carotenoids in Scots pine under water
stress. Among the multiple machine learning models evaluated, the
Random Forest Regression (RFR) model demonstrated the best
predictive performance, with predictions most closely aligned with
measured values and the lowest Root Mean Square Error (RMSE).
Tougas et al. (2025)captured the weak spectral features of the early
stage of beech tree disease by hyperspectral imaging technology, and
systematically evaluated the classification performance of various
machine learning models. The results showed that the random
forest (RF) model performed best in this task, with a classification
accuracy of 85%, which was significantly ahead of other models,
confirming the effectiveness and application potential of
hyperspectral technology combined with RF model in early
diagnosis of forest diseases.

While previous studies have extensively applied hyperspectral
remote sensing to crop monitoring, research on ginkgo leaf yield
prediction by integrating hyperspectral technology with machine
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learning remains relatively scarce. Building on existing
methodologies, this study employs airborne hyperspectral imaging
and electronic weighing for efficient and non-destructive data
acquisition of ginkgo leaf spectra and yield. The proposed
approach is operationally straightforward, time-efficient, and
suitable for field applications. The main innovations of this work
are summarized as follows:

1. To achieve the efficient screening of hyperspectral features,
an attention mechanism model is integrated into the
Particle Swarm Optimization (PSO) algorithm, leading to
the construction of the PSAMA optimization algorithm.

2. The integration of optimally selected feature bands, refined
spectral vegetation indices, and ginkgo canopy Region of
Interest Pixel (ROP) sets can significantly enhance both the
accuracy and reliability of yield prediction models.

3. A novel SNV- (SAVI - MSAVI - NDRE - SIPI - ROP) -
(BiLSTM-GS) prediction model is proposed, which
achieves excellent detection performance through
innovative architecture design and optimization training.

2 Materials and methods

The overall workflow of this study is illustrated in Figure 1, which
outlines the complete process of hyperspectral data acquisition,
preprocessing, feature extraction, and model construction for
Ginkgo biloba leaf yield estimation. This schematic provides an
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overview of how canopy hyperspectral reflectance, ginkgo leaf yield,
and the prediction model are interrelated.

2.1 Experimental site and period

Hyperspectral remote sensing images of Ginkgo biloba canopy
were acquired for yield acquisition. The experimental site was Xuzhou
Changrong Agricultural Development Co., Ltd. (34°8 © 42'N, 117°2
‘45’E). A total of 10,000 Ginkgo biloba trees were planted in the
scientific research base, covering a plot size of 0.8 x 4 m> The
experimental involved three-year-old ginkgo trees cultivated at the
scientific research base. The trees were spaced 1 m between rows and
0.3 m between plants. Figure 2 shows the geographical location of the
experimental site and the contour characteristics of the ginkgo
tree canopy.

2.2 Hyperspectral remote sensing image
acquisition of canopy ginkgo leaves

In this study, ginkgo leaves in the experimental site were
selected as the research object, and the remote sensing data of
ginkgo leaf canopy were obtained by using an airborne
hyperspectral imaging system (GaiaSky-mini3-VN, Double-profit
Hepu Technology Co., Ltd., China). The hyperspectral imaging
system used in this study has a spectral response range of 400 ~
1000 nm, equipped with 224 spectral channels and 1024 spatial
channels, which can achieve a spatial resolution of 1024 x 1003
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pixels and a spectral resolution of 5 nm. The lens carried by the
imaging system has an optical resolution of 16 nm, and the overall
power consumption of the system is 45 W. The UAV was used as
the data acquisition platform, and the flight height was fixed at 50 m
(DJI M350, DJI Innovation Technology Co., Ltd., China). During
data acquisition, the drone maintains a hover for 10 s, and
continuous image acquisition is performed through the built-in
push-scanning mode of the hyperspectral imager to ensure spatial
continuity and spectral consistency of the data. The hyperspectral
canopy images of ginkgo leaves were acquired on July 19,2024 and
September 15,2024. The weather was sunny, with temperatures of
30 °C and 24 °C, relative humidities of 75% and 68%, and wind
speeds of 8.6 km/h and 6.4 km/h, respectively.

2.3 Field measurement of ginkgo leaf yield

From July 19 to 26, 2024 and from September 15 to 21, 2024, the
laboratory team successfully completed the acquisition of
hyperspectral images of ginkgo tree canopy leaves at the research
base. Upon concluding the image collection, the team grouped the
leaves from every twenty ginkgo trees into one sample unit, obtaining
a total of 200 sample datasets. Subsequently, an electronic balance
(manufactured by Kunshan Toptech Electronic Co., Ltd., featuring
functions such as counting, pricing, and weighing) was used to
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precisely weigh the leaves from all 200 samples, and the
corresponding weight data was systematically recorded.

2.4 Hyperspectral image correction

Hyperspectral imagery, comprising hundreds of contiguous
spectral bands, is inherently susceptible to degradation from
environmental conditions (Yue et al., 2024), atmospheric effects
(Andrei et al., 2023), and sensor-related errors (Settembre et al.,
2025). To mitigate these impacts, a series of radiometric and
atmospheric corrections are essential (Black et al., 2024). For
instance, a fundamental step entails converting raw digital
numbers (DN) to surface reflectance using methods such as the
Empirical Line Method (ELM), which can be represented by the
linear transformation in Equation 1:

p=GxDN+O (1)

Where p is the derived surface reflectance, G is the gain
coefficient, DN is the raw digital number from the sensor, and O
is the offset coefficient.

These correction procedures significantly enhance the data’s
radiometric accuracy and spectral fidelity, thereby establishing a
reliable foundation for subsequent quantitative analysis and image
processing (Gila et al., 2024).
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2.5 ROI extraction of hyperspectral image

The ROI (Region of Interest) tool in ENVI 5.3 was used to
extract the target regions from the hyperspectral canopy images of
Ginkgo biloba, thereby obtaining the ROP sets. By using the average
value method to aggregate the spectral data of the target area, a
high-quality data set representing the spectral characteristics of
ginkgo canopy was constructed. This method effectively eliminates
the interference of background noise and abnormal pixels,
significantly improves the reliability and representativeness of the
data, and lays a solid data foundation for subsequent spectral
feature analysis and model construction (Wang X, et al., 2024).

2.6 Hyperspectral data preprocessing

Hyperspectral images are often influenced by environmental
and instrumental factors such as temperature, humidity, light
intensity, and illumination angle, which can introduce noise into
the data. To improve data quality, a series of preprocessing steps
were applied, including Multiplicative Scatter Correction (MSC)
(Xu et al.,, 2024), Savitzky—Golay smoothing (SG) (Bing et al., 2018),
Standard Normal Variate (SNV) (Jong et al., 2024), First Derivative
(FD) (Xunlan et al.,, 2023), and Standard Scaling (SS)
(Faehn et al., 2024).

2.7 Construction method of spectral
vegetation index

Among the alternative spectral indices, those with a high
correlation to ginkgo leaves and a weak intercorrelation were
selected. Based on the spectral indices used in relevant references,
seven commonly used spectral indices are chosen as alternative
indices, and their respective calculation formulas are shown in
Table 1. The Normalized Difference Vegetation Index (NDVI),
obtained by the ratio of the near-infrared to the red band, reflects
the vegetation coverage and Leaf Area Index (LAI), and is often used
to assess the health status and biomass of vegetation (Wang et al,
2024). The Red Edge Chlorophyll Index (ReCl), taking advantage of
the sensitivity of the red edge band to chlorophyll content, directly
reflects the chlorophyll concentration in leaves (Xueyu et al., 2021).
The NDRE, calculated as the ratio of the near-infrared to the red edge
band, is more sensitive to changes in chlorophyll content, especially
in the later stages of vegetation growth. The Green Normalized
Difference Vegetation Index (GNDVI), which replaces the red band
with the green band, is more sensitive to changes in chlorophyll
content (Ge et al., 2019). The SAVI, by introducing a soil adjustment
factor, reduces the influence of the soil background on the vegetation
index and more accurately reflects the vegetation coverage (Tooley
et al,, 2024). The SIPI is insensitive to changes in leaf structure and
mainly reflects the ratio of carotenoids to chlorophyll (Srivastava
et al,, 2020). The MSAVI further optimizes the impact of the soil
background and is applicable to areas with low vegetation coverage
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(Shezhou et al., 2015). These seven spectral indices have a high
correlation in the prediction of ginkgo leaf yield and a relatively weak
correlation with each other. By covering key factors such as leaf area
and chlorophyll content, they can effectively evaluate the health
status, photosynthetic efficiency, and biomass of ginkgo leaves,
providing a scientific basis for yield prediction.

2.8 Characteristic band screening

To effectively reduce the complexity and redundancy of
hyperspectral data, this study employs feature band selection
methods to enhance data processing efficiency and improve the
accuracy and reliability of yield prediction models by identifying
key bands most relevant to ginkgo leaf yield. The hyperspectral
dataset was first divided into training, validation, and test sets in a
70%:15%:15% ratio to ensure the independence of model
evaluation. Subsequently, feature band selection was performed
using Particle Swarm Optimization (PSO) (Wei et al., 2024),
Successive Projections Algorithm (SPA) (Souza et al., 2025),
Principal Component Analysis (PCA) (Matinfar et al., 2025),
Least Absolute Shrinkage and Selection Operator (LASSO) (
(Stevens et al., 2025), Competitive Adaptive Reweighted Sampling
(CARS) (Shi et al., 2024), Spectral Index (SI) (Wang et al., 2024),
and the Particle Swarm Attention Mechanism Algorithm
(PSAMA). The working principles of all algorithms will be
systematically elaborated below, with particular emphasis on PSO
and its improved version, PSAMA.

The core idea of PSO is to explore and find the optimal solution
by simulating a group of particles in the search space. Each particle
represents a possible solution. Through ‘flying’ in the search space,
the particle swarm gradually adjusts its position by using its own
historical experience and group collaboration information, and
finally converges to the global optimal solution (Ren et al., 2024),
as shown in Equations 2 and 3.

vewaev? o xn *(pbestf’ —xf) +cyxTy *(gbestl’»j - x:i) (2)

K= X g (3)

Where ¢, is individual learning factor, ¢, social learning factor,
w velocity inertia weight, v¢ the speed of the d th iteration of the i th
particle, x¢ the position of the d th iteration of the i th particle, pb
est? the i th particle iterates to the best position of the d th iteration,
gbest? all particles iterate to the best position by d times.

PSAMA mainly introduces the Attention Mechanism into the
PSO algorithm, which dynamically adjusts the attention degree of
information by adjusting the position of particles. The core idea is
to calculate the weight coefficient of each key ‘s corresponding value
(Value) according to the correlation between Query and Key, and
then obtain the final output by weighted summation, that is, the
final Attention values. In essence, the Attention mechanism is the
weighted summation of the Value values of the elements in the
Source, and Query and Key are used to calculate the weight
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TABLE 1 Operation formula of spectral vegetation index.

10.3389/fpls.2025.1698830

Spectral Index Computing Formula

NDVI (NIRgo; — REDssg,)/(NIRgo; + REDgg»)
ReCI (NIRgo1/REDyq,) -1
NDRE (NIRgp; - RED EDGE;,,)/(NIRgy; + RED EDGE;5()
GNDVI (NIRgg; - GREENGS;)/(NIRgy; + GREENSs,)
SAVI ((NTRg29 — REDgg0)/(NIRg29 + REDggo + L)) * (1 + L)
SIPI (NIRg29 ~ BLUE42)/(NIRgz0 ~ RED15)
MSAVI 0.5[(2NIRgor + 1 = SQRT((2NIRgoy + 1)* - 8 (NIRgo1~ REDgs2))]

Where because ginkgo biloba belongs to the low green vegetation area, L = 1.

TABLE 2 Comparative analysis of different pretreatment methods and the original spectral PLSR model.

Calibration set

Prediction set

Different regression Pretreatment

models method RMSE, R2
Original 09217 0.0312 0.7658 0.0218
MSC 0.9345 0.0217 0.7532 0.0445
SNV 0.9624 0.0232 0.7831 0.0325

PLSR
SG 0.9021 0.0147 0.6957 0.0544
FD 0.8912 0.0322 0.6621 0.0467
Ss 0.8845 0.0455 0.6327 0.0171

coefficient of the corresponding value (Lang et al, 2024). Its
working principle is shown in Figure 3 and Equation 4.

According to the principle of attention mechanism, the
calculation formula is as follows:

L.
Attention(Query, Source) = > Similarity(Query, Key;) * Value; (4)
=1

Where L, = || Source || denotes the length of Source.

TABLE 3 Feature bands selected by different algorithms.

Algorithm of feature

band screening

Filtered bands/nm

2.9 Machine learning and model validation

The optimal model was selected from seven machine learning
regression methods, all employing Grid Search Cross-Validation
(GridSearchCV) for hyperparameter optimization. The methods
and their respective tuned hyperparameters include: PLSR (Sun
et al, 2024) with n_components; RF (Sun et al., 2024) with
n_estimators; KNNR (Song et al., 2025) with n_neighbors; LSTM
(Satyabrata et al., 2024) with learning rate; SVR (Tian et al., 2025)

Number of bands

Particle Swarm Optimization 408,438,446,535,685,691,701, 10
(PSO) 728,892,951
Particle Swarm Attention 440,446,473,491,545,551,645,666,672,704,723, 2
Mechanism Algorithm (PSAMA) 734,766,800,884,925,930,962,970,989
Successive Projections Algorithm
400,403,680,730,760,920,930,950,980,1000 10
(SPA)
Principal Component Analysis
(PCA) 400,403,406,408,409,411,413,416,419,421,424,426,429,432,434,437,440,442,445,448,450 21
Least Absolute Shrinkage and
. 408,411,424,432,440,446,456,462,465,470,473,491,500,766,906,933,946,957,970,973 20
Selection Operator (LASSO)
itive Adaptive Reweich
Competitive Adaptive Reweighted o )1 ¢ 175 443,454,470,473,481,502,540,607,610,736,739,900,903,906,914,916,919,922,925,956 23
Sampling (CARS)
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FIGURE 3

PSAMA working principle diagram. Where Source b is composed of a series of <Key, Value> key-value pairs, Query is a given Target element, Key is
the Key value of the element in Source, Value is the value of the element in Source, Similarity or correlation between Query and key, the weight
coefficient is Similarity (Query, Keyi), Attention Value is a weighted sum of Value values.

with regularization parameter C; BILSTM (Sun X, et al., 2024) with
learning rate; and BiLSTM-GS, which simultaneously optimizes
both learning rate and hidden_layer sizes.

The BiLSTM-GS model integrates the BiLSTM architecture
with the GridSearchCV algorithm (Liang et al., 2024). While the
standard BiLSTM model only tunes the learning rate, BILSTM-GS
introduces an additional hyperparameter—hidden layer size—to
achieve more comprehensive optimization. As an enhanced LSTM
variant, BILSTM processes sequences bidirectionally (forward and
backward), enabling more effective capture of contextual
dependencies (Zhang et al., 2025). GridSearchCV automates
hyperparameter selection through systematic cross-validation,
significantly improving model performance. The architecture of
the BILSTM-GS model is illustrated in Figure 4.

Building upon the bidirectional processing capability of
BiLSTM, this study leverages its strength in modeling the
continuous spectral-temporal sequences of ginkgo leaves. The
network architecture enables integrated learning of both forward
and backward dependencies within the spectral data, effectively
capturing the cumulative physiological changes during leaf growth.
This approach significantly enhances the characterization of long-
term developmental trends, thereby improving the robustness of
yield prediction.

During model configuration, particular attention was given to
the interaction between hidden layer dimensionality and learning
rate (Nikzad et al,, 2025). The hidden layer structure governs the
model’s capacity to represent complex spectral patterns, while the
learning rate regulates the convergence behavior during training.
Proper coordination between these two parameters ensures stable
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gradient propagation while preventing either underfitting due to
insufficient model expressivity or overfitting caused by excessive
parameterization, ultimately leading to optimized generalization
performance (Wan et al., 2024).

The determination coefficient R? and the root mean square
error RMSE are used as the evaluation indexes of the regression
model. The larger the R? of the model, the smaller the RMSE, and
the better the training effect of the model (Long et al., 2024), where
Rf, RMSE, is the results of the training set, and R2, RMSEP is the
results of the calibration set. The calculation formulas are shown in
Equations 5 and 6.

R2=1- 2511()’:‘ _}/;i)z (5)
S G-y
1N 2
RMSE = NE(}”’ -7) (6)
i=1

Where N is the number of samples, y; is the actual value of the i
th sample, y; is the actual value of the ith sample, and y is the actual
mean value of all samples.

2.10 Experimental platform and computing
environment

All experiments were conducted on a workstation equipped

with an Intel Core i7-12700H CPU and 32 GB of RAM. The entire
training and hyperparameter tuning process for all models was
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(BILSTM-GS) working principle diagram.

performed on this CPU platform without GPU acceleration. The
software environment utilized PyCharm 2023.2.4 (Community
Edition) with Python 3.9, incorporating key libraries such as
PyTorch (1.8), scikit-learn (1.2.2), and TensorFlow (2.10.0). The
complete workflow required approximately 10 minutes on the
specified hardware, demonstrating the computational efficiency of
the proposed methodology on standard computing resources.

3 Results and discussion
3.1 Spectral pretreatment

Five spectral data preprocessing methods (MSC, SNV, SG, FD,
and SS) and PLSR were used to establish regression models for leaf
yield of different Ginkgo trees. The prediction results of each model
are shown in Table 2. The R? and R} of different models were higher
than the original spectrum, which can be used to detect the yield of
ginkgo leaves. Among these models, the SNV model exhibited the
highest accuracy with Rp = 0.7831 and RMSE, = 0.0325. Therefore,
the SNV pretreatment model was used as the basis for subsequent
data processing. The hyperspectral original reflectance and the best
pretreatment reflectance are shown in Figure 5. The weak
absorption peak near 820 nm was related to the stretching
vibration of the N-H triplet state (Chitra et al., 2022). A smaller
absorption peak appears near 930 nm, mainly due to the dual-
frequency absorption of O-H (Chitra et al., 2022). The peaks and
troughs near 560 nm and 690 nm were caused by chlorophyll and
carotenoids at ginkgo leaves (Marchese et al., 2024). These spectral
characteristics further confirmed the intrinsic relationship between
the chemical composition of Ginkgo biloba leaves and their spectral
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information, providing strong support for further understanding
the spectral characteristics of Ginkgo biloba leaves.

3.2 Spectral vegetation index selection

In this study, the random forest stepwise regression method was
used to select the vegetation index with less redundant information
between each other to construct the vegetation index combination
for ginkgo leaf yield estimation. Figure 6a is the ranking of the
importance of 7 vegetation index features. It can be seen from the
graph that the ReCI vegetation index exhibited the highest
importance of 0.3367, followed by the NDVI vegetation index,
and the vegetation index with the smallest feature importance is
GNDVL. Figure 6b depicts five main vegetation indices selected by
random forest stepwise regression method, which are ReCI, NDVI,
GNDVI, SAVI and MSAL

The correlation analysis results of Figure 7 show that GNDVI
and NDRE were highly positively correlated (r = 0.93), indicating
that they have similar spectral response characteristics and can be
used interchangeably to reduce data redundancy. However, GNDVI
and SIPI (r = -0.90), SAVI and MSAVTI (r = -0.98), and SIPI and
NDRE (r = -0.99) showed significant negative correlations. These
index combinations may represent different vegetation
physiological characteristics or environmental stress responses.
Therefore, SAVI, MSAVI, NDRE and SIPI were finally selected as
the representative vegetation index combination, which can not
only fully reflect the vegetation status, but also effectively avoid
information redundancy.

Based on the above analysis, the spectral indices suitable for
model input include SAVI, MSAVI, NDRE and SIPI. The
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(a) shows the original hyperspectral reflectance of ginkgo canopy leaves, and (b) shows the hyperspectral reflectance after optimal pretreatment.

combination of these indices has low redundancy information,
which can effectively reflect the characteristic information of
vegetation from multiple dimensions, and provides a more
comprehensive and accurate input variable for the estimation of

ginkgo leaf yield.

3.3 Feature band extraction

In this study, a variety of feature band screening methods were
used to analyze the spectral data preprocessed by SNV. Among
them PSO, SPA, PSAMA, LASSO and CARS were used to filter the
characteristic bands (10,10,20,20 and 23, respectively), which were
evenly distributed in the range of 400 ~ 1000 nm, effectively
reducing redundant information and retaining the most
representative spectral features. In contrast, the 21 characteristic

bands screened by PCA were mainly concentrated in the short-wave
region of 400 ~ 450 nm, showing unique wavelength selection
characteristics. The results are shown in Table 3. Different feature
selection methods have both commonalities in band distribution
(most methods select wide spectral range features) and their own
characteristics (PCA focusing on shortwave regions), which
provides a variety of feature selection schemes for subsequent
spectral analysis.

3.4 Prediction results using different
machine learning and feature band
screening methods

This study utilized full-band spectra, vegetation indices, and
feature-selected spectral bands as input variables for a suite of

Feature Importance (from Random Forest)

Selected Features during Stepwise Regression

Feature

Feature

015 0.20 0.25

Importance

a) The order of importance of vegetation index

features.

FIGURE 6

20 35 4

Step
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b) Screening of vegetation index.

(a) shows the vegetation indices screened based on importance ranking, and (b) shows the reasonable vegetation indices selected by the stepwise

regression method.
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Autocorrelation analysis of vegetation index.

machine learning and deep learning models. Specifically, Al
represents the complete set of 224 bands, while A2 to A8
correspond to features selected by vegetation indices, Particle
Swarm Optimization (PSO), PSO with an attention mechanism,
Successive Projections Algorithm (SPA), Principal Component
Analysis (PCA), Least Absolute Shrinkage and Selection Operator
(LASSO), and Competitive Adaptive Reweighted Sampling (CARS),
respectively. To enhance estimation accuracy, A2 (spectral indices)
and the Region of Interest Pixel set (denoted as B) were systematically
combined with A1 and the bands from A3 to A8. Through systematic
pairing with models including PLSR, RF, KNNR, LSTM, SVR,
BiLSTM, and BiLSTM-GS, a total of 168 distinct data-model
combinations were generated. All model hyperparameters were
optimized via grid search cross-validation, with the final
configurations established as follows: PLSR (n_components=10),
RF (n_estimators=200), KNNR (n_neighbors=10), SVR (C = 10),
LSTM (learning_rate=0.01), BiLSTM (learning rate=0.01), and
BiLSTM-GS (learning_rate=0.01, hidden_layer_sizes=50).

As shown in Table 4, when A4A2B was used as the input
variable, the BILSTM-GS model achieved the highest prediction
accuracy (Rp = 0. 8795, RMSE, = 0.1021). To visually illustrate the
optimal prediction yield models corresponding to the combination
of A1 ~ A8 bands and spectral vegetation indices, eight regression
diagrams were used, as shown in Figure 8.

To obtain the best accuracy of the model (BiLSTM-GS), the grid
SearchCV algorithm was used to optimize the hyper-parameters of
the BiLSTM model, and the hyper-parameter learning rate and the
size of the hidden layer was used as input. The (BILSTM-GS) model
determination coefficient (R3) is the output to draw the heat map.
The results are shown in Figure 9. The deeper the red color, the
higher the determination coefficient (R3) corresponding to the
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(BiLSTM-GS) model, and the better the fitting performance.
When the (BiLSTM-GS) model obtained the best R = 0. 8795,
the corresponding optimal learning rate and hidden layer size were
0.01 and 50, respectively.

3.5 Model generalization ability validation

To validate the model’s generalization performance, an external
public dataset, LOPEX1993, was employed. LOPEX1993 is an open
spectral data set focusing on vegetation research, with rich spectral
information of vegetation. In this study, PLSR, RF, KNNR, SVR,
BiLSTM and BiLSTM-GS were used to detect the chemical
component content of the data set. Table 5 shows that the
(BiLSTM-GS) model achieved the highest detection accuracy.
Through the above comparative analysis, it can be found that
BiLSTM has the following advantages over models such as PLSR,
RF, KNNR and SVR. First, as the only model that can capture
sequence context information in both directions, BILSTM does not
need to rely on manual design features (such as RF requires feature
engineering, KNNR needs to define distance metrics). Second, its
unique forgetting gate, input gate and output gate mechanism can
dynamically adjust the information flow and effectively solve the
long-term dependence problem (better than PLSR). In addition, in
sequence data tasks such as natural language processing, BILSTM
performs significantly better than traditional methods (such as
SVR). The hyperparameters optimized by Grid SearchCV further
improve the performance of the model, so that the trained model
can achieve higher prediction accuracy. Therefore, the prediction
effect of the (BiLSTM-GS) model on the LOPEX1993 public dataset
is significantly better than other comparison models.
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(a—h) represent the optimal yield prediction models corresponding to the combinations of the selected spectral bands (Al to A8), the filtered

vegetation indices, and the ROP (Region of Interest Pixels).

3.6 Discussion

This study systematically developed and validated a
hyperspectral inversion model for ginkgo leaf yield prediction by
integrating advanced preprocessing, feature selection, and machine
learning techniques. The optimal SNV- (SAVI - MSAVI - NDRE -
SIPI - ROP) - (BiLSTM-GS) model achieved superior performance
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(R} = 0.8795), demonstrating the significant potential of airborne
hyperspectral imaging for non-destructive yield assessment in
economic forestry.

Our findings reveal that SNV preprocessing yielded optimal
PLSR performance (R} = 0.7831), aligning with regarding its
robustness in mitigating scattering effects (Jin et al., 2023). The
proposed PSAMA algorithm effectively identified 20 key bands
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BILSTM hyperparameter optimization. The deeper the red color, the better the fitting effect and the better the prediction performance.

TABLE 4 Ginkgo biloba leaf chlorophyll content prediction model results.

Input variable Modeling method RZ RMSE, R2 RMSE,
PLSR 0.9324 0.0221 0.7831 0.0318
RE 0.9421 0.0181 0.7902 0.0221
KNNR 0.8234 0.0003 0.6911 0.0005
Al LSTM 0.2443 0.0012 0.1846 0.0011
SVR 0.9669 0.0001 0.8053 0.0001
BiLSTM 0.8824 0.0112 0.7621 0.0332
(BILSTM-GS) 0.9354 0.0181 0.7541 0.0423
PLSR 0.9256 0.0021 0.7654 0.0211
RE 0.9624 0.0079 0.6652 0.0213
KNNR 0.8121 0.0003 0.6832 0.0005
A1B LSTM 0.2425 0.0013 0.1845 0.0011
SVR 0.9534 0.0001 0.7821 0.0001
BiLSTM 0.9345 0.1071 0.7956 0.1456
(BILSTM-GS) 0.9324 0.1545 0.7733 0.1517
PLSR 0.9347 0.0079 0.7315 0.0119
RE 0.9417 0.0077 0.6012 0.2181
KNNR 0.8323 0.0003 0.7012 0.0005
AIA2
LSTM 0.3356 0.0012 0.2956 0.0016
SVR 0.9521 0.0001 0.6984 0.0001
BiLSTM 0.9447 0.1145 0.7322 0.1458
(Continued)
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TABLE 4 Continued

10.3389/fpls.2025.1698830

Input variable Modeling method RZ RMSE, R2 RMSE,,
(BILSTM-GS) 0.9347 0.1046 0.8256 0.1704
PLSR 0.9627 0.0078 0.7258 0.0124
RE 0.9356 0.0076 0.6145 0.0256
KNNR 0.8458 0.0003 0.7815 0.0005
A1A2B LSTM 0.3357 0.0012 0.2856 0.0016
SVR 0.9625 0.0001 0.6856 0.0001
BiLSTM 0.9432 0.1025 0.7232 0.0225
(BILSTM-GS) 0.9458 0.1033 0.7811 0.1625
PLSR 0.9021 0.0201 0.4350 0.0282
RE 0.9570 0.0080 0.6287 0.0231
KNNR 0.8325 0.0003 0.7625 0.0005
A2 LSTM 0.3343 0.0012 0.2928 0.0016
SVR 0.9322 0.0001 0.6654 0.0001
BiLSTM 0.9174 0.0256 0.7200 0.3561
(BILSTM-GS) 0.9344 0.3838 0.7902 0.3579
PLSR 0.9334 0.0168 0.6678 0.0045
RF 0.9541 0.0276 0.7215 0.0258
KNNR 0.8856 0.0003 0.7659 0.0005
A2B LSTM 0.3459 0.0012 0.2859 0.0016
SVR 0.9542 0.0001 0.6854 0.0001
BiLSTM 0.9324 0.0217 0.7542 0.0215
(BLSTM-GS) 0.9657 0.025 0.8214 0.2417
PLSR 0.8855 0.0140 0.7921 0.0212
RE 0.9051 0.0278 0.6453 0.0576
KNNR 0.8845 0.0003 0.7589 0.0005
A3 LSTM 0.3357 0.0012 0.2757 0.0016
SVR 0.9534 0.0001 0.6751 0.0001
BiLSTM 0.8845 0.0384 0.7014 0.0332
(BILSTM-GS) 0.9533 0.0257 0.7845 0.0323
PLSR 0.9425 0.0317 0.6954 0.0325
RE 0.9514 0.0068 0.6957 0.0151
KNNR 0.8824 0.0003 0.7589 0.0005
A3B LSTM 0.3468 0.0012 0.2958 0.0016
SVR 0.9457 0.0001 0.6578 0.0001
BiLSTM 0.9633 0.1122 0.7832 0.0189
(BILSTM-GS) 0.9422 0.0256 0.7789 0.1659
PLSR 0.8327 0.0334 0.6241 0.0229
A3A2
RE 0.9499 0.0086 0.5064 0.0267
(Continued)
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TABLE 4 Continued

10.3389/fpls.2025.1698830

Input variable Modeling method RZ RMSE, R2 RMSE,,
KNNR 0.8853 0.0003 0.7128 0.0005
LSTM 0.3365 0.0012 0.2845 0.0016
SVR 0.9247 0.0001 0.6941 0.0001
BiLSTM 09212 0.1165 0.7602 0.2146
(BILSTM-GS) 0.8656 0.1544 0.7659 0.2142
PLSR 0.8485 0.0225 0.5921 0.0265
RE 0.9321 0.0078 0.6214 0.0325
KNNR 0.8826 0.0003 0.7133 0.0005
A3A2B LSTM 0.3345 0.0012 0.2625 0.0016
SVR 0.9326 0.0001 0.7556 0.0001
BiLSTM 0.9215 0.1026 0.7626 0.2021
(BILSTM-GS) 0.8854 0.1577 0.8340 0.1638
PLSR 0.8911 0.3154 0.7751 0.4273
RE 0.9355 0.0102 0.6972 0.0206
KNNR 0.8832 0.0003 0.7142 0.0005
A4 LSTM 0.3256 0.0012 0.2524 0.0016
SVR 0.9235 0.0001 0.7332 0.0001
BiLSTM 0.8933 0.0246 0.7712 0.0421
(BILSTM-GS) 0.9512 0.0117 0.7969 0.0235
PLSR 0.8824 0.0217 0.6325 0.0256
RE 0.9145 0.0088 0.6954 0.0227
KNNR 0.8825 0.0003 0.7132 0.0005
A4B LSTM 0.3326 0.0012 0.2845 0.0016
SVR 0.9247 0.0001 0.7569 0.0001
BiLSTM 0.9215 0.1031 0.8254 0.0332
(BILSTM-GS) 0.9256 0.0795 0.8341 0.1897
PLSR 0.8541 0.0217 0.6874 0.0213
RE 0.9321 0.0121 0.6789 0.0258
KNNR 0.8844 0.0003 0.7245 0.0005
A4A2 LSTM 0.3318 0.0012 0.2832 0.0016
SVR 0.9312 0.0001 0.7421 0.0001
BiLSTM 0.9328 0.0545 0.7427 0.1032
(BILSTM-GS) 0.9425 0.0617 0.8021 0.0856
PLSR 0.8625 0.0218 0.6562 0.0217
RE 0.9256 0.0129 0.6654 0.0235
A4A2B KNNR 0.8838 0.0003 0.7238 0.0005
LSTM 0.3412 0.0012 0.2858 0.0016
SVR 0.9314 0.0001 0.7325 0.0001
(Continued)
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TABLE 4 Continued

10.3389/fpls.2025.1698830

Input variable Modeling method RZ RMSE, R2 RMSE,,

BiLSTM 0.9456 0.0325 0.7328 0.0256

(BILSTM-GS) 0.9422 0.0817 0.8795 0.1021

PLSR 0.9324 0.0221 0.7831 0.0318

RF 0.9421 0.0181 0.7902 0.0221

KNNR 0.8603 0.0002 0.7436 0.0004

LSTM 0.3418 0.0012 0.2842 0.0016

A5 SVR 0.9315 0.0001 0.7412 0.0001

BiLSTM 0.8824 0.0112 0.7621 0.0332

(BILSTM-GS) 0.9354 0.0181 0.7541 0.0423

PLSR 0.9324 0.0115 0.7624 0.0312

RE 0.9425 0.0141 0.7617 0.0125

KNNR 0.8633 0.0017 0.7512 0.0021

A5B LSTM 0.2754 0.0158 0.2944 0.0451

SVR 0.9321 0.0001 0.7418 0.0001

BiLSTM 0.9345 0.0121 0.7578 0.0158

(BILSTM-GS) 0.9358 0.0178 0.8208 0.0224

PLSR 0.9524 0.0325 0.7415 0.0135

RE 0.9316 0.0124 0.7352 0.0164

KNNR 0.8066 0.0003 0.7021 0.0005

A5A2 LSTM 0.3021 0.0012 0.2854 0.0010

SVR 0.9326 0.0001 0.7215 0.0001

BiLSTM 0.9433 0.0154 0.7435 0.0158

(BILSTM-GS) 0.9447 0.0125 0.8622 0.0426

PLSR 0.9625 0.0244 0.7423 0.0323

RE 0.9416 0.0132 0.7456 0.0118

KNNR 0.8356 0.0003 0.6868 0.0005

A5A2B LSTM 0.3029 0.0012 0.2824 0.0010

SVR 0.9521 0.0001 0.7524 0.0001

BiLSTM 0.9332 0.0156 0.7318 0.0118

(BILSTM-GS) 0.9254 0.0135 0.8327 0.0565

PLSR 0.9324 0.0221 0.7831 0.0318

RE 0.9421 0.0181 0.7902 0.0221

KNNR 0.9276 0.0001 0.8487 0.0003

A6 LSTM 0.0287 0.0016 0.0192 0.0014

SVR 0.9524 0.0001 0.7621 0.0001

BiLSTM 0.8824 0.0112 0.7621 0.0332

(BILSTM-GS) 0.9354 0.0181 0.7541 0.0423

A6B PLSR 0.9526 0.0225 0.7354 0.0156
(Continued)
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TABLE 4 Continued

10.3389/fpls.2025.1698830

Input variable Modeling method RZ RMSE, R2 RMSE,,
RE 0.9421 0.0146 0.7541 0.0236
KNNR 0.9468 0.0001 0.8145 0.0001
LSTM 0.3716 0.0011 0.3059 0.0010
SVR 0.9417 0.0001 0.7456 0.0001
BiLSTM 0.8625 0.0113 0.7754 0.0364
(BILSTM-GS) 0.9521 0.0145 0.8215 0.0336
PLSR 0.7547 0.0204 0.7457 0.0115
RE 0.9538 0.0232 0.7459 0.0118
KNNR 0.8094 0.0003 0.6486 0.0006
A6A2 LSTM 0.3720 0.0011 0.3089 0.0010
SVR 0.9357 0.0001 0.7425 0.0001
BiLSTM 0.8818 0.0154 0.7457 0.0112
(BILSTM-GS) 0.9627 0.0134 0.8151 0.0325
PLSR 0.7857 0.0145 0.7326 0.0135
RE 0.9524 0.0136 0.7638 0.0115
KNNR 0.8635 0.0003 0.6745 0.0006
A6A2B LSTM 0.3457 0.0011 0.3159 0.0010
SVR 0.9356 0.0001 0.7021 0.0001
BiLSTM 0.8847 0.0135 0.7326 0.0145
(BILSTM-GS) 0.9547 0.0121 0.8025 0.0184
PLSR 0.9324 0.0221 0.7831 0.0318
RE 0.9421 0.0181 0.7902 0.0221
KNNR 0.8325 0.0002 0.7188 0.0005
A7 LSTM 0.3453 0.0011 0.3145 0.0010
SVR 0.9478 0.0001 0.7126 0.0001
BiLSTM 0.8824 0.0112 0.7621 0.0332
(BILSTM-GS) 0.9354 0.0181 0.7541 0.0423
PLSR 0.7625 0.0201 0.7357 0.0185
RE 0.9524 0.0145 0.7625 0.0136
KNNR 0.8725 0.0002 0.7012 0.0005
A7B LSTM 0.3852 0.0010 0.3025 0.0009
SVR 0.9524 0.0001 0.7212 0.0001
BiLSTM 0.8856 0.0124 0.7627 0.0103
(BILSTM-GS) 0.9457 0.0118 0.8225 0.0147
PLSR 0.7644 0.0201 0.7325 0.0133
RE 0.9623 0.0115 0.7221 0.0115
A7A2
KNNR 0.8316 0.0002 0.7223 0.0005
LSTM 0.2904 0.0012 0.2535 0.0010
(Continued)
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TABLE 4 Continued

10.3389/fpls.2025.1698830

Input variable Modeling method RZ RMSE, R2 RMSE,,
SVR 0.9670 0.0001 0.8569 0.0001
BiLSTM 0.8835 0.0118 0.7326 0.0108
(BILSTM-GS) 0.9533 0.0221 0.8225 0.0223
PLSR 0.7856 0.0214 0.7315 0.0115
RE 0.9514 0.0124 0.7216 0.0135
KNNR 0.8354 0.0002 0.7235 0.0005
A7A2B LSTM 0.2963 0.0012 02215 0.0011
SVR 0.9554 0.0001 0.7956 0.0001
BiLSTM 0.8824 0.0152 0.7456 0.0125
(BILSTM-GS) 0.9623 0.0203 0.8213 0.0263
PLSR 0.7634 0.0202 0.7301 0.0103
RE 0.9621 0.0135 0.7214 0.0124
KNNR 0.8025 0.0003 0.6270 0.0006
A8 LSTM -0.0046 0.0014 -0.0100 0.0017
SVR 0.9622 0.0001 0.8297 0.0001
BiLSTM 0.8812 0.0145 0.7432 0.0115
(BILSTM-GS) 0.9615 0.0201 0.8323 0.0154
PLSR 0.7425 0.0200 0.6524 0.0223
RE 0.9515 0.0045 0.7545 0.0094
KNNR 0.8195 0.0003 0.7054 0.0005
ASB LSTM 0.2952 0.0013 0.1854 0.0012
SVR 0.9554 0.0001 0.7951 0.0001
BiLSTM 0.8826 0.0115 0.7225 0.0125
(BILSTM-GS) 0.9626 0.0225 0.8245 0.0126
PLSR 0.7123 0.0200 0.6824 0.0228
RE 0.9635 0.0045 0.7621 0.0094
KNNR 0.8157 0.0003 0.6910 0.0005
A8A2 LSTM 0.2441 0.0013 0.1847 0.0011
SVR 0.9671 0.0001 0.8593 0.0001
BiLSTM 0.8812 0.0123 0.7456 0.0128
(BILSTM-GS) 0.9565 0.0233 0.8245 0.0217
PLSR 0.7236 0.0196 0.6926 0.0216
RF 0.9618 0.0043 0.7413 0.0078
KNNR 0.8821 0.0003 0.6215 0.0006
ASA2B LSTM 03521 0.0013 0.2854 0.0011
SVR 0.9514 0.0001 0.7852 0.0001
BiLSTM 0.8884 0.1406 0.8241 0.1592
(BILSTM-GS) 0.9624 0.2198 0.8651 0.1652
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TABLE 5 Lopex1993 vegetation data model test.

Modeling method RZ RMSE, R3 RMSE,
PLSR 0.9657 209183 0.8469 286118
RF 0.9883 122336 06527 | 269993
KNNR 0.9631 0.6779 0.7734 0.0585
SVR 0.7911 0.3566 0.6688 0.8384
BiLSTM 0.8824 0.0112 0.7621 0.0332
(BILSTM-GS) 0.9259 0.0407 0.8503 0.0656

across 400-1000 nm, demonstrating superior convergence and
computational efficiency compared to traditional methods,
consistent with recent trends in combining optimization
algorithms with attention mechanisms (Lang et al., 2024). To
effectively capture key yield-related physiological traits and
minimize redundancy, we selected SAVI, MSAVI, NDRE, and
SIPI as the optimal vegetation indices through random forest
regression (Wang et al., 2024; Tooley et al,, 2024).

The model’s superior performance stems from a strategic data
fusion of feature bands, vegetation indices, and Ginkgo canopy
region of interest pixel (ROP) sets, an approach consistent with
established research (Ceriani et al., 2025). The BiLSTM-GS
component particularly outperformed traditional methods due to
its ability to capture bidirectional contextual dependencies in
spectral sequences, a capability aligned with established
mechanistic principles (Zhang et al., 2025). Comparative analysis
shows our results exceed in apple yield prediction (R% =0.78) but
trail in corn silage monitoring (>90%), highlighting the crop-
specific nature of model performance (Burglewski et al., 2024).

While promising results have been achieved, this study has
several limitations: limited generalizability due to single-site
validation, the high computational demands of the BiLSTM-GS
model, and the time-consuming manual ROI extraction. Future
work should prioritize: 1) multi-site and multi-temporal validation
to assess model robustness; 2) model lightweighting through
compression techniques; 3) automated ROI extraction using deep
learning; 4) multi-modal data fusion with LIDAR and meteorological
data; 5) applying explainable AT methods to bridge the gap between
model performance and biological insight; and 6) integrating various
vegetation indices (e.g., TVI, MCARI, MTVI, NDI) to leverage their
complementarity for enhancing the model’s characterization of
multidimensional vegetation physio-biochemical traits.

In conclusion, while the proposed framework shows strong
innovation and performance, addressing these limitations through
integrated approaches will be crucial for its operational adoption in
precision forestry and agriculture.

4 Conclusion

In this study, an innovative method based on hyperspectral
imaging technology (400 ~ 1000 nm spectral range) was proposed to
realize the non-destructive yield prediction of Ginkgo biloba leaves by
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integrating canopy spectral data and measured yield values. Through
the systematic evaluation of five spectral preprocessing methods (MSC,
SG, SNV, FD, SS), SNV was determined as the optimal preprocessing
scheme and used as the basis for subsequent model training. PSO,
PSAMA, SPA, PCA, LASSO and CARS algorithms were used for
feature selection, and 10, 20, 10, 21, 20 and 23 characteristic
wavelengths were extracted respectively. Additionally, the most
representative SAVI, MSAVI, NDRE and SIPI vegetation indices
were selected from the seven candidate indices by random forest
regression analysis. The SNV- (SAVI - MSAVI - NDRE - SIPI - ROP)
- (BILSTM-GS) prediction model is constructed by innovatively fusing
the Region of Interest Pixel (ROP) data, and the BiLSTM is optimized
by Grid SearchCV (learning rate: 0.01, Hidden layers: 50). The model
showed a prediction accuracy of R? = 0.9422 (RMSE, = 0.0817) for
the calibration set performance index and R} = 0.8795 (RMSE, =
0.1021) for the prediction set result, thus establishing a robust technical
framework for the non-destructive yield assessment of ginkgo planting.
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