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CADFFNet: a dual-branch neural
network for non-destructive
detection of cigar leaf moisture
content during air-curing stage
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Introduction: The cigar leaves moisture content (CLMC) is a critical parameter
for controlling curing barn conditions. Along with the continuous advancement
of deep learning (DL) technologies, convolutional neural networks (CNN) have
provided a way of thinking for the non-destructive estimation of CLMC during
the air-curing process. Nevertheless, relying merely on single-perspective
imaging makes it difficult to comprehensively capture the complementary
morphological features of the front and back sides of cigar leaves during the
air-curing process.

Methods: This study constructed a dual-view image dataset covering the air-
curing process, and proposes a regression framework named CADFFNet
(channel attention weight-based dual-branch feature fusion network) for the
non-destructive estimation of CLMC during the curing process based on dual-
view RGB images. Firstly, the model utilizes two independent and parallel ResNet
as its backbone structure to capture the heterogeneous features of dual-view
images. Secondly, the Dual Efficient Channel Attention (DECA) module is
introduced to dynamically adjust the channel attention weights of the features,
thereby facilitating interaction between the two branches. Lastly, a Multi-scale
convolutional feature fusion (MSCFF) module is designed for the deep fusion of
features from the front and back images to aggregate multi-scale features for
robust regression.

Results: On five-fold cross-validation, CADFFNet attains R2 of 0.974+0.007 and
mean absolute error (MAE) of 3.80+0.37%. On an independent cross-region,
cross-variety testing set, it maintains strong generalization (R2=0.899,
MAE=5.82%), compared with the classic CNN models ResNetl8, GoogleNet,
VGGI19Net, DenseNet121, and MobileNetV2, its R2 value has increased by 0.047,
0.041, 0.055, 0.098, and 0.090 respectively.
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Discussion: Generally, the proposed CADFFNet offers an efficient and
convenient method for non-destructive detection of CLMC, providing a
theoretical basis for automating the air-curing process. It also provides a new
perspective for moisture content prediction during the drying process of other
crops, such as tea, asparagus, and mushrooms.

KEYWORDS

convolution neural networks, cigar leaves, dual-view images, feature fusion, moisture

content prediction

1 Introduction

As a significant economic crop, tobacco plays a vital role in
enhancing farmers' income (Soneji et al., 2022). Notably, the
consumption of hand-rolled cigars, a key tobacco product, has
risen significantly in recent years (Yang et al.,, 2024a), driving an
increasing demand for high-quality cigar leaf raw materials. The
air-curing process is critical to the morphological changes and
quality formation of cigar leaves (Zhao et al, 2024b). Among
various factors, the CLMC is a vital parameter for controlling
temperature and humidity in curing barns. Typically, operators
estimate CLMC levels through visual inspection and tactile
judgment, which highly rely on experience and are prone to
inaccuracies. Conventional methods for quantifying moisture
content, such as hot-air drying (Rahman et al, 2025) and Karl
Fischer titration (Kosfeld et al., 2022), are complex, destructive, and
incapable of providing real-time, non-invasive measurements.
Recently, several novel indirect moisture content detection
technologies have been proposed for agricultural products
production, including spectral analysis (Guo et al., 2023; Liu
et al,, 2023), microwave technology (Jin et al., 2023), and nuclear
magnetic resonance (NMR) (Qu et al, 2021). For instance, Wei
etal. (2021) employed multispectral images of tea leaves to develop
a moisture prediction model. Similarly, Yang et al. (2024b) collected
spectral and morphological data of alfalfa seeds under varying
moisture levels and distinguished them based on machine
learning discriminant models. Moreover, Wu et al. (2022) utilized
multifrequency microwave signals to detect tea leaves moisture
content during the withering process. Despite these advancements
enabling the non-invasive detection of agricultural products,
methods such as moisture content extensively depend on
expensive equipment, limiting their scalability in practical

Abbreviations: CLMC, cigar leaf moisture content; NMR, nuclear magnetic
resonance; CADFFNet, channel attention weight-based dual-branch feature
fusion network; DL, Deep learning; ML, machine learning; CNN, Convolution
Neural network; DECA, dual-branch efficient channel attention; MSCFF, multi
scale convolution feature fusion; R, Coefficient of determinationand; MAE, Mean
absolute error; SE, Squeeze-and-Excitation; CBAM, Convolutional Block

Attention Module; CA, Coordinate Attention.
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production scenarios. Therefore, the accurate, convenient, and
non-destructive estimation of CLMC is crucial for improving the
standardization level of the cigar leaf air-curing process.

With advancements in technology, computer vision has
demonstrated significant potential in various aspects of tobacco
production, including disease identification (Lin et al, 2022) and
determining harvest maturity (Dai et al.,, 2024). Indeed, by training a
model on extensive image datasets, it can learn the correlation
between moisture content and the subtle changes in color, texture,
and shape of leaves (Xing et al., 2025), enhancing the automation of
tobacco leaf curing processes. For instance, Condori et al. (2020)
developed a high-precision prediction model to learn the relationship
between color changes in tobacco leaf images and weight loss,
enabling automated control of curing barns during the curing
stage. Wu et al. (2014) utilized color features from tobacco leaf
images to construct an artificial neural network model for predicting
the temperature rise time during the bulk curing process.
Furthermore, Pei et al. (2024) integrated data from stem weight
sensors, temperature and humidity sensors, and digital cameras to
introduce the comprehensive predictive curing model (CPBM),
which facilitates stage recognition during the tobacco curing
process. Traditional machine learning (ML) algorithms often
require manual feature design, typically relying on domain-specific
expertise and task-specific requirements. Nevertheless, such an
approach often yields incomplete feature extraction, compromising
model performance, particularly with complex and diverse image
datasets (Shafik et al., 2024). In contrast, Deep Learning (DL) utilizes
more complex neural networks to progressively transform input data
into more abstract representations, enabling the model to
automatically extract features without human intervention. Among
them, convolutional neural networks (CNN) have shown exceptional
performance in handling large-scale image data due to their inherent
ability to learn features and their generalizability autonomously
(Chen et al, 2023). In recent years, CNN-based solutions have
been widely studied in the field of crop production (Xu et al., 2020;
Wang et al,, 2023). For example, Dai et al. (2025) designed a new
feature extraction network structure, for determining lightness levels
during various stages of tobacco curing, which facilitates the
exchange of information between features at different image levels,
thereby enhancing the model's classification accuracy. By integrating
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multi-scale features, the network effectively combines the global
features and local features of the image, leading to improved
performance. Zhao et al. (2024a) proposed a lightweight
recognition model for tobacco leaf curing stages, named TCSRNet.
By integrating Inception branches and Multi-scale Adaptive
Attention Mechanism (MAAM), this model achieves a
classification accuracy of approximately 90.35% with 158.136
MFLOPS and 1.749M parameters. Feng et al. (2025) compared the
model's recognition accuracy under different image acquisition
conditions during the tobacco curing process. The results indicated
that combining images from multiple angles significantly improved
the model's accuracy in determining the curing stage.

The above researches indicate that CNNs demonstrate
applicability in the intensive curing process of flue-cured tobacco.
However, the intensive curing process of flue-cured tobacco has a
relatively short cycle, and each curing stage is equipped with its
corresponding process parameters. In contrast, the air-curing process
of cigar leaves is relatively slow, and the environmental temperature
and humidity are not strictly controllable (Zhao et al., 2022).
Therefore, the accurate estimation of moisture content during the
air-curing process of cigar leaves has become a problem that urgently
needs to be solved. For example, Yang et al. (2023) demonstrated that,
compared to traditional machine learning algorithms, CNNs offer
superior performance in predicting the CLMC during the air-curing
process. Yin et al. (2024) used Visible and Near-infrared hyperspectral
imaging (VNIR-HSI) combined with a Diversified Region-based
Convolutional Neural Network (DR-CNN) to predict the CLMC
during the curing process. The results showed that in terms of
prediction accuracy, DR-CNN outperformed PLSR and traditional
CNN models. Notably, current studies have primarily focused on the
single-view image features of tobacco leaves (Gao et al, 2021; Wu
et al,, 2024). However, during the air-curing stage, as water lost, the
leaves gradually curl inward, causing the front surface to be obscured
by the back. Additionally, the vein of the leaf becomes fully exposed on
the back surface. Consequently, relying solely on the single-view
images for modeling entails a significant loss of crucial information.

To address the above issues, we propose a channel attention
weight-based dual-branch feature fusion network (CADFFNet).
Specifically, the contributions of this study are as follows:

* Construction of the cigar leaf air-curing process image
dataset: To replicate the authentic curing process of cigar
leaves, images of the cigar leaf in their naturally suspended
state were used to predict moisture content.

* Design of the CADFFNet: The model employs two parallel
ResNet-18 backbones to extract features from front- and
back-view leaf images. A DECA module performs cross-view
channel alignment, and an MSCFF module carries out multi-
scale feature fusion. A subsequent regression head outputs
the CLMC. By leveraging dual-view imagery, this design
improves the predictive accuracy of CLMC estimation.

* Experimental Validation: The CADFFNet model
successfully predicts the CLMC during the air-curing
process, demonstrating robust performance across
different planting regions and varieties.
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The remainder of the paper is organized as follows. Section 2
describes the datasets constructed and the proposed method.
Section 3 reports the experiment results, Section 4 discusses the
advantages and limitations of the proposed methodology, and
Section 5 concludes this work.

2 Materials and method

2.1 Datasets

Figure 1 illustrates the data collection process of this study.
After harvest, cigar leaves were fixed onto wooden rods using cotton
threads for curing. To closely replicate the authentic curing process,
the image collection procedure followed the method described in
Ma et al. (2024). Specifically, after sampling the leaves, they were
suspended in a dark chamber equipped for image capture. A digital
camera (Canon Mark II, 24-70mm/f4 lens, focal length of 35 mm,
2,080%3,120 pixels resolution) was positioned 90 cm away from the
leaves, capturing images of both the front and back surfaces. Inside
the dark chamber, a white background board was placed, and two
40W lamps were positioned at the top to provide lighting. After the
image was captured, the fresh weight of the leaves was immediately
measured. Subsequently, the CLMC was determined using the hot-
air drying method (Chen et al., 2021). The cigar leaves MC can be
calculated as shown in Equation I:

Mfre:h - M,

MC(%) = 4 100 % (1)

fresh

where MC is the moisture content of cigar leaves, and Mg, and
M, are the fresh weight and dry weight of cigar leaves, respectively.

Where MC is the cigar leaves moisture content, and Mg, and
Mg,y are the fresh weight and dry weight of cigar leaves, respectively.

The datasets used in this study were obtained from Mayang
County, Huaihua City, Hunan Province (109°39'E, 27°54'N, at an
altitude of 300 m). The data were gathered from the day of leaf
harvest (0d) until the leaves were removed from the curing barn.
The barn temperature and humidity parameters of the drying
process are shown in Table 1. In total, 1,005 cigar leaves were
collected, yielding 2,010 dual-view images for model training. To
fully exploit the practical information contained in this small-scale
dataset and enhance the reliability of model evaluation, we applied a
5-fold cross—validation scheme. Specifically, the entire dataset was
randomly divided into 5 non-overlapping parts of roughly equal
size, in each fold, one subset was used for validation, while the
remaining four subsets were used for training, this rotation ensures
that each sample served as the validation set exactly once, which
enables a quantitative assessment of the model's robustness and
stability across different data partitions (Niu et al., 2025).

To further assess the model’s ability to generalize across diverse
production regions and cigar varieties, an independent test set was
additionally constructed. This test set comprised 175 front-side and
175 back-side images of the "Cuba-7" cigar leaves, collected from
Sangzhi County, Zhangjiajie City, Hunan Province (110°16'E, 29°
39'54"N; at an altitude of 308 m). The resolution of all images was
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resized to 224x224, and the corresponding CLMC labels were
generated to match the model's input requirements and reduce
computational complexity.

After harvest, the cigar leaves are initially green, as curing
progresses, its color shifts to yellow and then deepens. As shown
in Figure 2, the leaves undergo noticeable phenotypic changes

TABLE 1 Key parameters of the cigar leaves air-curing process.

Ai;;li.gi?g i () Tem?oe(l:r;':\ture Hu&i;ﬂity
Wilting period 3-4 26-29 85-95
Yellowing period 4-7 27-32 80-90
Browning period 5-7 30-33 75-85
Fixation period 7-8 32-35 60-70
Dry tendon period 7-8 35-40 50-60

Frontiers in Plant Science

during air-curing: surface color shifts, the lamina curls inward,
and venation becomes increasingly exposed on the abaxial (back)
surface. Consequently, dual-view (front-back) imaging captures
more comprehensive information than single-view acquisition. In
addition, Significant visual differences are observed in the leaves
from different cultivation areas during curing, which are primarily
attributed to the cigar variety and local climatic conditions (Jiang
etal,, 2024). Based on these differences, this study utilized images of
cigar leaves from the Huaihua cultivation area for model training
and validation. In contrast, photos from the Zhangjiajie cultivation
area were employed to evaluate the model's performance, thereby
testing its generalization ability.

2.2 Proposed CADFFNet

During the CLMC prediction in the air-curing process, the
dual-view images of the leaves often exhibit similar or
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Cigar leaves
“Yunxue-2”
(Huaihua)
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FIGURE 2
Phenotypic differences between different cigar varieties

complementary patterns. To obtain a comprehensive depiction of
leaf morphology and exploit the complementary information from
both surfaces, while the interaction between the two sides enhances
the feature expression capability. This study introduces CADFFNet,
as depicted in , which comprises four modules: the front-
side feature extraction branch, the back-side feature extraction
branch, the DECA module, and the MSCFF module. The model
relies on ResNet ( ) as its backbone structure to extract
image features. Specifically, the preprocessed front and back images
are first input into the dual-branch feature extraction modules, each
branch uses ResNet to derive hierarchical features from the front
and back images independently. Then, the feature maps from three
intermediate stages of the two branches are dynamically interacted
with using the DECA module, which highlights key channel
information and improves the network’s ability to capture
common patterns on both sides. Subsequently, the feature maps
output by Stage 5 of both extraction modules are concatenated
along the channel dimension, and input to the MSCFF module to
enhance multi-scale perception. Finally, followed by global pooling,
and then input into an fc layer to predict the results. Since the
CLMC prediction is a regression problem, the model is trained
using mean squared error (MSE) as the loss function, which is

shown in

loss = %i(ﬂ—yi)z (2)

i=1

2.3 DECA module

Conventional convolution operations are inherently limited by
the receptive field, preventing sufficient attention to key
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information in the image. To address this, the channel attention
mechanism, such as the ECA module, has been widely adopted,
where 1D convolutions are applied to model inter-channel
dependencies with minimal computational overhead (

). By dynamically assigning weights to each channel, the
model's expressive capability and predictive performance
are enhanced.

Following the architecture of the ECA module depicted in
, we devise a dual-branch variant, termed DECA, which is
tailored to our two-stream network. DECA generates channel weight
descriptors for the fused features and assigns them to the dual-branch
network structure, enabling feature interaction between features and
enhancing the model's response to similar pattern changes in both
images ( ). The corresponding architecture is
depicted in . Given the feature map of front surface image
Fre RE* W > Cynd the back surface image F, € RE>*W>C yhere H,
W, and C denote the height, width, and number of channels of the
feature map, respectively, the two maps are first fused by element-wise
addition to obtain P € R * " > €, This process is shown in

P=F +F, 3)

Subsequently, a global average pooling is applied to obtain the
channel descriptor, which is then processed by a 1D convolution
with a kernel size K to model local inter-channel interactions. The
resulting vector is passed through a sigmoid activation to generate
the channel-attention weights W which is shown in

W = o(ConvlDg(AvePool(P))) (4)

where the kernel size K is an adaptive parameter determined by
the number of channels in the feature map. The calculation method
of K is shown in
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@ Global Averaged Pool fc: Fully connection layer ﬁ Front feature map ﬁ Back feature map

FIGURE 3
CADFFNet architecture.

log, C+b
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odd

where y=2, and b = 1. The term "odd" ensures that the kernel
size is an odd number by rounding the absolute value to the nearest
odd integer. Finally, the obtained channel attention weights are
applied to the two input feature maps via channel-wise
multiplication, resulting in the re-weighted feature maps }ff and
F, which can be expressed as Equation 6:

(6)

This module optimizes the channel weights of the fused front and
back features, enhancing the model's ability on key patterns while
suppressing the interference from redundant background information.
Additionally, the module improves the independent feature
representation of each branch and facilitates effective interaction

(a) ECA module (b) DECA module
K=¢(C) K=9(C)
7/:1:0 C
w 7 7 (o)
c GAP O ¢ GAP
C w
W 7 ,
1x1xC 1x1xC Ix1xC 1x1xC - C
¥ Input back feature (¥ Input front feature @ Element-wise addition @ Sigmoid
(¥ Output back feature (7 Output front feature ~ ® Channel-wise multiplication (JGlobal average pooling

FIGURE 4
Structures of (a) ECA and (b) DECA modules.
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between the front and back features, thereby further boosting the
model's overall performance.

2.4 MSCFF module

In order to effectively extract the different scale information of
two feature maps, this study designs a multi-scale convolutional
feature fusion module, inspired by the channel attention
mechanism and multi-scale feature fusion concepts (Li et al,
2019). The MSCFF module architecture is illustrated in Figure 5,
which comprises two convolutional kernels of different sizes, a
global pooling layer, a fully connected layer, and a Softmax
function. Let the front and the back surface feature maps be
denoted as Fe RE*W>Cnd F, € RE* W * € where H, W, and
C denote the height, width, and number of channels of the feature
map. First, the two feature maps are concatenated along the channel
axis to obtain Y € R * W 2C which can be denote as Equation 7:

Y = Concat{Ff;Fh} (7)

Then, two convolution kernels of different sizes are used to perform
multi-scale feature extraction on Y to obtain feature representations
under different receptive fields. The outputs of the two branches Y3, Y,
e R ¥ W 2C gre then concatenated to obtain ¥ & R * W i€ the

calculation process is shown in Equations 8-10:

Y, = o(BN(Convs,;3(Y))) ®
Y, = o(BN(Convsy,s(Y))) ©
Y = Concat{Y;Y,} (10)

10.3389/fpls.2025.1698427

Where Convs,; and Convs,s denote convolution kernels with sizes
of 3 and 5, respectively, and the BN represents batch normalization, &
represents Leaky ReLU activation function. To coordinate the
contributions of the two scale branches at the channel level, we apply
global average pooling over the spatial dimensions of Y to obtain the
channel descriptor S € R ' **“, The descriptor is then passed through
two series fully connected layers with reduction ratio r (fixed to r =16 in
this study) to obtain §’ € R™ ' **, Using ReLU function between the
two layers, this process is shown in Equation 11:

S = wyx Relu(w,»AvePool(Y)) (11)

where w;, w, € RQTCX‘*C, the channel reduction ratio is fixed to
r =16 throughout this paper. a Softmax operation is applied to S’ along
the channel dimension to produce a normalized weight vector, which is
equally split into two parts Sy, S, € R ' **, After broadcasting S; and
S, to the spatial dimensions, element-wise multiplications with the
corresponding scale features to obtain Y |, Y, € R¥* "2 Finally, the
two modulated feature maps are added element-wise and fused with
the original Y through a residual connection to obtain the feature map
0 € R * W >2C which is shown in Equation 12:

0=Y+$QOY,+$0 ¥, (12)
3 Result

3.1 Experimental conditions and evaluation
metrics

The experimental setup comprises a Core (TM) i7-12700 CPU,
an NVIDIA GeForce RTX 3060 Ti with 16 GB of memory,

+
7 =
C
HW 3x3 W ~ 2C
0 Hora | O
C 0 Je fe g '§
—~Or GAP H Hlsl | T
0 4cr H H
4c m H H
2C HW 4cH H B
w O 4CH O W
= H 2C
I CBL [
v 2
w 5x5

______________________

|
| & Channel-wise multiplication @ Concatenation
|

FIGURE 5
MSCFF module.

Frontiers in Plant Science

fc Fully connection layer

|
i@ Front surface feature map ﬁ Back surface feature map @Global Averaged Pool

P Element-wise addition

CBL ||Conv + BN + Leaky relu

frontiersin.org


https://doi.org/10.3389/fpls.2025.1698427
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Xing et al.

configured with CUDA 12.6 for GPU-based training, and the
operating system is Windows 10. The software environment is
Python 3.9, utilizing the PyTorch 4.2.1 framework. The model
training process uses the Adam optimizer, the batch size is set to
16, and the initial learning rate is 0.0001. The performance and
generalization ability of CADFFNet for estimating CLMC during
air curing are quantified using the coefficient of determination (R?),
root mean squared error (RMSE), and mean absolute error (MAE)
as evaluation metrics, the calculation formulas are shown in
Equations 13-15. R* reflects the overall goodness of fit of the
model to the prediction results, RMSE indicates the degree of
dispersion of prediction errors, and MAE represents the overall
average error of the model's predictions. A higher R* value and
lower RMSE and MAE values indicate that the model has better
predictive performance.

n fo 2
RP=1- 2:‘:1()’,' = i) 13
S G—y)? (1
RMSE(%) = \/%2:’:1(}/’\1‘ -y’ (14)
MAE(%) =317, i (15)
i=1

Where, y; and y; represent the measured CLMC of the i-th and
the model-predicted value, respectively, and n represents the total
number of samples.

3.2 Prediction results of different model
variants

Based on the number of network layers, four CADFFNet
variants are constructed: CADFFNetl8, CADFFNet34,
CADFFNet50, and CADFFNet101. Each model is evaluated
through 5-fold cross-validation and independently tested on an
external dataset.

Figure 6 provides a comprehensive comparison of these four
models, including their performance on cross-validation, prediction
accuracy on the independent test set, and overall model complexity.
Figures 6a—c highlight that CADFFNet18 outperforms all variants
in terms of accuracy and consistency, in the five-fold cross-
validation, the mean values of the R, MAE, and RMSE reached
0.974, 3.80%, and 4.63%, respectively, and there was less variation
between each fold.

When increasing the network depth, CADFFNet34 and
CADFFNet50 demonstrate a stronger representational capacity;
however, their performance declines slightly due to overfitting on
the limited dataset. In contrast, CADFFNet101 exhibits poor
prediction performance and generalization ability, with mean
values of R*>, MAE, and RMSE reached 0.955, 4.15%, and 5.77%,
and standard deviations reached 0.027, 0.98%, and 1.56%,
respectively. Figure 6d compares the distribution of predicted
moisture content against the ground truth on the independent
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test set. Among all models, CADFFNet18 demonstrates the best
generalization ability, with R%, RMSE, and MAE values reaching
0.899, 5.82%, and 7.58%, respectively. Figures 6e-g further
illustrates that among the four model variants, CADFFNet18
achieves the best prediction performance and generalization
ability while having fewer parameters, lower computational
complexity, and faster inference speed.

In summary, CADFFNet18 offers the optimal balance between
model accuracy and computational efficiency, outperforming
deeper variants in both robustness and practicality. Therefore, we
will only discuss CADFFNetl8 in the following chapters of
this research.

4 Discussion
4.1 Ablation experiment

An ablation study was conducted using the best-performing
variant, CADFFNet18, on the constructed dataset to validate the
effectiveness of the CADFFNet architecture. The single-branch
ResNet18 models using front-view and back-view images were set
as baseline models. Specifically, a dual-branch ResNet18 was used as
the backbone, upon which the DECA and MSCFF modules were
incrementally incorporated. Each configuration was evaluated on
both the validation and independent test sets using five-fold cross-
validation to assess predictive performance and generalization
capability. Table 2 summarizes the results, highlighting that the
dual-branch variant significantly improves accuracy and robustness
compared to the single-branch ResNet18 models. This
demonstrates that jointly utilizing front and back-view images
enhances the model’s ability to capture the structural
characteristics of cigar leaves throughout the air—curing stage.

Furthermore, introducing the DECA module further improves
the predictive performance, suggesting its effectiveness in
enhancing the network's ability to model symmetric and
complementary patterns between dual-view features. Similarly,
the MSCFF module contributes to better integration of the
extracted multi-branch features. Notably, relative to the dual-
branch ResNet-18 baseline, adding DECA alone outperforms
adding MSCFF alone in five-fold cross-validation, whereas the
independent test set shows the opposite trend. A plausible
explanation is that DECA emphasizes channel-level alignment of
complementary front and back features, thereby reducing bias
under same source folds; in contrast, MSCFF focuses on multi-
scale salient information and robustness, making it more sensitive
to appearance and scale variations of cigar leaves during air-curing
and thus suited on the independent test set.

Ultimately, integrating DECA and MSCEFF into the full
CADFFNet architecture achieves the best performance across all
evaluation settings, with R%, MAE, and RMSE reached 0.974 +
0.007, 3.80 = 0.37%, and 4.63 + 0.45% in cross-validation, and 0.899,
5.82%, and 7.58% in the independent test set. These results confirm
the complementary strengths of the two modules and highlight the
overall effectiveness of the proposed network design.
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Performance comparison and complexity analysis of CADFFNet models with different layers under 5-fold cross-validation and independent testing.
Subfigures (a-c) shows the distribution of R?, RMSE, and MAE results from the five-fold cross-validation. The colored dots represent the evaluation
metric values for each fold for the four model variants. The box distribution is the kernel density estimate of the metric, and its width reflects the
probability density of the result. Narrower boxes indicate less fluctuation between folds and greater stability. The blue dots and error bars represent

the five-fold means and their 95% confidence intervals, respectively. The

blue dots represent the five-fold cross-validation mean. Subfigure (d)

shows the ground truth and the prediction results of different layers of models for the testing set, Subfigures (e-g) shows the parameter counts
(Params), floating-point computation (Flops), and inference speed (FPS) of the four model variants, respectively

4.2 Impact of the number of DECA
modules on the model

The DECA module developed is placed at three key stages in the
dual-branch network. To further explore the impact of the number
and position of DECA modules on model performance, eight
different configurations were constructed based on the number
and insertion positions of DECA modules within the network.
Their corresponding performance on five-fold cross-validation, the
independent testing set is presented in Table 3.

During cross-validation, all configurations exhibited similar
predictive performance, with R*> values ranging from 0.968 to
0.974 and MAE values ranging from 3.80% to 4.28%, indicating
stable model behavior under limited data conditions. However,
noticeable differences emerged in the independent testing results.

Frontiers in Plant Science

Specifically, when a single DECA module was inserted, the
model's prediction accuracy on the test set improved compared to
the baseline, and the module's insertion position had a minimal
effect on performance. Further improvements were observed when
two DECA modules were incorporated, with test set R? values
reaching 0.880, 0.883, and 0.884, depending on the placement
strategy. The best performance was achieved when all three
DECA modules were inserted into the network.

These results suggest that inserting multiple DECA modules at
different levels of the dual-branch architecture facilitates the
interaction and fusion of multi-scale features. Hence, this design
enhances the model's ability to capture low-level features, such as
edges and textures, from both front and back views, and improves
its understanding of high-level, abstract representations.
Consequently, the model's predictive performance and
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TABLE 2 Results of the ablation experiment.

Cross-validation

10.3389/fpls.2025.1698427

Independent testing

MAE (%) RMSE (%) R? MAE (%) RMSE (%)
Front image+ResNet18 0.868 + 0.052 7.04 £ 1.87 7.06 + 0.88 0.700 9.65 13.06
Back image+ResNet18 0.915 £ 0.028 5.81 +0.85 7.14 £ 0.97 0.728 9.64 12.44
Dual-branch ResNet18 0.968 + 0.008 3.93 +0.43 4.88 + 0.63 0.843 7.33 9.89
Dual-branch Resnet18+DECA 0.975 £ 0.007 3.44 + 0.40 3.95 + 0.57 0.856 7.09 9.01
Dual-branch ResNet18+MSCFF 0.968 + 0.007 4.28 £ 0.37 4.87 +0.52 0.874 6.22 8.29
CADFFNet 0.974 + 0.006 3.80 + 0.32 4.63 + 0.45 0.899 5.82 7.58

All evaluation metrics of CADFFNet constructed in this study are shown in bold font, the rest of the table remains the same.

generalization capability are further enhanced. The potential reason
for this is that when multiple channel attention modules are
inserted at different positions in the dual-branch model, they
facilitate the interaction and fusion of feature maps at various
scales. This enables the model to capture correlations between
shallow features, such as edges and textures, of the front and back
images, thereby improving its understanding of the deeper, abstract
information in these images and enhancing its predictive
performance and generalization ability.

4.3 Impact of different feature fusion
strategies on the model

To verify the advantages of the MSCFF module in the feature
fusion stage, we replaced it with three popular attention modules for
comparison: Squeeze-and-Excitation (SE), Convolutional Block
Attention Module (CBAM), and Coordinate Attention (CA).
Table 4 highlights that the proposed MSCFF module
demonstrates the highest predictive performance and the lowest
standard deviation during the five-fold cross-validation, and also
achieves the best accuracy on the independent test set. The CA
module attains the second-best performance, while the SE module
yields the poorest results.

These findings suggest that constructing multi-scale features in
combination with adaptive channel weight assignment significantly
improves the network’s capacity to integrate both local and
global information from feature maps. Thus, this combination
effectively improves the model’s predictive performance and
generalization ability.

4.4 Comparison with other CNN models

We compared CADFFNet against dual-branch network models
with different neural network architectures as backbones for
predicting cigar leaf moisture content during the curing process.
The models employed were ResNet18 (He et al., 2016), GoogLeNet
(Szegedy et al., 2016), VGG19Net (Simonyan and Zisserman, 2015),
DenseNet121 (Huang et al., 2017), and MobileNetV2 (Sandler
et al., 2018).

Figures 7a—f present the prediction results of different models
on the independent test set. The results demonstrate that
CADFFENet achieves the highest agreement between predicted and
measured moisture content values of cigar leaves, with the highest
R? and the lowest MAE and RMSE, significantly outperforming
other CNN-based architectures. Among the remaining five models,
GoogLeNet exhibits the best predictive performance, followed by

TABLE 3 Impact of the number and location of DECA modules on the model.

Cross-validation

Independent testing

Stage 2 Stage 3 Stage 4
MAE (%) RMSE (%) R? MAE (%) RMSE (%)
- - - 0.968 + 0.007 428 £ 037 4.87 £ 0.52 0.874 622 8.29
v - - 0.970 + 0.008 3.89 + 0.64 4.83 £ 042 0.877 625 8.36
- v - 0.971 + 0.007 3.83 093 4.86 £ 0.57 0.878 6.04 7.69
- - v 0.970 + 0.007 3.92 + 045 5.48 + 0.64 0.878 6.13 8.27
v v - 0.971 + 0.007 3.80 + 0.39 4.69 + 0.48 0.880 6.12 823
- v v 0.972 + 0.006 3.87 £ 041 522 +0.39 0.883 6.05 7.75
v - v 0.972 + 0.006 3.81 + 0.44 4.69 £ 051 0.884 5.96 7.74
v v v 0.974 + 0.006 3.80 +0.37 4.63 £ 0.45 0.899 5.82 7.58

All evaluation metrics of CADFFNet constructed in this study are shown in bold font, the rest of the table remains the same.
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TABLE 4 Experimental results of different attention mechanisms.

Cross-validation

Independent testing

Attention module

MAE (%) RMSE (%) R? MAE (%) RMSE (%)
SE (Hu et al., 2018) 0.974 + 0.007 3.52 +£0.48 478 + 0.54 0.868 7.12 8.71
CBAM (Woo et al.,, 2018) 0.969 + 0.006 4,04 + 0.34 5.10 £ 0.44 0.869 6.90 8.54
CA (Hou et al,, 2021) 0.974 + 0.007 3.54 £ 045 4.89 + 0.54 0.872 ‘ 6.18 8.37
MSCEFF (ours) 0.974 £+ 0.006 3.80 £ 0.37 4.63 + 0.45 0.899 ‘ 5.82 7.58

All evaluation metrics of CADFFNet constructed in this study are shown in bold font, the rest of the table remains the same.

VGGI19Net, which indirectly validates the effectiveness of multi-
scale feature fusion and residual connections. In contrast,
DenseNet121 provides the weakest results, with R?, MAE, and
RMSE of 0.801, 8.10%, and 10.59%.

4.5 Comparison with other researches

In this study, we develop a dual-branch CNN model that
dynamically perceives and fuses the features of dual-view images

Figures 7g—i showcase the R% MAE, and RMSE values of each model
under five-fold cross-validation. The results highlight that CADFFNet
exhibits the highest robustness and generalization capability, further
confirming the superiority of the proposed architecture.

of cigar leaves to enhance the model's performance. To evaluate the
performance of CADFFNet, we compared our results with those of
current methods in this domain, using different original data and
methods. Specifically, we evaluated the prediction performance of
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Performance comparison of different CNN models. Subfigures (a-f) prediction results of various models on the independent testing, Subfigures (g-i)
comparison of R%and MAE values obtained from five-fold cross-validation for each model.
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TABLE 5 Algorithm comparison.

Related studies Image type Model Source of test set R?
Yin et al. (2024) Hyperspectral image of cigar leaves Diversified Region-based CNN (DR-CNN) ‘ Divided from the original data set =~ 0.810
Yang et al. (2023) RGB image of cigar leaves CNN ‘ Different curing barn 0.867
Ours Front and back image of cigar leaves in suspend state CADFFNet ‘ Different planting region 0.899

CADFENet in comparison to Yin et al. (2024) and Yang et al.  nicotine content, as well as other chemical characteristics that

(2023), as reported in Table 5. The results demonstrate that  directly characterize the quality of the cigar leaf, to further

CADFFNet outperforms both approaches in terms of CLMC  optimize the cigar leaf air-curing process.

prediction accuracy. This improvement suggests that the dual-

branch network model can better capture the changes in the

apparent morphology of cigar leaves resulting from water loss 5 Conclusion

during the air-curing stage. Overall, our findings demonstrate that

CADFFNet can efficiently and accurately predict CLMC, achieving This study introduces CADFFNet, a novel CNN model for non-

high accuracy and better generalization ability. destructive CLMC detection during the curing process, which
integrates dual-view images of the cigar leaves. To better capture
the similar pattern changes in the front and back images, we employ

4.6 Limitation and research prospect a dual-branch network structure to process the images in parallel.
Additionally, we design the DECA and MSCFF modules, enabling

During the air-curing process, cigar leaves change color and  feature maps at different levels to interact and fuse at various stages
morphology due to water loss, with the operators assessing the leaf's  of the network. Moreover, introducing a channel attention
appearance to estimate leaf moisture content (Fu et al, 2024). mechanism allows the model to enhance key features of the
Accurately and non-destructively estimating the CLMC during the  leaves while suppressing irrelevant information that may interfere
air-curing stage allows technicians to monitor the leaf's condition  with the prediction results. Experimental results show that
better and make more precise decisions regarding timely = CADFFNet achieves excellent prediction performance on cigar
adjustments to the air-curing technique. Despite the strong leaves from the same region and variety. A strong performance is
predictive performance achieved by the proposed model, certain  also demonstrated in cross-region and cross-variety predictions,
limitations remain. Firstly, as illustrated in Figure 6, when applied ~ with R* and MAE values of 0.899 and 5.82%, respectively, on the
to cigar tobacco leaf samples from different production regions and  test set.
varieties, the model still faces challenges in accurately predicting In summary, this study provides a convenient and non-
CLMC, suggesting that its generalization ability under  destructive method for detecting CLMC, offering a theoretical
heterogeneous data conditions requires further improvement.  basis for the automation of the cigar leaf air-curing process.
Secondly, due to the dual-branch architecture that necessitates  Furthermore, the proposed approach, which integrates the
parallel processing of two input images, the model—while interaction and fusion of front and back leaf images, provides a
benefiting from enhanced accuracy and robustness—inevitably  novel solution for pattern recognition tasks in plant leaves, such as
incurs increased computational overhead. Finally, this study is  leaf disease identification, crop classification, and assessment of
based on static imaging of individual leaves, whereas in actual  plant growth stages.
production cigar leaves are hung on whole stalks and air-cured at
room scale. In-situ image acquisition in such settings faces
occlusions and illumination variations, and therefore a gap Data avallablllty statement
remains to practical deployment.

The future research is multi-folded. First, we will collect cigar The raw data supporting the conclusions of this article will be
leaf images from multiple regions and varieties to expand the  made available by the authors, without undue reservation.
dataset, and utilize annual curing data for model iteration and
updates to further enhance its robustness. Second, we will
incorporate prior knowledge, such as fresh cigar leaf quality, barn Author contributions
temperature, humidity, and curing duration, into the model
training process, and conduct continuous, high-frequency, multi- ZX: Data curation, Software, Writing - original draft,
view in-situ imaging of whole-stalk leaves throughout curing. Based =~ Investigation, Formal analysis. YS: Validation, Resources, Formal
on these data, we aim to develop a non-destructive predictive model ~ analysis, Visualization, Data curation, Investigation, Writing -
of the moisture-content-time trajectory over the curing process.  review & editing. YP: Formal analysis, Conceptualization, Writing —
Finally, another priority is to explore the correlation between cigar  review & editing. KZ: Project administration, Writing — review &
leaf images and chemical indicators, such as total sugars and  editing, Methodology, Investigation, Resources, Conceptualization.
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Investigation, Writing — review & editing, Validation, Visualization.
SD: Formal analysis, Validation, Project administration, Data
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