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Introduction: The cigar leaves moisture content (CLMC) is a critical parameter

for controlling curing barn conditions. Along with the continuous advancement

of deep learning (DL) technologies, convolutional neural networks (CNN) have

provided a way of thinking for the non-destructive estimation of CLMC during

the air-curing process. Nevertheless, relying merely on single-perspective

imaging makes it difficult to comprehensively capture the complementary

morphological features of the front and back sides of cigar leaves during the

air-curing process.

Methods: This study constructed a dual-view image dataset covering the air-

curing process, and proposes a regression framework named CADFFNet

(channel attention weight-based dual-branch feature fusion network) for the

non-destructive estimation of CLMC during the curing process based on dual-

view RGB images. Firstly, the model utilizes two independent and parallel ResNet

as its backbone structure to capture the heterogeneous features of dual-view

images. Secondly, the Dual Efficient Channel Attention (DECA) module is

introduced to dynamically adjust the channel attention weights of the features,

thereby facilitating interaction between the two branches. Lastly, a Multi-scale

convolutional feature fusion (MSCFF) module is designed for the deep fusion of

features from the front and back images to aggregate multi-scale features for

robust regression.

Results: On five-fold cross-validation, CADFFNet attains R2 of 0.974±0.007 and

mean absolute error (MAE) of 3.80±0.37%. On an independent cross-region,

cross-variety testing set, it maintains strong generalization (R2=0.899,

MAE=5.82%), compared with the classic CNN models ResNet18, GoogLeNet,

VGG19Net, DenseNet121, and MobileNetV2, its R2 value has increased by 0.047,

0.041, 0.055, 0.098, and 0.090 respectively.
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Discussion: Generally, the proposed CADFFNet offers an efficient and

convenient method for non-destructive detection of CLMC, providing a

theoretical basis for automating the air-curing process. It also provides a new

perspective for moisture content prediction during the drying process of other

crops, such as tea, asparagus, and mushrooms.
KEYWORDS

convolution neural networks, cigar leaves, dual-view images, feature fusion, moisture
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1 Introduction

As a significant economic crop, tobacco plays a vital role in

enhancing farmers' income (Soneji et al., 2022). Notably, the

consumption of hand-rolled cigars, a key tobacco product, has

risen significantly in recent years (Yang et al., 2024a), driving an

increasing demand for high-quality cigar leaf raw materials. The

air-curing process is critical to the morphological changes and

quality formation of cigar leaves (Zhao et al., 2024b). Among

various factors, the CLMC is a vital parameter for controlling

temperature and humidity in curing barns. Typically, operators

estimate CLMC levels through visual inspection and tactile

judgment, which highly rely on experience and are prone to

inaccuracies. Conventional methods for quantifying moisture

content, such as hot-air drying (Rahman et al., 2025) and Karl

Fischer titration (Kosfeld et al., 2022), are complex, destructive, and

incapable of providing real-time, non-invasive measurements.

Recently, several novel indirect moisture content detection

technologies have been proposed for agricultural products

production, including spectral analysis (Guo et al., 2023; Liu

et al., 2023), microwave technology (Jin et al., 2023), and nuclear

magnetic resonance (NMR) (Qu et al., 2021). For instance, Wei

et al. (2021) employed multispectral images of tea leaves to develop

a moisture prediction model. Similarly, Yang et al. (2024b) collected

spectral and morphological data of alfalfa seeds under varying

moisture levels and distinguished them based on machine

learning discriminant models. Moreover, Wu et al. (2022) utilized

multifrequency microwave signals to detect tea leaves moisture

content during the withering process. Despite these advancements

enabling the non-invasive detection of agricultural products,

methods such as moisture content extensively depend on

expensive equipment, limiting their scalability in practical
MR, nuclear magnetic
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production scenarios. Therefore, the accurate, convenient, and

non-destructive estimation of CLMC is crucial for improving the

standardization level of the cigar leaf air-curing process.

With advancements in technology, computer vision has

demonstrated significant potential in various aspects of tobacco

production, including disease identification (Lin et al., 2022) and

determining harvest maturity (Dai et al., 2024). Indeed, by training a

model on extensive image datasets, it can learn the correlation

between moisture content and the subtle changes in color, texture,

and shape of leaves (Xing et al., 2025), enhancing the automation of

tobacco leaf curing processes. For instance, Condorı ́ et al. (2020)
developed a high-precision prediction model to learn the relationship

between color changes in tobacco leaf images and weight loss,

enabling automated control of curing barns during the curing

stage. Wu et al. (2014) utilized color features from tobacco leaf

images to construct an artificial neural network model for predicting

the temperature rise time during the bulk curing process.

Furthermore, Pei et al. (2024) integrated data from stem weight

sensors, temperature and humidity sensors, and digital cameras to

introduce the comprehensive predictive curing model (CPBM),

which facilitates stage recognition during the tobacco curing

process. Traditional machine learning (ML) algorithms often

require manual feature design, typically relying on domain-specific

expertise and task-specific requirements. Nevertheless, such an

approach often yields incomplete feature extraction, compromising

model performance, particularly with complex and diverse image

datasets (Shafik et al., 2024). In contrast, Deep Learning (DL) utilizes

more complex neural networks to progressively transform input data

into more abstract representations, enabling the model to

automatically extract features without human intervention. Among

them, convolutional neural networks (CNN) have shown exceptional

performance in handling large-scale image data due to their inherent

ability to learn features and their generalizability autonomously

(Chen et al., 2023). In recent years, CNN-based solutions have

been widely studied in the field of crop production (Xu et al., 2020;

Wang et al., 2023). For example, Dai et al. (2025) designed a new

feature extraction network structure, for determining lightness levels

during various stages of tobacco curing, which facilitates the

exchange of information between features at different image levels,

thereby enhancing the model's classification accuracy. By integrating
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multi-scale features, the network effectively combines the global

features and local features of the image, leading to improved

performance. Zhao et al. (2024a) proposed a lightweight

recognition model for tobacco leaf curing stages, named TCSRNet.

By integrating Inception branches and Multi-scale Adaptive

Attention Mechanism (MAAM), this model achieves a

classification accuracy of approximately 90.35% with 158.136

MFLOPS and 1.749M parameters. Feng et al. (2025) compared the

model's recognition accuracy under different image acquisition

conditions during the tobacco curing process. The results indicated

that combining images from multiple angles significantly improved

the model's accuracy in determining the curing stage.

The above researches indicate that CNNs demonstrate

applicability in the intensive curing process of flue-cured tobacco.

However, the intensive curing process of flue-cured tobacco has a

relatively short cycle, and each curing stage is equipped with its

corresponding process parameters. In contrast, the air-curing process

of cigar leaves is relatively slow, and the environmental temperature

and humidity are not strictly controllable (Zhao et al., 2022).

Therefore, the accurate estimation of moisture content during the

air-curing process of cigar leaves has become a problem that urgently

needs to be solved. For example, Yang et al. (2023) demonstrated that,

compared to traditional machine learning algorithms, CNNs offer

superior performance in predicting the CLMC during the air-curing

process. Yin et al. (2024) used Visible and Near-infrared hyperspectral

imaging (VNIR-HSI) combined with a Diversified Region-based

Convolutional Neural Network (DR-CNN) to predict the CLMC

during the curing process. The results showed that in terms of

prediction accuracy, DR-CNN outperformed PLSR and traditional

CNN models. Notably, current studies have primarily focused on the

single-view image features of tobacco leaves (Gao et al., 2021; Wu

et al., 2024). However, during the air-curing stage, as water lost, the

leaves gradually curl inward, causing the front surface to be obscured

by the back. Additionally, the vein of the leaf becomes fully exposed on

the back surface. Consequently, relying solely on the single-view

images for modeling entails a significant loss of crucial information.

To address the above issues, we propose a channel attention

weight-based dual-branch feature fusion network (CADFFNet).

Specifically, the contributions of this study are as follows:
Fron
• Construction of the cigar leaf air-curing process image

dataset: To replicate the authentic curing process of cigar

leaves, images of the cigar leaf in their naturally suspended

state were used to predict moisture content.

• Design of the CADFFNet: The model employs two parallel

ResNet-18 backbones to extract features from front- and

back-view leaf images. A DECAmodule performs cross-view

channel alignment, and anMSCFF module carries out multi-

scale feature fusion. A subsequent regression head outputs

the CLMC. By leveraging dual-view imagery, this design

improves the predictive accuracy of CLMC estimation.

• Experimental Validation: The CADFFNet model

successfully predicts the CLMC during the air-curing

process, demonstrating robust performance across

different planting regions and varieties.
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The remainder of the paper is organized as follows. Section 2

describes the datasets constructed and the proposed method.

Section 3 reports the experiment results, Section 4 discusses the

advantages and limitations of the proposed methodology, and

Section 5 concludes this work.
2 Materials and method

2.1 Datasets

Figure 1 illustrates the data collection process of this study.

After harvest, cigar leaves were fixed onto wooden rods using cotton

threads for curing. To closely replicate the authentic curing process,

the image collection procedure followed the method described in

Ma et al. (2024). Specifically, after sampling the leaves, they were

suspended in a dark chamber equipped for image capture. A digital

camera (Canon Mark II, 24-70mm/f4 lens, focal length of 35 mm,

2,080×3,120 pixels resolution) was positioned 90 cm away from the

leaves, capturing images of both the front and back surfaces. Inside

the dark chamber, a white background board was placed, and two

40W lamps were positioned at the top to provide lighting. After the

image was captured, the fresh weight of the leaves was immediately

measured. Subsequently, the CLMC was determined using the hot-

air drying method (Chen et al., 2021). The cigar leaves MC can be

calculated as shown in Equation 1:

MC( % ) =
Mfresh −Mdry

Mfresh
� 100% (1)

whereMC is the moisture content of cigar leaves, andMfresh and

Mdry are the fresh weight and dry weight of cigar leaves, respectively.

Where MC is the cigar leaves moisture content, and Mfresh and

Mdry are the fresh weight and dry weight of cigar leaves, respectively.

The datasets used in this study were obtained from Mayang

County, Huaihua City, Hunan Province (109°39′E, 27°54′N, at an
altitude of 300 m). The data were gathered from the day of leaf

harvest (0d) until the leaves were removed from the curing barn.

The barn temperature and humidity parameters of the drying

process are shown in Table 1. In total, 1,005 cigar leaves were

collected, yielding 2,010 dual-view images for model training. To

fully exploit the practical information contained in this small-scale

dataset and enhance the reliability of model evaluation, we applied a

5-fold cross−validation scheme. Specifically, the entire dataset was

randomly divided into 5 non−overlapping parts of roughly equal

size, in each fold, one subset was used for validation, while the

remaining four subsets were used for training, this rotation ensures

that each sample served as the validation set exactly once, which

enables a quantitative assessment of the model's robustness and

stability across different data partitions (Niu et al., 2025).

To further assess the model’s ability to generalize across diverse

production regions and cigar varieties, an independent test set was

additionally constructed. This test set comprised 175 front-side and

175 back-side images of the "Cuba-7" cigar leaves, collected from

Sangzhi County, Zhangjiajie City, Hunan Province (110°16′E, 29°
39′54″N; at an altitude of 308 m). The resolution of all images was
frontiersin.org

https://doi.org/10.3389/fpls.2025.1698427
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xing et al. 10.3389/fpls.2025.1698427
resized to 224×224, and the corresponding CLMC labels were

generated to match the model's input requirements and reduce

computational complexity.

After harvest, the cigar leaves are initially green, as curing

progresses, its color shifts to yellow and then deepens. As shown

in Figure 2, the leaves undergo noticeable phenotypic changes
Frontiers in Plant Science 04
during air-curing: surface color shifts, the lamina curls inward,

and venation becomes increasingly exposed on the abaxial (back)

surface. Consequently, dual-view (front–back) imaging captures

more comprehensive information than single-view acquisition. In

addition, Significant visual differences are observed in the leaves

from different cultivation areas during curing, which are primarily

attributed to the cigar variety and local climatic conditions (Jiang

et al., 2024). Based on these differences, this study utilized images of

cigar leaves from the Huaihua cultivation area for model training

and validation. In contrast, photos from the Zhangjiajie cultivation

area were employed to evaluate the model's performance, thereby

testing its generalization ability.
2.2 Proposed CADFFNet

During the CLMC prediction in the air-curing process, the

dual-view images of the leaves often exhibit similar or
FIGURE 1

The roadmap of this study. (MY, MaYang; SZ, SangZhi).
TABLE 1 Key parameters of the cigar leaves air-curing process.

Air-curing
period

Time (d)
Temperature

(°C)
Humidity

(%)

Wilting period 3-4 26-29 85-95

Yellowing period 4-7 27-32 80-90

Browning period 5-7 30-33 75-85

Fixation period 7-8 32-35 60-70

Dry tendon period 7-8 35-40 50-60
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complementary patterns. To obtain a comprehensive depiction of

leaf morphology and exploit the complementary information from

both surfaces, while the interaction between the two sides enhances

the feature expression capability. This study introduces CADFFNet,

as depicted in Figure 3, which comprises four modules: the front-

side feature extraction branch, the back-side feature extraction

branch, the DECA module, and the MSCFF module. The model

relies on ResNet (He et al., 2016) as its backbone structure to extract

image features. Specifically, the preprocessed front and back images

are first input into the dual-branch feature extraction modules, each

branch uses ResNet to derive hierarchical features from the front

and back images independently. Then, the feature maps from three

intermediate stages of the two branches are dynamically interacted

with using the DECA module, which highlights key channel

information and improves the network’s ability to capture

common patterns on both sides. Subsequently, the feature maps

output by Stage 5 of both extraction modules are concatenated

along the channel dimension, and input to the MSCFF module to

enhance multi−scale perception. Finally, followed by global pooling,

and then input into an fc layer to predict the results. Since the

CLMC prediction is a regression problem, the model is trained

using mean squared error (MSE) as the loss function, which is

shown in Equation 2:

loss =
1
no

n

i¼1
(byi�yi)

2 (2)
2.3 DECA module

Conventional convolution operations are inherently limited by

the receptive field, preventing sufficient attention to key
Frontiers in Plant Science 05
information in the image. To address this, the channel attention

mechanism, such as the ECA module, has been widely adopted,

where 1D convolutions are applied to model inter-channel

dependencies with minimal computational overhead (Lee et al.,

2024). By dynamically assigning weights to each channel, the

model's expressive capability and predictive performance

are enhanced.

Following the architecture of the ECA module depicted in

Figure 4a, we devise a dual-branch variant, termed DECA, which is

tailored to our two-stream network. DECA generates channel weight

descriptors for the fused features and assigns them to the dual-branch

network structure, enabling feature interaction between features and

enhancing the model's response to similar pattern changes in both

images (Wang et al., 2020). The corresponding architecture is

depicted in Figure 4b. Given the feature map of front surface image

Ff ∈ RH × W × Cand the back surface image Fb ∈ RH × W × C, whereH,

W, and C denote the height, width, and number of channels of the

featuremap, respectively, the twomaps are first fused by element-wise

addition to obtain P ∈ RH × W × C. This process is shown in Equation

3:

P = Ff + Fb (3)

Subsequently, a global average pooling is applied to obtain the

channel descriptor, which is then processed by a 1D convolution

with a kernel size K to model local inter-channel interactions. The

resulting vector is passed through a sigmoid activation to generate

the channel-attention weights W which is shown in Equation 4:

W =  s (Conv1DK(AvePool(P))) (4)

where the kernel size K is an adaptive parameter determined by

the number of channels in the feature map. The calculation method

of K is shown in Equation 5:
FIGURE 2

Phenotypic differences between different cigar varieties.
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K =
log2 C + b

g

����
����
odd

(5)

where g = 2, and b = 1. The term "odd" ensures that the kernel

size is an odd number by rounding the absolute value to the nearest

odd integer. Finally, the obtained channel attention weights are

applied to the two input feature maps via channel-wise

multiplication, resulting in the re-weighted feature maps F̂f and

F̂b, which can be expressed as Equation 6:
Frontiers in Plant Science 06
bFf =  W⨀Ff

bFb =  W⨀Fb

8<
: (6)

This module optimizes the channel weights of the fused front and

back features, enhancing the model's ability on key patterns while

suppressing the interference from redundant background information.

Additionally, the module improves the independent feature

representation of each branch and facilitates effective interaction
FIGURE 3

CADFFNet architecture.
FIGURE 4

Structures of (a) ECA and (b) DECA modules.
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between the front and back features, thereby further boosting the

model's overall performance.

2.4 MSCFF module

In order to effectively extract the different scale information of

two feature maps, this study designs a multi-scale convolutional

feature fusion module, inspired by the channel attention

mechanism and multi-scale feature fusion concepts (Li et al.,

2019). The MSCFF module architecture is illustrated in Figure 5,

which comprises two convolutional kernels of different sizes, a

global pooling layer, a fully connected layer, and a Softmax

function. Let the front and the back surface feature maps be

denoted as Ff∈ RH × W × Cand Fb ∈ RH × W × C, where H, W, and

C denote the height, width, and number of channels of the feature

map. First, the two feature maps are concatenated along the channel

axis to obtain Y ∈ RH × W ×2C, which can be denote as Equation 7:

Y =  Concat Ff ; Fb
� �

(7)

Then, two convolution kernels of different sizes are used to perform

multi-scale feature extraction on Y to obtain feature representations

under different receptive fields. The outputs of the two branches Y1, Y2
∈ RH × W ×2C are then concatenated to obtain Ŷ ∈ RH × W ×4C the

calculation process is shown in Equations 8–10:

Y1 =  s(BN(Conv3�3(Y))) (8)

Y2 =  s(BN(Conv5�5(Y))) (9)

Ŷ =  Concat Y1;Y2f g (10)
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Where Conv3×3 and Conv5×5 denote convolution kernels with sizes

of 3 and 5, respectively, and the BN represents batch normalization, s
represents Leaky ReLU activation function. To coordinate the

contributions of the two scale branches at the channel level, we apply

global average pooling over the spatial dimensions of Ŷ to obtain the

channel descriptor S∈ R1× 1 ×4C. The descriptor is then passed through

two series fully connected layers with reduction ratio r (fixed to r =16 in

this study) to obtain S’ ∈ R1× 1 ×4C. Using ReLU function between the

two layers, this process is shown in Equation 11:

S0 = w2*  Relu(w1*AvePool(Ŷ )) (11)

where w1,w2 ∈ R
4C
r �4C , the channel reduction ratio is fixed to

r =16 throughout this paper. a Softmax operation is applied to S′ along
the channel dimension to produce a normalized weight vector, which is

equally split into two parts S1, S2 ∈ R1× 1 ×2C. After broadcasting S1 and

S2 to the spatial dimensions, element-wise multiplications with the

corresponding scale features to obtain Ŷ 1, Ŷ 2 ∈RH ×W ×2C. Finally, the

two modulated feature maps are added element-wise and fused with

the original Y through a residual connection to obtain the feature map

O ∈ RH × W ×2C, which is shown in Equation 12:

O = Y + S1 ⨀ Ŷ 1 + S2 ⨀   Ŷ 2 (12)
3 Result

3.1 Experimental conditions and evaluation
metrics

The experimental setup comprises a Core (TM) i7–12700 CPU,

an NVIDIA GeForce RTX 3060 Ti with 16 GB of memory,
FIGURE 5

MSCFF module.
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configured with CUDA 12.6 for GPU-based training, and the

operating system is Windows 10. The software environment is

Python 3.9, utilizing the PyTorch 4.2.1 framework. The model

training process uses the Adam optimizer, the batch size is set to

16, and the initial learning rate is 0.0001. The performance and

generalization ability of CADFFNet for estimating CLMC during

air curing are quantified using the coefficient of determination (R2),

root mean squared error (RMSE), and mean absolute error (MAE)

as evaluation metrics, the calculation formulas are shown in

Equations 13–15. R2 reflects the overall goodness of fit of the

model to the prediction results, RMSE indicates the degree of

dispersion of prediction errors, and MAE represents the overall

average error of the model's predictions. A higher R2 value and

lower RMSE and MAE values indicate that the model has better

predictive performance.

R2 = 1 −o
n
i=1(byi � yi)

2

on
i=1(�y� yi)

2 (13)

RMSE(% ) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(byi − yi)

2

r
(14)

MAE(% ) =
1
no

n

i=1

byi � yij j (15)

Where, yî and yi represent the measured CLMC of the i-th and

the model-predicted value, respectively, and n represents the total

number of samples.
3.2 Prediction results of different model
variants

Based on the number of network layers, four CADFFNet

variants are constructed: CADFFNet18, CADFFNet34,

CADFFNet50, and CADFFNet101. Each model is evaluated

through 5-fold cross-validation and independently tested on an

external dataset.

Figure 6 provides a comprehensive comparison of these four

models, including their performance on cross-validation, prediction

accuracy on the independent test set, and overall model complexity.

Figures 6a–c highlight that CADFFNet18 outperforms all variants

in terms of accuracy and consistency, in the five-fold cross-

validation, the mean values of the R2, MAE, and RMSE reached

0.974, 3.80%, and 4.63%, respectively, and there was less variation

between each fold.

When increasing the network depth, CADFFNet34 and

CADFFNet50 demonstrate a stronger representational capacity;

however, their performance declines slightly due to overfitting on

the limited dataset. In contrast, CADFFNet101 exhibits poor

prediction performance and generalization ability, with mean

values of R2, MAE, and RMSE reached 0.955, 4.15%, and 5.77%,

and standard deviations reached 0.027, 0.98%, and 1.56%,

respectively. Figure 6d compares the distribution of predicted

moisture content against the ground truth on the independent
Frontiers in Plant Science 08
test set. Among all models, CADFFNet18 demonstrates the best

generalization ability, with R2, RMSE, and MAE values reaching

0.899, 5.82%, and 7.58%, respectively. Figures 6e–g further

illustrates that among the four model variants, CADFFNet18

achieves the best prediction performance and generalization

ability while having fewer parameters, lower computational

complexity, and faster inference speed.

In summary, CADFFNet18 offers the optimal balance between

model accuracy and computational efficiency, outperforming

deeper variants in both robustness and practicality. Therefore, we

will only discuss CADFFNet18 in the following chapters of

this research.

4 Discussion

4.1 Ablation experiment

An ablation study was conducted using the best-performing

variant, CADFFNet18, on the constructed dataset to validate the

effectiveness of the CADFFNet architecture. The single-branch

ResNet18 models using front-view and back-view images were set

as baseline models. Specifically, a dual-branch ResNet18 was used as

the backbone, upon which the DECA and MSCFF modules were

incrementally incorporated. Each configuration was evaluated on

both the validation and independent test sets using five-fold cross-

validation to assess predictive performance and generalization

capability. Table 2 summarizes the results, highlighting that the

dual-branch variant significantly improves accuracy and robustness

compared to the single-branch ResNet18 models. This

demonstrates that jointly utilizing front and back-view images

enhances the model ’s ability to capture the structural

characteristics of cigar leaves throughout the air−curing stage.

Furthermore, introducing the DECA module further improves

the predictive performance, suggesting its effectiveness in

enhancing the network's ability to model symmetric and

complementary patterns between dual-view features. Similarly,

the MSCFF module contributes to better integration of the

extracted multi-branch features. Notably, relative to the dual-

branch ResNet-18 baseline, adding DECA alone outperforms

adding MSCFF alone in five-fold cross-validation, whereas the

independent test set shows the opposite trend. A plausible

explanation is that DECA emphasizes channel-level alignment of

complementary front and back features, thereby reducing bias

under same source folds; in contrast, MSCFF focuses on multi-

scale salient information and robustness, making it more sensitive

to appearance and scale variations of cigar leaves during air-curing

and thus suited on the independent test set.

Ultimately, integrating DECA and MSCFF into the full

CADFFNet architecture achieves the best performance across all

evaluation settings, with R2, MAE, and RMSE reached 0.974 ±

0.007, 3.80 ± 0.37%, and 4.63 ± 0.45% in cross-validation, and 0.899,

5.82%, and 7.58% in the independent test set. These results confirm

the complementary strengths of the two modules and highlight the

overall effectiveness of the proposed network design.
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4.2 Impact of the number of DECA
modules on the model

The DECAmodule developed is placed at three key stages in the

dual-branch network. To further explore the impact of the number

and position of DECA modules on model performance, eight

different configurations were constructed based on the number

and insertion positions of DECA modules within the network.

Their corresponding performance on five-fold cross-validation, the

independent testing set is presented in Table 3.

During cross-validation, all configurations exhibited similar

predictive performance, with R2 values ranging from 0.968 to

0.974 and MAE values ranging from 3.80% to 4.28%, indicating

stable model behavior under limited data conditions. However,

noticeable differences emerged in the independent testing results.
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Specifically, when a single DECA module was inserted, the

model's prediction accuracy on the test set improved compared to

the baseline, and the module's insertion position had a minimal

effect on performance. Further improvements were observed when

two DECA modules were incorporated, with test set R2 values

reaching 0.880, 0.883, and 0.884, depending on the placement

strategy. The best performance was achieved when all three

DECA modules were inserted into the network.

These results suggest that inserting multiple DECA modules at

different levels of the dual-branch architecture facilitates the

interaction and fusion of multi-scale features. Hence, this design

enhances the model's ability to capture low-level features, such as

edges and textures, from both front and back views, and improves

its understanding of high-level, abstract representations.

Consequently, the model's predictive performance and
FIGURE 6

Performance comparison and complexity analysis of CADFFNet models with different layers under 5-fold cross-validation and independent testing.
Subfigures (a-c) shows the distribution of R2, RMSE, and MAE results from the five-fold cross-validation. The colored dots represent the evaluation
metric values for each fold for the four model variants. The box distribution is the kernel density estimate of the metric, and its width reflects the
probability density of the result. Narrower boxes indicate less fluctuation between folds and greater stability. The blue dots and error bars represent
the five-fold means and their 95% confidence intervals, respectively. The blue dots represent the five-fold cross-validation mean. Subfigure (d)
shows the ground truth and the prediction results of different layers of models for the testing set, Subfigures (e-g) shows the parameter counts
(Params), floating-point computation (Flops), and inference speed (FPS) of the four model variants, respectively.
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generalization capability are further enhanced. The potential reason

for this is that when multiple channel attention modules are

inserted at different positions in the dual-branch model, they

facilitate the interaction and fusion of feature maps at various

scales. This enables the model to capture correlations between

shallow features, such as edges and textures, of the front and back

images, thereby improving its understanding of the deeper, abstract

information in these images and enhancing its predictive

performance and generalization ability.
4.3 Impact of different feature fusion
strategies on the model

To verify the advantages of the MSCFF module in the feature

fusion stage, we replaced it with three popular attention modules for

comparison: Squeeze-and-Excitation (SE), Convolutional Block

Attention Module (CBAM), and Coordinate Attention (CA).

Table 4 highlights that the proposed MSCFF module

demonstrates the highest predictive performance and the lowest

standard deviation during the five-fold cross-validation, and also

achieves the best accuracy on the independent test set. The CA

module attains the second-best performance, while the SE module

yields the poorest results.
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These findings suggest that constructing multi-scale features in

combination with adaptive channel weight assignment significantly

improves the network’s capacity to integrate both local and

global information from feature maps. Thus, this combination

effectively improves the model’s predictive performance and

generalization ability.
4.4 Comparison with other CNN models

We compared CADFFNet against dual-branch network models

with different neural network architectures as backbones for

predicting cigar leaf moisture content during the curing process.

The models employed were ResNet18 (He et al., 2016), GoogLeNet

(Szegedy et al., 2016), VGG19Net (Simonyan and Zisserman, 2015),

DenseNet121 (Huang et al., 2017), and MobileNetV2 (Sandler

et al., 2018).

Figures 7a–f present the prediction results of different models

on the independent test set. The results demonstrate that

CADFFNet achieves the highest agreement between predicted and

measured moisture content values of cigar leaves, with the highest

R2 and the lowest MAE and RMSE, significantly outperforming

other CNN-based architectures. Among the remaining five models,

GoogLeNet exhibits the best predictive performance, followed by
TABLE 2 Results of the ablation experiment.

Model
Cross-validation Independent testing

R2 MAE (%) RMSE (%) R2 MAE (%) RMSE (%)

Front image+ResNet18 0.868 ± 0.052 7.04 ± 1.87 7.06 ± 0.88 0.700 9.65 13.06

Back image+ResNet18 0.915 ± 0.028 5.81 ± 0.85 7.14 ± 0.97 0.728 9.64 12.44

Dual-branch ResNet18 0.968 ± 0.008 3.93 ± 0.43 4.88 ± 0.63 0.843 7.33 9.89

Dual-branch Resnet18+DECA 0.975 ± 0.007 3.44 ± 0.40 3.95 ± 0.57 0.856 7.09 9.01

Dual-branch ResNet18+MSCFF 0.968 ± 0.007 4.28 ± 0.37 4.87 ± 0.52 0.874 6.22 8.29

CADFFNet 0.974 ± 0.006 3.80 ± 0.32 4.63 ± 0.45 0.899 5.82 7.58
All evaluation metrics of CADFFNet constructed in this study are shown in bold font, the rest of the table remains the same.
TABLE 3 Impact of the number and location of DECA modules on the model.

Stage 2 Stage 3 Stage 4
Cross-validation Independent testing

R2 MAE (%) RMSE (%) R2 MAE (%) RMSE (%)

– – – 0.968 ± 0.007 4.28 ± 0.37 4.87 ± 0.52 0.874 6.22 8.29

✓ – – 0.970 ± 0.008 3.89 ± 0.64 4.83 ± 0.42 0.877 6.25 8.36

– ✓ – 0.971 ± 0.007 3.83 ± 0.93 4.86 ± 0.57 0.878 6.04 7.69

– – ✓ 0.970 ± 0.007 3.92 ± 0.45 5.48 ± 0.64 0.878 6.13 8.27

✓ ✓ – 0.971 ± 0.007 3.80 ± 0.39 4.69 ± 0.48 0.880 6.12 8.23

– ✓ ✓ 0.972 ± 0.006 3.87 ± 0.41 5.22 ± 0.39 0.883 6.05 7.75

✓ – ✓ 0.972 ± 0.006 3.81 ± 0.44 4.69 ± 0.51 0.884 5.96 7.74

✓ ✓ ✓ 0.974 ± 0.006 3.80 ± 0.37 4.63 ± 0.45 0.899 5.82 7.58
All evaluation metrics of CADFFNet constructed in this study are shown in bold font, the rest of the table remains the same.
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VGG19Net, which indirectly validates the effectiveness of multi-

scale feature fusion and residual connections. In contrast,

DenseNet121 provides the weakest results, with R2, MAE, and

RMSE of 0.801, 8.10%, and 10.59%.

Figures 7g–i showcase theR2, MAE, and RMSE values of eachmodel

under five-fold cross-validation. The results highlight that CADFFNet

exhibits the highest robustness and generalization capability, further

confirming the superiority of the proposed architecture.
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4.5 Comparison with other researches

In this study, we develop a dual-branch CNN model that

dynamically perceives and fuses the features of dual-view images

of cigar leaves to enhance the model's performance. To evaluate the

performance of CADFFNet, we compared our results with those of

current methods in this domain, using different original data and

methods. Specifically, we evaluated the prediction performance of
TABLE 4 Experimental results of different attention mechanisms.

Attention module
Cross-validation Independent testing

R2 MAE (%) RMSE (%) R2 MAE (%) RMSE (%)

SE (Hu et al., 2018) 0.974 ± 0.007 3.52 ± 0.48 4.78 ± 0.54 0.868 7.12 8.71

CBAM (Woo et al., 2018) 0.969 ± 0.006 4.04 ± 0.34 5.10 ± 0.44 0.869 6.90 8.54

CA (Hou et al., 2021) 0.974 ± 0.007 3.54 ± 0.45 4.89 ± 0.54 0.872 6.18 8.37

MSCFF (ours) 0.974 ± 0.006 3.80 ± 0.37 4.63 ± 0.45 0.899 5.82 7.58
All evaluation metrics of CADFFNet constructed in this study are shown in bold font, the rest of the table remains the same.
FIGURE 7

Performance comparison of different CNN models. Subfigures (a-f) prediction results of various models on the independent testing, Subfigures (g-i)
comparison of R2and MAE values obtained from five-fold cross-validation for each model.
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CADFFNet in comparison to Yin et al. (2024) and Yang et al.

(2023), as reported in Table 5. The results demonstrate that

CADFFNet outperforms both approaches in terms of CLMC

prediction accuracy. This improvement suggests that the dual-

branch network model can better capture the changes in the

apparent morphology of cigar leaves resulting from water loss

during the air-curing stage. Overall, our findings demonstrate that

CADFFNet can efficiently and accurately predict CLMC, achieving

high accuracy and better generalization ability.
4.6 Limitation and research prospect

During the air-curing process, cigar leaves change color and

morphology due to water loss, with the operators assessing the leaf's

appearance to estimate leaf moisture content (Fu et al., 2024).

Accurately and non-destructively estimating the CLMC during the

air-curing stage allows technicians to monitor the leaf's condition

better and make more precise decisions regarding timely

adjustments to the air-curing technique. Despite the strong

predictive performance achieved by the proposed model, certain

limitations remain. Firstly, as illustrated in Figure 6, when applied

to cigar tobacco leaf samples from different production regions and

varieties, the model still faces challenges in accurately predicting

CLMC, suggesting that its generalization ability under

heterogeneous data conditions requires further improvement.

Secondly, due to the dual-branch architecture that necessitates

parallel processing of two input images, the model—while

benefiting from enhanced accuracy and robustness—inevitably

incurs increased computational overhead. Finally, this study is

based on static imaging of individual leaves, whereas in actual

production cigar leaves are hung on whole stalks and air-cured at

room scale. In-situ image acquisition in such settings faces

occlusions and illumination variations, and therefore a gap

remains to practical deployment.

The future research is multi-folded. First, we will collect cigar

leaf images from multiple regions and varieties to expand the

dataset, and utilize annual curing data for model iteration and

updates to further enhance its robustness. Second, we will

incorporate prior knowledge, such as fresh cigar leaf quality, barn

temperature, humidity, and curing duration, into the model

training process, and conduct continuous, high-frequency, multi-

view in-situ imaging of whole-stalk leaves throughout curing. Based

on these data, we aim to develop a non-destructive predictive model

of the moisture-content–time trajectory over the curing process.

Finally, another priority is to explore the correlation between cigar

leaf images and chemical indicators, such as total sugars and
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nicotine content, as well as other chemical characteristics that

directly characterize the quality of the cigar leaf, to further

optimize the cigar leaf air-curing process.
5 Conclusion

This study introduces CADFFNet, a novel CNNmodel for non-

destructive CLMC detection during the curing process, which

integrates dual-view images of the cigar leaves. To better capture

the similar pattern changes in the front and back images, we employ

a dual-branch network structure to process the images in parallel.

Additionally, we design the DECA and MSCFF modules, enabling

feature maps at different levels to interact and fuse at various stages

of the network. Moreover, introducing a channel attention

mechanism allows the model to enhance key features of the

leaves while suppressing irrelevant information that may interfere

with the prediction results. Experimental results show that

CADFFNet achieves excellent prediction performance on cigar

leaves from the same region and variety. A strong performance is

also demonstrated in cross-region and cross-variety predictions,

with R2 and MAE values of 0.899 and 5.82%, respectively, on the

test set.

In summary, this study provides a convenient and non-

destructive method for detecting CLMC, offering a theoretical

basis for the automation of the cigar leaf air-curing process.

Furthermore, the proposed approach, which integrates the

interaction and fusion of front and back leaf images, provides a

novel solution for pattern recognition tasks in plant leaves, such as

leaf disease identification, crop classification, and assessment of

plant growth stages.
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