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ECS-tea: a bio-inspired high-
precision detection and
localization algorithm for
young shoots of Pu-erh tea
Jianchao Wang, Wei Li*, Jing Xu, Hailong Ti, Chenxi Jiang,
Hongsen Liao, Jianlong Li and Quyun Li

School of Mechanical and Traffic Engineering, Southwest Forestry University, Kunming, China
Introduction: Pu-erh tea, valued for its ecological significance and economic

worth, requires precise and efficient bud harvesting to advance intelligent

agricultural operations. Accurate bud recognition and localization in complex

natural environments remain critical challenges for automated harvesting systems.

Methods: To address this, we propose ECS-Tea, a bio-inspired and lightweight

detection-localization framework based on YOLOv11-Pose, tailored for Pu-erh

tea bud analysis. The framework integrates four key modules: (1) a lightweight

EfficientNetV2 backbone for efficient feature representation; (2) a Cross-Scale

Feature Fusion (CSFF) module to strengthen multi-scale contextual information;

(3) a Spatial-Channel Synergistic Attention (SCSA) mechanism for fine-grained

keypoint feature modeling; and (4) an adaptive multi-frame depth fusion strategy

to enhance 3D localization precision and robustness. ECS-Tea was trained and

validated on a dedicated dataset for Pu-erh tea bud detection.

Results: Experimental results show that ECS-Tea achieves 98.7% target detection

accuracy and 95.3% keypoint detection accuracy, with a compact architecture

(3.3 MB), low computational cost (4.5 GFLOPs), and high inference speed (370.4

FPS). Compared to the baseline YOLOv11-Pose, ECS-Tea significantly improves

keypoint detection performance: mAP@0.5(K) increases by 4.9%, recall R(K) by

3.8%, and precision P(K) by 3.4%, while maintaining or slightly enhancing object

detection metrics.

Discussion: These findings demonstrate that ECS-Tea effectively balances

accuracy and computational efficiency, validating the complementary

contributions of its integrated modules. As a robust, real-time, and deployable

solution, it bridges the gap between algorithmic sophistication and practical

application, enabling high-precision tea bud harvesting in unstructured

field environments.
KEYWORDS

Pu-erh tea, YOLOPose, object detection, pose estimation, depth camera,
smart agriculture
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1 Introduction

Pu-erh tea, as one of Yunnan Province’s most emblematic

specialty agricultural resources, has earned a distinguished status in

both domestic and international tea markets owing to its unique

mellow flavor and profound cultural connotations (National

Intellectual Property Administration of China, 2008; Jin et al.,

2023).In recent years, the ancient-tree Pu-erh tea market has

experienced sustained growth at an average annual rate of about

12%, intensifying the supply–demand imbalance for high-quality

raw materials. During the harvesting stage, the accuracy of bud

identification and spatial localization directly determines tea quality

and economic yield. The traditional manual picking mode, which

relies heavily on the experience of skilled tea farmers, yields a daily

per capita picking volume below 15 kg. This process is labor-

intensive, difficult to standardize, and consequently results in

marked variability in product quality across batches (Tang et al.,

2022). Furthermore, Pu-erh tea trees, being tall arbor species with

widely dispersed branches, often require climbing or the use of

auxiliary tools for harvesting, thereby heightening safety risks and

reducing operational efficiency. The Pu-erh tea plantations are

typically scattered within forested terrains, where wind-induced

motion causes continuous bud oscillation, leading to highly

unstable visual information—in stark contrast to the dwarf,

densely planted, and imaging-stable environments characteristic

of terrace-grown tea (Zhou et al., 2017).

Amid the vigorous advancement of smart agriculture,

computer vision technology—owing to its non-contact and high-

resolution sensing capabilities—has opened new avenues for

intelligent tea harvesting. The YOLO algorithm family,

distinguished by its end-to-end real-time detection architecture,

has achieved notable success across multiple agricultural

applications and is now exhibiting emerging potential within tea

plantation environments (Li et al., 2023). However, the growth

environment of Pu-erh tea is inherently complex and variable,

characterized by interlaced branches and dense foliage, which create

a highly cluttered and interference-prone visual background.

Moreover, tender shoots differ markedly in size, orientation, and

angular configuration—their bud-tip direction and leaf unfolding

angle fluctuate substantially—posing significant challenges for

stable recognition and precise structural modeling demanded by

mechanical harvesting systems. In addition, the considerable height

of tea trees, combined with frequent occlusion and overlap, further

compounds the complexity of visual perception and recognition.

Consequently, YOLO-based detectors are prone to missed

detections and false positives when applied to small and visually

ambiguous targets in such conditions. With the rapid proliferation

of deep learning techniques in agricultural domains, tea bud

detection has emerged as an area of growing research interest.

For instance, Xu et al. introduced a dual-branch architecture

combining YOLOv3 with DenseNet201, which effectively

differentiates tea buds from stems and achieves high detection

accuracy across multiple viewing angles (Xu et al., 2022). Shuai

et al. developed the YOLO-Tea model, incorporating CARAFE and

Bottleneck Transformer modules alongside a six-keypoint
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regression mechanism, thereby enabling spatial structural

perception and precise extraction of tea bud picking points (Shuai

et al., 2023). Zhu et al. integrated the YOLOv5 framework with 3D

point cloud analysis, employing DBSCAN clustering to accomplish

precise localization of picking points, and achieved high accuracy

and real-time performance in unstructured tea plantation

environments (Zhu et al., 2023). Zhang et al. introduced a

lightweight detection model that integrates EfficientNetV2 with

the Ghost module, achieving a mean Average Precision (AP) of

85.79% while substantially reducing parameter complexity (Zhang

et al., 2024). Wang et al. developed the YOLOv7-DWS model,

which achieves an effective balance between detection accuracy and

computational efficiency, attaining 93.38% recognition accuracy for

tea buds under natural illumination conditions (Wang et al., 2025).

Shi et al. designed a lightweight neural network capable of robust

operation in complex field environments, thereby validating the

practical feasibility of lightweight architectures in agricultural visual

perception tasks (Shi et al., 2024). Beyond the YOLO family,

CenterNet represents a representative non-YOLO framework that

formulates object centers as keypoints and jointly regresses

bounding boxes and keypoint offsets through heatmap-based

representations (Zhou et al., 2019). Although it delivers accurate

spatial perception, its dense decoding structure imposes

computational burdens, limiting its real-time performance in field

environments. In related domains, Dong et al. proposed RSNet, a

compact-align detection head embedded lightweight network for

small-object detection in remote sensing imagery, achieving an

excellent accuracy–efficiency balance on high-resolution datasets

(Dong et al., 2025a). Similarly, Dong et al. developed an industrial

device-aided lightweight network for real-time rail defect detection,

highlighting the deployment feasibility of compact architectures

under constrained edge-device conditions (Dong et al., 2025b).

These studies further underscore the importance of lightweight and

deployable architectures for real-time field applications, aligning

closely with the design philosophy adopted in this work.

Beyond traditional object detection, keypoint detection and

pose estimation are emerging as key frontiers in structured visual

perception, driving a shift toward finer-grained spatial

understanding. Liu et al. introduced a keypoint-based weed

growth point detection framework, which demonstrates

remarkable robustness under complex environmental

backgrounds (Liu M. et al., 2025). Deng et al. developed a joint

recognition framework for tomato fruits and picking points,

achieving high-precision spatial localization through a customized

YOLO-Pose variant (Deng et al., 2025). These studies collectively

demonstrate that integrating object detection with structural

keypoint modeling can effectively overcome the inherent

limitations of conventional 2D bounding-box–based approaches.

Concurrently, lightweight architectures and attention mechanisms

—including EfficientNet, MobileNetV3, CBAM, SE, and SCSA

modules—are widely adopted in agricultural embedded systems

to achieve an optimal trade-off between accuracy and

computational efficiency. Moreover, multi-frame fusion and

temporal modeling approaches are increasingly utilized to

enhance detection stability under dynamic and unstructured field
frontiersin.org
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conditions (Imam et al., 2025; Liu G. et al., 2025; Liu et al., 2023).

However, few studies have explored the integration of lightweight

attention mechanisms with keypoint detection for precise

localization of dynamically moving, high-altitude tea buds,

leaving a critical research gap in fine-grained perception for

agricultural robotics.

From a broader perspective, Wang et al. highlighted in their

comprehensive review of visual intelligence in the tea industry that

most existing studies remain centered on tea leaf detection and

grading, while lacking deep integration with three-dimensional

localization and robotic harvesting systems (Wang H. et al.,

2023). Cao et al. underscored, from a broader perspective on the

development of agricultural visual perception, the necessity of

deeply integrating multimodal sensing with structural modeling

to enhance the robustness, adaptability, and generalization capacity

of intelligent agricultural systems (Cao et al., 2025).

In summary, while current research has substantially advanced

tea bud detection and agricultural visual perception, several critical

limitations persist:
Fron
1. Insufficient structural perception capability when

confronted with dynamic environmental disturbances;

2. Inadequate three-dimensional localization accuracy,

restricting its applicability to robotic arm manipulation

and control;

3. Difficulty achieving a balance between detection accuracy

and computational efficiency under lightweight

deployment constraints;

4. Most current studies focus on terrace tea detection, while

research on tender bud recognition of tall arbor-type Pu-

erh tea trees remains scarce.
To this end, this study proposes a detection and localization

framework for Pu-erh tea tender buds built upon an enhanced

YOLO-Pose architecture, with the following key contributions:
1. A bionic-structure-inspired keypoint annotation strategy is

introduced, establishing an eight-point keypoint and object

detection dataset that incorporates visibility-aware

annotations to capture the ecological structure of Pu-erh

tea buds.

2. A lightweight EfficientNetV2 backbone network is

developed, integrated with a Cross-Scale Feature Fusion

(CSFF) module and an SCSA attention mechanism, to

strengthen multi-scale feature representation while

preserving high computational efficiency.

3. An adaptive multi-frame fusion strategy is proposed to

enable spatiotemporal structural modeling and fine-

grained localization of critical bud regions, offering robust

v i s u a l g u i d an c e f o r h i g h - e l e v a t i o n r o bo t i c

harvesting systems.
This study aims to overcome the visual perception bottlenecks

inherent in the complex, unstructured environments of tall arbor-

type Pu-erh tea plantations, distinct from terrace tea systems. It
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provides a theoretical foundation and technical roadmap for

developing intelligent harvesting equipment, thereby promoting

the transition of the traditional tea industry toward precision,

automation, and intelligence.
2 Materials and methods

2.1 Development of the Pu-erh tea tender
shoot dataset

Taking Pu-erh tea trees from the UNESCOWorld Heritage Site—

Jingmai Mountain as the study object, this research faithfully simulated

real-world harvesting scenarios during data acquisition. The camera

height ranged primarily from 1.5 to 2.5 meters, while tea trees typically

exceeded 2 meters in height. Pronounced wind-induced motion

resulted in frequent leaf fluttering and occlusion, thereby establishing

a realistic semantic environment conducive to subsequent multi-frame

fusion and robust recognition (Yang, 2024). This work is dedicated to

resolving the challenges of bud recognition and spatial localization in

complex natural environments, thereby laying a solid foundation for

intelligent and automated Pu-erh tea harvesting.

2.1.1 Data collection
Image data of Pu-erh tea buds were collected from tea

plantations in Jingmai Mountain, Pu-erh, Yunnan Province (22°

08′14″–22°13′32″ N, 99°59′14″–100°03′55″ E), at altitudes ranging
from 1100 m to 1662 m. Using a high-resolution SONY Alpha 7III

camera and an Intel RealSense D435i depth sensor, images were

captured at distances of 0.3–2 m under diverse temporal,

meteorological, illumination, and background conditions, as

illustrated in Figure 1. Ultimately, a high-quality dataset

comprising 1,769 curated images was constructed, serving as the

foundation for model training and performance evaluation in

subsequent experiments.

2.1.2 Dataset augmentation and partitioning
In this study, Labelme was employed for image annotation. To

enable fine-grained recognition and localization of Pu-erh tea buds,

we adopted a bionic keypoint annotation strategy inspired by

techniques in human pose estimation and animal structural

analysis. The bud morphology was conceptualized as a human-

analogous structure, with geometrically or functionally meaningful

regions—such as the apex, base, and middle section—annotated as

structural “key joints.” This human-inspired segmentation

annotation approach allows the model to effectively learn the

geometric topology and spatial constraints among the key

structural components of the tea bud. After a thorough review of

relevant literature and consultation with agronomic experts, the

“one-bud–three-leaf” standard was adopted as the reference for

harvesting, based on which the ecological keypoint locations for Pu-

erh tea buds were precisely defined, as illustrated in Figure 2.

Furthermore, visibility annotations were applied to the picking

points: points partially occluded yet inferable from structural cues

were marked as “occluded” (visible=1); points heavily occluded
frontiersin.org
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(>80%) and indeterminable were labeled as “invisible” (visible=0);

while clearly discernible keypoints were designated as “visible”

(visible=2). It is noteworthy that no internationally unified

criterion exists for defining the picking point. In accordance with

stem-harvesting requirements, this study defined the picking point

as being 1–2 cm below the intersection between the third leaf and

the main stem.

To improve the diversity and robustness of the Pu-erh tea bud

image dataset and to address the limitations of insufficient samples

and monotonous scene representation, this study integrated a
Frontiers in Plant Science 04
comprehensive suite of image augmentation techniques (Bijelic

et al., 2020; Shorten and Khoshgoftaar, 2019). Rain streaks, fog,

and Gaussian noise were introduced to emulate complex

environmental interferences, while brightness and exposure

adjustments simulated diverse lighting conditions, as shown in

Figure 3. Additionally, Gaussian blurring was applied to mimic

imaging defocus, thereby enhancing the model’s resilience to real-

world visual variability. Through rotation transformations and

mirror flipping, the dataset was enriched with multi-perspective

variations, strengthening the model’s capacity to recognize targets
FIGURE 2

Illustration of keypoint annotation example.
FIGURE 1

Original image dataset of Pu-erh tea tender buds.
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under diverse orientations and postures. Artificial occlusions were

simulated by introducing black rectangular patches, which

improved the model’s robustness and detection reliability under

conditions of partial target obstruction. A label-synchronized

transformation mechanism was further implemented to ensure

perfect alignment between augmented images and their

corresponding annotations. These augmentation strategies

significantly expanded the dataset, furnishing a richer and more

representative sample base for deep learning model training. This

enhancement greatly improved the model’s generalization

capability and stability in Pu-erh tea bud detection and

recognition tasks. After augmentation, a total of 5,000 valid

images were generated and randomly partitioned into training,

testing, and validation subsets in a 7:2:1 ratio using Python scripts.
Frontiers in Plant Science 05
Figure 4 presents representative examples of images produced using

the aforementioned augmentation techniques, illustrating the

diversity and realism achieved through this process.
2.2 Model optimization strategies

YOLOv11, the latest generation in the YOLO family of

lightweight real-time object detectors, achieves an exceptional

balance between accuracy and computational efficiency, and has

been extensively adopted across diverse intelligent vision

applications (Khanam and Hussain, 2024). Building upon this

framework, YOLOv11-Pose integrates an advanced keypoint

regression module, allowing the network to perform not only
FIGURE 3

Enhancement method.
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bounding-box detection but also precise localization of internal

structural keypoints, thereby extending its applicability to keypoint-

intensive domains such as human pose estimation and agricultural

structural analysis. Nevertheless, YOLOv11-Pose exhibits several

limitations when applied to tea bud detection — its performance

tends to degrade under complex backgrounds, low image quality, or

drastic illumination changes, and it demonstrates limited

robustness when dealing with small-scale or heavily occluded

targets. To enhance its adaptability across diverse environmental

conditions, this study proposes a structural optimization of

YOLOv11-Pose, aimed at improving its recognition and

localization capabilities for complexly structured tea buds,

particularly within interference-prone and visually ambiguous Pu-

erh tea harvesting environments. To overcome these limitations,

this work introduces three major architectural enhancements: an

EfficientNetV2 backbone for optimized feature encoding, a CSFF

(Cross-Scale Feature Fusion) module for multi-scale feature

enhancement, and an SCSA (Spatial–Channel Synergistic

Attention) module for refined feature modeling. Collectively,

these components constitute the ECS-Tea framework—a

lightweight, high-efficiency, and robust detection network tailored

for complex Pu-erh tea bud recognition.
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Furthermore, the lightweight optimization not only enhances

the computational efficiency of the model under resource-

constrained environments, but also substantially reduces

computational overhead and inference latency, thereby enabling

seamless deployment on edge devices—such as tea-picking robotic

manipulators—to ensure rapid and stable bud detection and

localization in real-world harvesting scenarios (H.-I. Liu

et al., 2024).

2.2.1 Refinement of the overall network
framework

This study presents a systematic optimization of the

YOLOv11Pose architecture, as il lustrated in Figure 4.

EfficientNetV2 was adopted as a lightweight backbone. Leveraging

its compound scaling strategy and enhanced MB Conv module, the

network achieves substantial reductions in parameters and

computational load, while maintaining a strong capacity for

capturing essential features of Pu-erh tender shoots (Tan and Le,

2021; Wu et al., 2019).

The network incorporates the CSFF (Cross-Scale Feature

Fusion Module), enabling multi-scale feature interaction and fusion

(Zhao et al., 2024). This improves the network’s sensitivity to tender
FIGURE 4

Schematic diagram of the ECS-Tea network architecture.
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shoots and keypoints across scales and reduces the incidence of

missed or false detections resulting from variability in shoot

morphology. The SCSA (Spatial-Channel Split Attention)

mechanism was also innovatively integrated, enabling refined

feature selection and enhancement across both spatial and

channel dimensions (Si et al., 2025). It guides the network’s focus

toward salient features, thereby further enhancing detection

accuracy for fine structural details and keypoints of tender shoots.

Collectively, these optimization strategies work synergistically

to achieve a lightweight architecture while markedly enhancing the

detection accuracy of Pu-erh tender shoots and their keypoints,

thereby providing a reliable and accurate technical foundation for

Pu-erh tea harvesting and quality assessment.

2.2.2 Efficient NetV2
EfficientNetV2 leverages training-aware Neural Architecture

Search (NAS) and scaling strategies to optimize model

performance. It was designed to overcome the training

bottlenecks observed in EfficientNet (Tan & Le, 2020). In

particular, it addresses inefficiencies in training large image sizes,

low computational efficiency in deep convolutions within early

layers, and the limitations of uniform scaling. Furthermore,

progressive learning is applied during training. Regularization

strength is adaptively scaled based on image size: initially, small

images and weak regularization are used, while in later training

phases, larger image sizes and stronger regularization are employed.

The Fused-MB Conv structure is illustrated in Figure 5 (Li et al.,

2021). The architecture of EfficientNetV2 is detailed in Table 1.

In the context of tea bud detection, EfficientNetV2—owing to

its highly efficient feature extraction and accelerated training
Frontiers in Plant Science 07
performance—enables more precise and discriminative

representation of bud features, thereby enhancing both detection

accuracy and computational efficiency. Its compact parameter scale

further minimizes resource consumption, facilitating practical

deployment in real-world agricultural environments and offering

robust technical support for tea bud detection and related

research endeavors.

2.2.3 Cross-scale feature fusion
The CSFF (Cross-Scale Feature Fusion) module is designed to

integrate multi-scale features, enhancing the model’s robustness to

scale variations and improving small object detection. The structure

is depicted in Figure 6. It builds upon and optimizes traditional

cross-scale fusion modules through the incorporation of fusion

blocks that integrate adjacent scale features. Each fusion block

includes two 1×1 convolutions for channel adjustment, followed

by N Rep Blocks to perform feature fusion, and computes the final

fused feature through element-wise addition (Ding et al., 2021).

This facilitates effective integration of multi-scale features.

In the overall architecture, the CSFF module is integrated into

the neck section of the Pu-erh tea bud detection network. The

multi-scale features extracted from the backbone are adaptively

fused through the CSFF module, thereby strengthening semantic

interactions and structural associations among different scales.

Conventional neck fusion methods (e.g., FPN, PANet, BiFPN)

generally rely on fixed topological connections or static weighting

for feature propagation, often leading to insufficient feature

alignment and semantic information loss. In contrast, the CSFF

module adopts a content-aware cross-scale fusion strategy that

adaptively models semantic dependencies across multiple feature

scales, allowing high-level semantic cues to effectively complement

low-level fine-grained details. This design maintains feature

consistency and discriminative capability when handling tea bud

targets exhibiting substantial scale variations.

The CSFF module is integrated into the neck of the tea detection

architecture. Multi-scale features from the backbone are passed into

the CSFF module, which leverages its fusion capability to enhance

inter-scale information exchange. Conventional neck structures

often suffer from information loss or inadequate feature fusion

when processing multi-scale inputs, whereas the incorporation of
TABLE 1 EfficientNetV2 network structure.

Stage Operator Stride #Channels #Layers

0 Conv3x3 2 24 1

1 Fused-MBConv1,k3x3 1 24 2

2 Fused-MBConv4,k3x3 2 48 4

3 Fused-MBConv4,k3x3 2 64 4

4 MBConv4,k3x3,SE0.25 2 128 6

5 MBConv6,k3x3,SE0.25 1 160 9

6 MBConv6,k3x3,SE0.25 2 256 15

7 Conv1x1&Pooling&FC – 1280 1
fro
FIGURE 5

MB Conv and Fused-MBConv network structure.
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CSFF effectively addresses these limitations. It enables the model to

effectively capture tender shoot characteristics at various scales,

thereby enhancing the feature representation available for

downstream detection and localization.

2.2.4 Spatial and channel synergistic attention
The SCSA module draws inspiration from CBAM and CPCA,

yet introduces targeted innovations in the mechanisms of spatial–

channel interaction and feature fusion to better suit the

requirements of fine-grained perception (Woo et al., 2018; Huang

et al., 2024).Structurally, it comprises two components—Shared

Multi-Semantic Spatial Attention (SMSA) and Progressive

Channel-wise Self-Attention (PCSA)—whose overall architecture

is depicted in Figure 7. Unlike conventional serial attention

schemes, SCSA employs a bidirectional spatial–channel

collaborative modeling strategy that jointly optimizes spatial and

channel representations, thereby preserving salient feature

information while effectively suppressing background noise.

In the spatial branch, SMSA generates the spatial attention map

by combining spatial–channel decomposition with multi-receptive-

field depth wise separable convolutions (kernel sizes 3, 5, 7, 9),

Group Normalization, and Sigmoid activation, enabling multi-scale

spatial context modeling. The multi-branch convolution design

allows the model to capture spatial cues across multiple receptive

fields, facilitating the accurate recognition of slender Pu-erh tea

shoots even under challenging conditions such as cluttered

backgrounds and uneven illumination. Unlike the conventional

CBAM, SMSA integrates a shared multi-semantic extraction

strategy within its spatial attention module, enabling semantic
Frontiers in Plant Science 08
complementarity across branches and thus strengthening multi-

scale spatial representation. In the channel branch, PCSA integrates

a single-head self-attention mechanism with a progressive channel

compression strategy, progressively modeling inter-channel

dependencies to emphasize semantically salient features while

suppressing redundant activations. The SMSA and PCSA

modules are integrated via a residual pathway (Figure 7), wherein

the spatial attention output reciprocally guides channel attention

learning, establishing a closed-loop feature collaboration

mechanism that synchronously optimizes spatial and channel

representations. This collaborative attention design effectively

overcomes the limitations of traditional attention modules (e.g.,

SE, CBAM), which rely on a fixed sequential order of spatial and

channel processing, thereby endowing the model with stronger

adaptability and generalization in structured feature extraction.

Within the overall network architecture, the SCSA module is

embedded in the neck section, as shown in Figure 4. Specifically,

it is positioned after each multi-scale fusion block (C3K2) and

before the detection and keypoint heads, where it jointly enhances

the fused features across the three hierarchical levels (P3, P4, P5)

through spatial–channel cooperation. This design refines salient

region representations following multi-scale feature fusion,

enabling the network to more precisely perceive and localize the

key structural regions of Pu-erh tea buds.

Furthermore, to achieve a balance between performance and

efficiency, the SCSA module employs a lightweight depth wise

separable convolution design, which maintains low computational

overhead while surpassing existing attention and multi-scale fusion

frameworks (e.g., SE, CBAM, BiFPN) in terms of detection accuracy
FIGURE 6

Structure of the CSFF module.
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and feature stability for Pu-erh tea bud recognition, thereby

validating its structural innovation and strong task adaptability.
2.3 Deep positioning analysis

Considering the challenges of unstable viewpoints, structural

ambiguity, and keypoint jitter during Pu-erh tea harvesting, this

study introduces an adaptive multi-frame depth fusion module built

upon the 2D picking-point outputs of the ECS-Tea model. By

integrating keypoint information across consecutive frames, the

method enables dynamic and stable spatial modeling of tea buds,

effectively mitigating the accuracy degradation encountered by

conventional detection methods under high-elevation vibration

conditions. The approach employs an Intel RealSense D435 depth

camera to perform continuous-frame depth sampling of identical

picking points and applies an adaptive multi-frame fusion strategy

to refine depth estimation, thereby substantially enhancing the

stability and accuracy of 3D spatial coordinates.

2.3.1 Inter-frame keypoint tracking mechanism
To guarantee that depth samples across multiple frames

correspond to the same physical location within the image, an

inter-frame keypoint tracking mechanism is incorporated. In the

absence of such a mechanism, camera shake, subtle movements, or

detection biases may cause slight shifts in keypoint positions,

thereby compromising the spatial consistency of depth fusion.

The keypoint tracking procedure is outlined as follows:
Fron
1. Initial detection: In frame t, the ECS-Tea model extracts the

2D pixel coordinates (ut, vt) of keypoints.
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2. Keypoint matching: To enhance the robustness and accuracy

of inter-frame keypoint tracking, this study adopts the

Transformer-based LoFTR (Detector-Free Local Feature

Matching) algorithm, replacing conventional Lucas-Kanade

optical flow methods. Across consecutive frames, LoFTR

applies an end-to-end trained Transformer to encode

global image features, thereby facilitating cross-frame

feature matching, and does so without relying on local

window constraints or grayscale consistency assumptions

(Sun et al., 2021). For each keypoint detected in the current

frame, LoFTR autonomously locates the globally optimal

match in the subsequent frame, establishing inter-frame

correspondences and yielding a sequence of keypoint

coordinates over N consecutive frames. In this work, the

fusion frame count (N) was empirically set within the range

of 3–10 frames, a configuration derived from the hardware

specifications of the Intel RealSense D435i depth sensor

integrated into the experimental platform. Given the sensor’s

depth sampling rate of 90 fps, a 3–10 frame temporal window

provides an optimal trade-off between spatial coherence and

real-time computational performance. When N < 3, depth

estimation becomes insufficiently smoothed; conversely, when

N > 10, latency and temporal jitter errors grow substantially,

degrading overall system stability. A comprehensive

evaluation indicates that, at the operational frame rate of the

Intel RealSense D435i, a 3–10 frame fusion window achieves

the optimal equilibrium between depth-fusion stability and

real-time responsiveness.
(ut, vt), (ut+1, vt+1),…, (ut+N−1, vt+N−1)
FIGURE 7

Structure diagram of SCSA.
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3. Consistency check: For each tracked keypoint position,

calculate the Euclidean distance Di between the keypoint position

and its corresponding position in the previous frame, The specific

expression is shown in Equation 1:

Di =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ut+i − ut+i−1)

2 + (vt+i − vt+i−1)
2

q
(1)

If Di exceeds a predefined threshold e (3 pixels), where the

threshold selection is guided by empirical practices reported in (Sun

et al., 2021) and (Teed and Deng, 2021) the tracking is deemed

unsuccessful and the corresponding frame’s depth value is

discarded. Keypoint tracking stability is typically evaluated over

2–3 frames. Considering the system’s resolution and practical

matching accuracy, the threshold was set to 3 pixels.

Additionally, abnormal jitter frames are further filtered by

analyzing temporal stability trends, thereby avoiding errors

caused by motion blur or similar artifacts. This inter-frame

tracking strategy ensures high spatial consistency of keypoints

across frames, establishing a solid foundation for robust depth

value fusion.
2.3.2 Adaptive multi-frame depth fusion and 3D
inverse projection

As raw images captured by depth sensors exhibit noise, holes,

occlusions, and other artifacts across frames, single-frame depth

measurements d often show substantial fluctuation. To enhance

depth estimation accuracy, this study applies adaptive statistical

fusion to the sequence of depth samples {d1, d2,…, dn} at

corresponding keypoint positions across N frames and derives a

more stable depth estimate d. The adaptive fusion strategy is defined

as follows:

Standard deviation calculation: compute the standard deviation

s of the depth sequence to evaluate the stability of the

depth measurements.

Fusion strategy selection: if s≤T (threshold), the depth values

are deemed stable, and mean filtering is employed. The threshold

selection follows empirical values commonly adopted in recent

depth estimation and dense reconstruction literature and is

calibrated based on the sensor’s noise characteristics and the

practical deployment scenario. The threshold is set to 0.01 m

(Barron et al., 2022; Wei et al., 2021).

The specific expression is shown in Equation 2:

d
∧
=

1
MoN

i=1di, di > 0,M = available frame count (2)

If s>T, this indicates the presence of outliers or abrupt

variations, in which case median filtering is applied to enhance

robustness. The specific expression is shown in Equation 3:

d
∧
= median (di di > 0)j gf (3)

The fused stable depth value, along with 2D pixel coordinates

(u,v), is input to the rs2_deproject_pixel_to_point inverse

projection function provided by the Intel RealSense D435 camera,

with spatial transformation performed based on the camera’s

intrinsic parameters, yielding the final 3D coordinates (X,Y,Z).
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The specific expression is shown in Equation 4.

(X,Y ,Z) = rs2_deproject_pixel_to_point K , (u, v), d
∧

� �
(4)

where K denotes the camera intrinsic matrix, comprising focal

length, principal point coordinates, and additional parameters.
2.4 Experimental procedure

2.4.1 Experimental environment
In this study, the software and hardware environments and

their corresponding parameters are summarized in Table 2.

2.4.2 Training parameters
The training parameters used in this study are listed in Table 3.

The experimental settings were configured as follows: all input

images were resized to 640×640 using the LetterBox method; the

batch size was set to 16 during training and 1 during inference;

automatic mixed precision (AMP) was enabled to enhance

computational efficiency. All experiments were implemented in

the PyTorch framework, without employing TensorRT

acceleration. Data preprocessing followed the default YOLOv11

pipeline, comprising Mosaic augmentation, random perspective

transformation, CopyPaste augmentation, MixUp blending,

RandomHSV perturbation, and RandomFlip operations, followed

by normalization and channel rearrangement. The latency and FPS

values reported herein correspond exclusively to the detection and

keypoint estimation stages, excluding the time consumed by

LoFTR-based feature matching and fusion. These parameters

were selected based on preliminary experiments to ensure stable

convergence and optimal detection performance.

2.4.3 Evaluation metric
This study adopts ten evaluation metrics to comprehensively

assess the overall performance of the enhanced ECS-Tea model in

both tea bud detection and keypoint localization tasks (Wang et al.,

2022; Wang et al., 2022). These include object detection precision (P

(B)) and keypoint precision (P(K)), object recall (R(K)) and
TABLE 2 Software and hardware environment.

Hardware/Software
environment

Model/
Identification

Parameter/
Version

CPU Intel Core i7-14900F 2.10 GHz

GPU
NVIDIA GeForce

RTX 4060
6 GB

Operating System Windows 11 22631.4460

Deep Learning Framework PyTorch 1.12.1

Computing Platform CUDA 12.1

Integrated Development
Environment (IDE)

PyCharm 2024.1.3

Programming Language Python 3.9.7
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keypoint recall (R(K)), as well as the average precision (mAP@0.5

(K), mAP@0.5(B)) computed at an IoU threshold of 0.5. Additional

efficiency metrics—parameter count, model weight size, floating-

point operations (FLOPs), and frames per second (FPS)—were also

analyzed to evaluate computational performance. The formulations

for precision, recall, and average precision (AP) are expressed as

shown in Equations 5–9:

P =
TP

TP + FP
� 100% (5)

P =
TP

TP + FN
� 100% (6)

AP =
Z
0
P(R)dR (7)

To achieve a more comprehensive assessment of the 3D keypoint

localization accuracy of the proposed model, this study incorporates

two complementary evaluation metrics—PCK (Percentage of Correct

Keypoints) and OKS (Object Keypoint Similarity).

The PCK metric quantifies the proportion of predicted

keypoints whose Euclidean distance from their corresponding

ground-truth locations falls within a specified tolerance threshold

(t), mathematically defined as shown in Equation 8:

PCK @ t =
1
No

N
i=1d(di < t) (8)

In this expression, N is the total number of keypoints, di refers to

the three-dimensional prediction error of the i-th keypoint, and d(·)
denotes the indicator function. If the prediction error di is less than the

threshold t, the point is classified as a correctly predicted keypoint.

The Object Keypoint Similarity (OKS) serves as a soft

evaluation metric that incorporates target scale and prediction

error, as shown in Equation 9:

OKSi = exp −
d2i

2S2i K
2

� �
(9)

In this context, di is the Euclidean distance between the

predicted and true points, si designates the object scale (measured

in millimeters), and k refers to the scale-adjusting factor. The closer

the OKS value is to 1, the more accurate the prediction.
3 Results and discussion

3.1 Pu-erh tea tender shoot detection
experiment

To thoroughly examine the effectiveness of the model

architecture and algorithms, demonstrate the advantages of the
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proposed method, and intuitively assess detection performance, a

series of ablation studies, comparative experiments, and

visualization analyses were conducted. The ablation studies

systematically decomposed the model’s key components in order

to elucidate the practical contribution of each component to Pu-erh

tea tender shoot detection performance. Comparative experiments

were employed to conduct a cross-method comparison of various

algorithms with the proposed approach, highlighting the superiority

of the proposed method in terms of detection accuracy and

efficiency. Visualization analysis was used to visually illustrate

both the model’s detection process and its outcomes, for accurate

diagnosis of detection error sources and thereby support subsequent

model optimization. All experiments were performed under a

consistent experimental environment and dataset.

3.1.1 Model ablation study
YOLOv11Pose (denoted as A), EfficientNetV2 (module B),

CSFF module (module C), and SCSA module (module D) were

evaluated in the ablation study. The final experimental results,

obtained under identical training, validation, and test conditions,

are presented in Table 4.

The results indicate that, while maintaining object detection

mean average precision (mAP@0.5(B)) consistently within the

98%–99% range, the model achieved a substantial improvement

in keypoint detection mean average precision (mAP@0.5(K)),

accompanied by a marked reduction in parameter count and

computational complexity, thereby achieving an excellent balance

between accuracy and efficiency.

With the introduction of EfficientNetV2, leveraging its

compound scaling strategy and Fused-MBConv structure, the

network achieved a more compact architecture and enhanced

semantic modeling capability. The keypoint detection mean average

precision (mAP@0.5(K)) increased from 88.9% to 92.5% (+3.6%),

while the parameter count and floating-point operations were

reduced by 18.3% and 1.1 GFLOPs, respectively—highlighting an

optimal trade-off between performance and computational efficiency.

The Cross-Scale Feature Fusion (CSFF) module, through its

cross-scale feature guidance mechanism, effectively enhances multi-

scale feature integration. When applied independently, it achieved

an mAP@0.5(K) of 91.7%, and when combined with

EfficientNetV2, performance further improved to 93.2%,

demonstrating a significant synergistic gain in multi-scale

structural modeling.

The SCSA module introduces a spatial self-calibration

mechanism, markedly amplifying keypoint-region responses and

achieving an mAP@0.5(K) of 93.2%, the highest among all

individual modules. Simultaneously, the inference speed increased

to 400 FPS, reflecting exceptional localization sensitivity and real-

time responsiveness.
TABLE 3 Training parameters.

Batch size
Number of
epochs

Initial learning
rate

Final learning rate Optimizer
Number of data
loader workers

16 150 0.01 0.0001 SGD 4
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Ultimately, integrating all three modules yielded the complete

ECS-Tea model, which achieved an mAP@0.5(K) of 93.8%,

representing a 4.9% improvement over the YOLOv11-Pose

baseline. The keypoint detection accuracy (P(K)) increased from

91.9% to 95.3% (+3.4%). Concurrently, the parameter count

dropped from 2,696,611 to 1,372,343 (–49.1%), FLOPs reduced

from 6.7 to 4.5 GFLOPs (–32.8%), model weight decreased from 5.7

MB to 3.3 MB (–42.1%), and inference speed improved from 333.3

FPS to 370.4 FPS (+11.1%). These results confirm that ECS-Tea

achieves a superior balance among accuracy, efficiency, and

compactness, validating its potential for real-time deployment in

resource-constrained agricultural systems.

3.1.2 Model comparison experiment
To rigorously assess the effectiveness and superiority of the

proposed ECS-Tea model, we conducted comparative experiments

using identical datasets, augmentation strategies, and

hyperparameter settings. The baselines comprised YOLOv5-pose,

YOLOv7-pose, YOLOv8-pose, YOLO-Tea, and CenterNet, with

ECS-Tea evaluated as the optimized reference model. YOLOv5-

pose adopts a compact and robust architecture that exemplifies

early efficient designs for joint object–keypoint detection. Building

upon this, YOLOv7-pose and YOLOv8-pose improve localization

accuracy and inference speed through enhanced feature aggregation

and decoupled multi-scale detection heads. To enhance the

completeness of comparison, we also incorporated YOLO-Tea—a
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model specifically designed for tea leaf detection—and CenterNet, a

non-YOLO keypoint detection framework, serving as domain-

specialized and cross-framework benchmarks.

The models were comprehensively analyzed in terms of

detection accuracy, computational complexity, and inference

speed, as shown in Table 5 and illustrated in Figure 8.

In the object detection task, its mAP@0.5(B) reaches 99.5%,

showing a slight improvement over YOLOv5-pose (99.4%) and

YOLOv8-pose (99.1%), and a more significant gain compared with

YOLOv7-pose (98.9%). This indicates that ECS-Tea possesses stronger

feature representation capabilities under complex backgrounds and

multi-scale target conditions. In the keypoint detection task, ECS-Tea

achieves an mAP@0.5(K) of 93.8%, outperforming YOLOv5-pose

(83.8%), YOLOv7-pose (85.7%), YOLOv8-pose (89.1%), and YOLO-

Tea (85.3%) to varying degrees. Notably, it achieves the best keypoint

precision (P(K)=95.3%) and recall (R(K)=94.9%).These results indicate

that ECS-Tea exhibits better spatial consistency and feature alignment

capability under high-interference scenarios.

As a representative non-YOLO framework, CenterNet achieves

high accuracy in both object detection and keypoint localization

(mAP@0.5(B) = 98.2%, mAP@0.5(K) = 87.3%), validating its

regression-based localization capability. However, due to its dense

heatmap decoding architecture, CenterNet incurs substantial

computational overhead (model size: 15.8 MB, 10.9 GFLOPs, frame

rate: 235.6 FPS), which limits its real-time performance and makes it

unsuitable for embedded or field-deployment scenarios.
TABLE 5 Comparison of experimental results.

Model
P(B)
(%)

R(B)
(%)

mAP@0.5
(B) (%)

P(K)
(%)

R(K)
(%)

mAP@0.5
(K) (%)

FPS
Model

size (MB)
Number of
parameters

FLOPs
(G)

Yolov5-pose 98.6 98.5 99.4 88.3 89.3 83.8 322.5 5.9 2770779 7.3

Yolov7-pose 98.2 98.6 98.9 88.9 90.2 85.7 330.8 6.3 4053675 8.2

Yolov8-pose 98.5 98.4 99.1 91.5 91.8 89.1 344.8 5.9 2798827 7.2

Yolo-Tea 86.2 88.4 82.4 90.2 89.7 85.3 342.7 16.9 3345263 12.8

CenterNet 97.8 97.3 98.2 90.8 91.1 87.3 235.6 15.8 5028341 10.9

ECS-Tea 98.7 99.2 99.5 95.3 94.9 93.8 370.4 3.3 1372343 4.5
fro
TABLE 4 Ablation results.

A B C D
P(B)
(%)

R(B)
(%)

mAP@0.5
(B) (%)

P(K)
(%)

R(K)
(%)

mAP@0.5
(K) (%)

FPS
Model size

(MB)
Number of
parameters

FLOPs
(G)

✓ 98.6 98.5 99.4 91.9 91.1 88.9 333.4 5.7 2696611 6.7

✓ ✓ 98.3 98.5 99.4 94.9 92.5 92.5 344.8 4.9 2201047 5.6

✓ ✓ 98.8 99.0 99.5 91.7 89.7 88.4 384.6 4.1 1859203 5.6

✓ ✓ 99.5 99.5 99.5 95.0 95.0 93.2 400.0 6.0 2834851 6.8

✓ ✓ ✓ 99.0 98.8 99.4 93.2 93.0 90.5 357.1 3.2 1369271 4.5

✓ ✓ ✓ 99.1 99.2 99.4 91.8 92.3 89.0 344.8 5.2 2339287 5.7

✓ ✓ ✓ 98.9 99.4 99.5 93.3 93.8 90.9 357.1 4.1 1869187 5.6

✓ ✓ ✓ ✓ 98.7 99.2 99.5 95.3 94.9 93.8 370.4 3.3 1372343 4.5
n
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In terms of computational efficiency, the ECS-Tea model contains

only 1.37M parameters, with a compact model size of 3.3 MB and a

computation cost of 4.5 GFLOPs—substantially lower than YOLOv7-

pose (8.2 GFLOPs) and YOLOv8-pose (7.2 GFLOPs). Its inference

speed reaches 370.4 FPS, demonstrating remarkable real-time capability.

To intuitively illustrate the comprehensive performance of each

model across multiple evaluation dimensions, Figure 8 presents a

multi-metric radar chart based on the data from Table 5. The results

show that ECS-Tea forms the outermost envelope across detection

accuracy (P(B), R(B), mAP@0.5(B)), keypoint localization (P(K), R

(K), mAP@0.5(K)), and inference efficiency (FPS), indicating its

superior overall balance among competing models. In contrast,

YOLOv5-pose performs stably in object detection but shows lower

keypoint accuracy due to its limited structural representation capacity.

YOLOv8-pose demonstrates moderate improvements in certain

metrics but suffers from higher computational cost and reduced

real-time performance. YOLO-Tea captures features effectively for

terrace-tea scenarios, yet its performance degrades in tall arbor-type

Pu-erh tea trees due to structural variations and lighting interference.

In comparison, CenterNet—an anchor-free framework relying

on geometric centers and keypoints for object detection—often

struggles with fine-grained detection tasks. This is primarily because

its keypoint-based representation lacks explicit boundary regression

and spatial context modeling, making it less effective at

distinguishing densely distributed Pu-erh tea buds. In addition, its

heavy backbone and large parameter size further limit its robustness

and runtime efficiency in visually cluttered field environments.

To address these issues, the proposed ECS-Tea model

introduces targeted architectural optimizations by integrating

multi-scale spatial enhancement and channel attention

mechanisms within a lightweight framework. This enables ECS-

Tea to achieve superior accuracy while maintaining high robustness

and real-time performance under complex environments. The radar

chart clearly demonstrates that ECS-Tea significantly outperforms

other models in terms of multi-metric balance, underscoring the

effectiveness of its structural optimization design.
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3.2 Visualization and analysis

To further validate the proposed model’s adaptability and

generalization ability in real-world scenarios, and to systematically

analyze its advantages in feature extraction and decision reasoning,

this study conducted visualization experiments using an independent

external test dataset. The external dataset consisted of Pu’er tea shoot

images collected at different time periods and under diverse illumination

conditions (e.g., natural light variation, partial shadow, and

backlighting), ensuring that the evaluation was independent of the

training and validation data. This study selected four representative

scenarios at different visual levels and task dimensions for visualization

analysis: Single target recognition and key point detection results

(Figure 9), Results of multi-target recognition and key point detection

(Figure 10), Overall Grad-CAM comparison results (Figure 11), and

Comparison results of Grad-CAM at the picking point (Figure 12).

Among them, the single-plant and multi-plant detection results were

used to evaluate the model’s detection accuracy and keypoint

consistency under different target densities and background

complexities; the overall Grad-CAM visualizations were used to show

the distribution of feature attention at the global semantic level; and the

picking-point Grad-CAM visualizations focused on the model’s fine-

grained perception and localization ability in operational regions

(Santos et al., 2025). Through the above multidimensional

visualization comparisons, the performance advantages of the ECS-

Tea model in detection accuracy, feature representation, and attention

distribution can be comprehensively revealed.

Figure 9 illustrates the visualized results of single-plant tea bud

detection and keypoint localization. The proposed ECS-Tea model

maintains accurate boundary delineation even under challenging

conditions such as complex illumination, cluttered backgrounds, and

partial occlusions. Its keypoint distribution exhibits higher precision

and spatial coherence, highlighting enhanced robustness and stable

localization performance across varied environments. In contrast, the

baseline YOLOv11-Pose model suffers from blurred boundaries,

incomplete part recognition, and keypoint drift under complex scene

conditions. These issues are particularly pronounced in terminal and

occluded regions, suggesting that its spatial attention distribution is

more dispersed, thereby hindering consistent structural prediction and

reducing reliability in fine-grained localization tasks.

Figure 10 illustrates the detection performance under dense multi-

plant distributions and structurally complex environments of Pu-erh

tea buds. As the scene complexity increases, the baseline YOLOv11-

Pose model exhibits noticeable missed and false detections, particularly

in regions with overlapping targets or similar texture patterns, where

keypoint predictions deviate from their true structural positions—

revealing its limited ability to discriminate between multiple targets in

cluttered visual scenes. In contrast, the ECS-Tea model effectively

distinguishes adjacent targets and preserves structural and keypoint

consistency under the same complex conditions. This improvement

stems from the integration of Cross-Scale Feature Fusion (CSFF) and

Spatial Self-Calibration Attention (SCSA) modules, which enhance

contextual feature modeling, suppress background noise, and

strengthen discriminative learning. Consequently, ECS-Tea achieves
FIGURE 8

Comparative radar chart of object detection and keypoint detection
performance across different models.
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stable detection and high-precision localization even in high-density

and high-noise agricultural scenes.

Figure 11 depicts a Grad-CAM heatmap comparison between the

two models across the entire image. The ECS-Tea model demonstrates

tightly focused attention on the target body with smooth boundary

transitions, suggesting that it more effectively captures high-level

semantic representations and achieves clearer separation between

foreground and background regions. In contrast, the YOLOv11-Pose
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model exhibits a dispersed and unfocused attention distribution, with

misaligned activations frequently occurring around branch–leaf

intersections or background clutter. This behavior reveals an

overreliance on low-level texture cues, resulting in incomplete target

perception and spatial localization deviations, particularly in visually

complex environments.

Figure 12 highlights the Grad-CAM heatmaps centered on

picking keypoint regions, aimed at assessing the model’s fine-
FIGURE 10

Results of multi-target recognition and key point detection.
FIGURE 9

Single target recognition and key point detection results.
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grained perceptual capacity in operationally critical areas. The results

reveal that the ECS-Tea model produces highly concentrated and

strongly activated responses around picking points, suggesting

enhanced geometric sensitivity to structural details and superior

semantic alignment in the representation of key regions. By

contrast, the baseline YOLOv11-Pose model displays a diffuse and

misaligned attention distribution, often focusing on irrelevant regions

such as leaves or branches, implying limited perceptual sensitivity to

actual operational targets and weaker structural discrimination. This
Frontiers in Plant Science 15
distinction further underscores that the ECS-Tea model excels not

only in macro-scale object recognition but also in micro-scale

keypoint comprehension, achieving greater precision and temporal

stability. Such performance establishes a robust perceptual foundation

for subsequent automated picking and manipulation tasks.

In summary, the visual analyses provide compelling evidence

that the ECS-Tea model consistently outperforms the baseline

across single- and multi-target scenarios, demonstrating superior

feature extraction, decision reliability, and structural awareness. By
FIGURE 11

Overall Grad-CAM comparison results.
FIGURE 12

Comparison results of Grad-CAM at the picking point.
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reducing missed detections, keypoint drift, and boundary

ambiguity, ECS-Tea achieves holistic gains in precision,

robustness, and interpretability, thereby offering a solid

perceptual backbone for stable and explainable agricultural

automation systems.
3.3 Spatial positioning performance
experiment of Pu-erh tea tender shoot
picking point

To assess the effectiveness of the proposed multi-frame depth

fusion method for 3D localization of Pu-erh tea tender shoot picking

points, a localization and detection platform for Pu-erh tea tender

shoots was established, as shown in Figure 13. The experiment

employed the pyrealsense2 library as the Python interface to the

Intel RealSense SDK to access the depth camera and employed

OpenCV’s drawing function cv2.circle() to mark keypoint positions

with circles in the image, and employed cv2.putText() to display the

3D coordinates (in millimeters) adjacent to the keypoints as text. To

ensure high-precision benchmarking, the ground-truth 3D
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coordinates were obtained under controlled stable conditions using

a BOSCH GLM30–23 laser rangefinder, which provides a

measurement accuracy of ±1.5 mm, thereby establishing a reliable

standard for quantitative evaluation.
FIGURE 13

Schematic diagram of the positioning experiment.
FIGURE 14

Schematic diagram of the positioning experiment (a) Single-frame depth estimation; (b) Multi-frame fusion (mean); (c) Multi-frame fusion (mode);
(d) Adaptive fusion strategy.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1697209
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1697209
A set of comparative experiments was designed to evaluate 3D

keypoint localization error and the system’s robustness under four

different strategies, with the 3D spatial localization results under a

fixed ground-truth coordinate set presented as shown in Figure 14.

Figure 14 shows that detection coordinates generated by the

single-frame depth estimation method exhibit pronounced spatial

deviations, resulting in a dispersed overall distribution. With the

application of fusion strategies, the detection results progressively

align with the ground-truth coordinates, leading to substantial

improvement in spatial alignment. This effect is particularly

evident under the adaptive fusion strategy, where the detected

point cloud tightly conforms to the true distribution, yielding a

notable improvement in spatial localization consistency.

To more precisely assess the accuracy of different 3D

localization approaches under varying error tolerance thresholds,
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this study plotted the PCK (Percentage of Correct Keypoints)

curves, as illustrated in Figure 15. The x-axis represents the error

threshold (t, in mm), while the y-axis indicates the proportion of

keypoints whose prediction error falls below that threshold, namely

PCK@t. To enhance the curve’s resolution and smoothness, the

threshold interval was set to 0.5 mm, meaning one PCK value was

sampled for every 0.5 mm increment. As shown, the proposed

adaptive multi-frame fusion strategy consistently achieves superior

localization accuracy across all threshold levels, demonstrating its

robustness and applicability in real-world tea-picking scenarios.

To gain deeper insight into the stability of different localization

methods across individual keypoints, Figure 16 presents point-level

evaluation results derived from the OKS (Object Keypoint Similarity)

metric. As illustrated, the proposed adaptive fusion strategy

consistently maintains high OKS values across the majority of
FIGURE 15

Comparison of accuracy of PCK@t with threshold for each method.
FIGURE 16

Comparison of OKS precision of different methods at each picking point.
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picking points, underscoring its superior localization accuracy and

robustness. In contrast, the single-frame depth estimation approach

exhibits pronounced error fluctuations across multiple positions,

indicating limited consistency. Although fusion-based methods

(mean and median) perform better overall than single-frame

estimation, they still exhibit localized accuracy degradation. These

findings further confirm the effectiveness of the OKS metric in

evaluating 3D localization precision and reinforce the advantages of

the proposed adaptive fusion approach.
4 Conclusion

This paper presents ECS-Tea, a lightweight keypoint detection

framework tailored for tea-picking applications, which integrates

bionic structural keypoint annotation, an optimized EfficientNetV2

backbone, a CSFF-based cross-scale feature fusion mechanism, and an

SCSA spatial self-calibration module, forming a multi-component

architecture that achieves an optimal trade-off between accuracy and

efficiency. Building upon this framework, an inter-frame keypoint

tracking and adaptive multi-frame depth fusion strategy was

introduced to enable temporally stable tracking of picking points in

image sequences and high-precision estimation of their 3D spatial

coordinates. Experimental results demonstrate that, compared with the

YOLOv11Pose baseline, the ECS-Tea model achieves comprehensive

performance improvements in keypoint detection: precision P(K)

increased by 3.4%, recall R(K) by 3.8%, mAP@0.5(K) by 4.9%, and

FPS by 11.1%, while model weight and parameter count were reduced

by 49.1% and 49.2%, respectively. Regarding spatial localization

performance, comparative evaluations using the PCK and OKS

metrics reveal that ECS-Tea consistently achieves higher localization

accuracy and structural coherence across various thresholds,

substantially improving the stability and precision of 3D picking-

point localization. In conclusion, the proposed ECS-Tea model

delivers structured, high-precision, and temporally stable spatial

information for intelligent tea-picking systems. It is well-suited for

Pu-erh tea bud detection and localization under elevated operational

conditions, effectively handling complex viewpoint variations, target

occlusions, and leaf motion disturbances. The model demonstrates

strong practical deployment potential in unstructured plantation

environments and dynamic harvesting scenarios.

Despite the promising performance of this study in terms of

accuracy, efficiency, and practical applicability, several limitations

remain. The dataset was collected during a specific period and from a

single tea cultivar, which may restrict the model’s cross-seasonal and

cross-varietal generalization capability. Furthermore, keypoint

annotations still depend on manual labeling, introducing

subjectivity and time overhead. Future work may expand the

dataset diversity and integrate semi-supervised learning frameworks

together with multimodal sensing modalities (e.g., infrared imaging)

to further enhance the model’s robustness and environmental

adaptability, thereby offering stronger technical support for the

real-world deployment of intelligent tea-picking systems.
Frontiers in Plant Science 18
Data availability statement

The datasets presented in this article are not readily available

because the data may be used for future research. Requests to access

the datasets should be directed to JCWang20000531@outlook.com.
Author contributions

JW: Writing – review & editing, Writing – original draft. WL:

Writing – review & editing, Funding acquisition, Project

administration. JX: Investigation, Software, Conceptualization,

Writing – review & editing. HT: Writing – review & editing,

Software, Supervision. CJ: Writing – review & editing, Formal

analysis, Data curation. HL: Writing – review & editing,

Investigation. JL: Writing – review & editing, Validation. QL:

Writing – review & editing, Visualization, Resources.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This research was funded

by the National Natural Science Foundation of China and the

Scientific Research Fund Project of the Department of Education of

Yunnan Province, with the project numbers 52465023 and 2023J0712.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

mailto:JCWang20000531@outlook.com
https://doi.org/10.3389/fpls.2025.1697209
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1697209
References
Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P., andHedman, P. (2022). “Mip-nerf
360: Unbounded anti-aliased neural radiance fields,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. New York, NY, USA: IEEE 5470–5479.

Bijelic, M., Gruber, T., Mannan, F., Kraus, F., Ritter, W., Dietmayer, K., et al. (2020).
“Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen
adverse weather,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. New York, NY, USA: IEEE 11682–11692.

Cao, Z., Sun, S., and Bao, X. (2025). A review of computer vision and deep learning
applications in crop growth management. Appl. Sci. 15, 8438. doi: 10.3390/app15158438

Deng, L., Ma, R., Chen, B., and Song, G. (2025). A detection method for synchronous
recognition of string tomatoes and picking points based on keypoint detection. Front.
Plant Sci. 16, 1614881. doi: 10.3389/fpls.2025.1614881

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun, J. (2021). Repvgg: Making
vgg-style convnets great again. In Proc. IEEE/CVF. Conf. Comput. Vision Pattern
Recognit. pp, 13733–13742). doi: 10.1109/CVPR46437.2021.01352

Dong, Q., Han, T., Wu, G., Qiao, B., and Sun, L. (2025a). RSNet: compact-align
detection head embedded lightweight network for small object detection in remote
sensing. Remote Sens. 17, 1965. doi: 10.3390/rs17121965

Dong, Q., Han, T., Wu, G., Sun, L., Huang, M., and Zhang, F. (2025b). Industrial
device-aided data collection for real-time rail defect detection via a lightweight network.
Eng. Appl. Artif. Intell. 161, 112102. doi: 10.1016/j.engappai.2025.112102

Huang, H., Chen, Z., Zou, Y., Lu, M., Chen, C., Song, Y., et al. (2024). Channel prior
convolutional attention for medical image segmentation. Comput. Biol. Med. 178,
108784. doi: 10.1016/j.compbiomed.2024.108784

Imam, M., Baïna, K., Tabii, Y., Ressami, E. M., Adlaoui, Y., Boufousse, S., et al.
(2025). Integrating real-time pose estimation and PPE detection with cutting-edge deep
learning for enhanced safety and rescue operations in the mining industry.
Neurocomputing 618, 129080. doi: 10.1016/j.neucom.2024.129080

Jin, J., Xie, X. M., Yang, Z., and Ma, S. W. (2023). Value evaluation and assessment of
ancient tree tea—Based on survey data from Kunming Xiongda Tea Market. China
Appraisal Journal, (12), 54–64.

Khanam, R., and Hussain, M. (2024). Yolov11: An overview of the key architectural
enhancements. arXiv. preprint. arXiv:2410.17725. doi: 10.48550/arxiv.2410.17725

Li, J., Li, J., Zhao, X., Su, X., and Wu, W. (2023). Lightweight detection networks for
tea bud on complex agricultural environment via improved YOLO v4. Comput.
Electron. Agric. 211, 107955. doi: 10.1016/j.compag.2023.107955

Li, S., Tan, M., Pang, R., Li, A., Cheng, L., Le, Q. V., et al. (2021). “Searching for fast
model families on datacenter accelerators,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. New York, NY, USA: IEEE 8085–8095.

Liu, M., Chu, Z., Cui, M., Yang, Q., Wang, J., and Yang, H. (2023). Recognition of
ripened strawberries and peduncle detection based on an improved YOLO v8-Pose
algorithm. Trans. Chin. Soc. Agric. Machinery. 54, 244–251.

Liu, H. I., Galindo, M., Xie, H., Wong, L. K., Shuai, H. H., Li, Y. H., et al. (2024).
Lightweight deep learning for resource-constrained environments: A survey. ACM
Comput. Surveys. 56, 1–42. doi: 10.1145/3657282

Liu, M., Xu, X., Tian, T., Shang, M., Song, Z., Tian, F., et al. (2025). A keypoint-based
method for detecting weed growth points in corn field environments. Plant Phenomics
7, 100072. doi: 10.1016/j.plaphe.2025.100072

Liu, G., Zeng, X., Liu, X., Li, T., Ding, X., and Mi, Y. (2025). Automatic body-size
measurement method for group-raised pigs based on an improved YOLO v5-pose
algorithm. Trans. Chin. Soc. Agric. Machinery. 56, 455–465.

National Intellectual Property Administration of China (2008). Geographical
indication product—Pu-erh tea (GB/T 22111—2008) (Beijing: Standards Press of China).

Si, Y., Xu, H., Zhu, X., Zhang, W., Dong, Y., Chen, Y., et al. (2025). SCSA: Exploring the
synergistic effects between spatial and channel attention. Neurocomputing, 634, 129866.

Santos, R., Pedrosa, J., Mendonça, A. M., and Campilho, A. (2025). “Grad-CAM: The
impact of large receptive fields and other caveats,” in Computer Vision and Image
Understanding 258, 104383. doi: 10.1016/j.cviu.2025.104383

Shi, H., Shi, D., Wang, S., Li, W., Wen, H., and Deng, H. (2024). Crop plant
automatic detecting based on in-field images by lightweight DFU-Net model. Comput.
Electron. Agric. 217, 108649. doi: 10.1016/j.compag.2024.108649

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. J. Big. Data 6, 1–48. doi: 10.1186/s40537-019-0197-0
Frontiers in Plant Science 19
Shuai, L., Mu, J., Jiang, X., Chen, P., Zhang, B., Li, H., et al. (2023). An improved
YOLOv5-based method for multi-species tea shoot detection and picking point
location in complex backgrounds. Biosyst. Eng. 231, 117–132. doi: 10.1016/
j.biosystemseng.2023.06.007

Si, Y., Xu, H., Zhu, X., Zhang, W., Dong, Y., Chen, Y., et al. (2025). SCSA: Exploring
the synergistic effects between spatial and channel attention. Neurocomputing 634,
129866. doi: 10.1016/j.neucom.2025.129866

Sun, J., Shen, Z., Wang, Y., Bao, H., and Zhou, X. (2021). “LoFTR: Detector-free local
feature matching with transformers,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. New York, NY, USA: IEEE 8922–8931.

Tan, M., and Le, Q. (2019). “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in International conference on machine learning. 6105–6114 (PMLR).
doi: 10.48550/arXiv.1905.11946

Tan, M., and Le, Q. (2021). “Efficientnetv2: Smaller models and faster training,” in
International conference on machine learning. 10096–10106 (PMLR). doi: 10.48550/
arXiv.2104.00298

Tang, X., Wu, X., Gong, Y., and Shen, L. (2022). Study on the current status of the
conservation of ancient tea tree resources in Yunnan. Fujian. Tea. 44, 275–277.

Teed, Z., and Deng, J. (2021). Droid-slam: Deep visual slam for monocular, stereo,
and rgb-d cameras. Adv. Neural Inf. Process. Syst. 34, 16558–16569.

Wang, C. Y., Bochkovskiy, A., and Liao, H. Y. M. (2023a). “YOLOv7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. New York, NY, USA:
IEEE 7464–7475.

Wang, H., Gu, J., and Wang, M. (2023b). A review on the application of computer
vision and machine learning in the tea industry. Front. Sustain. Food Syst. 7, 1172543.
doi: 10.3389/fsufs.2023.1172543

Wang, Y., Guizilini, V. C., Zhang, T., Wang, Y., Zhao, H., and Solomon, J. (2022).
“Detr3d: 3d object detection from multi-view images via 3d-to-2d queries,” in
Conference on robot learning. London, UK: Virtual PMLR 180–191.

Wang, X., Wu, Z., Xiao, G., Han, C., and Fang, C. (2025). YOLOv7-DWS: tea bud
recognition and detection network in multi-density environment via improved
YOLOv7. Front. Plant Sci. 15, 1503033. doi: 10.3389/fpls.2024.1503033

Wei, Y., Liu, S., Rao, Y., Zhao, W., Lu, J., and Zhou, J. (2021). “Nerfingmvs: Guided
optimization of neural radiance fields for indoor multi-view stereo,” in Proceedings of
the IEEE/CVF international conference on computer vision. New York, NY, USA: IEEE
5610–5619.

Woo, S., Park, J., Lee, J. Y., and Kweon, I. S. (2018). “Cbam: Convolutional block
attention module,” in Proceedings of the European conference on computer vision
(ECCV). Cham, Switzerland: Springer 3–19.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., et al. (2019). “Fbnet: Hardware-
aware efficient convnet design via differentiable neural architecture search,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
New York, NY, USA: IEEE 10734–10742.

Xu, W., Zhao, L., Li, J., Shang, S., Ding, X., and Wang, T. (2022). Detection and
classification of tea buds based on deep learning. Comput. Electron. Agric. 192, 106547.
doi: 10.1016/j.compag.2021.106547

Yang, R. (2024). Mountains, forests, tea, and villages: The world-bound Jingmai
Mountain. Hum. Settlements. 04), 32–35.

Zhang, K., Yuan, B., Cui, J., Liu, Y., Zhao, L., Zhao, H., et al. (2024). Lightweight tea
bud detection method based on improved YOLOv5. Sci. Rep. 14, 31168. doi: 10.1038/
s41598-024-82529-x

Zhao, Y., Lv, W., Xu, S., Wei, J., Wang, G., Dang, Q., et al. (2024). “Detrs beat yolos
on real-time object detection,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. New York, NY, USA: IEEE 16965–16974.

Zhou, Y., Deng, S., Pu, S., Tian, Y., He, Q., Wang, Y., et al. (2017). Research progress
on the effective utilization of Yunnan tea resources. Jiangsu. Agric. Sci. 45, 15–20.

Zhou, X., Wang, D., and Krähenbühl, P. (2019). “Objects as points,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Cham,
Switzerland: Springer-Verlag 12897–12906.

Zhu, L., Zhang, Z., Lin, G., Chen, P., Li, X., and Zhang, S. (2023). Detection and
localization of tea bud based on improved YOLOv5s and 3D point cloud processing.
Agronomy 13, 2412. doi: 10.3390/agronomy13092412
frontiersin.org

https://doi.org/10.3390/app15158438
https://doi.org/10.3389/fpls.2025.1614881
https://doi.org/10.1109/CVPR46437.2021.01352
https://doi.org/10.3390/rs17121965
https://doi.org/10.1016/j.engappai.2025.112102
https://doi.org/10.1016/j.compbiomed.2024.108784
https://doi.org/10.1016/j.neucom.2024.129080
https://doi.org/10.48550/arxiv.2410.17725
https://doi.org/10.1016/j.compag.2023.107955
https://doi.org/10.1145/3657282
https://doi.org/10.1016/j.plaphe.2025.100072
https://doi.org/10.1016/j.cviu.2025.104383
https://doi.org/10.1016/j.compag.2024.108649
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1016/j.biosystemseng.2023.06.007
https://doi.org/10.1016/j.biosystemseng.2023.06.007
https://doi.org/10.1016/j.neucom.2025.129866
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.2104.00298
https://doi.org/10.48550/arXiv.2104.00298
https://doi.org/10.3389/fsufs.2023.1172543
https://doi.org/10.3389/fpls.2024.1503033
https://doi.org/10.1016/j.compag.2021.106547
https://doi.org/10.1038/s41598-024-82529-x
https://doi.org/10.1038/s41598-024-82529-x
https://doi.org/10.3390/agronomy13092412
https://doi.org/10.3389/fpls.2025.1697209
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	ECS-tea: a bio-inspired high-precision detection and localization algorithm for young shoots of Pu-erh tea
	1 Introduction
	2 Materials and methods
	2.1 Development of the Pu-erh tea tender shoot dataset
	2.1.1 Data collection
	2.1.2 Dataset augmentation and partitioning

	2.2 Model optimization strategies
	2.2.1 Refinement of the overall network framework
	2.2.2 Efficient NetV2
	2.2.3 Cross-scale feature fusion
	2.2.4 Spatial and channel synergistic attention

	2.3 Deep positioning analysis
	2.3.1 Inter-frame keypoint tracking mechanism
	2.3.2 Adaptive multi-frame depth fusion and 3D inverse projection

	2.4 Experimental procedure
	2.4.1 Experimental environment
	2.4.2 Training parameters
	2.4.3 Evaluation metric


	3 Results and discussion
	3.1 Pu-erh tea tender shoot detection experiment
	3.1.1 Model ablation study
	3.1.2 Model comparison experiment

	3.2 Visualization and analysis
	3.3 Spatial positioning performance experiment of Pu-erh tea tender shoot picking point

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


