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Introduction: Pu-erh tea, valued for its ecological significance and economic
worth, requires precise and efficient bud harvesting to advance intelligent
agricultural operations. Accurate bud recognition and localization in complex
natural environments remain critical challenges for automated harvesting systems.
Methods: To address this, we propose ECS-Tea, a bio-inspired and lightweight
detection-localization framework based on YOLOv11-Pose, tailored for Pu-erh
tea bud analysis. The framework integrates four key modules: (1) a lightweight
EfficientNetV2 backbone for efficient feature representation; (2) a Cross-Scale
Feature Fusion (CSFF) module to strengthen multi-scale contextual information;
(3) a Spatial-Channel Synergistic Attention (SCSA) mechanism for fine-grained
keypoint feature modeling; and (4) an adaptive multi-frame depth fusion strategy
to enhance 3D localization precision and robustness. ECS-Tea was trained and
validated on a dedicated dataset for Pu-erh tea bud detection.

Results: Experimental results show that ECS-Tea achieves 98.7% target detection
accuracy and 95.3% keypoint detection accuracy, with a compact architecture
(3.3 MB), low computational cost (4.5 GFLOPs), and high inference speed (370.4
FPS). Compared to the baseline YOLOv11-Pose, ECS-Tea significantly improves
keypoint detection performance: mAP@0.5(K) increases by 4.9%, recall R(K) by
3.8%, and precision P(K) by 3.4%, while maintaining or slightly enhancing object
detection metrics.

Discussion: These findings demonstrate that ECS-Tea effectively balances
accuracy and computational efficiency, validating the complementary
contributions of its integrated modules. As a robust, real-time, and deployable
solution, it bridges the gap between algorithmic sophistication and practical
application, enabling high-precision tea bud harvesting in unstructured
field environments.

Pu-erh tea, YOLOPose, object detection, pose estimation, depth camera,
smart agriculture
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1 Introduction

Pu-erh tea, as one of Yunnan Province’s most emblematic
specialty agricultural resources, has earned a distinguished status in
both domestic and international tea markets owing to its unique
mellow flavor and profound cultural connotations (National
Intellectual Property Administration of China, 2008; Jin et al,
2023).In recent years, the ancient-tree Pu-erh tea market has
experienced sustained growth at an average annual rate of about
12%, intensifying the supply-demand imbalance for high-quality
raw materials. During the harvesting stage, the accuracy of bud
identification and spatial localization directly determines tea quality
and economic yield. The traditional manual picking mode, which
relies heavily on the experience of skilled tea farmers, yields a daily
per capita picking volume below 15 kg. This process is labor-
intensive, difficult to standardize, and consequently results in
marked variability in product quality across batches (Tang et al.,
2022). Furthermore, Pu-erh tea trees, being tall arbor species with
widely dispersed branches, often require climbing or the use of
auxiliary tools for harvesting, thereby heightening safety risks and
reducing operational efficiency. The Pu-erh tea plantations are
typically scattered within forested terrains, where wind-induced
motion causes continuous bud oscillation, leading to highly
unstable visual information—in stark contrast to the dwarf,
densely planted, and imaging-stable environments characteristic
of terrace-grown tea (Zhou et al., 2017).

Amid the vigorous advancement of smart agriculture,
computer vision technology—owing to its non-contact and high-
resolution sensing capabilities—has opened new avenues for
intelligent tea harvesting. The YOLO algorithm family,
distinguished by its end-to-end real-time detection architecture,
has achieved notable success across multiple agricultural
applications and is now exhibiting emerging potential within tea
plantation environments (Li et al., 2023). However, the growth
environment of Pu-erh tea is inherently complex and variable,
characterized by interlaced branches and dense foliage, which create
a highly cluttered and interference-prone visual background.
Moreover, tender shoots differ markedly in size, orientation, and
angular configuration—their bud-tip direction and leaf unfolding
angle fluctuate substantially—posing significant challenges for
stable recognition and precise structural modeling demanded by
mechanical harvesting systems. In addition, the considerable height
of tea trees, combined with frequent occlusion and overlap, further
compounds the complexity of visual perception and recognition.
Consequently, YOLO-based detectors are prone to missed
detections and false positives when applied to small and visually
ambiguous targets in such conditions. With the rapid proliferation
of deep learning techniques in agricultural domains, tea bud
detection has emerged as an area of growing research interest.
For instance, Xu et al. introduced a dual-branch architecture
combining YOLOv3 with DenseNet201, which effectively
differentiates tea buds from stems and achieves high detection
accuracy across multiple viewing angles (Xu et al, 2022). Shuai
et al. developed the YOLO-Tea model, incorporating CARAFE and
Bottleneck Transformer modules alongside a six-keypoint
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regression mechanism, thereby enabling spatial structural
perception and precise extraction of tea bud picking points (Shuai
et al,, 2023). Zhu et al. integrated the YOLOV5 framework with 3D
point cloud analysis, employing DBSCAN clustering to accomplish
precise localization of picking points, and achieved high accuracy
and real-time performance in unstructured tea plantation
environments (Zhu et al, 2023). Zhang et al. introduced a
lightweight detection model that integrates EfficientNetV2 with
the Ghost module, achieving a mean Average Precision (AP) of
85.79% while substantially reducing parameter complexity (Zhang
et al, 2024). Wang et al. developed the YOLOv7-DWS model,
which achieves an effective balance between detection accuracy and
computational efficiency, attaining 93.38% recognition accuracy for
tea buds under natural illumination conditions (Wang et al., 2025).
Shi et al. designed a lightweight neural network capable of robust
operation in complex field environments, thereby validating the
practical feasibility of lightweight architectures in agricultural visual
perception tasks (Shi et al., 2024). Beyond the YOLO family,
CenterNet represents a representative non-YOLO framework that
formulates object centers as keypoints and jointly regresses
bounding boxes and keypoint offsets through heatmap-based
representations (Zhou et al., 2019). Although it delivers accurate
spatial perception, its dense decoding structure imposes
computational burdens, limiting its real-time performance in field
environments. In related domains, Dong et al. proposed RSNet, a
compact-align detection head embedded lightweight network for
small-object detection in remote sensing imagery, achieving an
excellent accuracy-efficiency balance on high-resolution datasets
(Dong et al., 2025a). Similarly, Dong et al. developed an industrial
device-aided lightweight network for real-time rail defect detection,
highlighting the deployment feasibility of compact architectures
under constrained edge-device conditions (Dong et al., 2025b).
These studies further underscore the importance of lightweight and
deployable architectures for real-time field applications, aligning
closely with the design philosophy adopted in this work.

Beyond traditional object detection, keypoint detection and
pose estimation are emerging as key frontiers in structured visual
perception, driving a shift toward finer-grained spatial
understanding. Liu et al. introduced a keypoint-based weed
growth point detection framework, which demonstrates
remarkable robustness under complex environmental
backgrounds (Liu M. et al, 2025). Deng et al. developed a joint
recognition framework for tomato fruits and picking points,
achieving high-precision spatial localization through a customized
YOLO-Pose variant (Deng et al., 2025). These studies collectively
demonstrate that integrating object detection with structural
keypoint modeling can effectively overcome the inherent
limitations of conventional 2D bounding-box-based approaches.
Concurrently, lightweight architectures and attention mechanisms
—including EfficientNet, MobileNetV3, CBAM, SE, and SCSA
modules—are widely adopted in agricultural embedded systems
to achieve an optimal trade-off between accuracy and
computational efficiency. Moreover, multi-frame fusion and
temporal modeling approaches are increasingly utilized to
enhance detection stability under dynamic and unstructured field
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conditions (Imam et al., 2025; Liu G. et al., 2025; Liu et al., 2023).
However, few studies have explored the integration of lightweight
attention mechanisms with keypoint detection for precise
localization of dynamically moving, high-altitude tea buds,
leaving a critical research gap in fine-grained perception for
agricultural robotics.

From a broader perspective, Wang et al. highlighted in their
comprehensive review of visual intelligence in the tea industry that
most existing studies remain centered on tea leaf detection and
grading, while lacking deep integration with three-dimensional
localization and robotic harvesting systems (Wang H. et al,
2023). Cao et al. underscored, from a broader perspective on the
development of agricultural visual perception, the necessity of
deeply integrating multimodal sensing with structural modeling
to enhance the robustness, adaptability, and generalization capacity
of intelligent agricultural systems (Cao et al.,, 2025).

In summary, while current research has substantially advanced
tea bud detection and agricultural visual perception, several critical
limitations persist:

1. Insufficient structural perception capability when
confronted with dynamic environmental disturbances;

2. Inadequate three-dimensional localization accuracy,
restricting its applicability to robotic arm manipulation
and control;

3. Difficulty achieving a balance between detection accuracy
and computational efficiency under lightweight
deployment constraints;

4. Most current studies focus on terrace tea detection, while
research on tender bud recognition of tall arbor-type Pu-
erh tea trees remains scarce.

To this end, this study proposes a detection and localization
framework for Pu-erh tea tender buds built upon an enhanced
YOLO-Pose architecture, with the following key contributions:

1. A bionic-structure-inspired keypoint annotation strategy is
introduced, establishing an eight-point keypoint and object
detection dataset that incorporates visibility-aware
annotations to capture the ecological structure of Pu-erh
tea buds.

2. A lightweight EfficientNetV2 backbone network is
developed, integrated with a Cross-Scale Feature Fusion
(CSFF) module and an SCSA attention mechanism, to
strengthen multi-scale feature representation while
preserving high computational efficiency.

3. An adaptive multi-frame fusion strategy is proposed to
enable spatiotemporal structural modeling and fine-
grained localization of critical bud regions, offering robust
visual guidance for high-elevation robotic
harvesting systems.

This study aims to overcome the visual perception bottlenecks

inherent in the complex, unstructured environments of tall arbor-
type Pu-erh tea plantations, distinct from terrace tea systems. It
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provides a theoretical foundation and technical roadmap for
developing intelligent harvesting equipment, thereby promoting
the transition of the traditional tea industry toward precision,
automation, and intelligence.

2 Materials and methods

2.1 Development of the Pu-erh tea tender
shoot dataset

Taking Pu-erh tea trees from the UNESCO World Heritage Site—
Jingmai Mountain as the study object, this research faithfully simulated
real-world harvesting scenarios during data acquisition. The camera
height ranged primarily from 1.5 to 2.5 meters, while tea trees typically
exceeded 2 meters in height. Pronounced wind-induced motion
resulted in frequent leaf fluttering and occlusion, thereby establishing
a realistic semantic environment conducive to subsequent multi-frame
fusion and robust recognition (Yang, 2024). This work is dedicated to
resolving the challenges of bud recognition and spatial localization in
complex natural environments, thereby laying a solid foundation for
intelligent and automated Pu-erh tea harvesting.

2.1.1 Data collection

Image data of Pu-erh tea buds were collected from tea
plantations in Jingmai Mountain, Pu-erh, Yunnan Province (22°
08'14"-22°13'32" N, 99°59'14"-100°03'55" E), at altitudes ranging
from 1100 m to 1662 m. Using a high-resolution SONY Alpha 7IIT
camera and an Intel RealSense D435i depth sensor, images were
captured at distances of 0.3-2 m under diverse temporal,
meteorological, illumination, and background conditions, as
illustrated in Figure 1. Ultimately, a high-quality dataset
comprising 1,769 curated images was constructed, serving as the
foundation for model training and performance evaluation in
subsequent experiments.

2.1.2 Dataset augmentation and partitioning

In this study, Labelme was employed for image annotation. To
enable fine-grained recognition and localization of Pu-erh tea buds,
we adopted a bionic keypoint annotation strategy inspired by
techniques in human pose estimation and animal structural
analysis. The bud morphology was conceptualized as a human-
analogous structure, with geometrically or functionally meaningful
regions—such as the apex, base, and middle section—annotated as
structural “key joints.” This human-inspired segmentation
annotation approach allows the model to effectively learn the
geometric topology and spatial constraints among the key
structural components of the tea bud. After a thorough review of
relevant literature and consultation with agronomic experts, the
“one-bud-three-leaf” standard was adopted as the reference for
harvesting, based on which the ecological keypoint locations for Pu-
erh tea buds were precisely defined, as illustrated in Figure 2.
Furthermore, visibility annotations were applied to the picking
points: points partially occluded yet inferable from structural cues
were marked as “occluded” (visible=1); points heavily occluded
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FIGURE 1
Original image dataset of Pu-erh tea tender buds.

(>80%) and indeterminable were labeled as “invisible” (visible=0);
while clearly discernible keypoints were designated as “visible”
(visible=2). It is noteworthy that no internationally unified
criterion exists for defining the picking point. In accordance with
stem-harvesting requirements, this study defined the picking point
as being 1-2 cm below the intersection between the third leaf and
the main stem.

To improve the diversity and robustness of the Pu-erh tea bud
image dataset and to address the limitations of insufficient samples
and monotonous scene representation, this study integrated a

comprehensive suite of image augmentation techniques (Bijelic
et al,, 2020; Shorten and Khoshgoftaar, 2019). Rain streaks, fog,
and Gaussian noise were introduced to emulate complex
environmental interferences, while brightness and exposure
adjustments simulated diverse lighting conditions, as shown in
Figure 3. Additionally, Gaussian blurring was applied to mimic
imaging defocus, thereby enhancing the model’s resilience to real-
world visual variability. Through rotation transformations and
mirror flipping, the dataset was enriched with multi-perspective
variations, strengthening the model’s capacity to recognize targets

Apex of the bud

Apex of the first leaf
Apex of the second leaf
Junction between the first leaf and bud
Junction between the second leaf and stem
Junction between the third leaf and stem

Picking point

FIGURE 2
[llustration of keypoint annotation example.
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4
Brightness reduction
enhancement Random rotation
FIGURE 3

Enhancement method.

under diverse orientations and postures. Artificial occlusions were
simulated by introducing black rectangular patches, which
improved the model’s robustness and detection reliability under
conditions of partial target obstruction. A label-synchronized
transformation mechanism was further implemented to ensure
perfect alignment between augmented images and their
corresponding annotations. These augmentation strategies
significantly expanded the dataset, furnishing a richer and more
representative sample base for deep learning model training. This
enhancement greatly improved the model’s generalization
capability and stability in Pu-erh tea bud detection and
recognition tasks. After augmentation, a total of 5,000 valid
images were generated and randomly partitioned into training,
testing, and validation subsets in a 7:2:1 ratio using Python scripts.

Frontiers in Plant Science

Figure 4 presents representative examples of images produced using
the aforementioned augmentation techniques, illustrating the
diversity and realism achieved through this process.

2.2 Model optimization strategies

YOLOvV11, the latest generation in the YOLO family of
lightweight real-time object detectors, achieves an exceptional
balance between accuracy and computational efficiency, and has
been extensively adopted across diverse intelligent vision
applications (Khanam and Hussain, 2024). Building upon this
framework, YOLOv11-Pose integrates an advanced keypoint
regression module, allowing the network to perform not only
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bounding-box detection but also precise localization of internal
structural keypoints, thereby extending its applicability to keypoint-
intensive domains such as human pose estimation and agricultural
structural analysis. Nevertheless, YOLOv11-Pose exhibits several
limitations when applied to tea bud detection — its performance
tends to degrade under complex backgrounds, low image quality, or
drastic illumination changes, and it demonstrates limited
robustness when dealing with small-scale or heavily occluded
targets. To enhance its adaptability across diverse environmental
conditions, this study proposes a structural optimization of
YOLOv11-Pose, aimed at improving its recognition and
localization capabilities for complexly structured tea buds,
particularly within interference-prone and visually ambiguous Pu-
erh tea harvesting environments. To overcome these limitations,
this work introduces three major architectural enhancements: an
EfficientNetV2 backbone for optimized feature encoding, a CSFF
(Cross-Scale Feature Fusion) module for multi-scale feature
enhancement, and an SCSA (Spatial-Channel Synergistic
Attention) module for refined feature modeling. Collectively,
these components constitute the ECS-Tea framework—a
lightweight, high-efficiency, and robust detection network tailored
for complex Pu-erh tea bud recognition.

10.3389/fpls.2025.1697209

Furthermore, the lightweight optimization not only enhances
the computational efficiency of the model under resource-
constrained environments, but also substantially reduces
computational overhead and inference latency, thereby enabling
seamless deployment on edge devices—such as tea-picking robotic
manipulators—to ensure rapid and stable bud detection and
localization in real-world harvesting scenarios (H.-I. Liu
et al., 2024).

2.2.1 Refinement of the overall network
framework

This study presents a systematic optimization of the
YOLOv11Pose architecture, as illustrated in Figure 4.
EfficientNetV2 was adopted as a lightweight backbone. Leveraging
its compound scaling strategy and enhanced MB Conv module, the
network achieves substantial reductions in parameters and
computational load, while maintaining a strong capacity for
capturing essential features of Pu-erh tender shoots (Tan and Le,
2021; Wu et al., 2019).

The network incorporates the CSFF (Cross-Scale Feature

Fusion Module), enabling multi-scale feature interaction and fusion
(Zhao et al,, 2024). This improves the network’s sensitivity to tender

A 4

l efficientnet_v2

A4

l efficientnet_v2

nn.Upsample

nn.Upsample

Backbone

FIGURE 4
Schematic diagram of the ECS-Tea network architecture.
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shoots and keypoints across scales and reduces the incidence of
missed or false detections resulting from variability in shoot
morphology. The SCSA (Spatial-Channel Split Attention)
mechanism was also innovatively integrated, enabling refined
feature selection and enhancement across both spatial and
channel dimensions (Si et al., 2025). It guides the network’s focus
toward salient features, thereby further enhancing detection
accuracy for fine structural details and keypoints of tender shoots.

Collectively, these optimization strategies work synergistically
to achieve a lightweight architecture while markedly enhancing the
detection accuracy of Pu-erh tender shoots and their keypoints,
thereby providing a reliable and accurate technical foundation for
Pu-erh tea harvesting and quality assessment.

2.2.2 Efficient NetV2

EfficientNetV2 leverages training-aware Neural Architecture
Search (NAS) and scaling strategies to optimize model
performance. It was designed to overcome the training
bottlenecks observed in EfficientNet (Tan & Le, 2020). In
particular, it addresses inefficiencies in training large image sizes,
low computational efficiency in deep convolutions within early
layers, and the limitations of uniform scaling. Furthermore,
progressive learning is applied during training. Regularization
strength is adaptively scaled based on image size: initially, small
images and weak regularization are used, while in later training
phases, larger image sizes and stronger regularization are employed.
The Fused-MB Conv structure is illustrated in Figure 5 (Li et al,
2021). The architecture of EfficientNetV2 is detailed in Table 1.

In the context of tea bud detection, EfficientNetV2—owing to
its highly efficient feature extraction and accelerated training

@

BD—
H,W,CT H,W,CT
Convlx1 Convlx1
t t
SE SE
H,W,4C H,W,4C T
depthwise
Conv3x3
Conv3x3
Convlx1
H,W.C ‘ H,W.C ¥
MBConv Fused-MBConv

MB Conv and Fused-MBConv network structure.
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performance—enables more precise and discriminative
representation of bud features, thereby enhancing both detection
accuracy and computational efficiency. Its compact parameter scale
further minimizes resource consumption, facilitating practical
deployment in real-world agricultural environments and offering
robust technical support for tea bud detection and related
research endeavors.

2.2.3 Cross-scale feature fusion

The CSFF (Cross-Scale Feature Fusion) module is designed to
integrate multi-scale features, enhancing the model’s robustness to
scale variations and improving small object detection. The structure
is depicted in Figure 6. It builds upon and optimizes traditional
cross-scale fusion modules through the incorporation of fusion
blocks that integrate adjacent scale features. Each fusion block
includes two 1x1 convolutions for channel adjustment, followed
by N Rep Blocks to perform feature fusion, and computes the final
fused feature through element-wise addition (Ding et al., 2021).
This facilitates effective integration of multi-scale features.

In the overall architecture, the CSFF module is integrated into
the neck section of the Pu-erh tea bud detection network. The
multi-scale features extracted from the backbone are adaptively
fused through the CSFF module, thereby strengthening semantic
interactions and structural associations among different scales.
Conventional neck fusion methods (e.g., FPN, PANet, BiFPN)
generally rely on fixed topological connections or static weighting
for feature propagation, often leading to insufficient feature
alignment and semantic information loss. In contrast, the CSFF
module adopts a content-aware cross-scale fusion strategy that
adaptively models semantic dependencies across multiple feature
scales, allowing high-level semantic cues to effectively complement
low-level fine-grained details. This design maintains feature
consistency and discriminative capability when handling tea bud
targets exhibiting substantial scale variations.

The CSFF module is integrated into the neck of the tea detection
architecture. Multi-scale features from the backbone are passed into
the CSFF module, which leverages its fusion capability to enhance
inter-scale information exchange. Conventional neck structures
often suffer from information loss or inadequate feature fusion
when processing multi-scale inputs, whereas the incorporation of

TABLE 1 EfficientNetV2 network structure.

Stage Operator Stride #Channels #Layers
0 Conv3x3 2 24 1
1 Fused-MBConv1,k3x3 1 24 2
2 Fused-MBConv4,k3x3 2 48 4
3 Fused-MBConv4,k3x3 2 64 4
4 MBConv4,k3x3,SE0.25 2 128 6
5 MBConv6,k3x3,SE0.25 1 160 9
6 MBConv6,k3x3,SE0.25 2 256 15
7 Convix1&Pooling&FC - 1280 1
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FIGURE 6
Structure of the CSFF module.

CSFF effectively addresses these limitations. It enables the model to
effectively capture tender shoot characteristics at various scales,
thereby enhancing the feature representation available for
downstream detection and localization.

2.2.4 Spatial and channel synergistic attention

The SCSA module draws inspiration from CBAM and CPCA,
yet introduces targeted innovations in the mechanisms of spatial-
channel interaction and feature fusion to better suit the
requirements of fine-grained perception (Woo et al,, 2018; Huang
et al, 2024).Structurally, it comprises two components—Shared
Multi-Semantic Spatial Attention (SMSA) and Progressive
Channel-wise Self-Attention (PCSA)—whose overall architecture
is depicted in Figure 7. Unlike conventional serial attention
schemes, SCSA employs a bidirectional spatial-channel
collaborative modeling strategy that jointly optimizes spatial and
channel representations, thereby preserving salient feature
information while effectively suppressing background noise.

In the spatial branch, SMSA generates the spatial attention map
by combining spatial-channel decomposition with multi-receptive-
field depth wise separable convolutions (kernel sizes 3, 5, 7, 9),
Group Normalization, and Sigmoid activation, enabling multi-scale
spatial context modeling. The multi-branch convolution design
allows the model to capture spatial cues across multiple receptive
fields, facilitating the accurate recognition of slender Pu-erh tea
shoots even under challenging conditions such as cluttered
backgrounds and uneven illumination. Unlike the conventional
CBAM, SMSA integrates a shared multi-semantic extraction
strategy within its spatial attention module, enabling semantic
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complementarity across branches and thus strengthening multi-
scale spatial representation. In the channel branch, PCSA integrates
a single-head self-attention mechanism with a progressive channel
compression strategy, progressively modeling inter-channel
dependencies to emphasize semantically salient features while
suppressing redundant activations. The SMSA and PCSA
modules are integrated via a residual pathway (Figure 7), wherein
the spatial attention output reciprocally guides channel attention
learning, establishing a closed-loop feature collaboration
mechanism that synchronously optimizes spatial and channel
representations. This collaborative attention design effectively
overcomes the limitations of traditional attention modules (e.g.,
SE, CBAM), which rely on a fixed sequential order of spatial and
channel processing, thereby endowing the model with stronger
adaptability and generalization in structured feature extraction.
Within the overall network architecture, the SCSA module is
embedded in the neck section, as shown in Figure 4. Specifically,
it is positioned after each multi-scale fusion block (C3K2) and
before the detection and keypoint heads, where it jointly enhances
the fused features across the three hierarchical levels (P3, P4, P5)
through spatial-channel cooperation. This design refines salient
region representations following multi-scale feature fusion,
enabling the network to more precisely perceive and localize the
key structural regions of Pu-erh tea buds.

Furthermore, to achieve a balance between performance and
efficiency, the SCSA module employs a lightweight depth wise
separable convolution design, which maintains low computational
overhead while surpassing existing attention and multi-scale fusion
frameworks (e.g., SE, CBAM, BiFPN) in terms of detection accuracy
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FIGURE 7
Structure diagram of SCSA.

and feature stability for Pu-erh tea bud recognition, thereby
validating its structural innovation and strong task adaptability.

2.3 Deep positioning analysis

Considering the challenges of unstable viewpoints, structural
ambiguity, and keypoint jitter during Pu-erh tea harvesting, this
study introduces an adaptive multi-frame depth fusion module built
upon the 2D picking-point outputs of the ECS-Tea model. By
integrating keypoint information across consecutive frames, the
method enables dynamic and stable spatial modeling of tea buds,
effectively mitigating the accuracy degradation encountered by
conventional detection methods under high-elevation vibration
conditions. The approach employs an Intel RealSense D435 depth
camera to perform continuous-frame depth sampling of identical
picking points and applies an adaptive multi-frame fusion strategy
to refine depth estimation, thereby substantially enhancing the
stability and accuracy of 3D spatial coordinates.

2.3.1 Inter-frame keypoint tracking mechanism

To guarantee that depth samples across multiple frames
correspond to the same physical location within the image, an
inter-frame keypoint tracking mechanism is incorporated. In the
absence of such a mechanism, camera shake, subtle movements, or
detection biases may cause slight shifts in keypoint positions,
thereby compromising the spatial consistency of depth fusion.
The keypoint tracking procedure is outlined as follows:

1. Initial detection: In frame t, the ECS-Tea model extracts the
2D pixel coordinates (uy, v;) of keypoints.
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2. Keypoint matching: To enhance the robustness and accuracy
of inter-frame keypoint tracking, this study adopts the
Transformer-based LoFTR (Detector-Free Local Feature
Matching) algorithm, replacing conventional Lucas-Kanade
optical flow methods. Across consecutive frames, LoFTR
applies an end-to-end trained Transformer to encode
global image features, thereby facilitating cross-frame
feature matching, and does so without relying on local
window constraints or grayscale consistency assumptions
(Sun et al, 2021). For each keypoint detected in the current
frame, LoFTR autonomously locates the globally optimal
match in the subsequent frame, establishing inter-frame
correspondences and yielding a sequence of keypoint
coordinates over N consecutive frames. In this work, the
fusion frame count (N) was empirically set within the range
of 3-10 frames, a configuration derived from the hardware
specifications of the Intel RealSense D435i depth sensor
integrated into the experimental platform. Given the sensor’s
depth sampling rate of 90 fps, a 3-10 frame temporal window
provides an optimal trade-off between spatial coherence and
real-time computational performance. When N < 3, depth
estimation becomes insufficiently smoothed; conversely, when
N > 10, latency and temporal jitter errors grow substantially,
degrading overall system stability. A comprehensive
evaluation indicates that, at the operational frame rate of the
Intel RealSense D435i, a 3-10 frame fusion window achieves
the optimal equilibrium between depth-fusion stability and
real-time responsiveness.

(e V)5 (Wt 1 Ver)s -5 (W15 Vean-1)
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3. Consistency check: For each tracked keypoint position,
calculate the Euclidean distance A; between the keypoint position
and its corresponding position in the previous frame, The specific
expression is shown in Equation 1:

A= \/(um = Uic)? + (Veri = Vesicr)? (1)

If A; exceeds a predefined threshold € (3 pixels), where the
threshold selection is guided by empirical practices reported in (Sun
et al, 2021) and (Teed and Deng, 2021) the tracking is deemed
unsuccessful and the corresponding frame’s depth value is
discarded. Keypoint tracking stability is typically evaluated over
2-3 frames. Considering the system’s resolution and practical
matching accuracy, the threshold was set to 3 pixels.

Additionally, abnormal jitter frames are further filtered by
analyzing temporal stability trends, thereby avoiding errors
caused by motion blur or similar artifacts. This inter-frame
tracking strategy ensures high spatial consistency of keypoints
across frames, establishing a solid foundation for robust depth
value fusion.

2.3.2 Adaptive multi-frame depth fusion and 3D
inverse projection

As raw images captured by depth sensors exhibit noise, holes,
occlusions, and other artifacts across frames, single-frame depth
measurements d often show substantial fluctuation. To enhance
depth estimation accuracy, this study applies adaptive statistical
fusion to the sequence of depth samples {d;, d,,..., d,} at
corresponding keypoint positions across N frames and derives a
more stable depth estimate d. The adaptive fusion strategy is defined
as follows:

Standard deviation calculation: compute the standard deviation
o of the depth sequence to evaluate the stability of the
depth measurements.

Fusion strategy selection: if 6<T (threshold), the depth values
are deemed stable, and mean filtering is employed. The threshold
selection follows empirical values commonly adopted in recent
depth estimation and dense reconstruction literature and is
calibrated based on the sensor’s noise characteristics and the
practical deployment scenario. The threshold is set to 0.01 m
(Barron et al., 2022; Wei et al., 2021).

The specific expression is shown in Equation 2:

1
CAJ = MZﬁldi’ d; > 0, M = available frame count (2)

If o>T, this indicates the presence of outliers or abrupt
variations, in which case median filtering is applied to enhance
robustness. The specific expression is shown in Equation 3:

d = median{(d|d; > 0)} 3)

The fused stable depth value, along with 2D pixel coordinates
(u,v), is input to the rs2_deproject_pixel_to_point inverse
projection function provided by the Intel RealSense D435 camera,
with spatial transformation performed based on the camera’s
intrinsic parameters, yielding the final 3D coordinates (X,Y,Z).
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The specific expression is shown in Equation 4.

(X,Y,Z) = rs2_deproject_pixel_to_point (K, (u, v),g) (4)

where K denotes the camera intrinsic matrix, comprising focal
length, principal point coordinates, and additional parameters.

2.4 Experimental procedure

2.4.1 Experimental environment
In this study, the software and hardware environments and
their corresponding parameters are summarized in Table 2.

2.4.2 Training parameters

The training parameters used in this study are listed in Table 3.

The experimental settings were configured as follows: all input
images were resized to 640x640 using the LetterBox method; the
batch size was set to 16 during training and 1 during inference;
automatic mixed precision (AMP) was enabled to enhance
computational efficiency. All experiments were implemented in
the PyTorch framework, without employing TensorRT
acceleration. Data preprocessing followed the default YOLOvI1
pipeline, comprising Mosaic augmentation, random perspective
transformation, CopyPaste augmentation, MixUp blending,
RandomHSV perturbation, and RandomFlip operations, followed
by normalization and channel rearrangement. The latency and FPS
values reported herein correspond exclusively to the detection and
keypoint estimation stages, excluding the time consumed by
LoFTR-based feature matching and fusion. These parameters
were selected based on preliminary experiments to ensure stable
convergence and optimal detection performance.

2.4.3 Evaluation metric

This study adopts ten evaluation metrics to comprehensively
assess the overall performance of the enhanced ECS-Tea model in
both tea bud detection and keypoint localization tasks (Wang et al.,
2022; Wang et al., 2022). These include object detection precision (P
(B)) and keypoint precision (P(K)), object recall (R(K)) and

TABLE 2 Software and hardware environment.

Hardware/Software Model/ Parameter/
environment Identification Version
CPU Intel Core i7-14900F 2.10 GHz
NVIDIA GeForce
P B
GPU RTX 4060 6G
Operating System Windows 11 22631.4460
Deep Learning Framework PyTorch 1.12.1
Computing Platform CUDA 12.1
Integrated Development
PyCh: 2024.1.
Environment (IDE) yCharm 0 3
Programming Language Python 39.7
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TABLE 3 Training parameters.

Number of Initial learning

Batch size
rate

Final learning rate

10.3389/fpls.2025.1697209

Number of data
loader workers

Optimizer

epochs

keypoint recall (R(K)), as well as the average precision (mnAP@0.5
(K), mAP@0.5(B)) computed at an IoU threshold of 0.5. Additional
efficiency metrics—parameter count, model weight size, floating-
point operations (FLOPs), and frames per second (FPS)—were also
analyzed to evaluate computational performance. The formulations
for precision, recall, and average precision (AP) are expressed as
shown in Equations 5-9:

PP 100% (5)
TP+ FP ’
P2 . l00% (6)
“TP+FN ?
AP = / P(R)dR )
0

To achieve a more comprehensive assessment of the 3D keypoint
localization accuracy of the proposed model, this study incorporates
two complementary evaluation metrics—PCK (Percentage of Correct
Keypoints) and OKS (Object Keypoint Similarity).

The PCK metric quantifies the proportion of predicted
keypoints whose Euclidean distance from their corresponding
ground-truth locations falls within a specified tolerance threshold
(t), mathematically defined as shown in Equation 8:

PCK@t = %Eﬁlé‘)(d,- <t (8)

In this expression, N is the total number of keypoints, d; refers to
the three-dimensional prediction error of the i-th keypoint, and &(-)
denotes the indicator function. If the prediction error d; is less than the
threshold t, the point is classified as a correctly predicted keypoint.

The Object Keypoint Similarity (OKS) serves as a soft
evaluation metric that incorporates target scale and prediction
error, as shown in Equation 9:

d
OKS, = exp (— W) (9)

In this context, d; is the Euclidean distance between the
predicted and true points, s; designates the object scale (measured
in millimeters), and k refers to the scale-adjusting factor. The closer
the OKS value is to 1, the more accurate the prediction.

3 Results and discussion

3.1 Pu-erh tea tender shoot detection
experiment

To thoroughly examine the effectiveness of the model
architecture and algorithms, demonstrate the advantages of the
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proposed method, and intuitively assess detection performance, a
series of ablation studies, comparative experiments, and
visualization analyses were conducted. The ablation studies
systematically decomposed the model’s key components in order
to elucidate the practical contribution of each component to Pu-erh
tea tender shoot detection performance. Comparative experiments
were employed to conduct a cross-method comparison of various
algorithms with the proposed approach, highlighting the superiority
of the proposed method in terms of detection accuracy and
efficiency. Visualization analysis was used to visually illustrate
both the model’s detection process and its outcomes, for accurate
diagnosis of detection error sources and thereby support subsequent
model optimization. All experiments were performed under a
consistent experimental environment and dataset.

3.1.1 Model ablation study

YOLOv11Pose (denoted as A), EfficientNetV2 (module B),
CSFF module (module C), and SCSA module (module D) were
evaluated in the ablation study. The final experimental results,
obtained under identical training, validation, and test conditions,
are presented in Table 4.

The results indicate that, while maintaining object detection
mean average precision (mAP@0.5(B)) consistently within the
98%-99% range, the model achieved a substantial improvement
in keypoint detection mean average precision (mAP@0.5(K)),
accompanied by a marked reduction in parameter count and
computational complexity, thereby achieving an excellent balance
between accuracy and efficiency.

With the introduction of EfficientNetV2, leveraging its
compound scaling strategy and Fused-MBConv structure, the
network achieved a more compact architecture and enhanced
semantic modeling capability. The keypoint detection mean average
precision (mAP@0.5(K)) increased from 88.9% to 92.5% (+3.6%),
while the parameter count and floating-point operations were
reduced by 18.3% and 1.1 GFLOPs, respectively—highlighting an
optimal trade-off between performance and computational efficiency.

The Cross-Scale Feature Fusion (CSFF) module, through its
cross-scale feature guidance mechanism, effectively enhances multi-
scale feature integration. When applied independently, it achieved
an mAP@0.5(K) of 91.7%, and when combined with
EfficientNetV2, performance further improved to 93.2%,
demonstrating a significant synergistic gain in multi-scale
structural modeling.

The SCSA module introduces a spatial self-calibration
mechanism, markedly amplifying keypoint-region responses and
achieving an mAP@0.5(K) of 93.2%, the highest among all
individual modules. Simultaneously, the inference speed increased
to 400 EPS, reflecting exceptional localization sensitivity and real-
time responsiveness.
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TABLE 4 Ablation results.

10.3389/fpls.2025.1697209

R(B) mAP@0.5 R(K) mAP@0.5 Model size Number of FLOPs
(%) (B) (%) (VA (K) (%) (MB) parameters ()
v 98.6 98.5 99.4 91.9 91.1 88.9 3334 57 2696611 6.7
Vs 98.3 98.5 99.4 94.9 925 925 344.8 4.9 2201047 56
v v 98.8 99.0 99.5 91.7 89.7 88.4 384.6 4.1 1859203 56
v /995 99.5 99.5 95.0 95.0 932 400.0 6.0 2834851 6.8
7 o/ 99.0 98.8 99.4 932 93.0 90.5 357.1 32 1369271 45
Vs /o9l 99.2 99.4 91.8 923 89.0 3448 52 2339287 57
v /o /989 99.4 99.5 933 93.8 90.9 357.1 4.1 1869187 5.6
VAN AN ARV 99.2 99.5 953 94.9 93.8 370.4 33 1372343 45

Ultimately, integrating all three modules yielded the complete
ECS-Tea model, which achieved an mAP@0.5(K) of 93.8%,
representing a 4.9% improvement over the YOLOvI1-Pose
baseline. The keypoint detection accuracy (P(K)) increased from
91.9% to 95.3% (+3.4%). Concurrently, the parameter count
dropped from 2,696,611 to 1,372,343 (-49.1%), FLOPs reduced
from 6.7 to 4.5 GFLOPs (-32.8%), model weight decreased from 5.7
MB to 3.3 MB (-42.1%), and inference speed improved from 333.3
FPS to 370.4 FPS (+11.1%). These results confirm that ECS-Tea
achieves a superior balance among accuracy, efficiency, and
compactness, validating its potential for real-time deployment in
resource-constrained agricultural systems.

3.1.2 Model comparison experiment

To rigorously assess the effectiveness and superiority of the
proposed ECS-Tea model, we conducted comparative experiments
using identical datasets, augmentation strategies, and
hyperparameter settings. The baselines comprised YOLOV5-pose,
YOLOvV7-pose, YOLOvV8-pose, YOLO-Tea, and CenterNet, with
ECS-Tea evaluated as the optimized reference model. YOLOV5-
pose adopts a compact and robust architecture that exemplifies
early efficient designs for joint object-keypoint detection. Building
upon this, YOLOv7-pose and YOLOv8-pose improve localization
accuracy and inference speed through enhanced feature aggregation
and decoupled multi-scale detection heads. To enhance the
completeness of comparison, we also incorporated YOLO-Tea—a

TABLE 5 Comparison of experimental results.

model specifically designed for tea leaf detection—and CenterNet, a
non-YOLO keypoint detection framework, serving as domain-
specialized and cross-framework benchmarks.

The models were comprehensively analyzed in terms of
detection accuracy, computational complexity, and inference
speed, as shown in Table 5 and illustrated in Figure 8.

In the object detection task, its mAP@0.5(B) reaches 99.5%,
showing a slight improvement over YOLOv5-pose (99.4%) and
YOLOVS-pose (99.1%), and a more significant gain compared with
YOLOV7-pose (98.9%). This indicates that ECS-Tea possesses stronger
feature representation capabilities under complex backgrounds and
multi-scale target conditions. In the keypoint detection task, ECS-Tea
achieves an mAP@0.5(K) of 93.8%, outperforming YOLOV5-pose
(83.8%), YOLOV7-pose (85.7%), YOLOvV8-pose (89.1%), and YOLO-
Tea (85.3%) to varying degrees. Notably, it achieves the best keypoint
precision (P(K)=95.3%) and recall (R(K)=94.9%).These results indicate
that ECS-Tea exhibits better spatial consistency and feature alignment
capability under high-interference scenarios.

As a representative non-YOLO framework, CenterNet achieves
high accuracy in both object detection and keypoint localization
(mAP@0.5(B) = 98.2%, mAP@0.5(K) = 87.3%), validating its
regression-based localization capability. However, due to its dense
heatmap decoding architecture, CenterNet incurs substantial
computational overhead (model size: 15.8 MB, 10.9 GFLOPs, frame
rate: 235.6 FPS), which limits its real-time performance and makes it
unsuitable for embedded or field-deployment scenarios.

R(B) mAP@0.5 mAP@O0.5 Model Number of

(%) (B) (%) (K) (%) size (MB) parameters
Yolovs-pose 98.6 98.5 99.4 88.3 89.3 83.8 3225 59 2770779 7.3
Yolov7-pose 98.2 98.6 98.9 88.9 90.2 85.7 330.8 63 4053675 8.2
Yolov8-pose 98.5 98.4 99.1 915 91.8 89.1 34438 59 2798827 7.2
Yolo-Tea 86.2 88.4 82.4 90.2 89.7 853 342.7 169 3345263 12.8
CenterNet 97.8 973 982 90.8 911 873 2356 158 5028341 10.9
ECS-Tea 98.7 99.2 995 95.3 94.9 93.8 3704 33 1372343 45
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FIGURE 8

Comparative radar chart of object detection and keypoint detection
performance across different models.

In terms of computational efficiency, the ECS-Tea model contains
only 1.37M parameters, with a compact model size of 3.3 MB and a
computation cost of 4.5 GFLOPs—substantially lower than YOLOv7-
pose (8.2 GFLOPs) and YOLOVS-pose (7.2 GFLOPs). Its inference
speed reaches 370.4 FPS, demonstrating remarkable real-time capability.

To intuitively illustrate the comprehensive performance of each
model across multiple evaluation dimensions, Figure 8 presents a
multi-metric radar chart based on the data from Table 5. The results
show that ECS-Tea forms the outermost envelope across detection
accuracy (P(B), R(B), mAP@0.5(B)), keypoint localization (P(K), R
(K), mAP@0.5(K)), and inference efficiency (FPS), indicating its
superior overall balance among competing models. In contrast,
YOLOvV5-pose performs stably in object detection but shows lower
keypoint accuracy due to its limited structural representation capacity.
YOLOV8-pose demonstrates moderate improvements in certain
metrics but suffers from higher computational cost and reduced
real-time performance. YOLO-Tea captures features effectively for
terrace-tea scenarios, yet its performance degrades in tall arbor-type
Pu-erh tea trees due to structural variations and lighting interference.

In comparison, CenterNet—an anchor-free framework relying
on geometric centers and keypoints for object detection—often
struggles with fine-grained detection tasks. This is primarily because
its keypoint-based representation lacks explicit boundary regression
and spatial context modeling, making it less effective at
distinguishing densely distributed Pu-erh tea buds. In addition, its
heavy backbone and large parameter size further limit its robustness
and runtime efficiency in visually cluttered field environments.

To address these issues, the proposed ECS-Tea model
introduces targeted architectural optimizations by integrating
multi-scale spatial enhancement and channel attention
mechanisms within a lightweight framework. This enables ECS-
Tea to achieve superior accuracy while maintaining high robustness
and real-time performance under complex environments. The radar
chart clearly demonstrates that ECS-Tea significantly outperforms
other models in terms of multi-metric balance, underscoring the
effectiveness of its structural optimization design.
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3.2 Visualization and analysis

To further validate the proposed model’s adaptability and
generalization ability in real-world scenarios, and to systematically
analyze its advantages in feature extraction and decision reasoning,
this study conducted visualization experiments using an independent
external test dataset. The external dataset consisted of Puer tea shoot
images collected at different time periods and under diverse illumination
conditions (e.g., natural light variation, partial shadow, and
backlighting), ensuring that the evaluation was independent of the
training and validation data. This study selected four representative
scenarios at different visual levels and task dimensions for visualization
analysis: Single target recognition and key point detection results
(Figure 9), Results of multi-target recognition and key point detection
(Figure 10), Overall Grad-CAM comparison results (Figure 11), and
Comparison results of Grad-CAM at the picking point (Figure 12).
Among them, the single-plant and multi-plant detection results were
used to evaluate the model’s detection accuracy and keypoint
consistency under different target densities and background
complexities; the overall Grad-CAM visualizations were used to show
the distribution of feature attention at the global semantic level; and the
picking-point Grad-CAM visualizations focused on the model’s fine-
grained perception and localization ability in operational regions
(Santos et al., 2025). Through the above multidimensional
visualization comparisons, the performance advantages of the ECS-
Tea model in detection accuracy, feature representation, and attention
distribution can be comprehensively revealed.

Figure 9 illustrates the visualized results of single-plant tea bud
detection and keypoint localization. The proposed ECS-Tea model
maintains accurate boundary delineation even under challenging
conditions such as complex illumination, cluttered backgrounds, and
partial occlusions. Its keypoint distribution exhibits higher precision
and spatial coherence, highlighting enhanced robustness and stable
localization performance across varied environments. In contrast, the
baseline YOLOv11-Pose model suffers from blurred boundaries,
incomplete part recognition, and keypoint drift under complex scene
conditions. These issues are particularly pronounced in terminal and
occluded regions, suggesting that its spatial attention distribution is
more dispersed, thereby hindering consistent structural prediction and
reducing reliability in fine-grained localization tasks.

Figure 10 illustrates the detection performance under dense multi-
plant distributions and structurally complex environments of Pu-erh
tea buds. As the scene complexity increases, the baseline YOLOv11-
Pose model exhibits noticeable missed and false detections, particularly
in regions with overlapping targets or similar texture patterns, where
keypoint predictions deviate from their true structural positions—
revealing its limited ability to discriminate between multiple targets in
cluttered visual scenes. In contrast, the ECS-Tea model effectively
distinguishes adjacent targets and preserves structural and keypoint
consistency under the same complex conditions. This improvement
stems from the integration of Cross-Scale Feature Fusion (CSFF) and
Spatial Self-Calibration Attention (SCSA) modules, which enhance
contextual feature modeling, suppress background noise, and
strengthen discriminative learning. Consequently, ECS-Tea achieves
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Single target recognition and key point detection results.

stable detection and high-precision localization even in high-density
and high-noise agricultural scenes.

Figure 11 depicts a Grad-CAM heatmap comparison between the
two models across the entire image. The ECS-Tea model demonstrates
tightly focused attention on the target body with smooth boundary
transitions, suggesting that it more effectively captures high-level
semantic representations and achieves clearer separation between
foreground and background regions. In contrast, the YOLOv11-Pose

model exhibits a dispersed and unfocused attention distribution, with
misaligned activations frequently occurring around branch-leaf
intersections or background clutter. This behavior reveals an
overreliance on low-level texture cues, resulting in incomplete target
perception and spatial localization deviations, particularly in visually
complex environments.

Figure 12 highlights the Grad-CAM heatmaps centered on
picking keypoint regions, aimed at assessing the model’s fine-

Imagel

Image2

Image

YOLOv11
pose

ECS-Tea

FIGURE 10
Results of multi-target recognition and key point detection.
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Overall Grad-CAM comparison results.

grained perceptual capacity in operationally critical areas. The results
reveal that the ECS-Tea model produces highly concentrated and
strongly activated responses around picking points, suggesting
enhanced geometric sensitivity to structural details and superior
semantic alignment in the representation of key regions. By
contrast, the baseline YOLOv11-Pose model displays a diffuse and
misaligned attention distribution, often focusing on irrelevant regions
such as leaves or branches, implying limited perceptual sensitivity to
actual operational targets and weaker structural discrimination. This

YOLOvl11
pose

ECS-Tea

AP

Comparison results of Grad-CAM at the picking point.

FIGURE 12

Frontiers in Plant Science

distinction further underscores that the ECS-Tea model excels not
only in macro-scale object recognition but also in micro-scale
keypoint comprehension, achieving greater precision and temporal
stability. Such performance establishes a robust perceptual foundation
for subsequent automated picking and manipulation tasks.

In summary, the visual analyses provide compelling evidence
that the ECS-Tea model consistently outperforms the baseline
across single- and multi-target scenarios, demonstrating superior
feature extraction, decision reliability, and structural awareness. By
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reducing missed detections, keypoint drift, and boundary
ambiguity, ECS-Tea achieves holistic gains in precision,
robustness, and interpretability, thereby offering a solid
perceptual backbone for stable and explainable agricultural
automation systems.

3.3 Spatial positioning performance
experiment of Pu-erh tea tender shoot
picking point

To assess the effectiveness of the proposed multi-frame depth
fusion method for 3D localization of Pu-erh tea tender shoot picking
points, a localization and detection platform for Pu-erh tea tender
shoots was established, as shown in Figure 13. The experiment
employed the pyrealsense2 library as the Python interface to the
Intel RealSense SDK to access the depth camera and employed
OpenCV’s drawing function cv2.circle() to mark keypoint positions
with circles in the image, and employed cv2.putText() to display the
3D coordinates (in millimeters) adjacent to the keypoints as text. To
ensure high-precision benchmarking, the ground-truth 3D

@ Real coordinates
@ Detection coordinates

@ Real coordinates
— 9 Detection coordinates

FIGURE 14

10.3389/fpls.2025.1697209

FIGURE 13
Schematic diagram of the positioning experiment.

coordinates were obtained under controlled stable conditions using
a BOSCH GLM30-23 laser rangefinder, which provides a
measurement accuracy of +1.5 mm, thereby establishing a reliable
standard for quantitative evaluation.

9 Real coordinates
@ Detection coordinates

9 Real coordinates
=T —9_ Detection coordinates

(d)

Schematic diagram of the positioning experiment (a) Single-frame depth estimation; (b) Multi-frame fusion (mean); (c) Multi-frame fusion (mode);

(d) Adaptive fusion strategy.
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A set of comparative experiments was designed to evaluate 3D
keypoint localization error and the system’s robustness under four
different strategies, with the 3D spatial localization results under a
fixed ground-truth coordinate set presented as shown in Figure 14.

Figure 14 shows that detection coordinates generated by the
single-frame depth estimation method exhibit pronounced spatial
deviations, resulting in a dispersed overall distribution. With the
application of fusion strategies, the detection results progressively
align with the ground-truth coordinates, leading to substantial
improvement in spatial alignment. This effect is particularly
evident under the adaptive fusion strategy, where the detected
point cloud tightly conforms to the true distribution, yielding a
notable improvement in spatial localization consistency.

To more precisely assess the accuracy of different 3D
localization approaches under varying error tolerance thresholds,

1.0} —®— Ssingle-frame
Multi-frame (mean)
—— Multi-frame (mode)

—

Adaptive fusion

0.8f

0.6

PCK@t

0.4r

0.2

0.0

10.3389/fpls.2025.1697209

this study plotted the PCK (Percentage of Correct Keypoints)
curves, as illustrated in Figure 15. The x-axis represents the error
threshold (t, in mm), while the y-axis indicates the proportion of
keypoints whose prediction error falls below that threshold, namely
PCK@t. To enhance the curve’s resolution and smoothness, the
threshold interval was set to 0.5 mm, meaning one PCK value was
sampled for every 0.5 mm increment. As shown, the proposed
adaptive multi-frame fusion strategy consistently achieves superior
localization accuracy across all threshold levels, demonstrating its
robustness and applicability in real-world tea-picking scenarios.
To gain deeper insight into the stability of different localization
methods across individual keypoints, Figure 16 presents point-level
evaluation results derived from the OKS (Object Keypoint Similarity)
metric. As illustrated, the proposed adaptive fusion strategy
consistently maintains high OKS values across the majority of
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FIGURE 15
Comparison of accuracy of PCK@t with threshold for each method.
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Comparison of OKS precision of different methods at each picking point.
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picking points, underscoring its superior localization accuracy and
robustness. In contrast, the single-frame depth estimation approach
exhibits pronounced error fluctuations across multiple positions,
indicating limited consistency. Although fusion-based methods
(mean and median) perform better overall than single-frame
estimation, they still exhibit localized accuracy degradation. These
findings further confirm the effectiveness of the OKS metric in
evaluating 3D localization precision and reinforce the advantages of
the proposed adaptive fusion approach.

4 Conclusion

This paper presents ECS-Tea, a lightweight keypoint detection
framework tailored for tea-picking applications, which integrates
bionic structural keypoint annotation, an optimized EfficientNetV2
backbone, a CSFF-based cross-scale feature fusion mechanism, and an
SCSA spatial self-calibration module, forming a multi-component
architecture that achieves an optimal trade-off between accuracy and
efficiency. Building upon this framework, an inter-frame keypoint
tracking and adaptive multi-frame depth fusion strategy was
introduced to enable temporally stable tracking of picking points in
image sequences and high-precision estimation of their 3D spatial
coordinates. Experimental results demonstrate that, compared with the
YOLOv11Pose baseline, the ECS-Tea model achieves comprehensive
performance improvements in keypoint detection: precision P(K)
increased by 3.4%, recall R(K) by 3.8%, mAP@0.5(K) by 4.9%, and
FPS by 11.1%, while model weight and parameter count were reduced
by 49.1% and 49.2%, respectively. Regarding spatial localization
performance, comparative evaluations using the PCK and OKS
metrics reveal that ECS-Tea consistently achieves higher localization
accuracy and structural coherence across various thresholds,
substantially improving the stability and precision of 3D picking-
point localization. In conclusion, the proposed ECS-Tea model
delivers structured, high-precision, and temporally stable spatial
information for intelligent tea-picking systems. It is well-suited for
Pu-erh tea bud detection and localization under elevated operational
conditions, effectively handling complex viewpoint variations, target
occlusions, and leaf motion disturbances. The model demonstrates
strong practical deployment potential in unstructured plantation
environments and dynamic harvesting scenarios.

Despite the promising performance of this study in terms of
accuracy, efficiency, and practical applicability, several limitations
remain. The dataset was collected during a specific period and from a
single tea cultivar, which may restrict the model’s cross-seasonal and
cross-varietal generalization capability. Furthermore, keypoint
annotations still depend on manual labeling, introducing
subjectivity and time overhead. Future work may expand the
dataset diversity and integrate semi-supervised learning frameworks
together with multimodal sensing modalities (e.g., infrared imaging)
to further enhance the model’s robustness and environmental
adaptability, thereby offering stronger technical support for the
real-world deployment of intelligent tea-picking systems.
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