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A lightweight tri-modal few-shot
detection framework for fruit
diversity recognition toward
digital orchard archiving

Huaqgiang Xu', Honghan Li* and Ji Zhao™

School of Computer Science and Software Engineering, University of Science and Technology,
Liaoning, Anshan, China

Few-shot object detection (FSOD) addresses the challenge of object recognition
under limited annotation conditions, offering practical advantages for smart
agriculture, where large-scale labeling of diverse fruit cultivars is often
infeasible. To handle the visual complexity of orchard environments—such as
occlusion, subtle morphological differences, and dense foliage—this study
presents a lightweight tri-modal fusion framework. The model initially employs
a CLIP-based semantic prompt encoder to extract category-aware cues, which
guide the Segment Anything Model (SAM) in producing structure-preserving
masks. These masks are then incorporated via a Semantic Fusion Module (SFM): a
Mask-Saliency Adapter (MSA) and a Feature Enhancement Recomposer (FER),
enabling spatially aligned and semantically enriched feature modulation. An
Attention-Aware Weight Estimator (AWE) further optimizes the fusion by
adaptively balancing semantic and visual streams using global saliency cues.
The final predictions are subsequently generated by a YOLOv12 detection head.
Experiments conducted on four fruit detection benchmarks—Cantaloupe.v2,
Peach.v3, Watermelon.v2, and Orange.v8—demonstrate that the proposed
method consistently surpasses five representative FSOD baselines.
Performance improvements include +7.9% AP@0.5 on Cantaloupe.v2, +5.4%
Precision on Peach.v3, +7.4% Precision on Watermelon.v2, and +5.9% AP@0.75
on Orange.v8. These results underscore the model’s effectiveness in orchard-
specific scenarios and its potential to facilitate cultivar identification, digital
recordkeeping, and cost-efficient agricultural monitoring.

fruit detection, digital orchard, FSOD, CLIP prompt, SAM mask, multimodal fusion,
attention weighting, lightweight agriculture Al
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1 Introduction

Monitoring crop diversity is essential to modern agricultural
management, supporting tasks such as variety identification, digital
archiving, germplasm registration, and supply chain traceability. In
particular, the rapid detection and classification of fruit cultivars—
based on visual data collected from orchards, packing lines, or field
surveys—constitutes a key step toward intelligent orchard systems
and digital agronomy platforms (Chen et al., 2025; Ndikumana
et al., 2024; Li et al.,, 2024; Luo et al.,, 2024). These visual pipelines
enable automated variety inventory, reduce manual annotation
costs, and provide scalable tools for monitoring fruit appearance,
harvest readiness, and genetic diversity over time. With the
increasing emphasis on smart agriculture and climate-resilient
planning, there is growing demand for accurate and lightweight
fruit recognition systems, particularly under field conditions where
data are sparsely labeled and image acquisition is unconstrained
(Liu et al.,, 2023; Maheswari et al., 2021; Liu et al., 2020; Jia
et al., 2022).

Early efforts in fruit diversity recognition primarily focused on
deep learning-based visual models, which employed convolutional
neural networks (CNNs) to extract traits such as shape, color, and
texture for cultivar classification (Sun et al., 2024; Ma et al., 2023).
These approaches have been successfully applied to fruit sorting,
variety labeling, and cultivar cataloging, often serving as the basis
for digital orchard archiving systems. However, their dependence
on large-scale labeled datasets and fixed category sets limits
adaptability to novel cultivars and rare landraces. Moreover,
RGB-based appearance features alone struggle to differentiate
visually similar fruits, especially under challenging orchard
conditions with occlusion, variable lighting, and morphological
changes (Tao et al., 2024; Huang et al,, 2024). These limitations
highlight the need for recognition frameworks that are lightweight,
scalable, and capable of generalizing to unseen varieties.

General-purpose object detectors, such as Faster R-CNN, SSD,
and YOLO, have also been widely applied in agricultural scenarios
for fruit localization and classification tasks (Hu et al., 2023; Wang
et al, 2025). Although transfer learning, data augmentation, and
lightweight backbones have been explored to adapt these models to
orchard imagery, their performance often deteriorates in the
presence of subtle inter-class variations, partial occlusion, and
cluttered natural backgrounds. Furthermore, they typically require
densely annotated bounding boxes and lack the ability to
incorporate contextual or semantic priors, making them poorly
suited for fine-grained cultivar recognition under limited
supervision (Luo et al., 2025; Lipinski et al., 2025). These
drawbacks restrict their scalability in real-world digital
orchard systems.

Few-shot object detection (FSOD) has recently emerged as a
practical solution for agricultural recognition tasks with limited
annotations (Lim et al., 2025; Zhu and Zhang, 2024). Existing FSOD
research primarily follows two directions: meta-learning
approaches that generalize across categories via episodic training,
and augmentation-based strategies that enhance the support set
through geometric transforms, domain mixing, or texture

Frontiers in Plant Science

10.3389/fpls.2025.1696622

replacement (Xin et al., 2024; Han and Lim, 2024). While
effective in generic benchmarks such as COCO and PASCAL
VOC, many of these methods struggle when applied to orchard
environments. Agricultural imagery often exhibits subtle inter-class
similarity, high intra-class variation across growth stages, and
frequent occlusion by leaves or branches—factors not fully
captured in conventional FSOD pipelines (He et al., 2025; Guo
et al, 2025). Additionally, the reliance on large backbones and
multi-stage designs increases computational overhead, limiting
applicability in resource-constrained farming environments.

Despite progress in agricultural computer vision and few-shot
object detection, significant gaps remain. Existing frameworks are
often adapted from general-purpose datasets, lack mechanisms to
incorporate structural priors, and exhibit computational
inefficiency for edge deployment in orchards. Moreover, few
studies have explored integrating cross-modal priors—such as
text prompts from CLIP (Radford et al, 2021) or structural
masks from SAM (Kirillov et al., 2023)—into agricultural FSOD
tasks. This gap motivates the development of lightweight,
semantically guided detection frameworks that can robustly
recognize fruit diversity under weak supervision and challenging
field conditions.

To address the challenges of visual ambiguity and data sparsity
in fruit diversity recognition, we propose a lightweight tri-modal
few-shot detection framework tailored for agricultural species
classification and digital orchard archiving. Unlike previous works
that depend solely on RGB-based features or class-prototype
matching, our method introduces a multi-stage, semantically
grounded pipeline that integrates textual priors, segmentation
masks, and visual representations into a unified detection process,
as illustrated in Figure 1. This design is well-suited for
distinguishing subtle fruit categories (e.g. peaches, cantaloupes,
watermelons), which frequently involve inter-class similarity,
occlusion, and scale variation in orchard settings.

At the core of the framework is a prompt-guided semantic
generation mechanism. Given user-defined fruit names
(e.g.”peach”, “orange”), a CLIP-based cross-modal similarity
engine encodes the text and guides the extraction of spatial
prompts (Radford et al., 2021; Zhang et al., 2025; Yu et al., 2025).
These prompts are fed into the Segment Anything Model (SAM)
(Kirillov et al., 2023; Mazurowski et al., 2023; Osco et al., 2023;
Archit et al., 2025) to produce class-agnostic masks that highlight
fruit-related regions. The resulting masks serve as category-aware
spatial priors and are fused with RGB features via a two-stage
Semantic Fusion Modulator (SFM). Specifically, the Semantic
Fusion Modulator (SFM) consists of two submodules: the Mask-
Saliency Adapter (MSA), which generates sparse attention maps
from the segmentation masks to direct the model’s focus, and the
Feature Enhancement Recomposer (FER), which modulates the
RGB features to reinforce structural and contextual cues.

To mitigate the influence of potential noise from external priors
and regulate the contribution of heterogeneous inputs, we
incorporate an Attention-Aware Weight Estimator (AWE). This
component employs a lightweight multi-layer perceptron (MLP) to
dynamically compute fusion weights based on global saliency
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Tri-modal few-shot detection for fruit diversity

statistics, allowing the model to balance semantic-enhanced and
appearance-based features in a data-driven manner. AWE improves
robustness under ambiguous visual conditions and supports
better generalization across diverse fruit types and imaging
scenarios. The final detection is performed using a standard
YOLOv12 head, ensuring high inference efficiency without
sacrificing recognition accuracy.
Our main contributions are summarized as follows:

*  We present a tri-modal few-shot detection framework that
integrates visual, textual, and structural modalities,
designed for low-data fruit classification in agricultural
environments. The framework is efficient, modular, and
compatible with lightweight detection backbones.

* We propose a two-stage Semantic Fusion Modulator
(SEM), consisting of the Mask-Saliency Adapter (MSA)
and Feature Enhancement Recomposer (FER), which
improves attention localization and structural
discrimination in challenging scenarios with subtle inter-
class differences.

* We introduce an independent Attention-Aware Weight
Estimator (AWE) that adaptively balances semantic and
appearance features via learned fusion weights, improving
robustness under weak supervision and visual complexity.

The proposed framework offers a modular and interpretable

solution to few-shot fruit detection, narrowing the gap between
open-vocabulary priors and anchor-based detectors. It supports
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intelligent orchard applications by enabling scalable and fine-
grained classification for digital archiving, species monitoring,
and agricultural resource tracking.

2 Materials and methods

To address the challenges arising from sparse annotations and
modality imbalance in few-shot object detection (FSOD), we
propose a prompt-guided multimodal detection framework, as
illustrated in Figure 2. The architecture consists of four principal
components: a CLIP-assisted prompt extractor that identifies
category-relevant regions through cross-modal similarity; a
segmentation-based semantic generator (SAM) that produces
class-agnostic masks based on the extracted prompts; a Semantic
Fusion Modulator (SEM), which integrates visual and semantic
information via two lightweight modules—the Mask-Saliency
Adapter (MSA) and the Feature Enhancement Recomposer
(FER); and an Attention-Aware Weight Estimator (AWE), which
adaptively balances the contributions of semantic-enhanced and
original features during inference. The final detection is performed
using the standard YOLOv12 detection head, preserving the
original architecture to ensure high inference efficiency.

The core idea is to use text-conditioned semantic localization to
guide the generation of segmentation masks, which are then utilized
to refine and modulate the RGB feature representations. This two-
stage modulation enhances object-specific features and improves
detection robustness under limited supervision.
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FIGURE 2
Multimodal semantic-guided detection framework.

2.1 Overview of the prompt-guided
multimodal detection framework

As illustrated in Figure 2, the proposed framework consists of
three cooperative components, forming a prompt-guided
multimodal detection pipeline.

First, the Text-Guided Prompt Generator employs a CLIP-
based visual-language encoder to convert user-defined object
descriptions—such as “peach” or “watermelon”—into semantic
embeddings. These embeddings are matched with image regions
to identify spatially relevant points, which serve as input prompts
for the segmentation module. This process enables selective
emphasis on target objects while suppressing irrelevant
background, improving the precision of subsequent mask
generation and fusion.

Second, the Semantic Prior Generation Module (SPGM) utilizes
the CLIP-derived point prompts to guide zero-shot segmentation.
The output is a class-agnostic mask M that captures structural
priors aligned with the semantic intent, offering spatially coherent
object candidates for feature fusion.

Third, the Semantic Fusion Modulator (SFM) integrates and
enhances multimodal features through two submodules: the Mask-
Saliency Adapter (MSA), which generates soft saliency maps, and
the Feature Enhancement Recomposer (FER), which adaptively
modulates the RGB features. These modules jointly direct
attention toward semantically meaningful and structurally
consistent regions.

Finally, the object detection head adopts the standard YOLOv12
architecture, ensuring inference efficiency while leveraging the
enriched feature representations guided by the Attention-Aware
Weight Estimator (AWE).

The complete pipeline is formally defined as:
y = AWE(YOLO(F(I,M)), YOLO()), s.t. M

= SPGM(I, CLIP(I, C)), F(I, M) = SEM(I, M).
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where I denotes the input image, C represents the textual label
or class name, M is the segmentation mask generated by the
Semantic Prior Generation Module (SPGM) under CLIP
F(-) denotes the Semantic Fusion Modulator (SFM, i.e.,
MSA + FER), and y represents the final detection result adaptively
fused by the Attention-Aware Weight Estimator (AWE).

guidance,

Input: Text query t, image I = {x;, ;}
Output: Segmentation mask M

1 Zpe CLIP ey ()
2 foreach patch x; ; in I do
3 Z;,j < CLIPinage(Xi, 5);
4 Lsm «—>7¢,2Z; ;< //Compute similarity
5A « Normalize({s; ;});

//Encode the text query

//Encode image patch

//Normalize similarity map

6p<« (A); //Generate spatial prompts fromattention
7 M~ SAM(I,p); //Generate mask using SAM
8 return M

Algorithm 1. Prompt guided mask generation via CLIP and SAM.

2.2 Multimodal prompt-guided segmentation
with CLIP and SAM

To facilitate controllable and class-specific semantic localization, we
introduce a CLIP-based prompting strategy that links textual priors with
visual segmentation. This component establishes a direct association
between category semantics and spatial attention, allowing the model to
generate focused and semantically aligned masks.

As illustrated in Figure 3, the prompting procedure proceeds
as follows:

Given an input image I € R and a textual query t (e.g. “a
ripe peach”), the framework performs a multi-stage process:

Specifically, the textual query ¢ is first encoded into an
embedding z, via the CLIP text encoder. The input image I is
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CLIP-SAM prompt-guided segmentation pipeline.

divided into spatial tiles {x;}, each of which is processed through
the CLIP image encoder to obtain visual embeddings z;;. Cosine
similarities s;; are computed between each visual embedding and
the text embedding, yielding a dense attention map. This map is
then normalized to produce A, a spatially aligned semantic
heatmap. A heuristic selection function P identifies high-
activation points p, which serve as semantic prompts. These
prompts, combined with the original image I, are fed into the
SAM module to generate segmentation masks M that reflect both
structural boundaries and semantic intent. The detailed method is
explained in Algorithm 1.

This text-to-mask prompting mechanism enhances the
controllability of the segmentation process and provides reliable
structural priors for subsequent multimodal fusion. In contrast to
traditional region proposal methods, it can dynamically associates
category semantics with spatial locations.

2.3 Mask-Saliency Adapter

The proposed Mask-Saliency Adapter (MSA) is designed to
extract and refine saliency cues from class-agnostic masks, as
illustrated in part A of Figure 4, which are subsequently utilized to
guide spatial attention within the fusion process. Instead of directly
modifying the RGB feature space, MSA constructs a sparse and

RHXW

stable attention map from the input mask M € , emphasizing

semantically relevant regions with improved consistency.
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The raw mask M is first processed by a compact convolutional
block C; followed by a non-linear activation function ¢, yielding the
initial saliency response map S:

S = ¢(C5(M)), with ¢ = Sigmoid (1)

To promote spatial smoothness and reduce numerical variance,
S is refined using a lightweight normalization module Ny,
consisting of a point-wise convolution C,, followed by layer
normalization and a ReLU activation:

S = ReLU(LayerNorm(C,(S))) (2)

The layer normalization applied to S’ € RT*W is defined as:

. S - U 1 / 1 /
r— X,] = — ) 2 = — e — 2
Siy Volte H HWEX.J. Sy O HW E{J, (Sij =) ®)

The resulting normalized attention map S captures object-
centric spatial structures and acts as a saliency driven prior in the
fusion process, supporting semantically aware modulation without
directly altering the feature space at this stage.

2.4 Feature Enhancement Recomposer

To enhance semantic expressiveness while preserving
contextual integrity, we propose a dual-branch module termed
Feature Enhancement Recomposer (FER). As shown in Part A of
Figure 4, FER incorporates a saliency-guided enhancement pathway
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Overview of the multimodal fusion and detection framework. (A) Semantic Fusion Modulator (SFM), which enhances RGB features using soft saliency
maps and mask-guided modulation via dual attention paths; (B) coefficient generation branches that compute semantic-aware modulation
parameters y and € from RGB and mask inputs through lightweight convolutional blocks; and (C) Attention-Aware Weight Estimator (AWE), which
aggregates enhanced and original features via global saliency-aware pooling and MLP-driven fusion, producing final detection results through the

YOLOVI2 head.

and a residual compensation pathway to enable fine-grained feature
modulation with stabilized dynamics.

Saliency-Guided Pathway (Part B): The refined attention map
S € R™*W s passed through a point-wise convolution C;, followed
by layer normalization and a sigmoid activation to produce the
spatial modulation coefficient &:

o= Sigmoid(LayerNorm(Cl(S' ))) (4)

This coefficient adjusts the spatial emphasis adaptively. The

R3><H><W

input feature map Z € is modulated as:

Frod=To1+8 * S) (5)

where o denotes element-wise multiplication and * represents

broadcasted spatial fusion.
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Residual Compensation Pathway (Part B): To preserve
structural consistency and suppress possible amplification
artifacts, the input features are also processed through a parallel

residual branch:

R = BatchNorm(C,(Z)) (6)

Final Fusion: The outputs from both branches are combined to
produce the FER-enhanced feature map:

]:fer:]:mod"'R (7)

This design enables targeted spatial enhancement while
preventing over-amplification or feature degradation, making it
suitable for few-shot scenarios with limited annotations.
Additionally, FER remains lightweight and model-agnostic,
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ensuring compatibility with mainstream detection architectures and
supporting efficient deployment.

2.5 Detection Integration with Attention-
Aware Weight Estimator

To validate the fused visual-semantic representations, the final
feature map Fp, is forwarded to the original YOLOv12
architecture, retaining its backbone, neck, and head modules to
preserve inference efficiency and deployment compatibility, as
shown in Part C of Figure 4.

To further enhance decision reliability under few-shot
conditions, we introduce an adaptive fusion mechanism termed
Attention-Aware Weight Estimator (AWE), which dynamically
assigns fusion weights based on global attention cues rather than
fixed heuristics or confidence thresholds.

Specifically, the refined attention map A & RF*W, obtained
from the preceding Mask-Saliency Adapter (MSA), is subjected to
global average pooling to extract a scalar descriptor:

z=GAP(A) ER! (8)

This descriptor is passed through a lightweight MLP regressor
to generate a soft fusion weight A:

A =0(W,-ReLUW, -z +b;) +b,) 9)
where W;, W, are trainable weights, b;, b, are biases, and o(-)
denotes the sigmoid activation function, ensuring A € (0, 1).
The final prediction is obtained by a weighted integration of
semantic-enhanced and original RGB-based detections:

§ = A-YOLO(Fp,) + (1 - A) - YOLO(Z) (10)

This adaptive blending enables the model to adjust modality
dependence in a data-driven manner, improving robustness against
occlusion, background clutter, and scale variation. The AWE
module imposes minimal computational overhead while
significantly contributing to decision stability and
generalization performance.

To summarize, the proposed framework establishes a
lightweight yet expressive detection pipeline by combining CLIP-
guided prompt generation, class-agnostic segmentation priors
(SAM), semantic-aware fusion modules (MSA and FER), and
attention-weighted feature blending (AWE). Specifically, CLIP
serves as a visual-language encoder to generate text-driven point
prompts, allowing SAM to extract semantically aligned object
masks and suppress irrelevant background noise. These refined
masks are subsequently fused with RGB features through the MSA
and FER modules, which enhance saliency focus and preserve
contextual integrity. Finally, the AWE module dynamically
balances the contributions of original and enhanced features
based on global attention cues. The overall architecture maintains
plug-and-play compatibility with YOLOv12 and demonstrates
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strong generalization ability under few-shot learning constraints.
Its modularity and low complexity make it suitable for real-world
agricultural monitoring applications, especially in scenarios
involving rare crop varieties or region-specific fruit species.

3 Experiments and results
3.1 Dataset preparation

To validate the effectiveness of our tri-modal few-shot detection
framework in agricultural biodiversity recognition, we curated four
representative fruit datasets—each capturing a distinct cultivar with
high visual similarity, occlusion, and phenotype variance under
field conditions:

* Cantaloupe.v2 contains 220 images of greenhouse-grown
cantaloupes exhibiting complex netted surface textures and
frequent occlusion by leaves or support structures. It is
divided into 152 training, 45 validation, and 23 testing
samples. The dataset emphasizes morphological complexity
and background interference.

e Peach.v3 consists of 209 images across different ripening
stages and varieties, including yellow-flesh and red-blush
cultivars. With 165 samples for training, 30 for validation,
and 14 for testing, this dataset highlights challenges in shape
similarity, gloss variation, and clustered instances.

*  Watermelon.v2 includes 172 images of both early-stage and
mature watermelons, captured under natural illumination
and soil-rich conditions. With 140 training, 21 validation,
and 11 testing samples, it offers a realistic setting for
evaluating detection under occlusion, soil-background
confusion, and growth-stage variability.

*  Orange.v8 features 165 orchard images of orange cultivars,
captured under varied lighting and foliage occlusion. It is
split into 120 training, 29 validation, and 16 testing samples.
The dataset is ideal for assessing fine-grained classification
under dense canopy and color similarity conditions.

Together, these four datasets constitute a well-structured
benchmark for evaluating few-shot object detection in real-world
orchard scenarios. They encompass critical agricultural challenges,
including cultivar ambiguity, scale inconsistencies, occlusion, and
annotation sparsity. As such, they are well aligned with the
objectives of biodiversity surveillance and the construction of
digital orchard archives. Furthermore, to verify the framework’s
cross-domain generalization capability beyond our self-built
datasets, additional experiments were conducted on public fruit
subsets (Apple and Durian) derived from the Kaggle Fruits &
Vegetable Detection dataset, as presented in Appendix. A
schematic overview of the dataset construction, splitting, and
augmentation process is illustrated in Appendix Figure 1 for
improved clarity.
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3.2 Training settings

All training procedures are implemented using PyTorch 1.12.0
and executed on a single NVIDIA RTX 3090 GPU. The detector
adopts YOLOv12 as the backbone, with the lightweight
configuration modelsize n to ensure computational efficiency.
Optimization is performed using the Adam algorithm with an
initial learning rate of 0.001, scheduled by cosine annealing. To
mitigate overfitting, a weight decay of 5 x 10™* is applied alongside
early stopping with a patience of 100 epochs. Each training session
runs for up to 100 epochs with a batch size of 16, and model
checkpoints are saved every 5 epochs. A fixed random seed of 42 is
used for reproducibility.

For multimodal components, the Segment Anything Model
(SAM) is initialized with the pre-trained checkpoint saml,
providing class-agnostic structural priors. The language-guided
module employs DEN5B-CLIP-ViT-H-14-378, a high-resolution
Vision Transformer variant tailored for domain-specific prompt
encoding. To fully utilize the introduced tri-modal features, we
regenerate the training, validation, and test splits with updated
augmented samples, ensuring better adaptation of YOLOV12 to
semantic and structural cues.

To address the limited generalization capacity in few-shot
learning, we construct a hybrid augmentation pipeline that
introduces both distributional diversity and structural variation.
Color perturbations include HSV jittering with parameters hsvy, =
0.015, hsv, = 0.8, and hsv, = 0.4. Geometric transformations involve
translation (0.2), scaling (up to 0.5), rotation (+ 10"), and
perspective distortion (0.001). Structure-aware augmentations are
applied during training, including Mosaic (probability 1.0), MixUp
(0.3), and Copy-Paste (0.4). Random horizontal and vertical flips
are applied with probabilities of 0.5 and 0.2, respectively.

This configuration is designed to preserve fine-grained
structural cues while promoting cross-modal feature alignment,
enabling stable convergence under sparsely annotated conditions.

3.3 Evaluation settings and comparative
baselines

To comprehensively evaluate the effectiveness of the proposed
semantic-guided fusion framework, we conduct comparative
experiments against several representative few-shot object
detection (FSOD) baselines, as well as ablation studies within our
own architecture. The comparative evaluation includes five
established approaches: YOLOv12 (vanilla), which serves as a
strong single-stage baseline without multimodal integration;
DETR, a transformer-based detector that performs end-to-end
detection using object queries; TFA-WO-FPN, a meta-learning
method based on fine-tuning without the feature pyramid
network; Meta R-CNN, which incorporates attention-driven
feature reweighting for class-specific adaptation; and DeFRCN,
which employs decoupled feature refinement and prototype
learning to improve generalization.
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All models are trained and evaluated on four benchmark
datasets: Cantaloupe.v2, Peach.v3, Watermelon.v2, and Orange.v8.
A 5-fold cross-validation strategy is adopted for each dataset, and
the final performance is reported as the average across all folds to
mitigate bias introduced by sample partitioning. Evaluation is
conducted using standard detection metrics, including AP@0.5,
AP@0.75, AP@].50:.95], Precision, and Recall@all, providing a
comprehensive assessment of localization accuracy and
recall behavior.

In addition to the baseline comparisons, an ablation study is
performed to isolate the contributions of key components in the
proposed framework. The configurations include: the baseline
YOLOvV12 model without semantic priors; YOLOvV12 enhanced
with the Semantic Fusion Modulator (SFM), which combines the
Mask-Saliency Adapter (MSA) and Feature Enhancement
Recomposer (FER) for multimodal representation refinement; and
the complete model with SFM and the Attention-Aware Weight
Estimator (AWE), which adaptively balances semantic-enhanced
and original RGB features.

To further assess the effectiveness of semantic guidance, we
additionally compare SAM-based segmentation results under two
conditions: with and without CLIP-derived point prompts. Overall,
incorporating CLIP enables SAM to focus on category-relevant
regions, while the absence of semantic prompting often leads to the
segmentation of irrelevant or excessive background regions, which
may interfere with downstream detection.

Building on this insight, we further examine the influence of
semantic modules on the detection backbone by employing Grad-
CAM to visualize class-specific saliency maps under different
architectural settings. The resulting visualizations reveal that the
inclusion of prompt-based modules (CLIP), structure-aware priors
(SAM), fusion refinement (SFM), and adaptive weighting (AWE)
leads to more focused and consistent attention distributions,
particularly under challenging orchard conditions such as leaf
occlusion, cultivar overlap, and complex backgrounds.

3.4 Comparative evaluation

During the segmentation stage, we provide a visual comparison
of detection-relevant mask quality across four representative fruit
categories. As illustrated in the Figure 5, each row corresponds to a
specific species (cantaloupe, peach, watermelon, orange), while the
columns show the RGB input, SAM guided by CLIP point prompts,
and unguided SAM outputs. It is evident that CLIP-conditioned
prompting enables SAM to concentrate on target fruit regions,
generating compact and semantically coherent masks. In contrast,
the unguided SAM often produces over-segmented masks,
frequently capturing irrelevant background textures or non-target
regions. These observations support the hypothesis that CLIP-
derived prompts function as semantic filters, guiding the
segmentation process toward task-specific content and thereby
improving the quality of downstream detection. To further
substantiate the effectiveness of the CLIP-guided SAM, we
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FIGURE 5

SAM with CLIP Prompt

Segmentation comparison between CLIP-guided and standalone SAM. Comparison between CLIP-guided SAM and standalone SAM across four fruit
categories: Cantaloupe. v2, Peach. v3, Watermelon. v2, and Orange.v8. Each row shows an original orchard image (left), followed by the CLIP
attention heatmap with high-activation points (2nd column), the segmentation results generated by SAM with CLIP prompts (3rd column), and the
standalone SAM output without guidance (right). The CLIP-guided SAM consistently produces cleaner and more semantically aligned masks, while
standalone SAM often results in over-segmentation or object fragmentation due to lack of category-specific guidance.

conducted additional comparative experiments with several state-
of-the-art segmentation models. The detailed results and visual
analyses are presented in Appendix.

To evaluate the performance of the proposed YOLOv12
(CLIP+SAM + SFM + AWE) framework in few-shot object
detection (FSOD), we conduct a systematic comparison on
four benchmark datasets: Cantaloupe.v2, Peach.v3,
Watermelon.v2, and Orange.v8. Competing methods include
YOLOv12 (Tian et al, 2025) as a single-stage baseline, DETR
(Carion et al,, 2020) as a transformer-based end-to-end detector,
TFA-WO-FPN (Wang et al., 2020), Meta R-CNN (Yan et al,
2019), and DeFRCN (Qiao et al.,, 2021), which collectively
represent dominant approaches in the FSOD literature.
Evaluation is performed using standard detection metrics:
AP@0.5, AP@0.75, AP@[.50:.95], Precision, and Recall@all.
The detailed comparison results are reported in Table 1.

On the Cantaloupe.v2 dataset (see Table 1, CANTALOUPE
section), the proposed model consistently surpasses all baselines
across evaluation metrics. Specifically, it achieves an AP@0.5 of
0.9403, outperforming YOLOv12 and Meta R-CNN by 9.21% and
17.56%, respectively. The AP@[.50:.95] rises to 0.6342, reflecting a
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12.19% gain over YOLOvVI2 and 10.61% over DeFRCN. At the
stricter AP@0.75 threshold, our model reaches 0.7694, exceeding
YOLOV12 and Meta R-CNN by 11.25% and 12.30%, respectively.
Further improvements are observed in Precision (+7.59%) and
Recall@all (+8.22%), demonstrating the model’s effectiveness in
producing precise predictions under cluttered orchard conditions.

On the Peach.v3 dataset, the model obtains an AP@0.5 of
0.9298, outperforming YOLOv12 by 6.59% and DETR by 31.66%.
The AP@[.50:.95] increases to 0.5715, which is 10.07% higher than
YOLOV12 and 19.36% higher than Meta R-CNN. At AP@0.75, the
model achieves 0.6862, exceeding YOLOv12 and Meta R-CNN by
9.26% and 11.63%, respectively. Precision and Recall@all also
improve by 5.34% and 6.17%, respectively, indicating enhanced
segmentation precision and better handling of cultivar
shape variations.

On the Watermelon.v2 dataset, which includes large shape
variation and irregular lighting, our method attains an AP@0.5 of
0.9405, outperforming YOLOv12 by 9.51% and DETR by 28.82%.
The AP@[.50:95] climbs to 0.5594, showing a 13.97% gain over
YOLOVI12 and 15.5% over Meta R-CNN. The model also shows
consistent improvement in AP@0.75 (+12.52% over YOLOv12),
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TABLE 1 Detection performance of different methods on four fruit datasets.

Dataset CANTALOUPE AP@O0.5 AP@0.75 AP@[.50:.95] Precision Recall@all
Ours 0.9403 0.7694 0.6342 0.8712 0.7916
YOLOvVI2 0.8611 0.6916 0.5652 0.7953 0.7094
DETR 0.7271 0.5760 04521 0.6701 0.5902
TFA-WO-FPN 0.7661 0.6213 0.4980 0.7129 0.6266
Meta R-CNN 0.7997 0.6465 0.5279 0.7277 0.6671
DeFRCN 0.8127 0.6570 0.5468 0.7446 0.6858
Dataset PEACH AP@0.75 AP@I[.50:.95] Precision Recall@all
Ours 0.9298 0.6862 0.5715 0.8660 0.7342
YOLOvVI2 0.8723 0.6279 05192 0.8117 0.6725
DETR 0.7058 0.4742 0.3779 0.6348 0.5227
TFA-WO-FPN 0.7685 0.5427 0.4443 0.6851 0.5849
Meta R-CNN 0.7931 0.5698 04685 0.7094 0.6112
DeFRCN 0.8184 0.5935 0.4927 0.7320 0.6371
\'ﬁiﬁMELON AP@0.75 AP@I.50:.95] Precision Recall@all
Ours 0.9405 0.6742 0.5594 0.8756 0.7561
YOLOvVI2 0.8589 0.5992 0.4907 0.8012 0.6784
DETR 0.7299 05014 0.4044 0.7055 0.5642
TFA-WO-FPN 0.7561 05343 04177 0.6925 0.6160
Meta R-CNN 0.7919 0.5648 0.4674 0.7296 0.6195
DeFRCN 0.8251 0.5804 0.4685 0.7831 0.6643
Dataset ORANGE AP@0.75 AP@[.50:.95] Precision Recall@all
Ours 0.8739 0.7114 0.5625 0.8627 0.7762
YOLOvVI2 0.8214 0.6527 0.5096 0.8074 0.7128
DETR 0.6782 0.4894 0.3657 0.6255 0.5186
TFA-WO-FPN 0.7451 0.5386 04213 0.6823 0.5827
Meta R-CNN 07623 0.5661 0.4498 0.7056 0.6093
DeFRCN 0.7887 0.5920 04726 0.7298 0.6375

Bold values denote the highest score in each metric for each dataset.

Precision (+7.42%), and Recall@all (+7.77%), confirming its
robustness under diverse environmental factors.

On the Orange.v8 dataset, our model yields an AP@0.5 of
0.8739, surpassing YOLOv12 and DETR by 6.40% and 28.86%,
respectively. The AP@[.50:.95] improves to 0.5625, which is 10.39%
higher than YOLOvI12 and 11.27% higher than TFA-WO-FPN.
Gains are also observed in AP@0.75 (+8.98% over YOLOv12),
Precision (+5.53%), and Recall@all (+6.34%), reinforcing the
model’s capability to adapt to occlusion, lighting variability, and
similar inter-class appearance in field imagery.

To further substantiate the superiority of the proposed method
across multiple evaluation metrics, five representative detection
metrics—including AP@0.5, AP@0.75, AP@[.50:.95], Precision, and
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Recall@all—are visualized through line plots in Figure 6. These plots
illustrate performance trends across all four fruit benchmark datasets,
with Figures 6a-d corresponding to Cantaloupe.v2, Peach.v3,
Watermelon.v2, and Orange.v8, respectively.

These plots provide an intuitive and comparative overview of
the detection performance achieved by the proposed YOLOvI12
(CLIP + SAM + SFM + AWE) framework across four representative
fruit datasets: Cantaloupe.v2, Peach.v3, Watermelon.v2, and
Orange.v8. Compared to five state-of-the-art FSOD baselines, the
proposed method consistently achieves superior results, particularly
in AP@[.50:.95] and Recall@all—two critical indicators for
evaluating generalization ability and localization robustness under
limited supervision. Notably, the performance margin becomes
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Comparison of detection metrics on four fruit datasets: (a) Cantaloupe.v2, (b) Peach.v3, (c) Watermelon.v2, and (d) Orange.v8. Results are reported
for six methods over five standard metrics (AP@0.5, AP@0.75, AP@[.5:.95], Precision, Recall@all). Our method consistently outperforms existing FSOD
baselines, particularly under stricter thresholds (e.g. AP@0.75) and in terms of precision and recall, indicating stronger localization accuracy and

robustness in few-shot agricultural scenarios.

more evident in visually complex scenarios, such as inter-class
similarity (Peach, Orange) and large intra-class variation due to
maturity stages and lighting conditions (Watermelon, Cantaloupe).
These visual comparisons further validate the quantitative results
reported in Table 1, underscoring the effectiveness of our
framework for fine-grained fruit cultivar recognition and digital
orchard archiving in resource-constrained agricultural settings.

In addition to quantitative evaluations, qualitative comparisons
are conducted on representative test samples from all four fruit
datasets, as illustrated in Figure 7. The visual results indicate that
the proposed YOLOv12 (CLIP + SAM + SEM + AWE) model
consistently delivers more accurate and complete detections
compared to baseline FSOD approaches, especially under real-
world agricultural challenges such as partial occlusion,
background interference, inter-varietal similarity, and diverse
maturity stages.

On the Cantaloupe.v2 dataset, our model generates compact
and precise bounding boxes even when fruits are partially covered
by leaves, netting, or overlapping samples, whereas methods like
DETR and Meta R-CNN tend to produce redundant or incomplete
detections. For the Peach.v3 dataset, which involves cultivars with
highly similar visual traits, our approach effectively distinguishes
subtle shape and color differences, resulting in fewer false positives
and improved consistency across instances.

On the Watermelon.v2 dataset, which features significant
variation in rind patterns and lighting conditions, the proposed
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framework maintains robust detection by adaptively attending to
structure-guided cues while suppressing irrelevant background
signals. Similarly, on the Orange.v8 dataset, the model exhibits
enhanced localization in cluttered orchard scenes, accurately
identifying densely arranged or partially shaded oranges with
superior boundary alignment and minimal confusion among
overlapping samples.

These visual comparisons reinforce the quantitative findings
summarized in Table 1, highlighting the effectiveness of our
semantic-guided multimodal fusion strategy in enhancing fruit
cultivar identification, supporting fine-grained phenotyping, and
facilitating species-level digital archiving in orchard environments
under few-shot constraints.

3.5 Ablation study

To evaluate the contribution of each module in the proposed
framework, we conduct a series of ablation studies by incrementally
integrating the designed components into the YOLOv12 baseline.
As shown in Table 2, incorporating the Mask-Saliency Adapter
(MSA) results in a noticeable performance improvement by
introducing soft attention cues that guide spatial focus during
detection. Adding the Feature Enhancement Recomposer (FER)
further enhances accuracy by adaptively modulating the original
RGB features with saliency-aware residuals.
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FIGURE 7

Qualitative detection comparisons on Cantaloupe, Peach, Watermelon, Orange datasets. Each group shows two test images with predictions from

six methods (Ours, YOLOv12, DETR, TFA-WO-FPN, Meta R-CNN, DeFRCN), a

longside the original image. Our model produces more accurate and

complete bounding boxes, especially under occlusion, clutter, or close-proximity instances.

The integration of CLIP-based prompt guidance introduces
semantic priors that improve region localization, particularly in
cases involving occlusion or visual ambiguity. Finally, the addition
of the Attention-Aware Weight Estimator (AWE) enables dynamic
feature reweighting between the semantic-enhanced and original
pathways, achieving the highest detection performance across all
evaluated datasets. These cumulative improvements confirm the
complementary nature of the proposed modules and underscore the
effectiveness of the tri-modal fusion strategy.

On the Cantaloupe dataset, introducing MSA improves AP@0.5
from 0.8611 to 0.8686 and AP@[.50:.95] from 0.5652 to 0.5738,
indicating enhanced focus on salient object regions. With FER
added, AP@0.5 and AP@0.75 rise to 0.9042 and 0.7358,
respectively. Further gains are observed when CLIP guidance is
introduced, lifting AP@[.50:.95] to 0.6254 and Precision to 0.8609.
The full configuration with AWE achieves the highest overall
performance, reaching an AP@0.5 of 0.9403 and Recall@all
of 0.7916.
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On the Peach dataset, which presents moderate intra-class
variation, MSA and FER contribute to a stable increase in AP@
[.50:.95] from 0.5192 to 0.546. Incorporating CLIP improves both
precision (from 0.8395 to 0.8581) and recall (from 0.7091 to
0.7262). With AWE integrated, the model achieves the best
results across all metrics, including an AP@0.5 of 0.9298 and an
AP@0.75 of 0.6862.

In the more challenging Watermelon dataset—featuring
significant shape variability and illumination noise—MSA and
FER together increase AP@[.50:.95] from 0.4907 to 0.5273. With
CLIP-enhanced semantic prompts, this metric further improves to
0.5522, while AP@0.5 climbs to 0.9341. The full model achieves an
AP@0.75 of 0.6742 and Precision of 0.8756, validating its robustness
in diverse conditions.

Finally, on the Orange dataset, the inclusion of MSA and FER
yields a consistent lift in detection performance, with AP@[.50:.95]
rising from 0.5096 to 0.5388. CLIP integration brings this to 0.554,
and the final addition of AWE pushes it to 0.5625. Gains in Recall@
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TABLE 2 Ablation study on four fruit datasets.
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Dataset CANTALOUPE AP@0.75 AP@[.5:.95] Precision Recall@all
Baseline 0.8611 0.6916 0.5652 0.7953 0.7094
Baseline + MSA 0.8686 0.7004 0.5738 0.8054 0.7144
Baseline + MSA + FER 0.9042 0.7358 0.5997 0.8351 0.7492
Bascline + MSA + FER + CLIP | 0.9321 0.7601 0.6254 0.8609 0.7821
Baseline + MSA + FER + CLIP + 4 0403 0.7694 0.6342 0.8712 0.7916

AWE

Dataset PEACH AP@0.75 AP@[.5:.95] Precision Recall@all
Baseline 0.8723 0.6279 0.5192 0.8117 0.6725
Baseline + MSA 0.8802 0.6349 0.5264 0.8192 0.6789
Baseline + MSA + FER 0.9128 0.6611 0.5460 0.8395 0.7091
Baseline + MSA + FER + CLIP | 0.9269 0.6780 0.5660 0.8581 0.7262
Baseline + MSA + FER + CLIP + 1 )95 0.6862 05715 0.8660 0.7342

AWE

Dataset WATERMELON AP@0.75 AP@[.5:.95] Precision Recall@all
Bascline 0.8589 0.5992 0.4907 0.8012 0.6784
Baseline + MSA 0.8670 0.6072 0.4998 0.8092 0.6837
Baseline + MSA + FER 0.9054 0.6390 0.5273 0.8445 0.7160
Baseline + MSA + FER + CLIP | 0.9341 0.6660 0.5522 0.8682 0.7477
Baseline + MSA + FER + CLIP + 1) o405 0.6742 0.5594 0.8756 0.7561

AWE

Dataset ORANGE AP@0.75 AP@I.5:.95] Precision Recall@all
Bascline 0.8214 0.6527 0.5096 0.8074 0.7128
Baseline + MSA 0.8269 0.6588 0.5168 0.8141 0.7186
Baseline + MSA + FER 0.8514 0.6831 0.5388 0.8383 0.7450
Baseline + MSA + FER + CLIP  0.8672 0.7039 0.5540 0.8561 0.7663
Baseline + MSA + FER + CLIP + 1) 0739 0.7114 05625 0.8627 0.7762

AWE

Bold values denote the highest score in each metric for each dataset.

all (from 0.7128 to 0.7762) further demonstrate the framework’s
ability to detect subtle object variations and reduce missed
detections in real-world orchard imagery.

To provide a clearer view of the individual contributions of
each module, six key detection metrics are visualized in Figure 8
across four benchmark datasets. Figures 8a, d present the
ablation comparisons between the YOLOvI2 baseline and its
progressive variants (+MSA, +MSA+FER, +MSA+FER+CLIP,
and +MSA+FER+CLIP+AWE) on Cantaloupe.v2, Peach.v3,
Watermelon.v2, and Orange.v8, respectively.

Across all datasets, the integration of each module yields
consistent improvements, particularly in AP@][.50:.95], Precision,
and Recall@all, confirming the modular effectiveness of the
semantic-guided fusion strategy. The MSA module enhances
early-stage saliency by directing attention toward spatially
relevant regions. FER further refines these representations
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through residual-based feature modulation, while the CLIP-driven
semantic prior strengthens cross-modal alignment. Finally, AWE
adaptively reweights features from the semantic and original
pathways, resulting in the most stable and accurate
detection outputs.

The upward trajectories observed across all five metrics reflect
the robustness and transferability of the proposed framework,
particularly under limited supervision and visually complex
ecological settings. These visual results are consistent with the
quantitative findings in Table 2, reinforcing the framework’s
applicability to real-world biodiversity recognition and
deployment in resource-constrained scenarios.

In addition to detection accuracy, we further evaluate the
computational complexity and inference efficiency of each model
configuration, as summarized in Table 3. Notably, both the CLIP-
based prompt generator and the SAM segmentation module are
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FIGURE 8

Comparison of ablation study results on (a) Ablation results on Cantaloupe.v2 (b) Ablation results on Peach.v3 (c) Ablation results on Watermelon.v2
(d) Ablation results on Orange.v8 datasets. Each subfigure shows detection performance under different module configurations, including MSA, FER,

CLIP-guided semantic priors, and the AWE weighting mechanism.

used as offline preprocessing tools and do not introduce runtime
overhead during inference.

Starting from the YOLOvVI2 baseline with 2.57M parameters
and 6.51G FLOPs, integrating the MSA module increases the model
size to 2.68M and FLOPs to 6.76G, with a modest rise in inference
time to 8.1 ms. Further adding the FER module increases the
parameter count to 2.84M and inference time to 8.7 ms, while
maintaining reasonable FPS (114.9). Finally, incorporating AWE
yields a full configuration with 2.90M parameters and 7.25G FLOPs,
with inference time of 9.2 ms and FPS of 108.7.

These results demonstrate that the proposed fusion mechanism
introduces only a minor computational overhead while delivering
substantial performance gains. The final model remains lightweight
and suitable for real-time or near-real-time deployment in resource-
constrained agricultural scenarios.

3.6 Visual analysis of attention via Grad-
CAM

To further investigate how each fusion component influences
attention distribution and spatial awareness, we employ Grad-CAM
to visualize saliency maps under four ablation configurations:
Baseline, Baseline + MSA, Baseline + MSA + FER, and Baseline +
MSA + FER + CLIP. As shown in Figure 9, examples from four
representative fruit datasets—Cantaloupe.v2, Peach.v3,
Watermelon.v2, and Orange.v8—are selected to illustrate the
evolution of attention patterns across fusion stages.

In the Cantaloupe.v2 dataset, the baseline model tends to focus
narrowly on texture regions, often ignoring the full object extent.
Adding the Mask-Saliency Adapter (MSA) expands the attention
area to include more of the fruit body, though the boundary

TABLE 3 Model complexity, module configuration, and inference efficiency comparison.

Model MSA FER AWE Params (M) FLOPs (Q) Inf. (ms) FPS
Baseline X X X 2.57 6.51 7.6 131.6
+ MSA v/ X X 2.68 6.76 8.1 1235
+ MSA + FER v/ v/ X 2.84 7.11 8.7 1149
+ MSA + FER +

AWE v/ v/ v 2.90 7.25 9.2 108.7

CLIP and SAM are used as offline preprocessing tools and introduce no runtime overhead.
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Attention heatmaps across fusion stages on four benchmark datasets. Each row represents a fusion stage, from the baseline to variants with MSA,

FER, and CLIP-guided priors

remains imprecise. Incorporating the Feature Enhancement
Recomposer (FER) leads to more uniform attention across the
entire fruit surface, with sharper edges and better localization.
Crucially, integrating the CLIP-based semantic prompts further
aligns the saliency maps with the true object semantics—refining
the attention distribution toward regions with distinctive category-
specific traits (e.g. netted skin texture), thus improving semantic
consistency and reducing irrelevant background response.

On the Peach.v3 dataset, similar trends are observed: while the
baseline struggles with shadow interference and adjacent foliage, the
progressive fusion of MSA and FER improves spatial focus. The
final CLIP enhanced model demonstrates strong category
awareness, concentrating attention on features like peach fuzz and
pit curvature—traits difficult to isolate without semantic guidance.

For the Watermelon.v2 dataset, which contains frequent
occlusions and subtle striping patterns, the baseline misplaces
focus toward background grass. With MSA and FER, attention
gradually shifts toward the central melon area. The addition of CLIP
prompts boosts saliency on biologically meaningful attributes
(e.grind color and radial texture), helping to suppress false
positives and enabling robust detection under natural variation.

In the Orange.v8 dataset, the baseline shows weak boundary
awareness and fails to capture full object contours. MSA and FER
help recover spatial completeness, while the inclusion of CLIP
prompts further sharpens the attention map along object edges
and surface gloss, resulting in superior interpretability and
detection reliability.

The heatmap evolution provides clear evidence of how each
lightweight module contributes to the observed performance gains.
Specifically, the CLIP-guided semantic prior offers high-level
category context that suppresses irrelevant activations and
improves early semantic localization. Guided by these text-
derived prompts, the SAM module produces class-agnostic masks
that encode structural priors, enabling the network to capture object
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boundaries and spatial coherence under limited supervision. The
subsequent MSA converts the masks into sparse and stable saliency
maps, filtering background noise and directing attention toward
structurally consistent regions. The FER module then performs
residual-based feature recomposition, strengthening mid-level
representations and improving boundary delineation and shape
integrity. Finally, the AWE mechanism derives a soft fusion weight
from globally pooled saliency cues to adaptively balance semantic-
enhanced and original visual pathways, yielding more stable
attention distributions and fewer misdetections in complex
scenes. Together, these complementary effects explain the
consistent metric improvements observed in the ablation study
and the progressively more structured attention responses
in Figure 9.

Overall, these visualizations reveal that the CLIP-driven
semantic prior significantly improves the interpretability and
precision of attention localization, especially in fine-grained fruit
classification tasks under few-shot conditions. When combined
with our lightweight MSA and FER modules, the proposed
framework offers both semantic alignment and spatial fidelity,
making it highly suitable for real-world agricultural species
monitoring and digital archiving.

3.7 Summary of results

This study introduces a lightweight tri-modal fusion framework
for few-shot fruit diversity recognition, specifically designed for
agricultural applications such as digital orchard archiving and
varietal identification. Built upon the YOLOv12 detection
backbone, the framework incorporates cross-modal knowledge
and spatial priors through three core components: (1) CLIP-
derived semantic prompts that direct category-relevant attention;
(2) SAM-generated structure-aware masks providing auxiliary
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spatial supervision; and (3) a Semantic Fusion Modulator (SFM),
composed of the Mask-Saliency Adapter (MSA) and Feature
Enhancement Recomposer (FER). Additionally, an Attention-
Aware Weight Estimator (AWE) dynamically reweights semantic-
enhanced and original RGB features during inference.

Experiments on four few-shot fruit datasets—Cantaloupe.v2,
Peach.v3, Watermelon.v2, and 497 Orange.v8—demonstrate
consistent performance improvements over strong baselines
across multiple evaluation metrics, including AP@0.5, AP@0.75,
AP@].50:.95], Precision, and Recall@all. The proposed method
remains robust under challenging conditions such as texture
similarity, intra-class variation, and partial occlusion, supporting
deployment in real-world orchard scenarios.

Ablation analyses further verify the contributions of individual
modules. MSA enhances object saliency through mask-guided
attention, while FER improves feature representation via residual-
based modulation. CLIP-guided semantic prompts improve
category localization, particularly in data-limited and visually
ambiguous settings. The integration of AWE facilitates adaptive
fusion of semantic and visual features, improving detection
reliability with negligible computational cost. Grad-CAM
(Selvaraju et al., 2017; Sattarzadeh et al., 2021) visualizations
confirm that each stage progressively sharpens the model’s spatial
focus toward biologically meaningful regions.

Regarding computational efficiency, all components—including
SEM and AWE—are lightweight by design. CLIP and SAM are
utilized as offline preprocessing modules, minimizing inference-
time overhead. The complete model achieves real-time operation
with marginal increases in parameter count and FLOPs, making it
suitable for deployment on edge devices and mobile
agricultural platforms.

In summary, the proposed framework offers a scalable and
efficient solution for few-shot agricultural species detection. It
achieves strong performance under low-data conditions while
maintaining low computational requirements, thereby
contributing to long-term objectives in crop biodiversity
monitoring, digital germplasm preservation, and intelligent
orchard management.

4 Discussion

This section presents a detailed analysis of the proposed fruit-
oriented few-shot detection framework from four key perspectives:
performance attribution, robustness and adaptive fusion,
computational efficiency, and limitations with future directions.
The discussion is grounded in the experimental findings in Section
3, emphasizing how the lightweight tri-modal fusion design
supports effective recognition in agricultural environments.

Building upon the quantitative improvements presented earlier,
we first examine the effectiveness and source of gains in detection
performance. Consistent performance gains observed across four
benchmark fruit datasets—Cantaloupe.v2, Peach.v3,
Watermelon.v2, and Orange.v8—demonstrate the effectiveness of
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the proposed tri-modal detection framework. As shown in Table 1,
the model consistently outperforms baselines across key metrics,
including AP@0.5, AP@[.50:.95], Precision, and Recall@all. For
instance, on Cantaloupe.v2, AP@0.5 increases from 0.8611
(baseline) to 0.9403 (full model), while AP@[.50:.95] improves
from 0.5652 to 0.6342. These improvements highlight the
contributions of each integrated component.

The majority of the performance gains can be attributed to the
Semantic Fusion Modulator (SEM), which incorporates the Mask-
Saliency Adapter (MSA) and Feature Enhancement Recomposer
(FER). MSA introduces structure-aware saliency using SAM-
derived, class-agnostic masks to guide attention toward
biologically relevant regions. FER further refines the features via
residual modulation, enhancing boundary awareness and
object completeness.

The effectiveness of CLIP-guided semantic prompting is
particularly evident in ambiguous visual scenarios, where category
cues from language help stabilize attention. As illustrated in
Figure 9, attention maps evolve from coarse activations in the
baseline to structured object-level focus with the addition of
MSA, FER, and CLIP. These observations are consistent with the
quantitative trends and confirm the synergy among the
three modalities.

Beyond performance improvements, the robustness of the
framework under real-world agricultural conditions is another
key advantage. To maintain robustness under conditions such as
occlusion, lighting variation, and background interference, the
Attention-Aware Weight Estimator (AWE) is introduced. In
contrast to static or manually tuned fusion schemes, AWE
dynamically reweights semantic-enhanced and original RGB
features through a lightweight MLP guided by global saliency
cues. This enables real-time adaptive fusion, even in partially
degraded or visually ambiguous images, which frequently occur in
orchard and open-field settings. The negligible computational cost
of AWE supports its practical use in robust multimodal integration.

In addition to architectural robustness, we further validated the
stability of the proposed framework under different dataset
partitioning schemes (see Appendix Table 2). Specifically, we
compared the detection performance of 7:2:1 and 8:1:1 train-
validation—test splits across the four benchmark datasets. The
results showed minimal variation, with AP@0.5, Precision, and
Recall differing by less than +0.02. For example, Cantaloupe.v2
achieved a AAP@0.5 of +0.012, Orange.v8 varied by —0.008, while
Peach.v3 and Watermelon.v2 changed by +0.007 and -0.010,
respectively. The corresponding ¢-values (0.66-0.86) and p-values
(> 0.40) indicate that these differences are not statistically significant.
These findings confirm that the proposed framework maintains
consistent accuracy and stability across varying data split ratios,
underscoring its robustness to differences in sample distribution.

The proposed method also emphasizes computational efficiency
and deployment feasibility. The framework is designed with
deployment efficiency in mind. Integrating MSA, FER, and AWE
results in a model size increase of only 0.33M parameters and an
additional inference latency of 1.6ms (Table 3). Notably, CLIP and
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SAM are applied exclusively during offline preprocessing and thus
incur no extra runtime overhead. The final model sustains over 108
FPS, enabling deployment on edge platforms such as mobile
inspection robots, UAVs for orchard monitoring, and embedded
phenotyping systems. This efficient design ensures a favorable
balance between accuracy and practical deployment feasibility in
agricultural scenarios.

Nevertheless, it is important to recognize the limitations and
potential areas for future work. Despite its effectiveness, the
framework has certain limitations. The current single-scale
feature design may limit sensitivity to small, occluded, or densely
clustered fruit targets. In particular, we observed that in cases with
very small fruit instances or scenes containing a large number of
overlapping targets, the framework may occasionally produce
incomplete or merged detections. These failure cases highlight the
challenge of balancing fine-grained spatial precision with global
semantic consistency.

Furthermore, we acknowledge that while the framework
exhibits strong robustness under moderate occlusion and
illumination variation, its performance may degrade under more
adverse visual conditions such as heavy noise, motion blur, or
severe defocus. In such cases, the quality of the SAM-derived
structural priors can deteriorate, leading to suboptimal
localization and weakened semantic guidance. Future extensions
may address these challenges through noise-robust training,
synthetic perturbation augmentation, or self-distillation schemes
that enhance the stability of multimodal features under degraded
visual quality.

Future work may explore multi-scale feature alignment or
pyramid-based fusion to enhance spatial adaptability.
Additionally, integrating the tri-modal architecture with
Transformer-based detectors [e.g. DINO (Zhang et al., 2022),
Deformable-DETR (Zhu et al, 2020)] may improve long-range
context modeling. Another promising direction involves
uncertainty-aware or entropy-guided fusion strategies to better
address rare fruit varieties and visually ambiguous categories.

In summary, the proposed method achieves a practical trade-off
between semantic consistency, structural awareness, and
computational efficiency. It offers a robust and interpretable
solution for few-shot fruit detection, with promising applicability
to biodiversity monitoring, varietal classification, and digital
germplasm documentation.

5 Conclusions

This paper proposes a lightweight and interpretable tri-modal
fusion framework for few-shot object detection in agricultural
contexts, with emphasis on fruit diversity recognition and digital
orchard archiving. To address key challenges such as limited
annotations, visual ambiguity, and complex backgrounds, the
framework integrates a Semantic Fusion Modulator (SFM) and an
Attention-Aware Weight Estimator (AWE) into the YOLOv12
architecture, while preserving the original detection backbone to
ensure deployment efficiency.
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The SFM consists of two complementary modules: the Mask-
Saliency Adapter (MSA) and the Feature Enhancement
Recomposer (FER). MSA utilizes class-agnostic masks generated
by the Segment Anything Model (SAM) to produce structure-aware
saliency maps that direct attention to biologically relevant regions,
such as fruit contours and surfaces. FER further refines visual
features via residual modulation, enhancing boundary sensitivity
and context adaptation. Together, these modules improve
localization and feature discrimination in cluttered and
occluded scenes.

Additionally, a lightweight AWE dynamically reweights RGB
and semantic-enhanced features based on global saliency cues
derived from a shallow MLP. Importantly, CLIP and SAM are
used solely as offline preprocessing components, introducing no
additional inference-time latency. This design ensures effective
semantic guidance without compromising real-time performance.

Experiments on four few-shot fruit datasets—Cantaloupe.v2,
Peach.v3, Watermelon.v2, and Orange.v8— demonstrate consistent
outperformance over baselines including Meta R-CNN, DeFRCN,
and TFA-WO-FPN across metrics such as AP@0.5, AP@[.50:.95]
and Recall@all. Grad-CAM visualizations confirm that MSA and
FER yield more coherent and semantically meaningful attention
distributions. Ablation studies validate their individual and joint
contributions. The final model maintains a compact architecture
with an inference latency of 9.2 ms and a frame rate exceeding 108
FPS, supporting deployment on edge agricultural systems.

In summary, the proposed framework achieves a practical
trade-off among detection accuracy, computational efficiency, and
model interpretability, offering a scalable solution for tasks such as
cultivar classification, germplasm documentation, and automated
fruit diversity monitoring.

Future directions include extending the framework to
Transformer-based detection architectures (e.g. DINO,
Deformable DETR) to enhance long-range context modeling.
Replacing the current score-based fusion with uncertainty-aware
confidence calibration is another potential improvement.
Furthermore, developing an end-to-end pipeline that jointly
learns prompt generation, mask extraction, and adaptive fusion
without external precomputed inputs could enhance model
autonomy and robustness in real-world agricultural deployments.
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