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A lightweight tri-modal few-shot
detection framework for fruit
diversity recognition toward
digital orchard archiving
Huaqiang Xu †, Honghan Li † and Ji Zhao1*

School of Computer Science and Software Engineering, University of Science and Technology,
Liaoning, Anshan, China
Few-shot object detection (FSOD) addresses the challenge of object recognition

under limited annotation conditions, offering practical advantages for smart

agriculture, where large-scale labeling of diverse fruit cultivars is often

infeasible. To handle the visual complexity of orchard environments—such as

occlusion, subtle morphological differences, and dense foliage—this study

presents a lightweight tri-modal fusion framework. The model initially employs

a CLIP-based semantic prompt encoder to extract category-aware cues, which

guide the Segment Anything Model (SAM) in producing structure-preserving

masks. These masks are then incorporated via a Semantic Fusion Module (SFM): a

Mask-Saliency Adapter (MSA) and a Feature Enhancement Recomposer (FER),

enabling spatially aligned and semantically enriched feature modulation. An

Attention-Aware Weight Estimator (AWE) further optimizes the fusion by

adaptively balancing semantic and visual streams using global saliency cues.

The final predictions are subsequently generated by a YOLOv12 detection head.

Experiments conducted on four fruit detection benchmarks—Cantaloupe.v2,

Peach.v3, Watermelon.v2, and Orange.v8—demonstrate that the proposed

method consistently surpasses five representative FSOD baselines.

Performance improvements include +7.9% AP@0.5 on Cantaloupe.v2, +5.4%

Precision on Peach.v3, +7.4% Precision on Watermelon.v2, and +5.9% AP@0.75

on Orange.v8. These results underscore the model’s effectiveness in orchard-

specific scenarios and its potential to facilitate cultivar identification, digital

recordkeeping, and cost-efficient agricultural monitoring.
KEYWORDS

fruit detection, digital orchard, FSOD, CLIP prompt, SAM mask, multimodal fusion,
attention weighting, lightweight agriculture AI
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1 Introduction

Monitoring crop diversity is essential to modern agricultural

management, supporting tasks such as variety identification, digital

archiving, germplasm registration, and supply chain traceability. In

particular, the rapid detection and classification of fruit cultivars—

based on visual data collected from orchards, packing lines, or field

surveys—constitutes a key step toward intelligent orchard systems

and digital agronomy platforms (Chen et al., 2025; Ndikumana

et al., 2024; Li et al., 2024; Luo et al., 2024). These visual pipelines

enable automated variety inventory, reduce manual annotation

costs, and provide scalable tools for monitoring fruit appearance,

harvest readiness, and genetic diversity over time. With the

increasing emphasis on smart agriculture and climate-resilient

planning, there is growing demand for accurate and lightweight

fruit recognition systems, particularly under field conditions where

data are sparsely labeled and image acquisition is unconstrained

(Liu et al., 2023; Maheswari et al., 2021; Liu et al., 2020; Jia

et al., 2022).

Early efforts in fruit diversity recognition primarily focused on

deep learning-based visual models, which employed convolutional

neural networks (CNNs) to extract traits such as shape, color, and

texture for cultivar classification (Sun et al., 2024; Ma et al., 2023).

These approaches have been successfully applied to fruit sorting,

variety labeling, and cultivar cataloging, often serving as the basis

for digital orchard archiving systems. However, their dependence

on large-scale labeled datasets and fixed category sets limits

adaptability to novel cultivars and rare landraces. Moreover,

RGB-based appearance features alone struggle to differentiate

visually similar fruits, especially under challenging orchard

conditions with occlusion, variable lighting, and morphological

changes (Tao et al., 2024; Huang et al., 2024). These limitations

highlight the need for recognition frameworks that are lightweight,

scalable, and capable of generalizing to unseen varieties.

General-purpose object detectors, such as Faster R-CNN, SSD,

and YOLO, have also been widely applied in agricultural scenarios

for fruit localization and classification tasks (Hu et al., 2023; Wang

et al., 2025). Although transfer learning, data augmentation, and

lightweight backbones have been explored to adapt these models to

orchard imagery, their performance often deteriorates in the

presence of subtle inter-class variations, partial occlusion, and

cluttered natural backgrounds. Furthermore, they typically require

densely annotated bounding boxes and lack the ability to

incorporate contextual or semantic priors, making them poorly

suited for fine-grained cultivar recognition under limited

supervision (Luo et al., 2025; Lipiński et al., 2025). These

drawbacks restrict their scalability in real-world digital

orchard systems.

Few-shot object detection (FSOD) has recently emerged as a

practical solution for agricultural recognition tasks with limited

annotations (Lim et al., 2025; Zhu and Zhang, 2024). Existing FSOD

research primarily follows two directions: meta-learning

approaches that generalize across categories via episodic training,

and augmentation-based strategies that enhance the support set

through geometric transforms, domain mixing, or texture
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replacement (Xin et al., 2024; Han and Lim, 2024). While

effective in generic benchmarks such as COCO and PASCAL

VOC, many of these methods struggle when applied to orchard

environments. Agricultural imagery often exhibits subtle inter-class

similarity, high intra-class variation across growth stages, and

frequent occlusion by leaves or branches—factors not fully

captured in conventional FSOD pipelines (He et al., 2025; Guo

et al., 2025). Additionally, the reliance on large backbones and

multi-stage designs increases computational overhead, limiting

applicability in resource-constrained farming environments.

Despite progress in agricultural computer vision and few-shot

object detection, significant gaps remain. Existing frameworks are

often adapted from general-purpose datasets, lack mechanisms to

incorporate structural priors, and exhibit computational

inefficiency for edge deployment in orchards. Moreover, few

studies have explored integrating cross-modal priors—such as

text prompts from CLIP (Radford et al., 2021) or structural

masks from SAM (Kirillov et al., 2023)—into agricultural FSOD

tasks. This gap motivates the development of lightweight,

semantically guided detection frameworks that can robustly

recognize fruit diversity under weak supervision and challenging

field conditions.

To address the challenges of visual ambiguity and data sparsity

in fruit diversity recognition, we propose a lightweight tri-modal

few-shot detection framework tailored for agricultural species

classification and digital orchard archiving. Unlike previous works

that depend solely on RGB-based features or class-prototype

matching, our method introduces a multi-stage, semantically

grounded pipeline that integrates textual priors, segmentation

masks, and visual representations into a unified detection process,

as illustrated in Figure 1. This design is well-suited for

distinguishing subtle fruit categories (e.g. peaches, cantaloupes,

watermelons), which frequently involve inter-class similarity,

occlusion, and scale variation in orchard settings.

At the core of the framework is a prompt-guided semantic

generation mechanism. Given user-defined fruit names

(e.g.”peach”, “orange”), a CLIP-based cross-modal similarity

engine encodes the text and guides the extraction of spatial

prompts (Radford et al., 2021; Zhang et al., 2025; Yu et al., 2025).

These prompts are fed into the Segment Anything Model (SAM)

(Kirillov et al., 2023; Mazurowski et al., 2023; Osco et al., 2023;

Archit et al., 2025) to produce class-agnostic masks that highlight

fruit-related regions. The resulting masks serve as category-aware

spatial priors and are fused with RGB features via a two-stage

Semantic Fusion Modulator (SFM). Specifically, the Semantic

Fusion Modulator (SFM) consists of two submodules: the Mask-

Saliency Adapter (MSA), which generates sparse attention maps

from the segmentation masks to direct the model’s focus, and the

Feature Enhancement Recomposer (FER), which modulates the

RGB features to reinforce structural and contextual cues.

To mitigate the influence of potential noise from external priors

and regulate the contribution of heterogeneous inputs, we

incorporate an Attention-Aware Weight Estimator (AWE). This

component employs a lightweight multi-layer perceptron (MLP) to

dynamically compute fusion weights based on global saliency
frontiersin.org
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statistics, allowing the model to balance semantic-enhanced and

appearance-based features in a data-driven manner. AWE improves

robustness under ambiguous visual conditions and supports

better generalization across diverse fruit types and imaging

scenarios. The final detection is performed using a standard

YOLOv12 head, ensuring high inference efficiency without

sacrificing recognition accuracy.

Our main contributions are summarized as follows:
Fron
• We present a tri-modal few-shot detection framework that

integrates visual, textual, and structural modalities,

designed for low-data fruit classification in agricultural

environments. The framework is efficient, modular, and

compatible with lightweight detection backbones.

• We propose a two-stage Semantic Fusion Modulator

(SFM), consisting of the Mask-Saliency Adapter (MSA)

and Feature Enhancement Recomposer (FER), which

improves attent ion local izat ion and structural

discrimination in challenging scenarios with subtle inter-

class differences.

• We introduce an independent Attention-Aware Weight

Estimator (AWE) that adaptively balances semantic and

appearance features via learned fusion weights, improving

robustness under weak supervision and visual complexity.
The proposed framework offers a modular and interpretable

solution to few-shot fruit detection, narrowing the gap between

open-vocabulary priors and anchor-based detectors. It supports
tiers in Plant Science 03
intelligent orchard applications by enabling scalable and fine-

grained classification for digital archiving, species monitoring,

and agricultural resource tracking.
2 Materials and methods

To address the challenges arising from sparse annotations and

modality imbalance in few-shot object detection (FSOD), we

propose a prompt-guided multimodal detection framework, as

illustrated in Figure 2. The architecture consists of four principal

components: a CLIP-assisted prompt extractor that identifies

category-relevant regions through cross-modal similarity; a

segmentation-based semantic generator (SAM) that produces

class-agnostic masks based on the extracted prompts; a Semantic

Fusion Modulator (SFM), which integrates visual and semantic

information via two lightweight modules—the Mask-Saliency

Adapter (MSA) and the Feature Enhancement Recomposer

(FER); and an Attention-Aware Weight Estimator (AWE), which

adaptively balances the contributions of semantic-enhanced and

original features during inference. The final detection is performed

using the standard YOLOv12 detection head, preserving the

original architecture to ensure high inference efficiency.

The core idea is to use text-conditioned semantic localization to

guide the generation of segmentation masks, which are then utilized

to refine and modulate the RGB feature representations. This two-

stage modulation enhances object-specific features and improves

detection robustness under limited supervision.
FIGURE 1

Tri-modal few-shot detection for fruit diversity.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1696622
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2025.1696622
2.1 Overview of the prompt-guided
multimodal detection framework

As illustrated in Figure 2, the proposed framework consists of

three cooperative components, forming a prompt-guided

multimodal detection pipeline.

First, the Text-Guided Prompt Generator employs a CLIP-

based visual-language encoder to convert user-defined object

descriptions—such as “peach” or “watermelon”—into semantic

embeddings. These embeddings are matched with image regions

to identify spatially relevant points, which serve as input prompts

for the segmentation module. This process enables selective

emphasis on target objects while suppressing irrelevant

background, improving the precision of subsequent mask

generation and fusion.

Second, the Semantic Prior Generation Module (SPGM) utilizes

the CLIP-derived point prompts to guide zero-shot segmentation.

The output is a class-agnostic mask M that captures structural

priors aligned with the semantic intent, offering spatially coherent

object candidates for feature fusion.

Third, the Semantic Fusion Modulator (SFM) integrates and

enhances multimodal features through two submodules: the Mask-

Saliency Adapter (MSA), which generates soft saliency maps, and

the Feature Enhancement Recomposer (FER), which adaptively

modulates the RGB features. These modules jointly direct

attention toward semantically meaningful and structurally

consistent regions.

Finally, the object detection head adopts the standard YOLOv12

architecture, ensuring inference efficiency while leveraging the

enriched feature representations guided by the Attention-Aware

Weight Estimator (AWE).

The complete pipeline is formally defined as:

ŷ = AWE YOLO(F(I,M)ð Þ, YOLO(I)), s : t : M

= SPGM I, CLIP(I,C)ð Þ,   F(I,M) = SFM(I,M) :
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where I denotes the input image, C represents the textual label

or class name, M is the segmentation mask generated by the

Semantic Prior Generation Module (SPGM) under CLIP

guidance, F(·) denotes the Semantic Fusion Modulator (SFM, i.e.,

MSA + FER), and ŷ represents the final detection result adaptively

fused by the Attention-Aware Weight Estimator (AWE).
Input: Text query t, image I = {xi,j}

Output: Segmentation mask M

1 zt← CLIPtext(t); //Encode the text query

2 foreach patch xi,j in I do

3 zi,j ← CLIPimage(xi,j); //Encode image patch

4 si,j ← >zt,zi,j< //Compute similarity

5 A ← Normalize({si,j}); //Normalize similarity map

6 p ← (A); //Generate spatial prompts from attention

7 M ← SAM(I,p); //Generate mask using SAM

8 return M
Algorithm 1. Prompt guided mask generation via CLIP and SAM.
2.2 Multimodal prompt-guided segmentation
with CLIP and SAM

To facilitate controllable and class-specific semantic localization, we

introduce a CLIP-based prompting strategy that links textual priors with

visual segmentation. This component establishes a direct association

between category semantics and spatial attention, allowing the model to

generate focused and semantically aligned masks.

As illustrated in Figure 3, the prompting procedure proceeds

as follows:

Given an input image I ∈ R3×H×W and a textual query t (e.g. “a

ripe peach”), the framework performs a multi-stage process:

Specifically, the textual query t is first encoded into an

embedding zt via the CLIP text encoder. The input image I is
FIGURE 2

Multimodal semantic-guided detection framework.
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divided into spatial tiles {xi,j}, each of which is processed through

the CLIP image encoder to obtain visual embeddings zi,j. Cosine

similarities si,j are computed between each visual embedding and

the text embedding, yielding a dense attention map. This map is

then normalized to produce A, a spatially aligned semantic

heatmap. A heuristic selection function P identifies high-

activation points p, which serve as semantic prompts. These

prompts, combined with the original image I, are fed into the

SAM module to generate segmentation masks M that reflect both

structural boundaries and semantic intent. The detailed method is

explained in Algorithm 1.

This text-to-mask prompting mechanism enhances the

controllability of the segmentation process and provides reliable

structural priors for subsequent multimodal fusion. In contrast to

traditional region proposal methods, it can dynamically associates

category semantics with spatial locations.
2.3 Mask-Saliency Adapter

The proposed Mask-Saliency Adapter (MSA) is designed to

extract and refine saliency cues from class-agnostic masks, as

illustrated in part A of Figure 4, which are subsequently utilized to

guide spatial attention within the fusion process. Instead of directly

modifying the RGB feature space, MSA constructs a sparse and

stable attention map from the input maskM ∈ RH×W, emphasizing

semantically relevant regions with improved consistency.
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The raw mask M is first processed by a compact convolutional

block C3 followed by a non-linear activation function f, yielding the
initial saliency response map S:

S = f(C3(M)), with f = Sigmoid (1)

To promote spatial smoothness and reduce numerical variance,

S is refined using a lightweight normalization module Nref,

consisting of a point-wise convolution C1, followed by layer

normalization and a ReLU activation:

S0 = ReLU(LayerNorm(C1(S))) (2)

The layer normalization applied to S0 ∈ RH�W is defined as:

Ŝ i,j =
S0
i,j − m
ffiffiffiffiffiffiffiffiffiffiffiffiffi

s 2 + e
p , m =

1
HWo

i,j

S0
i,j, s 2 =

1
HWo

i,j

(S0
i,j − m)2 (3)

The resulting normalized attention map Ŝ captures object-

centric spatial structures and acts as a saliency driven prior in the

fusion process, supporting semantically aware modulation without

directly altering the feature space at this stage.
2.4 Feature Enhancement Recomposer

To enhance semantic expressiveness while preserving

contextual integrity, we propose a dual-branch module termed

Feature Enhancement Recomposer (FER). As shown in Part A of

Figure 4, FER incorporates a saliency-guided enhancement pathway
FIGURE 3

CLIP-SAM prompt-guided segmentation pipeline.
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and a residual compensation pathway to enable fine-grained feature

modulation with stabilized dynamics.

Saliency-Guided Pathway (Part B): The refined attention map

Ŝ ∈ RH�W is passed through a point-wise convolution C1, followed
by layer normalization and a sigmoid activation to produce the

spatial modulation coefficient d:

d = Sigmoid(LayerNorm(C1(Ŝ ))) (4)

This coefficient adjusts the spatial emphasis adaptively. The

input feature map I ∈ R3�H�W   is modulated as:

Fmod = I ⚬ (1 + d   ∗   Ŝ ) (5)

where ⚬ denotes element-wise multiplication and ∗ represents

broadcasted spatial fusion.
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Residual Compensation Pathway (Part B): To preserve

structural consistency and suppress possible amplification

artifacts, the input features are also processed through a parallel

residual branch:

R = BatchNorm(C1(I )) (6)

Final Fusion: The outputs from both branches are combined to

produce the FER-enhanced feature map:

F fer = Fmod +R (7)

This design enables targeted spatial enhancement while

preventing over-amplification or feature degradation, making it

suitable for few-shot scenarios with limited annotations.

Additionally, FER remains lightweight and model-agnostic,
FIGURE 4

Overview of the multimodal fusion and detection framework. (A) Semantic Fusion Modulator (SFM), which enhances RGB features using soft saliency
maps and mask-guided modulation via dual attention paths; (B) coefficient generation branches that compute semantic-aware modulation
parameters g and e from RGB and mask inputs through lightweight convolutional blocks; and (C) Attention-Aware Weight Estimator (AWE), which
aggregates enhanced and original features via global saliency-aware pooling and MLP-driven fusion, producing final detection results through the
YOLOv12 head.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1696622
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2025.1696622
ensuring compatibility with mainstream detection architectures and

supporting efficient deployment.
2.5 Detection Integration with Attention-
Aware Weight Estimator

To validate the fused visual-semantic representations, the final

feature map F fer is forwarded to the original YOLOv12

architecture, retaining its backbone, neck, and head modules to

preserve inference efficiency and deployment compatibility, as

shown in Part C of Figure 4.

To further enhance decision reliability under few-shot

conditions, we introduce an adaptive fusion mechanism termed

Attention-Aware Weight Estimator (AWE), which dynamically

assigns fusion weights based on global attention cues rather than

fixed heuristics or confidence thresholds.

Specifically, the refined attention map ~A ∈ RH�W , obtained

from the preceding Mask-Saliency Adapter (MSA), is subjected to

global average pooling to extract a scalar descriptor:

z = GAP(~A) ∈ R1 (8)

This descriptor is passed through a lightweight MLP regressor

to generate a soft fusion weight l:

l = s (W2 · ReLU(W1 · z + b1) + b2) (9)

where W1, W2 are trainable weights, b1, b2 are biases, and s(·)
denotes the sigmoid activation function, ensuring l ∈ (0, 1).

The final prediction is obtained by a weighted integration of

semantic-enhanced and original RGB-based detections:

ŷ = l · YOLO(F fer) + (1 − l) · YOLO(I) (10)

This adaptive blending enables the model to adjust modality

dependence in a data-driven manner, improving robustness against

occlusion, background clutter, and scale variation. The AWE

module imposes minimal computational overhead while

s ign ificant ly cont r ibut ing to dec i s ion s t ab i l i t y and

generalization performance.

To summarize, the proposed framework establishes a

lightweight yet expressive detection pipeline by combining CLIP-

guided prompt generation, class-agnostic segmentation priors

(SAM), semantic-aware fusion modules (MSA and FER), and

attention-weighted feature blending (AWE). Specifically, CLIP

serves as a visual-language encoder to generate text-driven point

prompts, allowing SAM to extract semantically aligned object

masks and suppress irrelevant background noise. These refined

masks are subsequently fused with RGB features through the MSA

and FER modules, which enhance saliency focus and preserve

contextual integrity. Finally, the AWE module dynamically

balances the contributions of original and enhanced features

based on global attention cues. The overall architecture maintains

plug-and-play compatibility with YOLOv12 and demonstrates
Frontiers in Plant Science 07
strong generalization ability under few-shot learning constraints.

Its modularity and low complexity make it suitable for real-world

agricultural monitoring applications, especially in scenarios

involving rare crop varieties or region-specific fruit species.
3 Experiments and results

3.1 Dataset preparation

To validate the effectiveness of our tri-modal few-shot detection

framework in agricultural biodiversity recognition, we curated four

representative fruit datasets—each capturing a distinct cultivar with

high visual similarity, occlusion, and phenotype variance under

field conditions:
• Cantaloupe.v2 contains 220 images of greenhouse-grown

cantaloupes exhibiting complex netted surface textures and

frequent occlusion by leaves or support structures. It is

divided into 152 training, 45 validation, and 23 testing

samples. The dataset emphasizes morphological complexity

and background interference.

• Peach.v3 consists of 209 images across different ripening

stages and varieties, including yellow-flesh and red-blush

cultivars. With 165 samples for training, 30 for validation,

and 14 for testing, this dataset highlights challenges in shape

similarity, gloss variation, and clustered instances.

• Watermelon.v2 includes 172 images of both early-stage and

mature watermelons, captured under natural illumination

and soil-rich conditions. With 140 training, 21 validation,

and 11 testing samples, it offers a realistic setting for

evaluating detection under occlusion, soil-background

confusion, and growth-stage variability.

• Orange.v8 features 165 orchard images of orange cultivars,

captured under varied lighting and foliage occlusion. It is

split into 120 training, 29 validation, and 16 testing samples.

The dataset is ideal for assessing fine-grained classification

under dense canopy and color similarity conditions.
Together, these four datasets constitute a well-structured

benchmark for evaluating few-shot object detection in real-world

orchard scenarios. They encompass critical agricultural challenges,

including cultivar ambiguity, scale inconsistencies, occlusion, and

annotation sparsity. As such, they are well aligned with the

objectives of biodiversity surveillance and the construction of

digital orchard archives. Furthermore, to verify the framework’s

cross-domain generalization capability beyond our self-built

datasets, additional experiments were conducted on public fruit

subsets (Apple and Durian) derived from the Kaggle Fruits &

Vegetable Detection dataset, as presented in Appendix. A

schematic overview of the dataset construction, splitting, and

augmentation process is illustrated in Appendix Figure 1 for

improved clarity.
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3.2 Training settings

All training procedures are implemented using PyTorch 1.12.0

and executed on a single NVIDIA RTX 3090 GPU. The detector

adopts YOLOv12 as the backbone, with the lightweight

configuration modelsize n to ensure computational efficiency.

Optimization is performed using the Adam algorithm with an

initial learning rate of 0.001, scheduled by cosine annealing. To

mitigate overfitting, a weight decay of 5 × 10−4 is applied alongside

early stopping with a patience of 100 epochs. Each training session

runs for up to 100 epochs with a batch size of 16, and model

checkpoints are saved every 5 epochs. A fixed random seed of 42 is

used for reproducibility.

For multimodal components, the Segment Anything Model

(SAM) is initialized with the pre-trained checkpoint saml,

providing class-agnostic structural priors. The language-guided

module employs DFN5B-CLIP-ViT-H-14-378, a high-resolution

Vision Transformer variant tailored for domain-specific prompt

encoding. To fully utilize the introduced tri-modal features, we

regenerate the training, validation, and test splits with updated

augmented samples, ensuring better adaptation of YOLOv12 to

semantic and structural cues.

To address the limited generalization capacity in few-shot

learning, we construct a hybrid augmentation pipeline that

introduces both distributional diversity and structural variation.

Color perturbations include HSV jittering with parameters hsvh =

0.015, hsvs = 0.8, and hsvv = 0.4. Geometric transformations involve

translation (0.2), scaling (up to 0.5), rotation (± 10°), and

perspective distortion (0.001). Structure-aware augmentations are

applied during training, including Mosaic (probability 1.0), MixUp

(0.3), and Copy-Paste (0.4). Random horizontal and vertical flips

are applied with probabilities of 0.5 and 0.2, respectively.

This configuration is designed to preserve fine-grained

structural cues while promoting cross-modal feature alignment,

enabling stable convergence under sparsely annotated conditions.
3.3 Evaluation settings and comparative
baselines

To comprehensively evaluate the effectiveness of the proposed

semantic-guided fusion framework, we conduct comparative

experiments against several representative few-shot object

detection (FSOD) baselines, as well as ablation studies within our

own architecture. The comparative evaluation includes five

established approaches: YOLOv12 (vanilla), which serves as a

strong single-stage baseline without multimodal integration;

DETR, a transformer-based detector that performs end-to-end

detection using object queries; TFA-WO-FPN, a meta-learning

method based on fine-tuning without the feature pyramid

network; Meta R-CNN, which incorporates attention-driven

feature reweighting for class-specific adaptation; and DeFRCN,

which employs decoupled feature refinement and prototype

learning to improve generalization.
Frontiers in Plant Science 08
All models are trained and evaluated on four benchmark

datasets: Cantaloupe.v2, Peach.v3, Watermelon.v2, and Orange.v8.

A 5-fold cross-validation strategy is adopted for each dataset, and

the final performance is reported as the average across all folds to

mitigate bias introduced by sample partitioning. Evaluation is

conducted using standard detection metrics, including AP@0.5,

AP@0.75, AP@[.50:.95], Precision, and Recall@all, providing a

comprehensive assessment of localization accuracy and

recall behavior.

In addition to the baseline comparisons, an ablation study is

performed to isolate the contributions of key components in the

proposed framework. The configurations include: the baseline

YOLOv12 model without semantic priors; YOLOv12 enhanced

with the Semantic Fusion Modulator (SFM), which combines the

Mask-Saliency Adapter (MSA) and Feature Enhancement

Recomposer (FER) for multimodal representation refinement; and

the complete model with SFM and the Attention-Aware Weight

Estimator (AWE), which adaptively balances semantic-enhanced

and original RGB features.

To further assess the effectiveness of semantic guidance, we

additionally compare SAM-based segmentation results under two

conditions: with and without CLIP-derived point prompts. Overall,

incorporating CLIP enables SAM to focus on category-relevant

regions, while the absence of semantic prompting often leads to the

segmentation of irrelevant or excessive background regions, which

may interfere with downstream detection.

Building on this insight, we further examine the influence of

semantic modules on the detection backbone by employing Grad-

CAM to visualize class-specific saliency maps under different

architectural settings. The resulting visualizations reveal that the

inclusion of prompt-based modules (CLIP), structure-aware priors

(SAM), fusion refinement (SFM), and adaptive weighting (AWE)

leads to more focused and consistent attention distributions,

particularly under challenging orchard conditions such as leaf

occlusion, cultivar overlap, and complex backgrounds.
3.4 Comparative evaluation

During the segmentation stage, we provide a visual comparison

of detection-relevant mask quality across four representative fruit

categories. As illustrated in the Figure 5, each row corresponds to a

specific species (cantaloupe, peach, watermelon, orange), while the

columns show the RGB input, SAM guided by CLIP point prompts,

and unguided SAM outputs. It is evident that CLIP-conditioned

prompting enables SAM to concentrate on target fruit regions,

generating compact and semantically coherent masks. In contrast,

the unguided SAM often produces over-segmented masks,

frequently capturing irrelevant background textures or non-target

regions. These observations support the hypothesis that CLIP-

derived prompts function as semantic filters, guiding the

segmentation process toward task-specific content and thereby

improving the quality of downstream detection. To further

substantiate the effectiveness of the CLIP-guided SAM, we
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conducted additional comparative experiments with several state-

of-the-art segmentation models. The detailed results and visual

analyses are presented in Appendix.

To evaluate the performance of the proposed YOLOv12

(CLIP+SAM + SFM + AWE) framework in few-shot object

detection (FSOD), we conduct a systematic comparison on

four benchmark da ta se t s : Canta loupe . v2 , Peach . v3 ,

Watermelon.v2, and Orange.v8. Competing methods include

YOLOv12 (Tian et al., 2025) as a single-stage baseline, DETR

(Carion et al., 2020) as a transformer-based end-to-end detector,

TFA-WO-FPN (Wang et al., 2020), Meta R-CNN (Yan et al.,

2019), and DeFRCN (Qiao et al., 2021), which collectively

represent dominant approaches in the FSOD literature.

Evaluation is performed using standard detection metrics:

AP@0.5, AP@0.75, AP@[.50:.95], Precision, and Recall@all.

The detailed comparison results are reported in Table 1.

On the Cantaloupe.v2 dataset (see Table 1, CANTALOUPE

section), the proposed model consistently surpasses all baselines

across evaluation metrics. Specifically, it achieves an AP@0.5 of

0.9403, outperforming YOLOv12 and Meta R-CNN by 9.21% and

17.56%, respectively. The AP@[.50:.95] rises to 0.6342, reflecting a
Frontiers in Plant Science 09
12.19% gain over YOLOv12 and 10.61% over DeFRCN. At the

stricter AP@0.75 threshold, our model reaches 0.7694, exceeding

YOLOv12 and Meta R-CNN by 11.25% and 12.30%, respectively.

Further improvements are observed in Precision (+7.59%) and

Recall@all (+8.22%), demonstrating the model’s effectiveness in

producing precise predictions under cluttered orchard conditions.

On the Peach.v3 dataset, the model obtains an AP@0.5 of

0.9298, outperforming YOLOv12 by 6.59% and DETR by 31.66%.

The AP@[.50:.95] increases to 0.5715, which is 10.07% higher than

YOLOv12 and 19.36% higher than Meta R-CNN. At AP@0.75, the

model achieves 0.6862, exceeding YOLOv12 and Meta R-CNN by

9.26% and 11.63%, respectively. Precision and Recall@all also

improve by 5.34% and 6.17%, respectively, indicating enhanced

segmentation precision and better handling of cultivar

shape variations.

On the Watermelon.v2 dataset, which includes large shape

variation and irregular lighting, our method attains an AP@0.5 of

0.9405, outperforming YOLOv12 by 9.51% and DETR by 28.82%.

The AP@[.50:.95] climbs to 0.5594, showing a 13.97% gain over

YOLOv12 and 15.5% over Meta R-CNN. The model also shows

consistent improvement in AP@0.75 (+12.52% over YOLOv12),
FIGURE 5

Segmentation comparison between CLIP-guided and standalone SAM. Comparison between CLIP-guided SAM and standalone SAM across four fruit
categories: Cantaloupe. v2, Peach. v3, Watermelon. v2, and Orange.v8. Each row shows an original orchard image (left), followed by the CLIP
attention heatmap with high-activation points (2nd column), the segmentation results generated by SAM with CLIP prompts (3rd column), and the
standalone SAM output without guidance (right). The CLIP-guided SAM consistently produces cleaner and more semantically aligned masks, while
standalone SAM often results in over-segmentation or object fragmentation due to lack of category-specific guidance.
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Precision (+7.42%), and Recall@all (+7.77%), confirming its

robustness under diverse environmental factors.

On the Orange.v8 dataset, our model yields an AP@0.5 of

0.8739, surpassing YOLOv12 and DETR by 6.40% and 28.86%,

respectively. The AP@[.50:.95] improves to 0.5625, which is 10.39%

higher than YOLOv12 and 11.27% higher than TFA-WO-FPN.

Gains are also observed in AP@0.75 (+8.98% over YOLOv12),

Precision (+5.53%), and Recall@all (+6.34%), reinforcing the

model’s capability to adapt to occlusion, lighting variability, and

similar inter-class appearance in field imagery.

To further substantiate the superiority of the proposed method

across multiple evaluation metrics, five representative detection

metrics—including AP@0.5, AP@0.75, AP@[.50:.95], Precision, and
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Recall@all—are visualized through line plots in Figure 6. These plots

illustrate performance trends across all four fruit benchmark datasets,

with Figures 6a–d corresponding to Cantaloupe.v2, Peach.v3,

Watermelon.v2, and Orange.v8, respectively.

These plots provide an intuitive and comparative overview of

the detection performance achieved by the proposed YOLOv12

(CLIP + SAM + SFM + AWE) framework across four representative

fruit datasets: Cantaloupe.v2, Peach.v3, Watermelon.v2, and

Orange.v8. Compared to five state-of-the-art FSOD baselines, the

proposed method consistently achieves superior results, particularly

in AP@[.50:.95] and Recall@all—two critical indicators for

evaluating generalization ability and localization robustness under

limited supervision. Notably, the performance margin becomes
TABLE 1 Detection performance of different methods on four fruit datasets.

Dataset CANTALOUPE AP@0.5 AP@0.75 AP@[.50:.95] Precision Recall@all

Ours 0.9403 0.7694 0.6342 0.8712 0.7916

YOLOv12 0.8611 0.6916 0.5652 0.7953 0.7094

DETR 0.7271 0.5760 0.4521 0.6701 0.5902

TFA-WO-FPN 0.7661 0.6213 0.4980 0.7129 0.6266

Meta R-CNN 0.7997 0.6465 0.5279 0.7277 0.6671

DeFRCN 0.8127 0.6570 0.5468 0.7446 0.6858

Dataset PEACH AP@0.5 AP@0.75 AP@[.50:.95] Precision Recall@all

Ours 0.9298 0.6862 0.5715 0.8660 0.7342

YOLOv12 0.8723 0.6279 0.5192 0.8117 0.6725

DETR 0.7058 0.4742 0.3779 0.6348 0.5227

TFA-WO-FPN 0.7685 0.5427 0.4443 0.6851 0.5849

Meta R-CNN 0.7931 0.5698 0.4685 0.7094 0.6112

DeFRCN 0.8184 0.5935 0.4927 0.7320 0.6371

Dataset
WATERMELON

AP@0.5 AP@0.75 AP@[.50:.95] Precision Recall@all

Ours 0.9405 0.6742 0.5594 0.8756 0.7561

YOLOv12 0.8589 0.5992 0.4907 0.8012 0.6784

DETR 0.7299 0.5014 0.4044 0.7055 0.5642

TFA-WO-FPN 0.7561 0.5343 0.4177 0.6925 0.6160

Meta R-CNN 0.7919 0.5648 0.4674 0.7296 0.6195

DeFRCN 0.8251 0.5804 0.4685 0.7831 0.6643

Dataset ORANGE AP@0.5 AP@0.75 AP@[.50:.95] Precision Recall@all

Ours 0.8739 0.7114 0.5625 0.8627 0.7762

YOLOv12 0.8214 0.6527 0.5096 0.8074 0.7128

DETR 0.6782 0.4894 0.3657 0.6255 0.5186

TFA-WO-FPN 0.7451 0.5386 0.4213 0.6823 0.5827

Meta R-CNN 0.7623 0.5661 0.4498 0.7056 0.6093

DeFRCN 0.7887 0.5920 0.4726 0.7298 0.6375
Bold values denote the highest score in each metric for each dataset.
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more evident in visually complex scenarios, such as inter-class

similarity (Peach, Orange) and large intra-class variation due to

maturity stages and lighting conditions (Watermelon, Cantaloupe).

These visual comparisons further validate the quantitative results

reported in Table 1, underscoring the effectiveness of our

framework for fine-grained fruit cultivar recognition and digital

orchard archiving in resource-constrained agricultural settings.

In addition to quantitative evaluations, qualitative comparisons

are conducted on representative test samples from all four fruit

datasets, as illustrated in Figure 7. The visual results indicate that

the proposed YOLOv12 (CLIP + SAM + SFM + AWE) model

consistently delivers more accurate and complete detections

compared to baseline FSOD approaches, especially under real-

world agricultural challenges such as partial occlusion,

background interference, inter-varietal similarity, and diverse

maturity stages.

On the Cantaloupe.v2 dataset, our model generates compact

and precise bounding boxes even when fruits are partially covered

by leaves, netting, or overlapping samples, whereas methods like

DETR and Meta R-CNN tend to produce redundant or incomplete

detections. For the Peach.v3 dataset, which involves cultivars with

highly similar visual traits, our approach effectively distinguishes

subtle shape and color differences, resulting in fewer false positives

and improved consistency across instances.

On the Watermelon.v2 dataset, which features significant

variation in rind patterns and lighting conditions, the proposed
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framework maintains robust detection by adaptively attending to

structure-guided cues while suppressing irrelevant background

signals. Similarly, on the Orange.v8 dataset, the model exhibits

enhanced localization in cluttered orchard scenes, accurately

identifying densely arranged or partially shaded oranges with

superior boundary alignment and minimal confusion among

overlapping samples.

These visual comparisons reinforce the quantitative findings

summarized in Table 1, highlighting the effectiveness of our

semantic-guided multimodal fusion strategy in enhancing fruit

cultivar identification, supporting fine-grained phenotyping, and

facilitating species-level digital archiving in orchard environments

under few-shot constraints.
3.5 Ablation study

To evaluate the contribution of each module in the proposed

framework, we conduct a series of ablation studies by incrementally

integrating the designed components into the YOLOv12 baseline.

As shown in Table 2, incorporating the Mask-Saliency Adapter

(MSA) results in a noticeable performance improvement by

introducing soft attention cues that guide spatial focus during

detection. Adding the Feature Enhancement Recomposer (FER)

further enhances accuracy by adaptively modulating the original

RGB features with saliency-aware residuals.
FIGURE 6

Comparison of detection metrics on four fruit datasets: (a) Cantaloupe.v2, (b) Peach.v3, (c) Watermelon.v2, and (d) Orange.v8. Results are reported
for six methods over five standard metrics (AP@0.5, AP@0.75, AP@[.5:.95], Precision, Recall@all). Our method consistently outperforms existing FSOD
baselines, particularly under stricter thresholds (e.g. AP@0.75) and in terms of precision and recall, indicating stronger localization accuracy and
robustness in few-shot agricultural scenarios.
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The integration of CLIP-based prompt guidance introduces

semantic priors that improve region localization, particularly in

cases involving occlusion or visual ambiguity. Finally, the addition

of the Attention-Aware Weight Estimator (AWE) enables dynamic

feature reweighting between the semantic-enhanced and original

pathways, achieving the highest detection performance across all

evaluated datasets. These cumulative improvements confirm the

complementary nature of the proposed modules and underscore the

effectiveness of the tri-modal fusion strategy.

On the Cantaloupe dataset, introducing MSA improves AP@0.5

from 0.8611 to 0.8686 and AP@[.50:.95] from 0.5652 to 0.5738,

indicating enhanced focus on salient object regions. With FER

added, AP@0.5 and AP@0.75 rise to 0.9042 and 0.7358,

respectively. Further gains are observed when CLIP guidance is

introduced, lifting AP@[.50:.95] to 0.6254 and Precision to 0.8609.

The full configuration with AWE achieves the highest overall

performance, reaching an AP@0.5 of 0.9403 and Recall@all

of 0.7916.
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On the Peach dataset, which presents moderate intra-class

variation, MSA and FER contribute to a stable increase in AP@

[.50:.95] from 0.5192 to 0.546. Incorporating CLIP improves both

precision (from 0.8395 to 0.8581) and recall (from 0.7091 to

0.7262). With AWE integrated, the model achieves the best

results across all metrics, including an AP@0.5 of 0.9298 and an

AP@0.75 of 0.6862.

In the more challenging Watermelon dataset—featuring

significant shape variability and illumination noise—MSA and

FER together increase AP@[.50:.95] from 0.4907 to 0.5273. With

CLIP-enhanced semantic prompts, this metric further improves to

0.5522, while AP@0.5 climbs to 0.9341. The full model achieves an

AP@0.75 of 0.6742 and Precision of 0.8756, validating its robustness

in diverse conditions.

Finally, on the Orange dataset, the inclusion of MSA and FER

yields a consistent lift in detection performance, with AP@[.50:.95]

rising from 0.5096 to 0.5388. CLIP integration brings this to 0.554,

and the final addition of AWE pushes it to 0.5625. Gains in Recall@
FIGURE 7

Qualitative detection comparisons on Cantaloupe, Peach, Watermelon, Orange datasets. Each group shows two test images with predictions from
six methods (Ours, YOLOv12, DETR, TFA-WO-FPN, Meta R-CNN, DeFRCN), alongside the original image. Our model produces more accurate and
complete bounding boxes, especially under occlusion, clutter, or close-proximity instances.
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all (from 0.7128 to 0.7762) further demonstrate the framework’s

ability to detect subtle object variations and reduce missed

detections in real-world orchard imagery.

To provide a clearer view of the individual contributions of

each module, six key detection metrics are visualized in Figure 8

across four benchmark datasets. Figures 8a, d present the

ablation comparisons between the YOLOv12 baseline and its

progressive variants (+MSA, +MSA+FER, +MSA+FER+CLIP,

and +MSA+FER+CLIP+AWE) on Cantaloupe.v2, Peach.v3,

Watermelon.v2, and Orange.v8, respectively.

Across all datasets, the integration of each module yields

consistent improvements, particularly in AP@[.50:.95], Precision,

and Recall@all, confirming the modular effectiveness of the

semantic-guided fusion strategy. The MSA module enhances

early-stage saliency by directing attention toward spatially

relevant regions. FER further refines these representations
Frontiers in Plant Science 13
through residual-based feature modulation, while the CLIP-driven

semantic prior strengthens cross-modal alignment. Finally, AWE

adaptively reweights features from the semantic and original

pathways, result ing in the most stable and accurate

detection outputs.

The upward trajectories observed across all five metrics reflect

the robustness and transferability of the proposed framework,

particularly under limited supervision and visually complex

ecological settings. These visual results are consistent with the

quantitative findings in Table 2, reinforcing the framework’s

applicability to real-world biodiversity recognition and

deployment in resource-constrained scenarios.

In addition to detection accuracy, we further evaluate the

computational complexity and inference efficiency of each model

configuration, as summarized in Table 3. Notably, both the CLIP-

based prompt generator and the SAM segmentation module are
TABLE 2 Ablation study on four fruit datasets.

Dataset CANTALOUPE AP@0.5 AP@0.75 AP@[.5:.95] Precision Recall@all

Baseline 0.8611 0.6916 0.5652 0.7953 0.7094

Baseline + MSA 0.8686 0.7004 0.5738 0.8054 0.7144

Baseline + MSA + FER 0.9042 0.7358 0.5997 0.8351 0.7492

Baseline + MSA + FER + CLIP 0.9321 0.7601 0.6254 0.8609 0.7821

Baseline + MSA + FER + CLIP +
AWE

0.9403 0.7694 0.6342 0.8712 0.7916

Dataset PEACH AP@0.5 AP@0.75 AP@[.5:.95] Precision Recall@all

Baseline 0.8723 0.6279 0.5192 0.8117 0.6725

Baseline + MSA 0.8802 0.6349 0.5264 0.8192 0.6789

Baseline + MSA + FER 0.9128 0.6611 0.5460 0.8395 0.7091

Baseline + MSA + FER + CLIP 0.9269 0.6780 0.5660 0.8581 0.7262

Baseline + MSA + FER + CLIP +
AWE

0.9298 0.6862 0.5715 0.8660 0.7342

Dataset WATERMELON AP@0.5 AP@0.75 AP@[.5:.95] Precision Recall@all

Baseline 0.8589 0.5992 0.4907 0.8012 0.6784

Baseline + MSA 0.8670 0.6072 0.4998 0.8092 0.6837

Baseline + MSA + FER 0.9054 0.6390 0.5273 0.8445 0.7160

Baseline + MSA + FER + CLIP 0.9341 0.6660 0.5522 0.8682 0.7477

Baseline + MSA + FER + CLIP +
AWE

0.9405 0.6742 0.5594 0.8756 0.7561

Dataset ORANGE AP@0.5 AP@0.75 AP@[.5:.95] Precision Recall@all

Baseline 0.8214 0.6527 0.5096 0.8074 0.7128

Baseline + MSA 0.8269 0.6588 0.5168 0.8141 0.7186

Baseline + MSA + FER 0.8514 0.6831 0.5388 0.8383 0.7450

Baseline + MSA + FER + CLIP 0.8672 0.7039 0.5540 0.8561 0.7663

Baseline + MSA + FER + CLIP +
AWE

0.8739 0.7114 0.5625 0.8627 0.7762
Bold values denote the highest score in each metric for each dataset.
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used as offline preprocessing tools and do not introduce runtime

overhead during inference.

Starting from the YOLOv12 baseline with 2.57M parameters

and 6.51G FLOPs, integrating the MSA module increases the model

size to 2.68M and FLOPs to 6.76G, with a modest rise in inference

time to 8.1 ms. Further adding the FER module increases the

parameter count to 2.84M and inference time to 8.7 ms, while

maintaining reasonable FPS (114.9). Finally, incorporating AWE

yields a full configuration with 2.90M parameters and 7.25G FLOPs,

with inference time of 9.2 ms and FPS of 108.7.

These results demonstrate that the proposed fusion mechanism

introduces only a minor computational overhead while delivering

substantial performance gains. The final model remains lightweight

and suitable for real-time or near-real-time deployment in resource-

constrained agricultural scenarios.
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3.6 Visual analysis of attention via Grad-
CAM

To further investigate how each fusion component influences

attention distribution and spatial awareness, we employ Grad-CAM

to visualize saliency maps under four ablation configurations:

Baseline, Baseline + MSA, Baseline + MSA + FER, and Baseline +

MSA + FER + CLIP. As shown in Figure 9, examples from four

representative fruit datasets—Cantaloupe.v2 , Peach.v3 ,

Watermelon.v2, and Orange.v8—are selected to illustrate the

evolution of attention patterns across fusion stages.

In the Cantaloupe.v2 dataset, the baseline model tends to focus

narrowly on texture regions, often ignoring the full object extent.

Adding the Mask-Saliency Adapter (MSA) expands the attention

area to include more of the fruit body, though the boundary
FIGURE 8

Comparison of ablation study results on (a) Ablation results on Cantaloupe.v2 (b) Ablation results on Peach.v3 (c) Ablation results on Watermelon.v2
(d) Ablation results on Orange.v8 datasets. Each subfigure shows detection performance under different module configurations, including MSA, FER,
CLIP-guided semantic priors, and the AWE weighting mechanism.
TABLE 3 Model complexity, module configuration, and inference efficiency comparison.

Model MSA FER AWE Params (M) FLOPs (G) Inf. (ms) FPS

Baseline ✗ ✗ ✗ 2.57 6.51 7.6 131.6

+ MSA ✓ ✗ ✗ 2.68 6.76 8.1 123.5

+ MSA + FER ✓ ✓ ✗ 2.84 7.11 8.7 114.9

+ MSA + FER +
AWE

✓ ✓ ✓ 2.90 7.25 9.2 108.7
CLIP and SAM are used as offline preprocessing tools and introduce no runtime overhead.
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remains imprecise. Incorporating the Feature Enhancement

Recomposer (FER) leads to more uniform attention across the

entire fruit surface, with sharper edges and better localization.

Crucially, integrating the CLIP-based semantic prompts further

aligns the saliency maps with the true object semantics—refining

the attention distribution toward regions with distinctive category-

specific traits (e.g. netted skin texture), thus improving semantic

consistency and reducing irrelevant background response.

On the Peach.v3 dataset, similar trends are observed: while the

baseline struggles with shadow interference and adjacent foliage, the

progressive fusion of MSA and FER improves spatial focus. The

final CLIP enhanced model demonstrates strong category

awareness, concentrating attention on features like peach fuzz and

pit curvature—traits difficult to isolate without semantic guidance.

For the Watermelon.v2 dataset, which contains frequent

occlusions and subtle striping patterns, the baseline misplaces

focus toward background grass. With MSA and FER, attention

gradually shifts toward the central melon area. The addition of CLIP

prompts boosts saliency on biologically meaningful attributes

(e.g.rind color and radial texture), helping to suppress false

positives and enabling robust detection under natural variation.

In the Orange.v8 dataset, the baseline shows weak boundary

awareness and fails to capture full object contours. MSA and FER

help recover spatial completeness, while the inclusion of CLIP

prompts further sharpens the attention map along object edges

and surface gloss, resulting in superior interpretability and

detection reliability.

The heatmap evolution provides clear evidence of how each

lightweight module contributes to the observed performance gains.

Specifically, the CLIP-guided semantic prior offers high-level

category context that suppresses irrelevant activations and

improves early semantic localization. Guided by these text-

derived prompts, the SAM module produces class-agnostic masks

that encode structural priors, enabling the network to capture object
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boundaries and spatial coherence under limited supervision. The

subsequent MSA converts the masks into sparse and stable saliency

maps, filtering background noise and directing attention toward

structurally consistent regions. The FER module then performs

residual-based feature recomposition, strengthening mid-level

representations and improving boundary delineation and shape

integrity. Finally, the AWE mechanism derives a soft fusion weight

from globally pooled saliency cues to adaptively balance semantic-

enhanced and original visual pathways, yielding more stable

attention distributions and fewer misdetections in complex

scenes. Together, these complementary effects explain the

consistent metric improvements observed in the ablation study

and the progressively more structured attention responses

in Figure 9.

Overall, these visualizations reveal that the CLIP-driven

semantic prior significantly improves the interpretability and

precision of attention localization, especially in fine-grained fruit

classification tasks under few-shot conditions. When combined

with our lightweight MSA and FER modules, the proposed

framework offers both semantic alignment and spatial fidelity,

making it highly suitable for real-world agricultural species

monitoring and digital archiving.
3.7 Summary of results

This study introduces a lightweight tri-modal fusion framework

for few-shot fruit diversity recognition, specifically designed for

agricultural applications such as digital orchard archiving and

varietal identification. Built upon the YOLOv12 detection

backbone, the framework incorporates cross-modal knowledge

and spatial priors through three core components: (1) CLIP-

derived semantic prompts that direct category-relevant attention;

(2) SAM-generated structure-aware masks providing auxiliary
FIGURE 9

Attention heatmaps across fusion stages on four benchmark datasets. Each row represents a fusion stage, from the baseline to variants with MSA,
FER, and CLIP-guided priors.
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spatial supervision; and (3) a Semantic Fusion Modulator (SFM),

composed of the Mask-Saliency Adapter (MSA) and Feature

Enhancement Recomposer (FER). Additionally, an Attention-

Aware Weight Estimator (AWE) dynamically reweights semantic-

enhanced and original RGB features during inference.

Experiments on four few-shot fruit datasets—Cantaloupe.v2,

Peach.v3, Watermelon.v2, and 497 Orange.v8—demonstrate

consistent performance improvements over strong baselines

across multiple evaluation metrics, including AP@0.5, AP@0.75,

AP@[.50:.95], Precision, and Recall@all. The proposed method

remains robust under challenging conditions such as texture

similarity, intra-class variation, and partial occlusion, supporting

deployment in real-world orchard scenarios.

Ablation analyses further verify the contributions of individual

modules. MSA enhances object saliency through mask-guided

attention, while FER improves feature representation via residual-

based modulation. CLIP-guided semantic prompts improve

category localization, particularly in data-limited and visually

ambiguous settings. The integration of AWE facilitates adaptive

fusion of semantic and visual features, improving detection

reliability with negligible computational cost. Grad-CAM

(Selvaraju et al., 2017; Sattarzadeh et al., 2021) visualizations

confirm that each stage progressively sharpens the model’s spatial

focus toward biologically meaningful regions.

Regarding computational efficiency, all components—including

SFM and AWE—are lightweight by design. CLIP and SAM are

utilized as offline preprocessing modules, minimizing inference-

time overhead. The complete model achieves real-time operation

with marginal increases in parameter count and FLOPs, making it

suitable for deployment on edge devices and mobile

agricultural platforms.

In summary, the proposed framework offers a scalable and

efficient solution for few-shot agricultural species detection. It

achieves strong performance under low-data conditions while

maintaining low computational requirements, thereby

contributing to long-term objectives in crop biodiversity

monitoring, digital germplasm preservation, and intelligent

orchard management.
4 Discussion

This section presents a detailed analysis of the proposed fruit-

oriented few-shot detection framework from four key perspectives:

performance attribution, robustness and adaptive fusion,

computational efficiency, and limitations with future directions.

The discussion is grounded in the experimental findings in Section

3, emphasizing how the lightweight tri-modal fusion design

supports effective recognition in agricultural environments.

Building upon the quantitative improvements presented earlier,

we first examine the effectiveness and source of gains in detection

performance. Consistent performance gains observed across four

benchmark f ru i t da tase t s—Canta loupe .v2 , Peach .v3 ,

Watermelon.v2, and Orange.v8—demonstrate the effectiveness of
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the proposed tri-modal detection framework. As shown in Table 1,

the model consistently outperforms baselines across key metrics,

including AP@0.5, AP@[.50:.95], Precision, and Recall@all. For

instance, on Cantaloupe.v2, AP@0.5 increases from 0.8611

(baseline) to 0.9403 (full model), while AP@[.50:.95] improves

from 0.5652 to 0.6342. These improvements highlight the

contributions of each integrated component.

The majority of the performance gains can be attributed to the

Semantic Fusion Modulator (SFM), which incorporates the Mask-

Saliency Adapter (MSA) and Feature Enhancement Recomposer

(FER). MSA introduces structure-aware saliency using SAM-

derived, class-agnostic masks to guide attention toward

biologically relevant regions. FER further refines the features via

residual modulation, enhancing boundary awareness and

object completeness.

The effectiveness of CLIP-guided semantic prompting is

particularly evident in ambiguous visual scenarios, where category

cues from language help stabilize attention. As illustrated in

Figure 9, attention maps evolve from coarse activations in the

baseline to structured object-level focus with the addition of

MSA, FER, and CLIP. These observations are consistent with the

quantitative trends and confirm the synergy among the

three modalities.

Beyond performance improvements, the robustness of the

framework under real-world agricultural conditions is another

key advantage. To maintain robustness under conditions such as

occlusion, lighting variation, and background interference, the

Attention-Aware Weight Estimator (AWE) is introduced. In

contrast to static or manually tuned fusion schemes, AWE

dynamically reweights semantic-enhanced and original RGB

features through a lightweight MLP guided by global saliency

cues. This enables real-time adaptive fusion, even in partially

degraded or visually ambiguous images, which frequently occur in

orchard and open-field settings. The negligible computational cost

of AWE supports its practical use in robust multimodal integration.

In addition to architectural robustness, we further validated the

stability of the proposed framework under different dataset

partitioning schemes (see Appendix Table 2). Specifically, we

compared the detection performance of 7:2:1 and 8:1:1 train–

validation–test splits across the four benchmark datasets. The

results showed minimal variation, with AP@0.5, Precision, and

Recall differing by less than ±0.02. For example, Cantaloupe.v2

achieved a DAP@0.5 of +0.012, Orange.v8 varied by −0.008, while

Peach.v3 and Watermelon.v2 changed by +0.007 and −0.010,

respectively. The corresponding t-values (0.66–0.86) and p-values

(> 0.40) indicate that these differences are not statistically significant.

These findings confirm that the proposed framework maintains

consistent accuracy and stability across varying data split ratios,

underscoring its robustness to differences in sample distribution.

The proposed method also emphasizes computational efficiency

and deployment feasibility. The framework is designed with

deployment efficiency in mind. Integrating MSA, FER, and AWE

results in a model size increase of only 0.33M parameters and an

additional inference latency of 1.6ms (Table 3). Notably, CLIP and
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SAM are applied exclusively during offline preprocessing and thus

incur no extra runtime overhead. The final model sustains over 108

FPS, enabling deployment on edge platforms such as mobile

inspection robots, UAVs for orchard monitoring, and embedded

phenotyping systems. This efficient design ensures a favorable

balance between accuracy and practical deployment feasibility in

agricultural scenarios.

Nevertheless, it is important to recognize the limitations and

potential areas for future work. Despite its effectiveness, the

framework has certain limitations. The current single-scale

feature design may limit sensitivity to small, occluded, or densely

clustered fruit targets. In particular, we observed that in cases with

very small fruit instances or scenes containing a large number of

overlapping targets, the framework may occasionally produce

incomplete or merged detections. These failure cases highlight the

challenge of balancing fine-grained spatial precision with global

semantic consistency.

Furthermore, we acknowledge that while the framework

exhibits strong robustness under moderate occlusion and

illumination variation, its performance may degrade under more

adverse visual conditions such as heavy noise, motion blur, or

severe defocus. In such cases, the quality of the SAM-derived

structural priors can deteriorate, leading to suboptimal

localization and weakened semantic guidance. Future extensions

may address these challenges through noise-robust training,

synthetic perturbation augmentation, or self-distillation schemes

that enhance the stability of multimodal features under degraded

visual quality.

Future work may explore multi-scale feature alignment or

pyramid-based fusion to enhance spatial adaptability.

Additionally, integrating the tri-modal architecture with

Transformer-based detectors [e.g. DINO (Zhang et al., 2022),

Deformable-DETR (Zhu et al., 2020)] may improve long-range

context modeling. Another promising direction involves

uncertainty-aware or entropy-guided fusion strategies to better

address rare fruit varieties and visually ambiguous categories.

In summary, the proposed method achieves a practical trade-off

between semantic consistency, structural awareness, and

computational efficiency. It offers a robust and interpretable

solution for few-shot fruit detection, with promising applicability

to biodiversity monitoring, varietal classification, and digital

germplasm documentation.
5 Conclusions

This paper proposes a lightweight and interpretable tri-modal

fusion framework for few-shot object detection in agricultural

contexts, with emphasis on fruit diversity recognition and digital

orchard archiving. To address key challenges such as limited

annotations, visual ambiguity, and complex backgrounds, the

framework integrates a Semantic Fusion Modulator (SFM) and an

Attention-Aware Weight Estimator (AWE) into the YOLOv12

architecture, while preserving the original detection backbone to

ensure deployment efficiency.
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The SFM consists of two complementary modules: the Mask-

Saliency Adapter (MSA) and the Feature Enhancement

Recomposer (FER). MSA utilizes class-agnostic masks generated

by the Segment Anything Model (SAM) to produce structure-aware

saliency maps that direct attention to biologically relevant regions,

such as fruit contours and surfaces. FER further refines visual

features via residual modulation, enhancing boundary sensitivity

and context adaptation. Together, these modules improve

localization and feature discrimination in cluttered and

occluded scenes.

Additionally, a lightweight AWE dynamically reweights RGB

and semantic-enhanced features based on global saliency cues

derived from a shallow MLP. Importantly, CLIP and SAM are

used solely as offline preprocessing components, introducing no

additional inference-time latency. This design ensures effective

semantic guidance without compromising real-time performance.

Experiments on four few-shot fruit datasets—Cantaloupe.v2,

Peach.v3, Watermelon.v2, and Orange.v8— demonstrate consistent

outperformance over baselines including Meta R-CNN, DeFRCN,

and TFA-WO-FPN across metrics such as AP@0.5, AP@[.50:.95]

and Recall@all. Grad-CAM visualizations confirm that MSA and

FER yield more coherent and semantically meaningful attention

distributions. Ablation studies validate their individual and joint

contributions. The final model maintains a compact architecture

with an inference latency of 9.2 ms and a frame rate exceeding 108

FPS, supporting deployment on edge agricultural systems.

In summary, the proposed framework achieves a practical

trade-off among detection accuracy, computational efficiency, and

model interpretability, offering a scalable solution for tasks such as

cultivar classification, germplasm documentation, and automated

fruit diversity monitoring.

Future directions include extending the framework to

Transformer-based detection architectures (e.g. DINO,

Deformable DETR) to enhance long-range context modeling.

Replacing the current score-based fusion with uncertainty-aware

confidence calibration is another potential improvement.

Furthermore, developing an end-to-end pipeline that jointly

learns prompt generation, mask extraction, and adaptive fusion

without external precomputed inputs could enhance model

autonomy and robustness in real-world agricultural deployments.
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