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Drought stress is a major environmental factor limiting crop productivity. Arbuscular
mycorrhizal fungi (AMF), as beneficial soil microbes, can improve plant growth and
stress resilience; however, the effectiveness of this symbiosis is often influenced by
the host plant's genetic background. In this study, we investigated the interaction
between AM symbiosis and drought tolerance in two foxtail millet (Setaria italica)
accessions with contrasting drought responses: the drought-tolerant ISE42 and the
drought-sensitive TT8. Following a 14-day drought treatment, both accessions
exhibited wilting, but AMF-colonized plants reduced malondialdehyde
accumulation, indicating alleviated oxidative stress. Notably, only colonized ISE42
plants recovered upon rewatering. Although AMF colonization was confirmed by
staining and qRT-PCR, AM symbiosis-conserved genes were strongly induced in
ISE42 and TT8 only at 7 days post-treatment. Transcriptomic analysis further
revealed that AM symbiosis significantly enhanced the expression of genes
involved in nitrogen transport, assimilation, lignin metabolism, and cellulose
biosynthesis in ISE42, suggesting improved nutrient uptake and cell wall
reinforcement as key mechanisms underlying enhanced drought tolerance. In
addition, drought-induced stress hormone signaling pathways were
downregulated in colonized ISE42 roots, pointing to AM symbiosis-mediated
stress alleviation. Together, these results demonstrate genotype-specific effects of
AMF on drought tolerance and recovery capability, and highlight the importance of
considering host genetic variation in the application of AMF for crop improvement.

arbuscular mycorrhizal fungi, symbiosis, drought, foxtail millet, transcriptome

1 Introduction

Climate change has led to a significant reduction in terrestrial water storage,
contributing to the increased frequency and intensity of drought events, which in turn
severely threaten global crop production and food security (Pokhrel et al., 2021). Under
moderate drought conditions, yield losses can range from 30% to 90%, depending on the
timing, duration and frequency of water deficit, and crop species involved (Vadez et al,
2024). To cope with drought stress, plants have evolved a range of adaptive mechanisms,
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including the enhancement of water uptake efficiency, minimizing
water loss through stomatal closure, and mitigating oxidative stress
via increased activities of anti-oxidative enzymes and accumulation
of antioxidant compounds (Gupta et al., 2020).

Arbuscular mycorrhizal fungi (AMF) are soil-born
microorganisms that establish symbiotic association with
approximately 80% of terrestrial plant species. Through their
external hyphal networks, AMF enhance the acquisition of water
and mineral nutrients-especially phosphorus-from the soil and
transfer them to host plants in exchange for photosynthetic
products. The arbuscule, a highly branched fungal structure
within root cortical cells, serves as the main site for nutrient
exchange due to its large surface area (Smith and Smith, 2011;
Kakouridis et al., 2022). Beyond nutrient acquisition, AMF
colonization has been widely reported to confer increased
tolerance to abiotic stress, including drought (Begum et al., 2019).
Under drought conditions, AM symbiosis can induce osmolyte
accumulation and enhance water and nutrient uptake efficiency,
thereby alleviating osmotic stress in host plants, Furthermore, AMF
modulate antioxidative enzyme activities, which help reduce the
detrimental effects of oxidative stress during water deficit. AMF also
influence abscisic acid (ABA) levels and ABA-mediated stress
responses, ultimately supporting higher photosynthetic efficiency
and biomass accumulation in colonized plants compared to non-
mycorrhizal controls under drought stress (Liu et al., 2015; Chitarra
et al.,, 2016; Ren et al.,, 2019; Nahuelcura et al., 2024).

Foxtail millet [Setaria italica (L.) P.Beauv.] is a small-grained
cereal crop widely cultivated in arid and semi-arid regions in east
Asia. As an ancient crop domesticated by various indigenous
groups, foxtail millet exhibits significant genetic diversity.
Morphological variation in plant height, flowering time, and
panicle architecture has been observed across accessions collected
from different continents (Ramesh et al., 2023; Xue et al., 2025). In
Taiwan, foxtail millet is a staple food crop among indigenous
communities, with over 300 landraces collected and grouped into
three clusters based on molecular markers, which correspond to
geographic distribution. These landraces exhibit variation in
agronomic traits and starch content, indicating high genetic
diversity within the Taiwanese germplasm (Lin et al., 2012; Kuo
et al, 2018). Compared to other C4 plants such as maize and
sorghum, foxtail millet possesses a dense, deep root system and
thickened cell walls, contributing to its high water-use efficiency and
remarkable drought tolerance (Terfa et al., 2025). Notably, its yield
remains largely unaffected by drought stress occurring after heading
(Matsuura et al., 2012). Comparative transcriptomic studies of
drought-tolerant and -sensitive accessions have identified
candidate genes involved in metabolic pathways, stress signaling,
gluconeogenesis, transcriptional regulation, and proteolysis that are
associated with drought adaptation in foxtail millet (Zhang et al.,
2007; Lata et al., 2010; Shi et al., 2018; Xu et al., 2019).

The role of AMF in alleviating drought stress has been validated
in multiple crop species, including soybean, citrus, maize, and
foxtail millet (Gong et al., 2015; Begum et al., 2019; Cheng et al,,
2022; Oliveira et al,, 2022). Although foxtail millet is generally
considered drought tolerant, genetic variation in drought responses
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has been documented among accessions (Mohammadi-Nejad et al.,
2017; Vaezi et al., 2020). Moreover, increasing evidence indicated
that the outcome of AMF symbiosis on plant growth and nutrient
acquisition is strongly influenced by both host and fungal genotypes
(Mateus et al., 2019; Watts-Williams et al., 2019; Chang and Lin,
2023). Despite this, limited is known about the difference in drought
tolerance among host genotypes affect the efficacy of AMF
symbiosis under drought condition.

In this study, we investigated the AMF-mediated modulation of
drought stress responses in foxtail millet by comparing a drought-
tolerant and a drought-sensitive accession. We evaluated growth
performance and physiological responses under drought stress with
and without AMF colonization and performed transcriptomic
analysis to uncover molecular mechanisms underlying the
genotype-dependent effects of AM symbiosis. These findings
provide insights into the interaction between host genetic
background and AMF symbiosis and have potential implication
for improving drought resilience in foxtail millet through targeted
microbial and genetic interventions.

2 Materials and methods
2.1 Plant materials and growth conditions

Plants were cultivated in a growth chamber under a 12-hour
light (28°C)/dark (22°C) photoperiod with a light intensity of
approximately 200 umol m™ sec’' and 60% relative humidity. In
this study, a drought-sensitive accession, TaiTung8 (TT8), and a
high drought-tolerant accession, ISE42, were selected for
investigation. Seeds were pre-treated at 45°C dry bath for 30
minutes and surface-sterilized with 2% NaOCL Two weeks after
germination, seedlings were transplanted into sterile cones filled with
a 9:1 (v/v) sterilized substrate mixture of river sands and peat moss.

Claroideoglomus etunicatum, provided by Dr. Jui-Chang Huang
(Tainan District Agricultural Research and Extension Station,
Taiwan) was used as the AMF inoculant. Foxtail millet was
employed as the host plant for propagating fungal inoculum. For
each plant, 10 mL of inoculum containing approximately 1000
spores were applied to the substrate before transplanting. All plants
were watered daily with equal volumes of water and fertilized
biweekly with a nutrient solution (N: P,Os5: K,O = 15: 5: 25;
Cheng et al,, 2022) until initiation of drought stress treatment.

At six weeks post-transplanting, irrigation was withheld for two
weeks to induce drought stress. Watering was resumed for four days
to assess plant recovery. Plants were harvested at 7 and 14 days after
the onset of drought, and at 4-days after rewatering, for evaluating
stress responses and RNA isolation.

2.2 AMF staining and evaluation of
colonization efficiency

Mycorrhizal roots were fragmented and cleaned in 10% (w/v)
KOH at 90°C for 30 minutes. Subsequently, the roots were
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transferred to 0.3 N HCI for 30 minutes for neutralization. Next,
roots were stained with 0.1% (w/v) trypan blue overnight, followed
by de-staining with acidic glycerol (Phillips and Hayman, 1970).
Colonization efficiency was quantified using the gridline
intersect method as described by Mcgonigle et al. (1990). Over
100 root fragments were randomly selected and examined under an
Olympus SZX-16 stereomicroscope (Olympus, Japan).
Colonization efficiency (%) was calculated using following formula:

(Numberof colonized root intersections

/ Total number of root intersections) x 100 % .

2.3 Malondialdehyde concentration
measurement

Around 0.1g leaf tissue was homogenized in 4 mL of 5% (w/v)
trichloroacetic acid (TCA) and centrifuged at 10,000 xg for 10
minutes. The supernatant (1 mL) with 4 mL of 0.5% thiobarbituric
acid (TBA) in 5% TCA. The reaction mixture was incubated at 95°C
for 30 minutes, cooled on ice, and centrifuged at 10,000 xg for 10
minutes at 4°C. The absorbance was measured at 532 nm (specific)
and at 600 nm (non-specific) using a spectrophotometer (Heath
and Packer, 1968). MDA concentration was calculated using the
extinction coefficient of 155 mM 'cm™ and expressed as nanomole
per gram of fresh weight (nmole g FW).

2.4 Catalase and ascorbate peroxidase
activity evaluation

Around 0.1g leaf tissue was homogenized in 4 mL of 50 mM
potassium phosphate bufter (pH 6.8) and centrifuged at 12,000 xg
for 20 minutes at 4°C. Catalase (CAT) activity was determined by
mixing 0.2 mL of the resulting supernatant with 2.7 mL of 100 mM
sodium phosphate buffer (pH 7.0) and 0.1 mL of 1 M H,0,. The
change of absorbance at 240 nm was recorded for 1 minute,
following the method described by (Kato and Shimizu, 1987).
One unit of CAT activity is defined as 1 nmol of H,O, consumed
per minute. Ascorbate peroxidase (APX) activity was measured by
adding 0.1 mL of supernatant to a reaction mixture containing 1 mL
of 150 mM potassium phosphate buffer (pH 7.0), I mL of 150 mM
ascorbate, 0.4 mL of 0.75 mM EDTA, and 0.5 mL of 6 mM H,0,.
The change of absorbance at 290 nm was monitored for 1 minute.
One unit of APX activity is defined as 1 umol ascorbate consumed
per minute (Nakano and Asada, 1981).

2.5 RNA isolation and gene expression
analysis

Total RNA was extracted following the method by Wang and
Vodkin (1994). Briefly, 100 mg of ground root tissues was
homogenized in 0.7 mL extraction buffer containing 4% SDS, 20
mM DTT, 78 mM Tris, 17.2 mM EDTA-Na, and 156 mM NaCl.
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RNA was subsequently purified using phenol: chloroform:
isoamylalcohol (25:24:1). Two steps of RNA precipitation were
carried out using 4M LiCl and isopropanol with 3M NaOAc,
respectively. The resulting RNA pellet was dissolved in nuclease-
free water and stored at -80°C until further use. Three replicates
were prepared for each treatment.

Genomic DNA contamination was removed using 5x gDNA
Eraser (Tools, Taiwan), and 500 ng of total RNA was used for first-
strained cDNA synthesis using Moloney murine leukemia virus
reverse transcriptase (Thermo Fisher Scientific, USA). Quantitative
real-time PCR (qRT-PCR) was performed using iQ"™ syBR®
Green Supermix (Bio-Rad, USA) on a CFX Connect Real-Time
PCR Detection System (Bio-Rad). Relative gene expression was
normalized to the reference gene SiEF1orand was expressed as 24",
The primers used in this study are listed in Supplementary Table 1.

2.6 RNA sequencing and analysis

The quantity and quality of RNA was assessed using a
SimpliNanoTM spectrophotometer (Biochrom, USA). For RNA
sequencing, 1 ug of RNA per sample was used for library
preparation. RNA libraries were prepared using the KAPA
mRNA HyperPrep Kit (Roche, Switzerland) in combination with
KAPA Pure Beads system (Roche) for fragment sorting. Sequencing
was conducted on a Illumina NovaSeq 6000 platform
(Illumina, USA).

High quality reads were selected and the adapter sequences were
trimmed using Trimmomatic v0.38 (Bolger et al.,, 2014). The reads
were aligned to the Setaria italica reference genome v2.0 (Bennetzen
et al, 2012) using HISAT2 v2.1.0 (Kim et al,, 2015). Relative gene
expression levels and identification of differentially expressed genes
(DEGs) were analyzed using edgeR v3.28.1 and DESeq2 v.1.26.0,
respectively (Anders et al., 2013; Love et al,, 2014). DEGs were defined
based on a false discovery rate (FDR) threshold of< 0.05 and [log, fold
change (FC)| > 1. Gene ontology (GO) enrichment of DEGs was
performed using clusterProfiler v3.14.3 R package (Yu et al,, 2012).

2.7 Statistical analysis
All data were analyzed using R software. Difference among
treatments were assessed by analysis of variance (ANOVA),

followed by Tukey’s honest significant difference (HSD) test at a
significance level of p < 0.05.

3 Results

3.1 Variation of drought responses and AM
symbiotic effects between two millet
accessions

To investigate whether symbiotic effects on drought tolerance in
foxtail millet vary by genotype, we used two contrasting accessions:
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TT8, a drought-sensitive accession, and ISE42, a highly drought-
tolerant accession. These genotypes were examined for their dynamic
responses to drought and the influence of AMF colonization.

At seven days after drought treatment (7 DAT), mock-treated
TT8 plants exhibited erect leaves, whereas AMF-inoculated TT8

plants showed drooping leaves ( ). Although no

T8

Recovery

7

10.3389/fpls.2025.1696600

significant differences in shoot or root fresh weight were
observed between treatments at this stage, the wilting index was
significantly lower in AMF-inoculated TT8 compared to the mock

control ( ). In contrast, ISE42 plants maintained normal
growth and showing no wilting symptoms, regardless of AMF
inoculation ( ).

ISE42

B
®) 10 aab  a,, ab
s 81 4 abab +
(]
g 6 - ‘l‘
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s 47 cd
2
2 -
d d
O T T T |_|—|ﬁ T T
7 DAT 14 DAT Recover 7 DAT 14 DAT Recover

T8

ISE42

O mock B AMF

FIGURE 1

Morphology and wilting index of TT8 and ISE42 during drought stress and after recovery. (A) Morphology of mock- and AMF-treated TT8 and ISE42
at 7 and 14 DAT and 4 days after water resupply. (B) Wilting index of plants. N = 5. Error bars represent the standard error of the mean. Data were
analyzed using ANOVA (p < 0.05) followed by Tukey's HSD test. Different letters above the bars indicate statistically significant differences
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By 14 DAT, both accessions exhibited severe growth retardation
and wilting. AMF colonization did not fully prevent stress
symptoms in either genotype. Upon rewatering for four days,
most TT8 plants remained wilted, irrespective of AMF
colonization. Conversely, AMF-inoculated ISE42 plants recovered
and displayed green, turgid leaves, unlike mock-treated ISE42
plants with remained wilted (Figure 1). These phenotypes were
reflected in shoot fresh weight measurement: ISE42 displayed a
significant increase in shoot biomass after rehydration. In contrast,
the shoot biomass in TT8 gradually declined under drought and
remained low after rehydration, regardless of AMF treatment. Root
fresh weight decreased under drought in both accessions but did not
recover following rehydration (Figure 2).

AMEF staining indicated similar colonization efficiency between
the two accessions, with no significant change under drought
conditions. Based on the relative expression of C. etunicatum [-
Tubulin gene, the AMF colonization in ISE42 at 7 DAT was highest,
whereas TT8 showed no noticeable effects by prolonged drought

(A) 1.4

10.3389/fpls.2025.1696600

treatment (Supplementary Figure 1), Taken together, the AMF
colonization efficiency and host physiological responses suggested
that the differential drought responses between the two accessions
are unlikely to be due to variation in AMF colonization efficiency.

During water deficit conditions, photosynthesis efficiency is
declined due to stomata closure, leading to reactive oxygen species
(ROS) accumulation (Cruz de Carvalho, 2008). To assess oxidative
stress and ROS scavenging activity, we measured malondialdehyde
(MDA)-a marker of lipid peroxidation-and the activities of two
antioxidant enzymes: catalase (CAT) and ascorbate peroxidase
(APX). Prolonged drought treatment increased MDA levels in both
accessions; however, ISE42 accumulated significantly less MDA than
TTS8, consistent with its shoot phenotype. At 7 DAT, no significant
differences in MDA content were observed between AMF and mock
treatments. By 14 DAT, MDA levels significantly decreased in AMEF-
inoculated TT8 compared to the mock control. Following rehydration,
MDA content in mock-treated plants remained high, whereas AMEF-
colonized plants in both accessions showed a significant reduction in

1 a
1.2 ab

1 .
0.8 -
0.6 - de

shoot FW (g)

0.4 -
0.2 -

0 T T

cd de de
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de

de
Hi
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Recover
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0.8
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0.6 be
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0.1

root FW (g)

bcd BN

) def cdef

0 T T
7 DAT 14 DAT

Recover
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FIGURE 2

ISE42
B AmMmF

Shoot (A) and root (B) fresh weight of TT8 and ISE42 during drought stress and after recovery. FW, fresh weight. N = 5. Error bars represent the
standard error of the mean. Data were analyzed using ANOVA (p < 0.05) followed by Tukey's HSD test. Different letters above the bars indicate

statistically significant differences.
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MDA levels (Figure 3A), indicating that AMF symbiosis alleviated
oxidative stress.

In both accessions, CAT activity peaked at 7 DAT but declined
sharply at 14 DAT and remained low after rehydration. No significant
differences in CAT activity were observed between AMF and mock
treatments in either accession (Figure 3B). APX activity in ISE42
remained low throughout drought and recovery, with no apparent
effect from AMF colonization. In contrast, in TT8, APX activity
increased progressively under drought in AMF-treated plants, while it
was undetectable in mock-treated plants by 14 DAT (Figure 3C). The

10.3389/fpls.2025.1696600

inverse relationship between MDA levels and APX activity in TT8
suggests that APX may play a critical role in mitigating oxidative
damage during drought in AMF-colonized plants.

3.2 Dynamics of transcriptome during
drought stress treatments

To elucidate the genome-wide effects of AM symbiosis on
drought stress responses in the two accessions, transcriptomic
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FIGURE 3

Indicators of oxidative stresses in TT8 and ISE42 during drought stress and after recovery. (A) Malondialdehyde (MDA) concentrations, (B) catalase
(CAT) activity, and (C) ascorbate peroxidase (APX) activity. The horizontal lines within boxes indicate median values, the upper and bottom
boundaries represent the 25" and 75" percentiles. N = 5. Data were analyzed using ANOVA (p < 0.05) followed by Tukey's HSD test. Different letters

above the bars indicate statistically significant differences
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analyses were performed on roots of mock- and AMF-treated plants
at 7 and 14 DAT. These analyses aimed to capture the dynamic
expression profiles of stress- and symbiosis-responsive genes.

After trimming and filtering, each RNA-seq library yielded
between 3.4 x 107 and 6.4 x 107 high-quality reads, with Qs
values exceeding 93% (Supplementary Table 2). More than 78.2% of
reads were successfully mapped to the foxtail millet reference
genome and over 75.4% represented uniquely mapped reads
(Supplementary Table 3). To validate the transcriptomic data, ten
differentially expressed genes (DEGs) were selected for qRT-PCR
analysis. The high correlation coefficient (R*) between RNA-seq and
qRT-PCR results confirmed the reliability of the transcriptomic
analysis (Supplementary Figures 2, 3).

Principle Component Analysis (PCA) was conducted to assess
the consistency of biological replicates and to explore global
expression variation across treatments. PC1 and PC2 accounted
for 53.9% and 19.3% of the total variance, respectively. Replicates
clustered tightly within each treatment group, while samples from
TT8 and ISE42 were clearly separated, indicating distinct
transcriptomic responses to drought between the two accessions

10.3389/fpls.2025.1696600

(Figure 4A). Notably, clear separation between mock- and AMEF-
treated samples was observed at 7 DAT, particularly in ISE42.
However, by 14 DAT, transcriptomic profiles of mock- and AMF-
treated samples converged in both accessions, suggesting that
prolonged drought diminished the transcriptional impact of AM
symbiosis (Figure 4A).

DEGs were identified using fold change were >2 or<0.5 with
FDR< 0.05. In TT8, 172 genes were upregulated and 103
downregulated at 7 DAT, while 127 genes were upregulated and
218 downregulated at 14 DAT. In contrast, ISE42 exhibited a much
stronger transcriptional responses at 7 DAT, with 3786 upregulated
and 1289 downregulated genes. However, at 14 DAT, only 298 and
80 genes were up- and downregulated, respectively, consistent with
the reduced symbiotic effect observed in PCA results.

Comparative DEG analysis 63 commonly upregulated and 15
commonly downregulated genes between TT8 and ISE42 in
response to AM symbiosis at 7 DAT. At 14 DAT, only 12 genes
were commonly upregulated and none downregulated between two
accessions. Temporal comparisons within the same genotype
showed minimal overlap in TT8 (7 and 14 genes up- and
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FIGURE 4

ISE42 (14 DAT)

Overview of transcriptome analysis. (A) Principal component analysis (PCA) of transcriptomic data. (B, C) Venn diagrams of upregulated and

downregulated genes in response to AM symbiosis, respectively.
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downregulated at both time points, respectively), whereas ISE42
displayed 90 commonly upregulated and 3 commonly
downregulated genes across 7 and 14 DAT (Figures 4B,C). These
results suggested that AMF colonization elicited a stronger and
more dynamic transcriptional responses in drought-tolerant
accession ISE42 compared to the drought-sensitive TT8.

3.3 Gene ontology analysis of DEGs

To gain an overview of the functional roles of DEGs, Gene
Ontology (GO) enrichment analysis was conducted. Given the high
number of DEGs in ISE42 at 7 DAT, 20 and 8 Biological Property
(BP) GO terms were significantly enriched among up- and down-
regulated genes, respectively. In contrast, only 6 and 11 BP terms
were enriched in up- and down-regulated genes in
TTS8, respectively.

Consistent with the observed beneficial effects of AM symbiosis
on drought tolerance in ISE42, upregulated genes were significantly
enriched in GO terms associated with ROS detoxification. These
included hydrogen peroxide catabolic/metabolic process
(GO:0042744, GO:0042743), cellular detoxification (GO:1990748,
GO:0098754, GO:0098869), reactive oxygen species metabolic
process (GO: 0072593), oxylipin metabolic/biosynthesis process
(GO:0031407, GO:0031408) and peroxidase activity (GO:0004601).
Interestingly, the GO term “response to hydrogen peroxide
(GO:004252)” was enriched in downregulated genes. Additionally,
genes involved in jasmonic acid (JA)-mediated signaling pathway
(GO:0009867), which is known to play a role in stress responses, were
upregulated in ISE42 (Supplementary Table 4).

Unexpectedly, several GO terms related to water and fluid
transport (GO:0006833, GO:0042044, GO:0005372, GO:0015250)
and metal ion transport (GO:0030001, GO:0005506) were enriched
in genes downregulated by AM symbiosis in ISE42 at 7 DAT
(Supplementary Table 5). These findings suggested that AM
symbiosis may contribute to drought tolerance in ISE42 not only
through ROS detoxification but also by modulating transport
process to optimize water and ion balance.

In contrast, responses to AM symbiosis in TT8 was
characterized by enrichment of GO terms related to cellular
responses to phosphate starvation/nutrient levels (GO:0016036,
GO0:0009267, GO:0031667, GO:0031669), which are the classical
markers of symbiotic responses. Despite a lower wilting index in
AM-colonized TT8 plants, no GO terms directly related to drought
stress were significantly enriched, implying that AMF may enhance
drought performance in TT8 primarily through improved nutrient
acquisition, particularly phosphate (Supplementary Tables 4, 5).

At 14 DAG, despite several visible dehydration symptoms, GO
enrichment analysis identified 12 and 1 BP terms among
upregulated and downregulated genes, respectively, in TTS8.
Among upregulated terms, several were associated with
phenylpropanoid biosynthesis and metabolic pathways
(GO:0009698, GO:0009699), cinnamic acid biosynthesis/metabolic
process (GO:0009800, GO:0009803) and phenylalanine catabolic/
metabolic process (GO:0006558, GO:0006559), all of which are
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involved in the production of phenolic compounds that help
mitigate abiotic stress. Meanwhile, responses to hydrogen
peroxide (GO:0042542) were enriched in downregulated genes,
suggesting delayed activation of oxidative stress mitigation
pathways by AM colonization in TT8 (Supplementary Tables 4, 5).

In ISE42 at 14 DAT, 16 BP terms were enriched among DEGs
regulated by AM symbiosis. Notably, more than 75% of
downregulated BP terms were associated with cell wall
biosynthesis. Conversely, upregulated DEGs were enriched in
terms related to lignin metabolism (GO:0046274, GO:0019748,
GO:0009808). These results suggested that under prolonged
drought, AMF may enhance drought tolerance in ISE42 through
the modulation of cell wall biosynthesis and remodeling, which
could contribute to improve mechanical strength and stress
resilience (Supplementary Tables 4, 5).

3.4 Genotype-dependent regulation of AM
symbiosis-conserved genes under drought
stress

Genes essential for AM symbiosis are widely conserved across
host plant genomes (Delaux et al., 2014; Favre et al., 2014; Bravo
etal., 2016). To assess the influence of drought stress on these genes
and compared genotype-specific responses, we examined the
expression patterns of 63 AM symbiosis-conserved genes in TT8
and ISE42. At 7 DAT, 44 of these genes were significantly
upregulated in ISE42, indicating strong transcriptional activation
of the symbiotic pathway under drought conditions. In contrast,
only three genes were significantly induced in TT8, despite previous
reports of widespread upregulation under well-watered conditions
(Chang and Lin, 2023). By 14 DAT, induction of symbiosis-
conserved genes was markedly reduced or undetectable in both
accessions (Supplementary Table 6). Staining confirmed the
presence of fungal structures in roots (Supplementary Figure 1),
yet drought reduced plant-fungus interaction. These findings
indicated that transcriptional activation of AM symbiosis-
conserved genes under drought stress is strongly genotype-
dependent, and that prolonged drought suppresses the expression
of these genes, suggesting a dominant effect of drought over AM
symbiosis on the root transcriptome.

3.5 Differential regulation of aquaporin
genes by AM symbiosis under short-term
and prolonged drought stress

Aquaporins (AQPs), particularly members of the plasma
membrane intrinsic protein (PIP) and tonoplast intrinsic protein
(TTP) families, play critical roles in facilitating water uptake under
drought stress (Shivaraj et al., 2021), and their regulation by AM
symbiosis can vary with drought severity (Barzana et al., 2014). In this
study, we investigated how the interaction between plant genotype
and AM symbiosis influenced AQP expression under both short-term
and prolonged drought conditions. At 7 DAT, most of PIP and TIP
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genes in TT8 were either unaffected or slightly downregulated by AM
symbiosis, whereas in ISE42, AMF colonization markedly suppressed
the expression of these genes (Figures 5A,B), suggesting more
effective drought alleviation in ISE42. Notably, several NOD26-like
intrinsic protein (NIP) genes were upregulated in AMEF-colonized
ISE42 at 7 DAT, but remained unchanged in TT8 (Figure 5C). By 14
DAT, expression difterences between AMF-inoculated and mock-
treated plants were negligible in both accessions (Figure 5), indicating
that the symbiotic modulation of AQP expression is largely confined
to early drought responses.

3.6 Regulation of nutrient transport genes
by AM symbiosis under drought

AM symbiosis is known to enhance plant nutrient uptake
efficiency, particularly for phosphate and nitrogen (Wang et al,
2017). To assess genotype-specific responses under drought, we
examined nutrient transporter gene expression in TT8 and ISE42.
Of the 12 annotated phosphate transporter 1 (PHT1) family
members, only six homologs were detected. Consistent with
previous reports (Ceasar et al, 2014; Chang and Lin, 2023),
PHTI;9, a AM symbiosis-conserved gene, was strongly
upregulated at 7 DAT in both accessions, but its expression
became undetectable at 14 DAT, likely due to prolonged drought
suppression. The remaining five PHTI genes were either
downregulated or unaffected by AM colonization (Figure 6A).

Nitrogen transport and assimilation showed pronounced
genotype-specific regulation. At 7 DAT, five nitrate transporter
(NRT) genes were significantly upregulated in colonized ISE42
roots, while TT8 showed no significant change. In ISE42, genes
encoding nitrate reductase (NR), nitrite reductase (Nir), and
carbonic anhydrase—supplying carbon skeletons for nitrogen
assimilation—were also induced, along with glutamine synthase and
glutamate synthase, key enzymes in primary amino acid biosynthesis
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(Figure 6B). These effects were absent in TT8 and diminished by 14
DAT, suggesting that enhanced nitrogen acquisition and assimilation
may contribute to the improved drought recovery in ISE42.

In contrast, several metal ion channels and transporters,
including potassium channels, iron transporters, calcium
transporter and zinc transporters, were downregulated by AM
symbiosis in ISE42 at 7 DAT. In TTS8, only a few metal
transporter genes were affected by symbiosis (Figure 6C),
potentially reflecting a shift in ion homeostasis or prioritization of
essential nutrient uptake under symbiosis and drought.

3.7 AM symbiosis modulates
phytohormone signaling pathways under
drought stress in a genotype-specific
manner

The role of abscisic acid (ABA) in regulating plant drought
stress responses has been well-established (Aslam et al., 2022). In
ISE42 at 7 DAT, AM colonization upregulated two of five PYL/PYR,
encoding ABA receptors, and genes encoding protein phosphatase
2C (PP2C), the negative regulators of ABA signaling were
downregulated. However, several ABA-responsive element-binding
factor (ABF) genes and Response to Desiccation (RD) 29 (Jia et al.,
2012) were repressed, while ABA 8™-hydroxylase (ABA8’OH) genes,
encoding ABA catabolic enzymes, were induced. Additionally,
homologs of AtABCG25 and MtABCG20 homologs, encoding a
root-to-shoot ABA transporter and an ABA exporter in roots,
respectively, was also reduced by symbiosis (Figure 7A). The
changes suggest fine tuning of ABA perception and transport. By
14 DAT, expression differences were no longer apparent. In TTS,
AM colonization had minimal effects on ABA signaling at either
time points (Figure 7A).

GO enrichment indicated that JA-mediated signaling pathways
were also modulated by AM symbiosis. Although JA is traditionally
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associated with biotic stress responses, it also plays a critical role in
coordinating drought responses, partly by enhancing ABA
accumulation (Balbi and Devoto, 2008; Liu et al, 2016). At 7
DAT, several JAZ genes, encoding JA repressors, were upregulated
in AMF-colonized ISE42, while JARI and COI1, which are involved
in JA signal perception were either unaffected or slightly repressed,
suggesting a general suppression of JA signaling in ISE42
(Figure 7B). Despite the repression of JA signaling genes, genes
involved in o-linolenic acid metabolism, which contributes to JA
biosynthesis, and MYC2 gene, a key JA-responsive transcriptional
regulator were upregulated (Figure 7B and Supplementary Figure 4).
No differences were detected by 14 DAT.

Ethylene (ET), another stress-related hormone, is known to
positively influence drought tolerance (Gusain et al,, 2024). In
ISE42, AM colonization upregulated multiple components of ET
signaling pathway at 7 DAT, including two ET receptors, three
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MAP kinases and two ET responsive transcription factors (ERFs).
TT8 showed no significant changes (Figure 7C).

Collectively, these results highlight a complex, genotype-specific
modulation of phytohormone signaling by AM symbiosis in ISE42,
characterized by suppression of ABA and JA signaling components
alongside activation of ethylene signaling pathways, potentially
contributing to enhanced drought tolerance.

3.8 Genotype-specific activation of
transcription factors and calcium signaling
pathways by AM symbiosis under drought
stress conditions

Members of NAC or APETALA2/ethylene-responsive element
binding factors (AP2/ERF) transcription factor families are key
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regulators of abiotic stress tolerance, including drought (Wang and
Dane, 2013; Ma et al., 2024). Transcriptomic profiling identified 88
AP2/ERF and 13 DREB genes across treatments. In ISE42 roots, AM
symbiosis induced 27 AP2/ERF and 3 DREB genes at 7 DAT and 4
AP2/ERF and 5 DREB genes at 14 DAT. No induction was observed
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in TT8; instead, one and three genes were downregulated at 7 and
14 DAT, respectively (Supplementary Table 7). Among 106 NAC-
domain containing genes detected, 28 were specifically upregulated
in colonized ISE42 at 7 DAT, whereas only one and two genes were
induced in ISE42 and TT8, respectively, at 14 DAT (Supplementary
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Table 7). These results indicate strong genotype-specific activation
of NAC and AP2/ERF transcription factors in AMF-mediated
drought responses.

Calcium functions as a secondary messenger in mediating
diverse cellular responses (Rudd and Franklin-Tong, 2001).
CALCIUM-PERMEABLE STRESS-GATED CATION
CHANNEL1 (CSC1) mediates calcium fluxes under osmotic
stress (Hou et al., 2014; Maity et al., 2019). Of 12 CSCI homologs
identified, four and one were significantly upregulated in ISE42
roots at 7 DAT and 14 DAT, respectively, under AM symbiosis,
with no induction in TT8. Calcium signals are decoded by calcium-
dependent protein kinase (CDPK), which activate downstream
signaling cascades (Dekomah et al, 2022). Of 29 foxtail millet
CDPK genes, 25 were expressed under at least one treatment, and 11
were specifically induced by AM symbiosis in ISE42 roots at 7 DAT
(Supplementary Table 8). These finding suggest that enhanced
drought tolerance in ISE42 may be mediated through CDPK-
dependent calcium signaling pathways.

3.9 AM symbiosis enhanced
phenylpropanoid and cell wall biosynthesis
pathway in a genotype-specific manner
under drought stress

The phenylpropanoid biosynthesis converts phenylalanine into
aromatic compounds, including flavonoids and lignin, which are
critical for oxidative and drought stresses (Vogt, 2010; Sharma et al.,
2019). Arogenate dehydratase (ADT), the rate-limiting step in
phenylalanine biosynthesis pathways, was strongly induced by
AM symbiosis in ISE42 at 7 DAT, with four out of five ADT
homologs upregulated, compared to only one in TT8.

In the phenylpropanoid biosynthesis pathway, several key genes
encoding 4-coumarate:CoA ligase (4CL), cinnamoyl-CoA reductase
(CCR) and cinnamyl-alcohol dehydrogenase (CAD) were
significantly upregulated in colonized ISE42 roots at 7 DAT. In
TT8, only one phenylalanine ammonia-lyase (PAL) gene and one
4CL gene showed induction. Peroxidases (PODs), responsible for
oxidative polymerization of monolignols during lignin biosynthesis,
were also strongly upregulated in ISE42, with over 30 POD genes
induced by AM symbiosis, while induction in TT8 was
negligible (Figure 8).

Genes associated with cell wall biosynthesis, including cellulose
synthases (CESAs) and COBRA genes were also affected by AM
symbiosis. At 7 DAT, six CESA genes and two COBRA genes were
upregulated in colonized ISE42, compared with only one CESA and
one COBRA in TTS8. At 14 DAT, GO terms related to cell wall
biosynthesis and metabolism were enriched among upregulated
genes in TT8, including several CESA and laccase genes, with a
similar late-stage pattern also observed in ISE42.

Collectively, these results indicate that AM symbiosis promotes
lignin biosynthesis and cell wall remodeling primarily in ISE42,
potentially strengthening root structure and enhancing drought
tolerance, with both genotypes. This symbiosis-driven modification
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likely facilitates root adaptation to prolonged drought stress,
underscoring a genotype-dependent response mechanism.

4 Discussion

4.1 Genetic variation shapes AMF-mediated
drought responses

Genetic variation in host plants is a key determinant of AM
symbiotic responses, as reported in sorghum, cassava, barley, maize
and foxtail millet (Mateus et al., 2019; Watts-Williams et al., 2019;
Al Mutairi et al., 2020; Chang and Lin, 2023; Li et al,, 2023). Our
previous work showed that most AM symbiosis-conserved genes in
TT8 were upregulated under low-phosphate conditions; however,
in the present study, their expression declined in TT8 after seven
days of drought stress, whereas ISE42 maintained stable expression.
Similar studies in maize and sorghum demonstrated a positive
correlation between AMF compatibility, nutrient homeostasis and
growth responses (Watts-Williams et al., 2019; Li et al., 2023).
Nevertheless, ecological studies suggested that symbiotic effects on
plant growth are not universally positive and depend on plant-
fungus combination (Klironomos, 2003).

Here, AMF colonization efficiency did not differ between
genotypes or between short- and long-term drought stress,
indicating similar establishment of symbiosis. However, the
marked differences in the expression of symbiosis-conserved
genes and drought-responsive genes between accessions highlight
significant genotype x environmental interactions. Together with
previous findings and our results suggest that the reprogramming of
both symbiosis-conserved and non-conserved genes under drought
stress is strongly genotype-dependent. Notably, AMF association
substantially enhanced drought tolerance in ISE42, whereas only
minor improvements were observed in TTS8, reinforcing the impact
of host genetic variation on AMF-mediated drought responses.

4.2 AM symbiosis-mediated regulation of
aquaporin genes under drought stress
conditions

Enhancement of water uptake and plasma membrane-anchored
AQPs (PIPs) expression by AM symbiosis under drought stress has
been reported in many plant species, supporting the role of PIPs in
water permeability and transport (He et al., 2019; Wang et al., 2023;
Wang, D. Y. et al,, 2024; Zou et al., 2024; Ni et al., 2025). However,
our results, along with other studies (Chitarra et al., 2016; Porcel
et al., 2006; Quiroga et al., 2017; Symanczik et al., 2020), reveal that
AMF association can also lead to downregulation of certain PIP
genes under water deficit conditions. This pattern may reflect stress
severity- and duration-dependent regulation, where PIPs induced
by AM symbiosis during mild drought are subsequently suppressed
under prolonged stress to reduce water loss (Barzana et al.,, 2014;
Porcel et al., 2006). Indeed, PIP downregulation has been correlated
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with increased leaf relative water content, suggesting a role in water
conservation (Porcel et al.,, 2006 and Aroca et al., 2007).

In contrast, several NIPs were specifically induced in colonized
ISE42. In Lotus japonica, LiNIP1;5 enhances drought tolerance and
AMF maintenance by promoting root proliferation and reducing
stomata aperture (Zou et al., 2024). The foxtail millet homolog
(SETIT_018035mg) was similarly induced in colonized ISE42 but
not in TT8, coinciding with stronger activation of symbiosis-
conserved genes. These findings suggest that NIP-type proteins may
stabilize plant-fungus interactions, potentially through transport of
water or small molecules within arbuscule-containing cells.

Host and fungal genotypes also influence AQP expression
(Quiroga et al,, 2017; Symanczik et al., 2020). While some studies
reported greater AMF benefits in drought-sensitive cultivars
(Quiroga et al,, 2017), our results showed stronger advantages in
the tolerant ISE42, possibly due to differences in host and fungal
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species used. Such context-dependent variation emphasizes the
need for broader genotype-genotype testing to understand
symbiotic modulation of water transport mechanisms.

4.3 Impacts of AM symbiosis on nitrogen
uptake and assimilation

Drought-induced stomata closure limits both transpiration and
nitrogen assimilation, restricting photosynthesis and growth
(McDowell et al., 2008; Robredo et al., 2011; Bista et al., 2018; Xia
et al,, 2020; Han et al,, 2022). Exogenous application of nitrogen
source can enhance water use efficiency, nitrogen assimilation, and
antioxidative activities, alleviating water deficit stress (Brueck et al.,
2010; Ren et al,, 2015; Meng et al., 2016; Li et al., 2020; Pissolato
et al, 2020; Ren et al, 2020). Furthermore, adequate nitrogen
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supply promotes drought recovery capacity (Sergent et al., 2014;
Maywald et al., 2022; Sun et al., 2025), highlighting the importance
of maintaining N supply and assimilation for drought tolerance.

AM symbiosis facilitates uptake of phosphorus, nitrogen and
other nutrients in host plants. In rice, approximately 40% of root-
acquired N is delivered via OsNPF4.5-mediated symbiotic route,
with additional symbiosis-induced NRT/NPF family members
functioning under low nitrate conditions (Wang et al., 2020). In
ISE2, homologs of OsNPF.5 (SETIT_004857mg), OsNRT2.3a (root-
to-shoot transport; SETIT_004444mg)) (Tang et al, 2012), and
OsNPF8.1 (organic N mobilization in response to drought;
SETIT_000816mg) (Qiu et al., 2023) were upregulated by AM
symbiosis, but not in TT8. This suggests enhanced acquisition
from soil and fungal partners, plus efficient root-to-shoot
nitrogen mobilization, supports drought resilience.

Drought also suppresses nitrate reduction (Gloser et al., 2020),
partly via drought and salt tolerance (DST)-mediated
downregulation of nitrate reductase genes in rice (Han et al,
2022). Conversely, nitrate supplementation can increase nitrate
reductase activity and nitric oxide (NO) production, enhancing
antioxidant capacity (Pissolato et al., 2020). In ISE42, AM symbiosis
upregulated nitrate reductase, nitrite reductase, glutamine synthase
and glutamate synthase genes, but not nitric oxide synthase (data
not shown), indicating improved N assimilation contributes to its
superior drought tolerance.

4.4 AM symbiosis-mediated drought
tolerance via the enhancement of lignin
biosynthesis and cellulose biosynthesis

After 7 days of drought treatment, AMF-colonized ISE42 roots
showed strong induction of lignin biosynthesis genes. Lignin provides
structural support and facilitates water transport through xylem,
thereby contributing to drought resistance (Weng and Chapple,
2010; Menard et al., 2022). In rice, OsCCRI10, encoding a
cinnamoyl-coA reductase in the monolignol biosynthesis pathway,
is induced by OsNACS5 in roots under drought and its overexpression
increased root lignin content, reduces water loss, and enhances
drought tolerance (Jeong et al., 2013; Bang et al., 2022). Similarly,
OsNACI17 and drought-responsive AP2/ERF transcription factors
such as OsERF71 and sweet potato RAP2.4 enhance drought
tolerance via activation of lignin biosynthesis genes (Lee et al,
2016; Bian et al, 2022). In ISE42, AM symbiosis enhanced the
expression of genes of for monolignol biosynthesis and
polymerization, suggesting that lignin accumulation contributes to
symbiosis-mediated drought tolerance. In contrast, colonized TT8
displayed minimal activation of these pathways, aligning with its
weaker symbiotic transcriptional responses. Prolonged drought
suppressed lignin-related gene induction in both genotypes.

In addition to lignin, cellulose—a key structural component of
the cell wall—plays an important role in osmotic stress tolerance.
Loss-of-function mutations in CESA and CESA-like proteins
impair polysaccharide deposition and ROS regulation, reducing
osmotic tolerance (Zhu et al,, 2010; Hou et al., 2024). In our study,
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more CESA and COBRA-lie genes were upregulated in colonized
ISE42 than in TT8 at both 7 and 14 DAT, indicating that strong
symbiotic responses in ISE42 may enhance cellulose biosynthesis
and confer greater drought resistance.

4.5 Regulation of ABA and JA homeostasis
by arbuscular mycorrhizal symbiosis in
drought responses

ABA plays a central role in plant drought responses, not only in
regulating stomata aperture but also in modulating root growth and
angle under water stress (Feng et al., 2022; Xiong, Y. L. et al., 2025).
In our study, ABA8’OH genes were upregulated in colonized ISE42
at 7 DAT, coinciding with reduced expression of ABFs and
RD29A.This pattern was absent in TT8, suggesting that AM
symbiosis in ISE42 may mitigate drought-induced ABA signaling,
possibly by alleviating stress perception. Such trends are consistent
with previous findings in wheat, where drought-sensitive cultivars
exhibited strong ABA accumulation, whereas tolerant cultivars
showed elevated ABA8’OH expression without significant ABA
accumulation (Ji et al., 2011). In tomato, AMF colonization under
drought condition similarly reduced ABA accumulation (Chitarra
et al., 2016; Sanchez-Romera et al, 2018). Notably, in maize,
exogenous ABA application enhanced drought tolerance, yet this
effect was attenuated in AMF-colonized plants, with reduced
aquaporin expression compared to controls (Ruiz-Lozano et al,
2009). Together, these results suggest that AM symbiosis promotes
drought adaptation not through sustained ABA accumulation, but
through fine control of ABA homeostasis.

JA signaling also exhibited distinct modulation under AM
symbiosis in ISE42. The upregulation of JAZ genes, which encode
negative regulators of JA responses, indicates a repression of
canonical JA signaling. This repression is known to reduce drought
tolerance in JAZ-overexpressing plants and mutants (Fu et al., 2017;
Wang, W. M. et al., 2024; Xiong, J. Y. et al,, 2025). However, we also
observed upregulation of a-linolenic acid metabolism genes, critical
for JA biosynthesis, along with MYC2, a master activator of JA
signaling. This suggests that AM symbiosis may employ a fine-tuning
strategy, simultaneously tempering excessive JA responses via JAZs
while maintaining basal JA-mediated defenses through increased
biosynthesis and MYC2 activation. Such a mechanism may help
balance energy allocation between growth and stress defense.

The interplay between JA and ABA may further contribute to
AM-mediated drought responses. JA has been shown to act
upstream of ABA by repressing PP2C, thereby enhancing osmotic
stress tolerance (Zhao et al., 2023). Additionally, JA transport from
roots to shoots can influence shoot-level responses such as stomatal
regulation and transpiration control (Ogawa et al, 2021). The
observed increase in JA biosynthesis in AM-colonized ISE42
could therefore support both local and systemic to reprogram
hormone signaling networks, integrating ABA and JA pathways
to optimize drought adaptation. Further work will focus on
characterizing shoot-level molecular and physiological responses
to clarify the full extent of this regulatory integration.
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4.6 Conclusion

This study demonstrates clear genotype-dependent variation in
AMF-mediated drought responses in foxtail millet. The drought-
tolerant ISE42 displayed pronounced transcriptomic activation of
nutrient transport, cell wall reinforcement and hormonal fine-
tuning, leading to improved drought resilience. In contrast, TT8
showed limited transcriptional and physiological benefits. These
results underscore the complexity of plant-fungus interaction and
highlight the need to consider host genotype when applying AMF in
crop drought management strategies.
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