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SQUAMOSA Promoter-Binding Protein-Like (SPL) transcription factors are a plant-
specific family of regulatory proteins defined by a conserved SBP DNA-binding
domain. They play essential roles in plant growth and development, coordinating
processes such as the transition from juvenile to adult phase, branching, flowering
time, and organ morphogenesis. SPL activity is tightly regulated by the miR156/157
pathway, forming a critical developmental module that integrates intrinsic and
environmental cues. Recent research has expanded their known functions beyond
development, revealing that SPLs also contribute to plant responses to abiotic
stresses such as drought, salinity, nutrient deficiency, and temperature extremes,
as well as biotic stresses including pathogen attack. Functional genomics studies
across diverse species, including Arabidopsis, rice, maize, and forest trees, have
uncovered both conserved and species-specific roles, emphasizing SPLs as key
regulatory hubs in plant adaptation and productivity. This review summarizes
advances in understanding SPL gene evolution, regulatory mechanisms, and
interaction networks, with a focus on their relevance to plant architecture, leaf
development, stress tolerance and crop improvement. Future applications of SPL
research, particularly through gene editing, molecular breeding, and
biotechnological innovations, present opportunities to optimize plant
architecture, enhance resilience, and support sustainable agriculture and forestry
in the face of climate change.
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1 Introduction

Plant growth and development are governed by complex regulatory networks, with
transcription factors (TFs) functioning as key modulators of gene expression in response to
both intrinsic developmental cues and environmental conditions (Khoso et al., 2022).
Acting as molecular switches, TFs influence a wide range of physiological processes
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including meristem activity, organ initiation, phase transitions, and
responses to abiotic stress (Huang et al., 2021; Chopy et al,, 2023;
John et al., 2024). Their regulatory versatility makes them central to
the coordination of plant form, adaptability, and productivity
(Ritonga et al., 2021).

Among these TFs, the SQUAMOSA Promoter-Binding
Protein-Like (SPL) family constitutes a lineage-specific group
unique to the plant kingdom (Chen et al, 2010). SPL proteins
possess a conserved SQUAMOSA Promoter-Binding Protein (SBP)
domain that interacts with GTAC motifs in the promoters of target
genes (Zhang et al, 2022). First identified in Antirrhinum majus
and later in Arabidopsis thaliana, SPLs have been studied in diverse
species, including Oryza sativa, A. thaliana, and Triticum aestivum
(Xie et al.,, 2006; Wang et al., 2009; Li et al., 2022). These TFs are
best known for regulating developmental phase transitions,
flowering time, branching, and organ morphogenesis (Chen et al.,
2010). Their expression is post-transcriptionally repressed by
microRNAs, particularly miR156 and its paralog miR157, a
mechanism that confers age-dependent control over SPL activity
(Wang and Wang, 2015; Zhu et al., 2022). Functional studies have
revealed that certain SPLs, such as SPL2, SPL5, and SPL16, exhibit
partially redundant but distinct roles in shaping plant architecture
through temporal and tissue-specific expression patterns (Cao et al.,
2019; Sun et al.,, 2024; Zhang et al., 2024).

Leaf development represents a key facet of plant
morphogenesis, determining photosynthetic capacity, plant
architecture, and stress resilience. Traits such as leaf shape,
curvature, angle, and size influence light interception, gas
exchange, and developmental timing, and are therefore of
agronomic importance (Ritonga et al., 2023; Nikolopoulos et al.,
2024). Recent research has uncovered that SPLs function at multiple
levels of leaf development, influencing processes such as juvenile-
to-adult phase transitions, adaxial-abaxial polarity, and leaf blade
curvature (Wang et al., 20215 Li et al., 2025a). For instance, HB34
regulate plant architecture in Arabidopsis by forming a regulatory
module with miR157 and SPL10. HB34 directly represses miR157
and activates AtSPLIO, establishing a feed-forward loop that
influences branching and inflorescence structure in Arabidopsis
leaves (Lee et al, 2022), while SPL9 contributes to freezing
tolerance in A. thaliana by directly controlling the expression of
the AtCBF2 gene (Zhao et al., 2022b). Additionally, SPLs integrate
hormonal signals such as cytokinin, gibberellin, and auxin,
modulating growth plasticity under varying environmental
conditions (Song et al., 2020).

In this review, we aim to integrate current knowledge of how
SPL TFs regulate leaf development across plant species. We
examine their molecular interactions with genetic and hormonal
pathways, their roles in developmental transitions and
morphogenesis, and their responses to environmental cues. We
also discuss the potential applications of SPLs in crop improvement,
particularly in optimizing leaf traits for enhanced light capture,
improved canopy architecture, and increased stress tolerance. By
linking fundamental discoveries from model systems with
translational insights from crop research, we highlight the
multifaceted role of SPLs in shaping plant form and performance.
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2 Overview of SPL transcription
factors

The SQUAMOSA Promoter-Binding Protein-Like (SPL)
transcription factors constitute a plant-specific gene family
initially discovered in A. majus due to their capacity to bind the
promoter of the floral meristem identity gene SQUAMOSA
(Preston and Hileman, 2010). Since their discovery, SPL genes
have been characterized in various plant species, where they
regulate a wide range of developmental processes, including phase
transitions, flowering, organ morphogenesis, and responses to
environmental cues (Chen et al, 2010; Song et al, 2020; Zhu
et al,, 2022). A defining feature of SPL proteins is the presence of
the SBP (SQUAMOSA Promoter-Binding Protein) domain a highly
conserved DNA-binding domain comprising around 76 to 80
amino acids, featuring two zinc finger motifs and a nuclear
localization signal (NLS) (Li et al., 2020a). The SBP domain
specifically binds GTAC core motifs in the promoter regions of
target genes, thereby modulating gene expression programs critical
for plant growth (Birkenbihl et al., 2005).

The SPL gene family exhibits variation in size across different
plant species. A. thaliana contains 16 SPL genes, while O. sativa has
19, and Zea mays possesses up to 31 SPL members (Wu and Poethig,
2006; Xie et al., 2006; Mao et al., 2016). These numbers reflect lineage-
specific expansions and gene duplication events, which have
contributed to both functional redundancy and divergence among
SPL family members. Phylogenetic analyses have grouped SPLs into
several distinct clades based on sequence similarity and domain
architecture, suggesting evolutionary specialization (Sun et al., 2021;
He et al, 2022). Although some SPL genes share overlapping
functions, others have acquired unique roles in tissue- or stage-
specific development (Zhang et al.,, 2025) (Table 1).

Post-transcriptional regulation plays a key role in SPL gene
function, particularly through microRNAs such as miR156 and
miR157 (Lee et al, 2022; Zhang et al., 2025). These conserved
miRNAs target sites within the coding region or 3’ untranslated
region (3’-UTR) of SPL transcripts, resulting in mRNA cleavage or
translational repression (Zhu et al., 2022). In Arabidopsis, 10 out of
16 SPL genes are regulated by miR156, and similar patterns are
observed in other species, including rice and maize (Wu and
Poethig, 2006; Xie et al., 2006; Mao et al., 2016). The expression
of miR156 is developmentally regulated high during early vegetative
stages and declining as plants mature thus timing the activation of
SPL genes that promote adult traits such as leaf complexity, shoot
maturation, and floral induction (Song et al., 20205 Li et al., 2022).
Functional studies have shown that specific SPLs, such as SPL9 and
SPL15, act redundantly in controlling vegetative phase change. In
contrast, others like SPL3, SPL4, and SPL5 specialize in promoting
floral development, illustrating the functional divergence within this
gene family (Wu and Poethig, 2006; Zhao et al., 2022b; Yan et al,,
2024). In the past five years, research trends on SPLs in plants have
been summarized in Figure 1. The figure highlights that miR156,
plant architecture, abiotic stress, and hormones are key topics
closely associated with SPL studies.
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FIGURE 1

Visualization of research trends related to SPL genes in plants over the past five years using a term co-occurrence map of SPL studies using
VOSviewer software version 1.620 (https://www.vosviewer.com/). The figure highlights miR156, plant architecture, abiotic stress, and hormonal
regulation as major research themes closely associated with SPL studies. (accessed: 24 August 2025).

3 Regulation and functional
integration of SPLs in leaf
development

The expression of SPL genes is precisely regulated in both space
and time to synchronize plant development. In general, SPL
transcripts are low in juvenile tissues and accumulate
progressively during vegetative growth, marking the transition to
the adult phase. Spatially, different SPLs exhibit distinct expression
patterns; some are preferentially expressed in shoot apices and
young leaves, while others localize to reproductive meristems or
vascular tissues. For instance, AfSPLI0 is primarily expressed in leaf
primordia and midveins in A. thaliana (Xu et al., 2025a), where it
influences leaf polarity and curvature. In contrast, BrSPL9 exhibits
broader expression in shoot and leaf tissues, affecting both phase
change and morphogenesis in Brassica rapa (Wang et al., 2014).

The regulation of SPL expression is under tight developmental
control, primarily through the age pathway mediated by miR156 (Jiao
et al, 2010). During early vegetative growth, high levels of miR156
suppress SPL transcripts. As the plant ages, miR156 levels decline,
allowing OsSPL expression to rise and promote adult traits such as leaf
serration, curvature, and the initiation of reproductive development
(Table 2). In addition to age, SPLs respond to hormonal and
environmental cues (Song et al,, 2023). In Arabidopsis, cytokinin has
been shown to induce AfSPLI0 expression through ARRI, integrating
hormonal signals with developmental timing (Barrera-Rojas et al,
2020). Other hormones such as auxin and gibberellins (GA) also
influence SPL activity, either by modulating miR156 levels or through
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interaction with SPL targets, suggesting a complex network of
regulatory feedback in Pyrus (Song et al., 2020).

SPLs function through both direct and indirect interactions
with key transcriptional regulators involved in leaf patterning
(Chen et al., 2010). For example, AtSPL10 modulates leaf
curvature by interacting with the HD-ZIP III transcription factor
REVOLUTA (REV), forming a module that coordinates adaxial-
abaxial polarity (Xu et al., 2025a). AfSPL9 and AtSPL15 are known
to regulate or interact with TCP TFs, which are critical in
controlling leaf shape and cell senescence (Hyun et al, 2016).
Furthermore, AtSPLs exhibit antagonistic or synergistic
relationships with AtKNOX genes, which play roles in meristem
maintenance and compound leaf development (Roth et al., 2018).
Hormonal pathways converge on these interactions. Cytokinin
promotes AtSPL expression via ARRI (Barrera-Rojas et al., 2020),
while auxin may counteract SPL-mediated processes during organ
initiation (Liu et al., 2019). Together, these cross-regulatory
interactions position SPLs as key integrators of developmental
timing, environmental adaptation, and hormonal signaling in
shaping leaf morphology (Figure 2).

4 SPLs in leaf curvature and
morphogenesis

Leaf curvature is a fundamental architectural trait that
determines the efficiency of light interception, gas exchange, and
overall plant productivity (Tabusam et al., 2023). It results from

frontiersin.org


https://www.vosviewer.com/
https://doi.org/10.3389/fpls.2025.1696036
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Ritonga et al. 10.3389/fpls.2025.1696036
. ‘ -------- » mMIiR156/157
oo K
! SPLs
low el ;
% =
= :
adaxial-abaxial leaf shape and meristem
polarity cell proliferation maintenance
FIGURE 2

A schematic model of SPL gene regulation and functional integration in leaf development. SPL expression is modulated by miR156, hormones
(cytokinin, auxin, and GA), and transcription factors (REV, TCP, and KNOX), thereby coordinating developmental phase transitions, leaf polarity, and
morphogenesis. The blue spheres indicating that they represent other regulatory genes that can either repress or enhance the expression of

miR156/157.

differential cell growth along the adaxial (upper) and abaxial (lower)
surfaces of the leaf, often governed by a complex regulatory network
involving polarity genes, hormonal signaling, and transcriptional
programs (Tang et al., 2009). In model species such as A. thaliana,
recent studies have identified SPL TFs, particularly AtSPLI0, as key
regulators of leaf curvature, acting through both genetic and
hormonal modules to control this finely tuned process (Xu
et al., 2025a).

A pivotal study by Xu et al. (2025a) demonstrated that SPL10
interacts directly with REVOLUTA (REV), an HD-ZIP III
transcription factor known to promote adaxial leaf identity.
Through physical interaction and co-expression, AtSPLI0 and
REV form a regulatory module that coordinates adaxial-abaxial
polarity and defines curvature outcomes. Overexpression of
AtSPL10 in Arabidopsis resulted in severely curled leaves, whereas
loss-of-function spl/I0 mutants partially rescued the curled-leaf
phenotype in rev mutants, highlighting functional convergence.
This genetic interaction mirrors earlier findings on HD-ZIP III
(REV) and KANADI pathways, suggesting that SPLs operate within
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established polarity networks (Emery et al., 2003; Husbands et al.,
2009). In addition, ZF-HD transcription factors, especially HB34,
regulate shoot architecture in Arabidopsis by repressing miR157
and promoting the expression of its target gene, SPL10 (Lee
et al.,, 2022).

Beyond its direct regulation of REVOLUTA (REV), BrSPLI10
may influence broader leaf polarity pathways in Chinese cabbage
(Xu et al,, 2025a). Although SPLI10 influences leaf morphology and
polarity through regulatory modules involving REVOLUTA (REV),
there is no evidence that SPL10 directly regulates abaxial
determinant genes such as KANADI or YABBY. Any observed
effects on leaf polarity are more likely mediated indirectly through
REV- or BOP-dependent pathways (Gao et al., 2018; Hu
et al., 2023).

The phenotypic consequences of SPL10 manipulation are
striking: while overexpression results in upward-curled, narrow
leaves, spl10 mutants display more flattened, expanded leaf blades.
This phenotype is partially rescued in rev sp/10 double mutants,
confirming the antagonistic yet cooperative function of AtSPL10
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and REV (Xu et al., 2025b). These findings parallel observations in
other SPLs such as SPL9, which also contribute to morphogenetic
traits, though with less direct influence on curvature. Comparative
studies across species remain limited, but the regulatory logic
appears conserved; for instance, BrpSPL9 in B. rapa affects
heading time and leaf folding, possibly through similar polarity
and growth control pathways (Wang et al., 2014). In addition,
AGAMOUS-like MADS box protein 79 (AGL79) regulates plant
development in a dose-dependent manner, affecting leaf
morphology, shoot branching, and flowering. AtSPL10 directly
activates it and acts downstream of the miR156/SPL10 module to
influence lateral root growth (Gao et al., 2017).

Understanding the role of SPLs in leaf curvature has important
implications for agriculture (Wang et al., 2022). In crops like rice and
maize, optimal leaf angle, a trait closely tied to curvature and blade
architecture, is critical for maximizing light interception and yield
under dense planting. While most SPL research has been centered on
Arabidopsis, translational insights are emerging (Li et al., 2020b). For
example, OsSPL14 (IPA1l), a gene regulated by OsmiR156, plays a
crucial role in shaping the ideal plant architecture in rice by reducing
tiller quantity, enhancing lodging resistance, and increasing grain
yield (Jiao et al., 2010). Bridging these studies with knowledge from
Arabidopsis SPL10-REV systems offers potential routes for
engineering ideotype leaves with favorable curvature and angles for
enhanced photosynthetic efficiency and crop improvement.

5 SPLs in leaf senescence and
maturation

Leaf senescence is the final developmental stage of a leaf’s
lifecycle, marked by coordinated processes such as chlorophyll
degradation, nutrient remobilization, and programmed cell death
(Guo et al,, 2021; Ritonga et al., 2023). It is tightly regulated by both
internal developmental cues and external environmental factors.
Among the internal regulators, the miR156-SPL module has
emerged as a central age-dependent mechanism that coordinates
the timing of leaf maturation and senescence (Xu et al., 2016). In
young plants, high levels of miR156 suppress the expression of its
target SPL genes, maintaining juvenile traits and delaying aging. As
the plant matures, miR156 levels decline, while miR172 levels
increase, leading to the gradual activation of SPL transcription
factors that promote adult-phase characteristics, including leaf
ageing (Vander Schoor et al., 2022).

SPL9 is a key transcription factor involved in developmental phase
change via the miR156-SPL module. To date, no studies have explicitly
shown that SPL9 directly regulates ORE1, SAG29, or chlorophyll
biosynthesis genes (Seo et al, 2011; Rauf et al, 2013). These
senescence pathways may operate independently or downstream of
other regulators. In contrast, SPL13 has been implicated in age-related
developmental transitions, although its role in leaf senescence appears
to be less pronounced than that of SPL9. Notably, recent findings
suggest that AtSPL13 orthologs can respond to hormonal cues such as
abscisic acid (ABA) and ethylene, potentially linking hormonal signals
with age-related gene expression (Song et al., 2023).
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Although direct evidence linking SPLs to nutrient remobilization
is limited, SPL transcription factors, particularly SPL9 have been
shown to regulate age-dependent developmental transitions and
influence the expression of senescence-associated genes. These
include genes involved in chlorophyll degradation and leaf
maturation, highlighting their role in the timing and progression of
leaf senescence. The upregulation of SPLs during later developmental
stages reflects their function as phase identity markers, bridging the
transition from juvenile to adult stages and reproductive competence.
Collectively, current findings support SPLs, especially those regulated
by the miR156 pathway, as essential components in the genetic
network that integrates age cues with transcriptional regulation of
senescence (Figure 3) (Xu et al,, 2016).

6 Crosstalk between SPLs and
environmental signals

Plants constantly adjust their development in response to
changing environmental conditions, and TFs, such as SPLs, serve
as critical hubs that integrate internal genetic programs with
external signals (Ritonga et al., 2021). Recent studies have shown
that SPL gene expression and activity can be modulated by
environmental factors, including light intensity, temperature
fluctuations, and abiotic stressors such as drought, salinity, and
nutrient limitation (Zhao et al, 2022b; Jing et al, 2025). Light-
regulated developmental transitions, for instance, are partly
mediated by changes in miR156 expression, which in turn affects
the timing of SPL gene activation. Under extended photoperiods or
high light conditions, a reduction in miR156 leads to increased SPL
activity and the advancement of developmental events, such as leaf
expansion and senescence (Cao et al., 2023).

Temperature extremes and abiotic stress also alter the function of
SPL in leaves. Several SPLs, including SPL9 and SPL13, have been
reported to participate in stress adaptation mechanisms, often through
downstream targets involved in hormone signaling, redox regulation,
and cell wall modification (LaFountain and Yuan, 2021; Ma et al., 2021;
Zhao et al, 2022b). For example, under aluminum stress, SPL13
expression increases while miR156 is suppressed in alfalfa roots.
Overexpression of miR156 leads to higher Al accumulation,
membrane damage, and nutrient loss, whereas increased SPL13
enhances root length and Al tolerance. Transcriptome and ChIP-seq
analyses revealed that SPL13 regulates genes involved in Al response,
including transporters, transcription factors, and cell wall-associated
proteins (Allam et al., 2025). Additionally, SPLs may indirectly mediate
tolerance by modulating leaf structure and growth, enabling
adjustments in leaf size, angle, or curvature to reduce water loss or
optimize light capture under adverse conditions (Li et al., 2024; Bu
et al,, 2025). Furthermore, overexpression of BpmiR156 resulted in the
transcriptional downregulation of BpSPL4 and BpSPLY9, accompanied
by differential expression of hormone-related genes involved in auxin
and cytokinin biosynthesis, including BpARR3, BpARRII, and
BpmiR172 (Yan et al,, 2024).

At the molecular level, epigenetic and transcriptional
reprogramming play a role in linking stress with SPL regulation.
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FIGURE 3

Network of genes associated with SPL transcription factors and the miR156/miR172 regulatory modules in controlling leaf curvature and senescence.
The figure illustrates how SPLs integrate age-related miRNA signaling with hormonal and transcriptional pathways to modulate leaf polarity,

morphogenesis, and aging processes.

Environmental stress can affect histone modifications and DNA
methylation at the MIR156 locus or SPL promoters, thereby shifting
the expression thresholds of these genes reversibly (Bu et al., 2025).
Moreover, SPLs themselves may be subject to transcriptional
repression or activation by stress-induced transcription factors,
such as DREB or WRKY family members, which are known to
bind to the promoter regions of development-related genes (Zhao
et al,, 2022b). These layers of regulation enable a flexible and
context-dependent role for SPLs in tuning leaf growth and
developmental timing under environmental stress, underscoring
their importance in shaping both plant form and resilience (Zheng
et al., 2019; Jerome Jeyakumar et al., 2020).

7 SPLs in crop leaf development

While much of our mechanistic understanding of SPL TFs
stems from studies in A. thaliana, recent research has expanded to
include several economically important crops including rice, maize,
wheat, barley and sorghum, revealing both conserved and
specialized roles for SPLs in regulating leaf development, plant
architecture, and yield-related traits (Liu et al., 2019; Giaume and
Fornara, 2021; He et al., 2024; Zhong et al., 2024). In rice, SPL14
regulates leaf angle and tiller number, contributing to higher
planting density and improved yield (Jiao et al., 2010). However,
in another study, it was confirmed that OsSPL14 enhances rice grain
appearance by reducing chalkiness through direct activation of Wx
and PDIL1-1, key genes involved in starch and protein regulation.
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It also interacts with NF-Y transcription factors to promote their
expression. Loss of OsSPL14 impairs endosperm development,
highlighting its crucial role in improving grain quality (Li et al,
2025b). In maize (Zea mays), SPL genes such as ZmSPL12 have been
linked to plant height, leaf width, and photosynthetic efficiency
(Zhao et al, 2022a). In wheat (Triticum aestivum), SPL family
members are involved in flag leaf morphology, influencing grain
filling and biomass accumulation (Liu et al, 2019). Notably, in
Chinese cabbage (Brassica rapa ssp. pekinensis), BrpSPL9 has been
shown to regulate the earliness of heading time by affecting leaf
incurvature, a key trait for head formation (Wang et al., 2014).

Given their central roles in leaf architecture, manipulation of SPL
genes has emerged as a promising strategy for enhancing crop traits.
CRISPR/Cas9-mediated modification of SPL genes has been
successfully applied in crops such as tomato and soybean. In tomato,
editing the SPL-CNR gene impaired fruit ripening, ethylene
production, carotenoid accumulation, and volatile synthesis,
confirming SPL-CNR’s central role in ripening regulation (Do et al,
2024). In soybean, simultaneous mutation of multiple GmSPL9 genes
using CRISPR/Cas9 led to changes in node and branch number,
demonstrating the potential of SPL gene editing to improve plant
architecture and yield-related traits (Bao et al, 2019). In Chinese
cabbage, altering BrpSPL9 expression can control heading time and
leaf folding, which are crucial for market quality (Wang et al,, 2014).
Unfortunately, there is no published evidence of CRISPR/Cas9-
mediated modification of SPL family genes in Chinese cabbage.

The biotechnological potential of SPLs extends beyond trait
modification to the development of climate-resilient soybean.
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TABLE 1 Overview of SPL genes and their regulatory roles in plant architecture across species.

10.3389/fpls.2025.1696036

SPL gene Interacting gene(s) = Function Interaction type Species  Reference
Protein—protein int tion; . Xu et al.,
AtSPLI0 REVOLUTA (REV) Promotes adaxial identity, regulates leaf curvature -ro em-protein interaction A. thaliana (Xueta
direct target 2025a)
. . . R X (Rahimi et al.,
AtSPL2/9/13/15 miR156/157 and AHL15/20 | slow down plant ageing miRNA-target regulation A. thaliana 2022)
) . . ) ) (Gao et al.,
AtSPL10 miR156 and AGL79 Control plant architecture (narrow leaves) miRNA-target regulation A. thaliana 2017)
Betul Yan et al,,
BpSPL4/SPL9 miR156 Regulates leaf and lateral branch development miRNA-target et (Yan eta
platyphylla 2024)
. . . . . . . (Lee et al.,
AtSPLI0 HB34 and miR157 Modify branching and inflorescence architecture miRNA-target A. thaliana 2022)
. . . (Bao et al.,
GmSPL9 miR156b Alter soybean architecture miRNA-target G. max 2019)
Alters leaf ang]. i 1 iao et al.,
OsSPL14 (IPAI) miR156 tel'rs eaf angle and erectness through ideal plant miRNA-target 0. sativa (Jiao et a
architecture pathway 2010)
BrpSPLO miR156 Regulates heading time and leaf folding in Chinese miRNA-target B. rapa (Wang et al,,

cabbage

2014)

TABLE 2 Overview of SPL genes and their roles in biotic and abiotic stress responses.

Environmental Interacting . Interaction .
. SPL gene Function Species Reference
signal gene(s) type
Triti 7t t al.,
TaSPL6 NA Enhance sensitivity to drought stress NA " 1‘cum (Zhao eta
aestivum 2024)
Drought stress
iRNA-target E hi Kong et al,,
EoSPL1-EoSPL19 miR156 Diverse responses to abiotic stress m . arge rer‘noc X oa (Kong eta
regulation ophiuroides 2025)
Enhﬁerce s?nsitivity to exogenous ‘ (Zhang et al,
OsSPL1 NA abscisic acid (ABA), and decreased NA O. sativa 2012)
tolerance to salt and oxidative stress
Salt stress ERF,
ARSPLS ‘WRKY, MYB, Dof, Enhance salt tolerance in transgenic miRNA-target Arachis (Sun et al.,
and microRNAs, Arabidopsis regulation hypogaea 2024)
like ahy-miR156
B invol f HaSPLs in th iRNA- Heli hao et al.,
Water stress HaSPL miR156 road involvement of HaSPLs in the miRN. . target elianthus (Jadhao et al
response to flood and drought stresses regulation annuus 2023)
ABAreceptorsPYR1/ | Play a crucial role in the mechanisms of (Chao et al
Heat stress AtSPL1 or AtSPL12 PYL1/PYL2/PYL4/ plant thermotolerance at the NA A. thaliana 2017) N
PYL5/PYL8 reproductive stage
BvSPLs NA PaniciPate in the regulation of %'oot NA Beta vulgaris (Xue et al.,
expansion and sugar accumulation. 2024)
Cold/freezing stress
Zhao et al.,
AtSPL9 CBF2 control the expression of the CBF2 gene ~ NA A. thaliana ;02;{:)6 !
Play a critical role in quinoa
Ch, di Ren et al.,
CqSPLs NA development and in its response to NA 'enop odium | (Ren et a
. . quinoa 2022)
various abiotic stresses
Abiotic stresses miRNA-target Scutellaria (Wu et al,,
PL7/9/10/12 iR156/157 late i iotic st
SbSPL7/9/10/. miR156/ Upregulate in response to abiotic stress regulation baicalensis 2024)
E: ial f ivati f ABA iRNA- D t al,
ASPLO miR156 ssential for activation o miRN. ' target Arabi dopsis (Dong et al
responses regulation 2021)
Ciboria shirai iR5658 and iRNA-target Zh t al,
1vona siraiana MaSPL8 m% an integrate with phytohormone pathways m . age Morus alba (Zheng et a
stress miR4221 regulation 2025)

Frontiers in Plant Science

07

frontiersin.org


https://doi.org/10.3389/fpls.2025.1696036
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Ritonga et al.

By targeting SPLs that interface with hormonal and environmental
pathways, breeders can develop plants that adapt their leaf
morphology to stress conditions such as drought or high planting
density. Genome editing technologies, such as CRISPR/Cas9, offer
precise tools to manipulate specific SPL loci without introducing
foreign genes, thereby enhancing the acceptance of soybean in
regulatory frameworks (Bao et al., 2019). As research continues to
uncover the molecular targets and networks controlled by SPLs,
these transcription factors emerge as valuable levers in designing
next-generation rice, barley, wheat, sorghum with optimized
canopy structure, enhanced photosynthetic efficiency, and
improved yield potential.

8 Challenges and future perspectives

Despite significant advances in understanding the roles of SPL
transcription factors, several challenges remain that limit the full
exploitation of their potential in both basic research and crop
improvement. Most current studies focus on a few well-
characterized SPLs (e.g., SPL3, SPL9, SPL10, SPL14) in model
plants like Arabidopsis and rice, leaving the functions of many
other family members unexplored, especially in non-model and
economically important species (Bu et al., 2025). Additionally, the
phenotypic redundancy among SPL paralogs often masks loss-of-
function effects, complicating the functional dissection (Preston and
Hileman, 2010; 2013). Moreover, the molecular mechanisms linking
SPL activity to cellular and tissue-level changes in leaf morphology
are still incomplete, particularly regarding downstream targets, spatial
specificity, and cross-regulatory feedback (Li et al., 2024).

To overcome these limitations, future research will benefit from
integrated multi-omics and systems biology approaches, including
transcriptomics, proteomics, epigenomics, and metabolomics (Tyagi
et al, 2022). Such strategies can unravel the broader regulatory
networks in which SPLs are embedded and identify dynamic
changes during leaf development or in response to environmental
conditions. Computational modeling, gene regulatory network
mapping, and cell-type-specific expression profiling will also
enhance our ability to predict SPL functions under diverse
developmental and environmental conditions (Van den Broeck
et al., 2020; Saint-André, 2021; Fu et al.,, 2024). These
comprehensive approaches are especially important for translating
findings from Arabidopsis to crops, where environmental variability
and complex traits require a systems-level understanding.

The emergence of precise genome editing tools such as CRISPR/
Cas9 has opened new avenues for SPL-based breeding strategies
(Razzaq et al,, 2021). By targeting individual SPL genes or their
regulatory elements, such as miR156-binding sites or promoter
regions, researchers can modulate leaf architecture traits in a
controlled manner. Looking ahead, emerging research into non-
coding RNAs, including long non-coding RNAs (IncRNAs) and
circular RNAs (Liu et al., 2015; Zhang and Dai, 2022), suggests new
layers of post-transcriptional SPL regulation that remain largely
unexplored. Furthermore, post-translational modifications of SPL
proteins, such as phosphorylation, ubiquitination, or interaction
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with chromatin remodelers, may fine-tune their stability and
activity in a context-dependent manner (Li et al, 2025c¢).
Expanding our knowledge in these areas will be critical for
unlocking the full potential of SPLs as master regulators of leaf
development and stress adaptation in crops.

9 Conclusion and future perspective

SQUAMOSA Promoter-Binding Protein-Like (SPL)
transcription factors are central regulators of plant development,
orchestrating genetic, hormonal, and environmental signals to shape
plant architecture, flowering, and stress responses. Advances in
functional genomics and molecular genetics have demonstrated the
highly conserved yet functionally diverse roles of these fields across
species, influencing critical traits such as vegetative-to-reproductive
phase transitions, reproductive development, and tolerance to abiotic
and biotic stresses. However, significant knowledge gaps remain,
particularly in understanding species-specific SPL regulatory
networks, their interactions with other transcription factors, and
their evolutionary diversification in both crop and forestry species.
Future research integrating high-resolution transcriptomics,
advanced gene-editing technologies, and comparative genomics will
be crucial to unlock the full potential of SPL genes in plant breeding.
Harnessing SPL functions through targeted genetic engineering
presents promising opportunities to optimize plant architecture,
increase yield, and enhance resilience to climate change. By
bridging molecular discoveries with applied breeding strategies and
biotechnological innovation, SPL transcription factors can be
transformed from fundamental research targets into practical tools
for sustainable agriculture and forestry.
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