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Introduction: Manure substitution for chemical nitrogen has the potential to
enhance crop yield, improve soil quality, and reduce environmental risks. Soil
microorganisms perform critical functions in mediating soil nutrient cycling after
the organic manure application. Nonetheless, how organic manure substitution
regulates microbial communities to influence soil quality and crop yield
remains unclear.

Methods: A one-year field experiment comprising four organic manure
substitution rates (25%, 50%, 75%, and 100%) along with a no-substitution
control was conducted.

Results and disscussion: Compared to CK, only 25% substitution rate maintained
maize yield, while 50-100% manure substitution decreased maize yield by 15.9-
67.2%. This is primarily due to the decrease in root biomass (13.5-29.1%), length
(14.8-43.3%), surface area (14.1-48.8%) and volume (17.9-53.4%). Manure
substitution only increased soil quality index by 44-55% in the 0-20 cm depth,
mainly as a result of increased contents of soil organic C, total nitrogen, microbial
biomass C and N, and enzyme activities. Moreover, manure substitution
significantly increased the abundance of Actinobacteriota, Acidobacteriota,
Gemmatimonadota, and Methylomirabiliota, with increases ranging from 12%
to 101%. The strong correlations between these bacterial taxa and soil nutrient
and C/N acquiring enzyme activities highlight their pivotal roles in boosting soil
nutrients and enhancing soil quality. Therefore, organic manure substitution can
be a sustainable fertilizer regime to enhance soil quality and maintain maize yield
in Northeast China, and the optimal substitution rate is 25%.
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1 Introduction

The black soil zone in Northeast China constitutes the country’s
most crucial grain production base, which contributes over 30% of the
national maize output (Wang et al., 2022). However, the
overapplication of chemical fertilizers has accelerated the degradation
of soil organic matter, leading to reduced nutrient availability (Tian
et al,, 2022), the disruption of soil structure (Ali et al, 2024), and
impaired soil multifunctionality (Wang et al., 2024a). These adverse
alterations in soil conditions threaten the stability of agricultural
ecosystems and undermine the long-term viability of crop
production systems (De Corato et al,, 2024). Confronted with these
challenges, preventing the degradation of black soils and maintaining
their capacity for high and stable crop yields are essential for achieving
sustainable agricultural development.

The application of organic manure represents an environmentally
sustainable solution to mitigate soil degradation and support long-term
agricultural productivity (Wu et al,, 2025). China possesses substantial
livestock manure resources; however, an estimated 20%-45% of this
organic material remains unmanaged, resulting in high risks of
environmental contamination and nutrient loss (Zhang et al., 2023).
Integrating manure into agricultural systems presents a dual benefit: it
enables efficient recycling of organic resources to enhance soil fertility
while simultaneously mitigating environmental pollution caused by
unmanaged agricultural waste (Yin et al,, 2025). Nevertheless, existing
studies indicate that the exclusive application of organic manure may
fail to meet crop nutrient demands owing to its relatively low nutrient
use efficiency (Li et al., 2022). Consequently, the partial substitution of
chemical fertilizers with organic amendments has been proposed as a
strategy to mitigate the limitations associated with sole manure
application (Zhai et al, 2022). Niu et al. (2024) demonstrated that
replacing 50% of synthetic fertilizer with manure was a sound option for
achieving high crop yield and yield stability in the Guanzhong Plain.
However, the effect of organic manure substitution to reduce synthetic
nitrogen inputs in Northeast China remains inadequately evaluated.

Soil quality is a key indicator for assessing the capacity of soil to
sustain ecosystem services (Salimani et al., 2025). Soil quality was
assessed using an area-based method that integrated a set of biotic
and abiotic indicators and was significantly influenced by fertilization
management (Jia et al., 2022). Previous studies have indicated that
incorporating organic amendments can improve soil quality
and increase crop yields in various agricultural systems (Li et al,
2025). These benefits are largely attributed to improvements in soil
nutrient availability, physical properties, and microbial ecological
environment (Ju et al., 2022; Zhu et al, 2025). Sihi et al. (2017)
observed that organic fertilizer applied in Sierozem soil can enhance
soil water content and reduce soil bulk density compared to
conventional mineral fertilization practices. Organic fertilizer can
also increase soil quality by enhancing soil organic C, total N, and
total P (Tian et al., 2022). At the same time, organic amendments can
mitigate inorganic nitrogen leaching—specifically ammonium and
nitrate—by enhancing the soil’s nutrient retention capacity (Guo
et al., 2025). Soil enzyme activities are widely recognized as sensitive
indicators of soil quality (Trasar-Cepeda et al., 2008). Organic
amendments have been directly linked to increased activities of soil
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C- and N-related enzymes, including urease, invertase, catalase, and
various hydrolytic enzymes (Feng et al., 2025). While most studies
have integrated these indices to evaluate soil quality under organic
fertilization applied (Jiang et al., 2022; Zhou et al., 2022), few have
focused on the organic manure substitution for chemical N,
particularly in the severely soil-degraded regions of Northeast China.

The soil microbiome serves as a fundamental driver of soil
functionality and fertility, with its compositional structure and
diversity being strongly influenced by fertilization management
practices (Li et al., 2022; Yang et al, 2023). The partial
application of organic amendments can effectively improve
microbial habitat conditions and alter microbial community
structure (Zhou et al., 2024). For example, long-term manure
application has been proven to significantly increase the
abundance of Proteobacteria and Chloroflexi in reddish paddy
soil (Cui et al,, 2018). Additionally, Liu et al. (2024) demonstrated
that the combined application of manure and chemical fertilizers
enhanced the abundance of bacterial taxa associated with nutrient
cycling and utilization efficiency, particularly Firmicutes,
Actinobacteria, and Planctomycetes. Shifts in soil microbial
community structure and function are primarily driven by
fertilizer-induced alterations in soil physicochemical properties
(Ma et al,, 2025). Consequently, the high sensitivity of microbial
community properties to soil nutrient dynamics makes them
reliable biomarkers for evaluating soil quality (Li et al, 2023).
However, the integration of soil microbial indicators into soil
quality assessments has rarely been evaluated under organic
fertilizer substitution for chemical fertilizers.

Therefore, we carried out a one-year field experiment with different
manure substitution rates for chemical fertilizer in the Northeast China
Mollisol region to 1) evaluate the influence of organic manure
substitution on soil physicochemical properties, enzyme activities, and
soil quality; 2) identify the response of key soil microbial taxa to varying
manure substitution rates; and 3) elucidate the microbial mechanisms
through which organic fertilizer substitution influences maize yield and
soil quality. We hypothesized that organic manure substitution would
improve soil quality and crop yield by enhancing soil physicochemical
properties and enzyme activities, as well as by enriching specific soil
microbial taxa. To elucidate the microbial mechanisms by which the
partial substitution of chemical fertilizers with organic manure
influences soil quality and crop productivity, we conducted a
comprehensive analysis that integrated soil physicochemical
properties, enzyme activities, bacterial communities, and key root
architecture traits, with ultimate crop yield. The goal of this
experiment was to determine the most effective rate of organic
manure replacement that both improves soil quality and maintains
maize yield in the Northeast China Mollisol zone.

2 Materials and methods

2.1 Study site

The study was carried out at the Qiqihar Experimental Station,
Heilongjiang Academy of Agricultural Sciences (47°36" N, 123°65’ E;
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elevation 127 m), situated in Qigihar City, Heilongjiang Province,
China. The experimental site experiences a mid-temperate continental
monsoon climate, with a mean annual precipitation of 434.5 mm and
an average temperature of 4.7 °C. The soil type was a Chernozem
Mollisol (IUSS Working Group WRB 2015). The topsoil layer
properties were soil organic carbon (SOC) 21.9 g kg™', alkaline
hydrolyzed nitrogen (AHN) 99.8 mg kg ', pH 8.4, and bulk density
(BD) 1.58 g cm .

2.2 Experimental design

A randomized complete block design with three replicates (n = 3)
was implemented in 2024. The experiment comprised five treatments:
CK, 100% chemical fertilizer N; 25%, 25% dairy manure N substitution;
50%, 50% dairy manure N substitution; 75%, 75% dairy manure N
substitution; and 100%, 100% dairy manure N substitution. The
control (CK) treatment received fertilizer applications at rates of
187.5 kg N, 42.6 kg P, and 62.2 kg K per hectare, following local
agronomic recommendations. Nutrient application rates for all
treatments are detailed in Table 1. Maize (cv. ‘Nendan 22’) was
planted at a density of 67,500 plants ha™', with row spacing of 65
cm and plant spacing of 22 cm within rows. The crop residues were
incorporated to a depth of 0-20 cm each year. To ensure seed
germination, all plots were irrigated with 30 mm of water following
maize sowing. Neither pesticides nor herbicides were applied
throughout the experiment. All other field management practices
aligned with those commonly employed in the region.

2.3 Soil sampling and analysis

Soil samples were obtained from depth intervals of 0-20 and
20-40 cm following maize harvest on 5 October 2024. Each soil
sample was separated into three subsamples. One subsample was
stored for analysis of SOC, total nitrogen (TN), available nitrogen
(AHN), available phosphorus (AP), and available potassium (AK),
following the analytical procedures described by Bao (2000). Soil
BD was determined using the ring-knife sampler (volume of 100
cm?®) method. Dissolved organic carbon (DOC) and nitrogen

TABLE 1 Details of fertilizer treatments and fertilizer rates (kg ha™ year™).

10.3389/fpls.2025.1694608

(DON) in the potassium sulfate extracts were measured using a
carbon-nitrogen analyzer. The second subsample was kept at 4 °C
to measure microbial biomass carbon (MBC)/microbial biomass
nitrogen (MBN) and six hydrolyzing enzyme activities. The third
subsample was stored at —20 °C for DNA extraction. Soil MBC and
MBN were quantified using chloroform fumigation extraction
(Vance et al, 1987). The activities of six hydrolyzing enzyme
activities were identified using the fluorescence methods (Marx
et al.,, 2001). Microbial metabolic limitations were also evaluated,
and the calculation methods are according to (Equations 1-3):

Vector length =

BG+BX + CE 2+ BG+BX + CE 2
BG + BX + CE + ACP BG + BX + CE + LAP + NAG

(1)

Vector angle =

BG + BX + CE BG + BX + CE
BG + BX + CE + ACP’ BG + BX + CE + LAP + NAG

(2)
Soil quality index (SQI) was calculated by comparing the area

Degrees (Atanz (

on a radar graph comprising all soil indicators (Feng et al., 2024).

2
SQLureu =0.5- E?SL% - sin (—”> (3)
n

where n represents the number of soil indicators used for SQI
calculation, and “SL;“ represents the linear score of the ith
soil indicator.

2.4 Crop yield and root traits

Maize grain yield was quantified by harvesting within a 6-m?
area per plot, followed by air-drying and mechanical threshing to
determine dry grain weight. Root traits were analyzed using an
Epson Perfection V750 Pro scanner, and image analysis using the
WinRHIZO software quantified root architectural parameters,
including length, surface area, and volume. Root biomass was
determined following oven-drying at 80°C.

Chemical fertilizer Manure
Treatment
CK 187 46 622 0 0 0 187 46 622
25% 140 426 622 47.0 0.42 1.46 187 43.0 63.7
50% 93.7 426 622 933 0.83 2.89 187 434 65.1
75% 46.8 426 622 140 1.25 435 187 439 66.6
100% 0 42.6 622 187 1.66 5.81 187 443 68.0

CK, 0% manure N substituted; 25%, 25% manure N substituted; 50%, 50% manure N substituted; 75%, 75% manure N substituted; 100%, 100% manure N substituted.

Frontiers in Plant Science

frontiersin.org


https://doi.org/10.3389/fpls.2025.1694608
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhou et al.

2.5 DNA extraction and sequencing

DNA was extracted using the OMEGA Soil DNA Kit (M5635-02)
(Omega Bio-Tek, Norcross, GA, USA) and kept at —20°C before
further analysis. Samples were sequenced via Mlumina® MiSeq
(Genesky Biotechnologies Inc., Shanghai, China). The V4-V5
hypervariable regions of the 16S rRNA gene were amplified with the
primers 907R (5'-CCGTCAATTCMTTTRAGTTT-3') and 515F (5'-
GTGCCAGCMGCCGCGG-3'). DNA quality was assessed using a
NanoDrop NC2000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) for concentration and purity, supplemented by
agarose gel electrophoresis for integrity verification.

2.6 Statistical analysis

The normality of all datasets was verified using the Shapiro-
Wilk test. The influences of organic manure substitution on maize
yield, root biomass, length, surface area, and volume were analyzed
using one-way ANOVA. Two-way ANOVA was employed to
analyze the effects of organic manure substitution and soil depth
(0-20 and 20-40 cm), along with their interaction, on soil
physicochemical properties, hydrolase activities, soil quality index,
microbial diversity, and dominant bacterial taxa. The correlations
between soil physicochemical properties, hydrolase activities, maize
yield, and soil quality were also assessed using Mantel tests
implemented with the “linkET” package. Meanwhile, key
predictors of maize yield and soil quality were evaluated using a
random forest model, executed using the “rfPermuta” package. All
statistical analyses were performed, and data visualizations were
generated using the R software (v.4.1.3; R Core Team, 2022).

3 Results
3.1 Maize yield and root traits

Compared to CK, only 25% manure substitution maintained
maize yield, while 50%-100% substitution ratios significantly

10.3389/fpls.2025.1694608

reduced maize yields by 15.9%-67.2% (Table 2; p < 0.05).
Moreover, manure substitution treatments decreased root
biomass, root length, root surface area, and volume by 13.5%-
29.1%, 14.8%-43.3%, 14.1%-48.8%, and 17.9%-53.4% respectively
(Table 2; p < 0.05).

3.2 Soil indices and quality index

Compared to CK, manure substitution increased the contents of
SOC (6%-10%), MBC (28%-42%), MBN (32%-112%), AP (22%-
59%), and SW (5%-22%), but decreased DON (23%-31%) in the 0-
20-cm depth (Figure 1A; p < 0.05). In the 20-40-cm depth, MBC
(92%-112%), MBN (28%-59%), and SW (6%-22%) were increased
by manure substitution treatments, whereas TN (2%-17%), DON
(45%-52%), AP (42%-60%), AK (17%-35%), and BD (8%-14%)
declined compared to CK (Figure 1B; p < 0.05).

Manure substitution increased the activities of B-1,4-
glucosidase (BG), B-p-cellobiosidase (CB), B-p-xylopyranoside
(XYL), B-1,4-N-acetylglucosaminidase (NAG), acid phosphatase
(ALP), and 1-leucine aminopeptidase (LAP) by 15%-67%, 138%-—
239%, 57.9%-117%, 52%-74%, 78%-125%, and 112%-185% in the
0-20-cm depth, respectively (Figure 2; p < 0.05). In contrast,
manure substitution decreased the activities of BG (46%-68%),
CB (12%-40%), XYL (28%-59%), and NAG (40%-53%), but
increased LAP (67%-155%) and ALP (27%-118%) activities in
the 20-40-cm depth (Figure 2; p < 0.05). Moreover, the SQI score
increased by 44%-55% with manure substitution, but decreased by
13%-33% in the 20-40-cm depth (Figure 3; p < 0.05).

3.3 Soil bacterial community structure and
composition

Compared to CK, manure substitution significantly increased
the Simpson index of bacteria by 0.08%-0.14% in the 0-20-cm
depth and 0.03%-0.06% in the 20-40-cm depth (Figures 4A, D; p <
0.05). Bacterial community structure was significantly altered by
manure substitution treatments (Figures 4B, E).

TABLE 2 Effects of substituting chemical nitrogen with manure on maize yield and root traits.

Treatment Root biomass

Root length

Root surface area Root volume

(g plant™) (x10® cm plant™) (x102 cm? plant™) (cm? plant™)

CK 11340832 1924202 586+ 0864 13942442 262+563 2
25% 117 + 146 ab 184097 a 512+ 0.66 12.6 169 ab 24943754
50% 103 +0.69 b 155 + 1.03 be 499+ 043 102 + 1.4 be 156+ 1.88 a
75% 835+ 122 ¢ 16.4 £ 141 ab 49240424 119 + 1.93 ab 21543284
100% 403 £035d 135+ 139 ¢ 332+ 034b 7.09+ 123 ¢ 122£338a
One-way ANOVA

Treatment <0.001 0.005 0.004 0.008 0.004

Values are means + standard deviations (n = 3). Different letters denote significant differences among treatments at 0.05 level.
CK, 0% manure N substituted; 25%, 25% manure N substituted; 50%, 50% manure N substituted; 75%, 75% manure N substituted; 100%, 100% manure N substituted.
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FIGURE 1

CK

25%

50%
m 75%
== 100%

Effects of substituting chemical nitrogen with manure on soil physicochemical properties at depths of 0-20 (A) and 20—-40 cm (B). CK, 0% manure
Nsubstituted; 25%, 25% manure N substituted; 50%, 50% manure N substituted; 75%, 75% manure N substituted; 100%, 100% manure N
substituted.SOC, soil organic carbon; TN, total nitrogen; MBC, microbial biomass C; MBN, microbial biomass N; DOC, dissolved organic C; DON,
dissolvedorganic N; AHN, alkaline nitrogen; AP, available phosphorus; AK, available potassium; BD, bulk density; SW, soil water content. Values are
means +standard deviations (n = 3). Different letters denote significant differences among treatments at 0.05 level.

In the 0-20-cm depth, manure substitution increased the relative
abundance of Actinomycetota (14%-28%), Acidobacteriota (12%-
35%), Gemmatimonadota (64%-88%), and Methylomirabilota
(55%-101%) while decreasing Bacteroidota (21%-57%),
Chloroflexota (15%-24%), and Pseudomonadota (13%-29%)
(Figure 4C, p < 0.05). In the 20-40-cm depth, manure substitution
increased the relative abundance of Pseudomonadota (5-6%),
Acidobacteriota (11%-18%), and Bacillota (12%-21%), but
decreased Actinomycetota (12%-20%) compared to CK (Figure 4F,
p <0.05).

3.4 Drivers of maize yield and soil quality
index

Maize yield correlated with MBN, SW, ALP, LAP, and vector
length at both depths of 0-20 and 20-40 cm, as well as with AP and
DON in the 0-20-cm depth and with MBC, BG, and XYL in the 20—
40-cm depth (Figures 5A, C; p < 0.05). Soil water content, ALP, and
vector length were identified as the main factors influencing maize
yield (Figures 5B, D; p < 0.05). These key factors are also linked to
the relative abundance of Pseudomonadota, Actinomycetota,
Gemmatimonadota, and Methylomirabilota (Figure 6; p < 0.05).

Soil quality index was correlated with SOC, TN, MBN, ALP,
BG, CB, LAP, NAG, and XYL in the 0-20-cm depth and with AP,
AK, BD, BG, NAG, and vector angle in the 20-40-cm depth
(Figures 5A, C; p < 0.05). SQI was primarily affected by ALP, CB,
LAP, XYL, and vector length in the 0-20-cm depth, while AP, AK,
and NAG were more influential in the 20-40-cm depth (Figures 5B,
D; p < 0.05). These key factors were also associated with the relative
abundance of Actinomycetota, Acidobacteriota, Chloroflexota, and
Methylomirabilota in the 0-20-cm depth and Actinomycetota in
the 20-40-cm depth (Figure 6; p < 0.05).

Frontiers in Plant Science

4 Discussion

4.1 Effects of organic manure substitution
with chemical N on maize yield

Contrary to our hypothesis, organic manure substitution
negatively affected maize yield, with greater reductions observed
at higher substitution rates (Table 2). These results were consistent
with the results of Niu et al. (2024), who found that 75%
substitution and above markedly dropped the annual yield of
winter wheat and summer maize. This may be due to the
excessive proportion of manure substitution causing insufficient
N supply, as its slow-release nature requires time to mineralize
(Figure 1; Wang et al., 2020). The lower DON in the 0-20-cm and
20-40-cm layers and its positive correlation with maize yield could
support this point (Figures 1, 5A). Inhibited maize root growth
under a high manure substitution rate served as another crucial
factor impairing yield formation (Table 2; Wang et al., 2023). In this
study, 50%-100% substitution rates significantly decreased root
biomass, length, surface area, and volume (Table 2). This will
undoubtedly restrict the nutrient uptake capacity of maize,
consequently compromising its development and reducing yield
(Feng et al., 2024). Interestingly, we observed that the 25%
substitution rate could maintain the maize root growth and yield
formation compared with the CK treatment. This can be attributed
to the effective synchronization of nitrogen supply and crop
demand: the 75% inorganic fertilizer readily satisfied the early
peak demand, while the subsequent slow mineralization of the
25% organic manure complemented nitrogen availability during the
later reproductive growth stages, thus ensuring stable yield (Table 2,
Wang et al., 2020). Collectively, substitution chemical fertilizers
with organic manure failed to enhance maize yield in northeast
China, but a 25% substitution rate could serve as a sustainable
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FIGURE 2

Effects of substituting chemical nitrogen with manure on soil C/N/P acquiring enzyme activities at depths of 0-20 (A=F) and 20—-40 cm (G-Q). CK, 0%
manure N substituted; 25%, 25% manure N substituted; 50%, 50% manure Nsubstituted; 75%, 75% manure N substituted; 100%, 100% manure N substituted.
BG, b-1,4-glucosidase; XYL, b-D-xylopyranoside; CB, b-D-cellobiosidase; NAG, b-1,4-N-acetylglucosaminidase; LAP, L-leucineaminopeptidase; ALP, acid
phosphatase. Values are means + standard deviations (n = 3). Different letters denote significant differences among treatments at 0.05 level.

(A) 0-20 cm (B) 20-40 cm

1.5

1.04

SQl-area

0.51

0 CK 25% 50% 75% 100% 0.0 CK 25% 50% 75% 100%

FIGURE 3
Effects of substituting chemical nitrogen with manure on soil quality index (SQI) area at depths of 0-20 (A) and 20-40 cm (B). CK, 0% manure
Nsubstituted; 25%, 25% manure N substituted; 50%, 50% manure N substituted; 75%, 75% manure N substituted; 100%, 100% manure N
substituted.Different letters denote significant differences among treatments at 0.05 level.
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FIGURE 4

Effects of substituting chemical nitrogen with manure on bacterial diversity and community composition at depths of 0-20 (A-C) and 20-40 cm
(D-F). CK, 0% manure N substituted; 25%, 25% manure N substituted; 50%, 50% manure N substituted; 75%, 75% manure N substituted; 100%, 100%
manure N substituted. Different letters and underlined notations denote significant differences among treatments at 0.05 level.

fertilization strategy to reduce chemical fertilizer without a
yield penalty.

4.2 Effects of organic manure substitution
with chemical N on soil quality

Consistent with our hypothesis, the substitution of chemical
fertilizer with organic manure significantly affected soil quality, but
exerted distinct effects between depths of 0-20 and 20-40 cm. For the
0-20-cm depth, manure substitution increased soil quality by
effectively improving soil chemical properties (e.g., SOC, TN, MBC,
MBN, AP, and soil water content). The results may be because 1) the
application of organic manure drives the soil carbon cycle by
facilitating the transformation of organic matter, thereby increasing
soil quality (Feng et al, 2024). 2) Manure substitution treatments
promote nutrient release from organic manure and reduce nutrient
losses (Cui et al., 2020). For example, organic manure can reduce
ammonia volatilization and nitrate leaching through adsorption and,
thereby, indirectly increase nutrient levels in the upper layer and
contribute to soil quality improvement (Wang et al,, 2024b). 3) The
application of organic manure can accelerate soil C and N cycling via
microbial-mediated priming effect, which may increase soil nutrient
availability and improve soil quality (Zhou et al., 2025). These results
can be further supported by the high content of microbial biomass C/
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N and its related enzyme activities (Figures 1, 2). It should be noted
that the manure substitution treatments supplied substantial inputs
of AP and AK relative to CK, which was also a significant contributor
to topsoil quality.

However, the soil quality in the 20-40-cm depth under manure
substitution treatments exhibited an opposite trend, being
significantly reduced compared to the CK. This can be attributed to
three main reasons: first, since both organic and chemical fertilizers
were primarily incorporated into the topsoil through rotary tillage,
manure substitution treatments had limited influence on the deeper
soil layers (He et al., 2022). Second, organic manure input reduced the
leaching of available nitrogen through physical adsorption (Wei et al.,
2021). This can also be supported by the lower contents of TN, DON,
and AHN in the 20-40-cm depth (Figure 1B). Third, high rates of
manure-substituted chemical fertilizer inhibited maize root growth
due to insufficient N supply. This likely led to diminished root residue
incorporation into deeper soil layers, consequently reducing nutrient
content and being detrimental to soil quality (Feng et al., 2024).
Interestingly, we did not detect a significant association between the
maize yield and soil quality. This is because a significant relationship
between crop yield and soil quality in previous studies often emerges
over longer time scales (He et al., 2022; Nie et al., 2025). In the short
term, yield is predominantly influenced by immediate nutrient
availability, while the benefits of soil quality improvements take
longer to manifest and affect crop yield (Wang et al., 2020).
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4.3 Soil microorganism response to
organic manure substitution with
chemical N

Soil bacteria serve as critical mediators in soil nutrient cycling,
and their diversity and community structure are linked to the soil
quality and crop performance (Philippot et al., 2024). Our study
found that manure substitution treatments significantly increased the
Simpson index of soil bacteria at depths of 0-20 and 20-40 cm
(Figure 4). In line with Han et al. (2021), the organic manure
substitution with chemical N fertilizer enhanced soil bacterial -
diversity. This increase in bacterial diversity may be attributed to two
reasons: first, the organic manure application supplied a broader
spectrum of substrates that support the diverse bacterial community
growth (Lin et al,, 2019). Second, organic manure enables the direct
introduction of its inherent microbial community into the soil,
thereby contributing to an increase in bacterial diversity (Li et al,
2022). Interestingly, although the majority of organic fertilizer was
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concentrated in the 0-20-cm depth, bacterial diversity also increased
significantly in the deeper layer. This phenomenon can be primarily
attributed to the leaching of soluble organic compounds derived from
organic fertilizer decomposition, which may activate a more dormant
microbial community in the deeper layer (Chen et al, 2024). In
addition, the vertical transport of bacteria from the upper layer may
have contributed substantially to the enhanced bacterial diversity
observed in the 20-40-cm depth (He et al., 2023). This process was
likely facilitated by the increased soil water content resulting from
organic manure application, which improved hydrological
connectivity and enhanced bacterial mobility through the soil profile.

Manure substitution shifted the soil microbial community
structure and boosted the prevalence of beneficial taxa (Figure 4).
For example, our study observed that manure substitution treatments
significantly enriched the relative abundance of Actinomycetota,
Acidobacteriota, Gemmatimonadota, and Methylomirabilota
compared to CK (Figure 4). These findings are consistent with the
previous literature on the effects of organic manure application on
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soil microbial communities (Ji et al., 2018; Lu et al., 2023).
Acidobacteriota play a pivotal role in nutrient cycling by secreting
enzymes that hydrolyze recalcitrant organic matter into bioavailable
forms (Feng et al., 2024). This point was evidenced by the significant
correlation between Acidobacteriota and soil C/N-acq enzyme
activities (Figure 6). Actinobacteria are recognized for their
significant contribution to soil carbon cycling, primarily due to
their pronounced ability to decompose recalcitrant polymeric
compounds (Nie et al., 2025). The strong correlation between
Actinobacteria and soil C- and N-related enzyme activities further
evidenced this point. Collectively, the enrichment of key soil
microorganisms driven by organic manure substitution accelerated
soil nutrient turnover, thereby enhancing soil quality.

5 Conclusion

In summary, this study demonstrates that short-term organic
manure substitution generally decreased maize yield, which can be
largely attributed to suppressed root growth caused by limited
nitrogen availability. Only 25% substitution rates maintained maize
yield compared to 100% chemical fertilizer applied. In contrast,
organic manure application significantly enhanced soil quality
within the 0-20-cm layer. Random forest analysis identified the key
factors affecting soil quality, including alkaline phosphatase,
cellobiohydrolase, leucine aminopeptidase, xylosidase, and enzyme
vector length. The increased abundance of Actinomycetota,
Acidobacteriota, and Methylomirabilota, along with their positive
correlations with C- and N-acquiring enzyme activities, suggests that
organic manure promotes soil organic carbon accumulation and
nutrient availability through the enrichment of beneficial microbial
taxa. However, a decline in soil quality was observed in the 20-40-cm
layer, likely associated with reduced available phosphorus, available
potassium, and N-acetylglucosaminidase activity. Collectively, these
findings suggest that 25% organic manure substitution can serve as a
sustainable fertilization strategy in Northeast China, capable of
maintaining crop productivity while enhancing topsoil quality.
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