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Phenotypic stability and
adaptability of wheat
genotypes under organic
and conventional farming
systems over five years
using AMMI and GGE
biplot analysis
Nasser S. Al-Ghumaiz1*, Mohamad I. Motawei1*,
Ahmed M. Aggag2, Soleman M. Al-Otayk1

and Abdulmajeed A. Alzamil1

1Department of Plant Production, College of Agriculture and Food, Qassim University, Buraydah,
Qassim, Saudi Arabia, 2Department of Environment and Natural Resources, College of Agriculture and
Food, Qassim University, Buraydah, Saudi Arabia
Organic agriculture is recognized for its sustainability, although it typically yields

less than conventional systems. This study evaluated seven elite wheat genotypes

(Triticum aestivum L.) over five years in a randomized complete block design with

three replications, under both organic and conventional fertilization conditions.

Integrated analyses using the AMMImodel andGGE biplot revealed the significant

effects of genotype, environment, and their interactions. The AMMI analysis

showed that genotype IC8 achieved the highest mean yield (1.868 t ha-1) and

the lowest AMMI stability value (ASV=0.474). This low ASV suggests high stability,

indicating broad adaptability, especially under organic conditions. In contrast,

Sids_12 (mean = 1.492 t ha-1; ASV=2.017) and LOCAL (mean = 1.304 t ha-1)

exhibited great instability and specific adaptation. GGE biplot analysis explained

75.46% of the total variation (PC1 = 57.09%, PC2 = 18.37%), further confirming

IC8’s stable performance across both systems while identifying P5 and IC17 as

particularly responsive under conventional fertilization. These findings provide a

basis for selecting wheat genotypes that balance high yield and stability,

informing breeding strategies for sustainable crop production in both organic

and conventional systems.
KEYWORDS

AMMI model, GGE biplot, genotype × environment interaction, wheat, stability, crop
genetic diversity, organic and conventional fertilization
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Introduction

Organic agriculture is gaining popularity due to its

sustainability and environmental benefits, such as improved soil

health, lower chemical inputs, and increased biodiversity (Mäder

et al., 2002; Reganold and Wachter, 2016). However, one of the

most significant issues connected to organic farming is that it is

generally less productive than conventional systems (Ponisio et al.,

2015; Seufert et al., 2012). Wheat (Triticum aestivum L.) is a staple

crop and the primary source of calories for a vast section of the

world’s population. It is also critical to food security. As a result,

increasing wheat yield while remaining sustainable, is crucial for

fulfilling future food demands (FAO, 2020; Ritchie and Roser,

2022). Understanding genotype × environment (G×E)

interactions is crucial for designing cultivars that thrive in various

agricultural contexts (Kumar et al., 2021; Yan and Tinker, 2006).

Recent improvements in statistical models, such as the additive

main effects and multiplicative interaction (AMMI) model and the

genotype and genotype-by-environment interaction (GGE) biplot

analysis, have provided useful tools for understanding these

complicated interactions. These methodologies allow breeders to

not only discover high-yielding genotypes, but also to assess their

stability under changing environmental conditions (Singh et al.,

2019; Yan et al., 2007). Organic and inorganic fertilization

approaches can influence Se and Zn concentrations, potentially

affecting crop nutrition and human health (Alloway, 2008; Lyons

et al., 2017). Abd-Elmoniem et al. (2025); Al-Ghumaiz et al. (2020)

evaluated the impacts of fertilization methods on wheat mineral

composition, focusing on the significance of fertilization strategies

in increasing nutrient density.

Few studies have comprehensively evaluated the long-term

stability of wheat (Triticum aestivum L.) genotypes under

various fertilization regimes. Research assessing genotype

performance across multiple years, particularly under

conventional and organic fertilization systems, remains

limited. Such studies are essential for stable, high-yielding

cultivars capable of adapting to diverse agronomic conditions.

The objectives of this study were to (i) evaluate the patterns and

magnitude of G×E interactions affecting yield stability of seven

elite wheat genotypes across five successive growing seasons

(2019-2023) under conventional and organic fertilization

systems, and (ii) identify wheat genotypes that combine highly

productivity with stability across years and fertilization methods

to support breeding programs for sustainable wheat production

in arid and semi-arid environments.
Materials and methods

Experimental site

Field experiments were conducted over five consecutive

growing seasons from 2019 to 2023 at the Agricultural Research

and Experimental Station of Qassim University, Buraydah, Saudi
Frontiers in Plant Science 02
Arabia (26°18′28″ N, 43°46′ E). The site is characterized by sand

texture with low salinity (electrical conductivity, EC=1.5 dSm-1),

low organic matter content (0.4%), and an alkaline pH of 8.1. The

irrigation water used throughout the study had an EC of 1.7 dSm-1

and a pH of 7.8.
Experimental design and treatments

The study evaluated the performance of seven wheat (Triticum

aestivum L.) genotypes (Table 1) under two fertilization regimes:

organic (O) and inorganic (N). Thus, experimental factors were:
• Factor 1 (Genotypes): Seven wheat (Triticum aestivum

L.) genotypes.

• Factor 2 (Fertilization): Two regimes-organic (O) and

inorganic (N).
Trials were laid out in a randomized complete block design

(RCBD) with three blocks. Each block contained 14 plots

(7 genotypes × 2 fertilization regimes). Each plot measured 3 m²

(1.5m × 2.0m) and comprised 10 rows spaced 25cm apart. Wheat

seeds were sown at a seeding rate of 45kg ha-1.

The planting dates for the five seasons were as follows:

December 2019, November 30, 2020, December 2021, December

2022, and December 2023.
Fertilizer application

Fertilizer application followed soil test recommendations. In the

inorganic treatment, urea, diammonium phosphate (DAP), and

potassium sulfate were applied at rates of 124kg N ha-1, 92kg P2O5

ha-1, and 57kg K2O ha-1, respectively. For the organic treatment,

well-decomposed cow manure was applied at a rate of 10t ha-1 one

month before sowing. The organic amendment was analyzed

according to the methodology of (Sparks et al., 2020), revealing

an N:P:K ratio of 0.5:0.21:0.5.
TABLE 1 Seven wheat genotypes used in this study.

Genotype name Source

Yocora Rojo (YR)† USA

LOCAL‡ KSA

P3 (AUS-030851) Australia

P5 (AUS-030852) Australia

IC8 (Line-2-ICARDA-1st RDRN0607) ICARDA

IC17 (Line-56 ICARDA-1st RDRN0607) ICARDA

Sids_12 Egypt
†Yocora Rojo (YR): commercial genotype commonly cultivated in Saudi Arabia.
‡Local genotype (Sama).
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Environmental and soil conditions

Figures 1 and 2 present the meteorological data for the study

period (2019–2023), including maximum and minimum

temperatures and total rainfall. A summary of environmental

conditions across different years is provided in Table 2. Soil

physical and chemical properties of the experimental site are

detailed in Table 3.
Statistical analysis

The AMMImodel (Gauch, 1992, 2013) was used to calculate the

yield stability of the elite spring wheat genotypes under organic and

inorganic fertilizations. Principal component analysis (PCA) was

used to determine the multiplicative effects of GEI after the AMMI

model first fitted the additive effects for the primary influences of

the genotypes (G) and environment (E). Biplot graphs were used to

display the AMMI findings. According to (Nowosad et al., 2016),

the AMMI model can be stated using the formula below:
Frontiers in Plant Science 03
Yge = m + ag + be +o
N

n=1
lnggnden + Qge

where N is the number of PCA axes kept in the adjusted model;

ln is the eigen value of the PCA axis, n; ggn is the genotype score for
the PCA axis, n; den is the score eigenvector for the PCA axis, n; yge
is the trait mean of a genotype g in environment e; m is the grand

mean; ag is the mean genotype deviation; be is the mean

environment deviation; and Qge is the residual, including the

AMMI noise and pooled experimental error.

AMMI analysis was carried out using the “AMMI” function

from the GenStat statistical software, version 19 (GenStat, 2019).

The AMMI stability value (ASV) coefficient (Purchase et al., 2000)

was used to evaluate the genotype stability. The more stable the

genotype in the conditions under study, the lower the ASV. Each

genotype was assigned a genotype selection index (GSI), which is

the total of the ASV and yield stability index (YSI) ranking positions

(Farshadfar, 2008).

A GGE biplot was constructed using principal component

analysis, wherein the scores of genotypes were multiplied by the
FIGURE 1

Five-years average (2019–2023) of annual precipitation in Qassim region.
FIGURE 2

Average of the maximum and minimum temperature from 2019 to 2023 in the experimental field consistently across environments.
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corresponding environmental scores to produce a two-dimensional

representation (Yan and Wu, 2008). This approach enabled a

simultaneous assessment of both the main effects of genotypes

and their interactions with the environment.
Results

Genotype stability based on AMMI analysis

The ANOVA results (Table 4) obtained for the AMMI model

clearly indicate the significant effects of both genotype and

environment on the traits under consideration, supporting the

hypothesis that performance varies across different conditions

and genetic backgrounds. The interaction between genotypes and

environments was also significant, with the first principal

component (IPCA1) showing a high variance ratio (v.r. = 4.74;

p< 0.001). The second principal component (IPCA2) was also

significant (v.r. = 2.14; p<0.0473), indicating that specific

genotype responses varied across environments.
Genotype means and scores

The mean performance and IPCA scores for each genotype

revealed differences in adaptability and stability (Table 5). IC8

(mean = 1.868t ha-1) exhibited the highest mean performance
Frontiers in Plant Science 04
among the tested genotypes and had a positive IPCA score in the

first principal component, indicating favorable interactions with

certain environments. IC17 (mean = 1.758t ha-1) also performed

well, with a positive IPCAg1 score, suggesting its relative stability

across environments. In contrast, LOCAL (mean = 1.304t ha-1) had

the lowest mean performance and negative IPCA scores in both

components, indicating its performance was less favorable across

environments. Sids_12 had a mean of 1.492t ha-1, with a high

positive IPCAg2 score, suggesting that it performed well under

certain environmental conditions but may not be stable across

all environments.
AMMI stability values

The ASVs provided insights into the performance and

adaptability of genotypes across different environments (Table 6).

Lower ASVs indicated greater stability, which means that the

genotype is less affected by environmental changes. The AMMI

analysis identified IC8 (ASV=0.474) as the most stable genotype

with the highest mean yield (1.868t ha-1), indicating consistent

performance across varying conditions. In contrast, Sids_12

(ASV=2.017) was ranked the least stable, suggesting it is more

sensitive to environmental changes despite a mean yield of 1.492t

ha-1. P3 and IC17 ranked second and third in stability, also showing

relatively high mean yields of 1.539 and 1.758t ha-1, respectively.

This balance between stability and yield performance is valuable for
TABLE 2 Environmental conditions* across different years and fertilizations (organic (O) and inorganic (N) based on precipitation and temperature
variables.

Number Environment Precipitation (mm) Tmax (°C) Tmin (°C)

1 2019-N 146.5 26.64 14.01

2 2019-O 146.5 26.64 14.01

3 2020-N 113.5 28.19 14.84

4 2020-O 113.5 28.19 14.84

5 2021-N 96.6 28.16 15.07

6 2021-O 96.6 28.16 15.07

7 2022-N 72.5 28.19 14.84

8 2022-O 72.5 28.19 14.84

9 2023-N 294.8 27.34 14.34

10 2023-O 294.8 27.34 14.34
*TerraClimate dataset, Climatology Lab, available at: http://www.climatologylab.org/terraclimate.html.
TABLE 3 Soil chemical and physical analyses of the two experimental sites.

Site
Chemical analysis Particle size distribution (%)

K (ppm) P (ppm) N (ppm) OM** pH EC (dS/m) Clay Silt Sand

Conventional site* 34 33.1 15.7 0.4 8.1 1.3 0.9 4.2 94.9

Organic site* 36.5 22.1 52.5 0.4 7.9 1.7 1.0 4.5 94.5
fr
*Qassim University Agricultural Research Station.
**OM= organic matter.
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selecting genotypes for breeding programs. Conversely, LOCAL

(ASV=1.654) and YR (ASV=1.893) exhibited high instability,

indicating that they may perform well only under specific

conditions but lack broad adaptability.
Identification of promising genotypes
across environments

The AMMI analysis revealed the first four genotype selections

for each environment based on their performance (Table 7).

The highest mean yield was recorded in environment 2023-N

(2.208t ha-1), followed closely by 2020-N (2.204t ha-1) and

2019-N (2.195t ha-1). These environments demonstrated favorable

conditions for high-yielding genotypes. Conversely, environments

such as 2022-O (0.908t ha-1) and 2021-O (0.945t ha-1) had the

lowest mean performance, indicating suboptimal conditions for

yield expression. Genotype IC8 emerged as the most frequently

selected across environments, appearing in the top four rankings in

nine out of ten environments. This highlights its broad adaptability

and stability across varying conditions. Other frequently selected

genotypes include IC17, P5, and YR, indicating their suitability for

specific environments. Sids_12 was also prominent in environments

such as 2022-O, 2020-N, and 2019-N, suggesting its potential for

high performance in targeted conditions. The AMMI interaction

scores varied significantly across environments. Environments such

as 2023-O (0.8505) and 2023-N (0.6207) had high scores,

demonstrating strong genotype-by-environment interaction
Frontiers in Plant Science 05
effects. Lower interaction scores in environments such as 2022-N

(0.0048) and 2021-O (-0.2990) suggest reduced genotype-by-

environment interaction, emphasizing the role of stable

environmental conditions.
Genotype stability based on GGE biplot
analysis

The polygon view of the GGE biplot (Figure 3) provides a

comprehensive visual representation of the “which-won-where”

model, enabling the identification of wheat genotypes that

perform optimally under specific environments (organic and

conventional fertilization systems). The biplot presented in

Figure 3 summarizes the principal component analysis (PCA) of

the genotypic and environmental data, explaining 75.46% of the

variation, with PC1 and PC2 contributing 57.09% and 18.37%,

respectively. The environments are grouped into two distinct mega-

environments based on their proximity to vertex genotypes: Mega-

Environment 1 (Conventional Environments) includes

environments 2023-N, 2021-N, 2022-N, and 2019-N. Genotypes

located at the vertices of the polygon, such as P5 (AUS-030852) and

IC17 (Line-56 ICARDA-1st RDRN0607), demonstrated superior

adaptability and yield performance in their respective

environments. These genotypes are likely the most suited to the

environmental conditions and nutrient availability provided by the

specific fertilization system. Mega-Environment 2 (Organic

Environments: 2020-O, 2019-O, and 2023-O) was dominated by

genotype IC8. Genotypes IC8, IC17, and P5 were the primary vertex

genotypes, suggesting superior performance in their respective

mega-environments. Other genotypes, such as YR, Sids_12, and

LOCAL, were positioned further away from the polygon edges,

indicating either lower interaction or suboptimal performance in

specific environments. Genotypes close to the biplot origin (e.g., P3)

demonstrated greater stability.
Mean vs. stability

Figure 4 displays a ranking biplot that explains 75.46% of the

total variation in genotype and environmental scores, with the first

principal component (PC1) explaining 57.09% of the variance and
TABLE 4 ANOVA for AMMI model.

Source of Variance d.f. Sum of squares Mean squares F p-value

Genotypes 6 2.146 0.3577 3.13 0.0105

Environments 9 14.775 1.6416 14.36 <0.001

Interactions 54 6.175 0.1144

IPCA 1 14 3.413 0.2438 4.74 <0.001

IPCA 2 12 1.323 0.1103 2.14 0.0473

Residuals 28 1.440 0.0514
d.f., degrees of freedom; IPCA, principal component of interaction.
TABLE 5 Mean performance and principal component scores (IPCAg1
and IPCAg2) of wheat genotypes across all environments.

Genotype Number Mean (t ha-1) IPCAg1 IPCAg2

IC17 1 1.758 0.28815 0.05984

IC8 2 1.868 0.09287 -0.40885

LOCAL 3 1.304 -0.63680 -0.19282

P3 4 1.539 -0.19608 -0.24409

P5 5 1.728 0.51962 -0.40490

Sids_12 6 1.492 -0.75479 0.52550

YR 7 1.610 0.68704 0.66533
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the second component (PC2) explaining 18.37%. Genotypes are

represented by green crosses, while environments are depicted by

blue crosses with vectors. The average environment coordination

(AEC) axis, shown as a blue line, indicates the average performance

of genotypes across environments. The AEC circle helps visualize

the distance of environments from the average performance. The

genotypes “IC8,” “LOCAL,” and “P3” are spread close to the AEC,

indicating stability in their performance across different

environments. Conversely, “YR” and “IC8” are separated along

PC1 and PC2, suggesting more specific adaptation to certain

environments. Environments such as “2020-O” and “2023-O” are

farther along the AEC axis, suggesting that they either posed

cha l l enges or prov ided advantage s tha t influenced

genotype performance.
Discussion

This study showed that the performance of wheat was

influenced by both genotypic variances and environmental

variables, with a strong G×E interaction. This finding is

consistent with earlier research demonstrating that diversified
Frontiers in Plant Science 06
genotype selection can increase total crop output (Zobel et al.,

1988). The significant influence of environmental factors

underscores the idea that genotype performance is extremely

context-dependent, which is important in modern plant breeding

practices (Kumar et al., 2021; Yan and Tinker, 2006). The

significant interaction (F=4.74; p< 0.001) highlighted the need to

consider both genetic and environmental factors when planning

breeding programs to achieve cons i s tent and high-

yielding genotypes.

The AMMI model showed that the first two interaction

principal component axes (IPCAs) account for the majority of

variation in the G×E interactions. These findings support previous

research showing the efficacy of the AMMI model in interpreting

complicated relationships in multi-environment trials (Gauch,

1992, 2013). In our investigation, genotypes with low ASVs, such

as IC8, P3, and IC17, produced high yields and performed

consistently across conditions. In contrast, genotypes such as YR

and Sids_12 had high ASVs and showed significant variability,

indicating a preference for specific environmental circumstances

over broad adaptability.

The ranking biplot contributed to our understanding by

explaining 75.46% of the overall variation, with PC1 and PC2
TABLE 6 AMMI stability values, rankings, and mean performance of wheat genotypes.

Rank Genotype Number Stability (ASV) Mean (t ha-1)

1 IC8 2 0.474 1.868

2 P3 4 0.562 1.539

3 IC17 1 0.746 1.758

4 P5 5 1.400 1.728

5 LOCAL 3 1.654 1.304

6 YR 7 1.893 1.610

7 Sids_12 6 2.017 1.492
TABLE 7 Top four AMMI selections for each environment based on mean performance and scores.

Number Environment Mean Score 1 2 3 4

10 2023-O 1.534 0.8505 YR P5 IC17 IC8

9 2023-N 2.208 0.6207 P5 IC8 IC17 YR

5 2021-N 1.460 0.2525 IC8 P5 IC17 YR

2 2019-O 1.658 0.0800 YR IC17 IC8 P5

7 2022-N 1.321 0.0048 IC8 IC17 YR P5

6 2021-O 0.945 -0.2990 IC8 Sids_12 IC17 P3

8 2022-O 0.908 -0.3245 Sids_12 IC8 IC17 P3

4 2020-O 1.707 -0.3366 IC8 P5 P3 LOCAL

1 2019-N 2.195 -0.4084 Sids_12 IC8 IC17 P3

3 2020-N 2.204 -0.4401 Sids_12 IC8 IC17 P3
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accounting for 57.09% and 18.37%, respectively. The average

environment coordination (AEC) axis represents average

performance across situations. Genotypes along the AEC axis,

such as IC8, LOCAL, and P3, indicated stability, but genotypes
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dispersed over both major components, such as YR, suggested

particular adaptation to certain environmental conditions. The

environmental conditions presented in Table 2 revealed

considerable variation between years, particularly in terms of

precipitation which ranged from 72.5mm in 2022 to a 294.8mm

in 2023. These variations, in combination with the use of organic

(O) and inorganic (N) fertilizers, resulted in various environments

that influenced genotype performance. Interestingly, environments

“2020-O” and “2023-O” were located further down the AEC axis,

suggesting that they presented difficulties or benefits that had a

large impact on genotype performance. This trend aligns with

research showing how important environmental influences are in

influencing genetic responses (Yan et al., 2007). Particularly in low-

input systems where reliable performance is crucial, genotypes like

IC8, P3, and IC17 that consistently performed well in a variety of

environments are interesting candidates for widespread cultivation

(Baresel et al., 2008; Singh et al., 2019). However, highly variable

genotypes, such as YR and Sids_12, might be targeted for certain

management techniques or settings where their distinct

performance profiles can be best utilized (Annicchiarico, 2002).

The clustering of organic environments around genotypes such as

IC8 suggests enhanced nutrient-use efficiency and stress tolerance,

traits that are highly desirable for sustainable organic agriculture

(Baresel et al., 2008). Al-Ghumaiz et al. (2020) showed that the

ICARDA genotypes (IC8 and IC17) had the greatest Se and Zn

concentrations, respectively, under organic fertilization.

When yield performance is integrated with stability

measurements, it becomes clear that selecting genotypes simply

based on yield might overlook important performance consistency

characteristics. Vassileva et al. (2023) reported that cultivating

drought-resistant wheat genotypes and understanding stability

determinants could markedly contribute to enhancing wheat

production and ensuring stable yields under low-input and

stress-pone environmental conditions. ASV index, a measure of

yield stability that takes into account genotype-by-environment

interactions (Purchase et al., 2000) was especially valuable in this

investigation. IC8 was the most promising contender due to its

high mean yield and low ASV, suggesting strong performance

throughout a wide variety of environmental conditions. This is

critical for creating genotypes that can maintain productivity in

various environments (Ahakpaz et al., 2021). In contrast, despite

being genetically distinct, IC17 showed a balance between stability

and yield. Its moderate yield, coupled with consistent performance

across environments, suggests that it may offer specific adaptive

benefits that are not captured by yield alone. Conversely,

genotypes such as YR and Sids_12 may require targeted

management practices or further breeding interventions to

enhance their performance, as they either did not yield as highly

or exhibited greater variability. These findings highlight the

significance of using a dual-criteria selection approach that

incorporates both yield potential and stability. Such an

integrated strategy ensures that selected genotypes are not only

high-yielding but also resilient under diverse environmental

conditions, a critical requirement for sustainable cultivation and

breeding programs (Crossa et al., 2017).
FIGURE 3

Polygon view of GGE biplot (which-won-where model) showing 7
elite wheat genotypes in organic (O) and conventional fertilization
(N) environments.
FIGURE 4

Mean vs. stability view of GGE biplot showing the mean
performance and stability of seven elite wheat genotypes in organic
(O) and conventional fertilization (N) environments.
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Conclusion

The integration of AMMI analysis and GGE biplot visualization

in this study provided a robust framework for evaluating the

performance of genotypes under varying environmental

conditions. Our results indicated that both yield and stability, as

measured by ASV and mean yield, are crucial parameters in

selecting genotypes for cultivation. Genotype IC8 emerged as the

most promising candidate, combining high yield with stability,

thereby offering broad adaptation to diverse environments.

Similarly, IC17 also demonstrated a favorable balance between

yield and stability, making it suitable for general cultivation. In

contrast, genotypes such as YR and Sids_12, which displayed high

variability, may be better suited for targeted environments where

specific management practices can mitigate their instability. Future

research should focus on integrating additional agronomic traits

and exploring the molecular mechanisms underlying these

interactions to further refine selection strategies for sustainable

crop production.
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