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Introduction: Accurate control of fruit quality determines the commercial value

of Korla fragrant pear. The rapid and accurate detection of the colour of fragrant

pear is crucial for improving its commercial value.

Methods: In this study, a vector network analyser and coaxial probe were applied

to detect the dielectric constant e’ and dielectric loss factor e″ of fragrant pear

samples in the frequency range of 0.1–26.5GHz, and to analyse the linear

relationship between the colour of fragrant pear and the dielectric parameter.

Uninformative variables elimination (UVE) and the successive projections

algorithm (SPA) were used to extract feature variables from the dielectric

spectroscopy data; partial least squares regression (PLSR), support vector

regression (SVR), and least squares support vector regression (LSSVR) were

used to establish the colour prediction models of Korla f.agrant pear,

respectively. The prediction results of color prediction model with full

frequency band of dielectric spectrum and feature variable extraction were

compared, facilitating the identification of the best prediction model.

Results: The results showed that the linear correlation between e’, e’’ and L*, a*, b* at
a single frequency was weak. Both feature variable extraction methods, UVE and

SPA, were able to improve the prediction accuracy of the colour of fragrant pear. The

SPA-PLSRmodel showed the best prediction for L* (R2 = 0.83, RMSE = 0.866, RPD=

2.477), while the UVE-PLSRmodel showed the best prediction for both a* (R2 = 0.85,

RMSE = 0.901, RPD = 2.523) and b* (R2 = 0.73, RMSE = 0.895, RPD = 1.973).

Discussion: The results can provide a new method for the accurate detection of

the quality of Korla fragrant pear.
KEYWORDS

dielectric spectroscopy technology, Korla fragrant pear, colour, machine learning,
nondestructive testing
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1 Introduction

Korla fragrant pears are a national geographical indication

product of China, and hold the titles of “Queen of World Pears”,

“Pear of Rare Quality”, and “King of Fruits” because of their

aesthetic colour, sweet and smooth taste, thin skin, fine pulp, and

crispy texture, with an annual production exceeding 1.5 million

tons (Liu et al., 2021; Yu et al., 2023; Liu et al., 2025). In developing

Asian countries, the annual postharvest loss of fruits and vegetables

exceeds 50%, which has aroused widespread concern regarding food

security and sustainable development (He et al., 2025). As an

important index for measuring the quality of fragrant pear, colour

is an important reference point for identifying fruit maturity and

fruit grade and selling price (Zhang et al., 2023), which determines

its commercial value (Yu et al., 2022). The evaluation of fruit colour

is crucial in the sales of agricultural products (Zhang et al., 2023; Yu

et al., 2022; Sanaeifar et al., 2016). Traditionally, fruit growers judge

the fruit maturity and commercial value by observing the colour of

fragrant pear, so it is inevitable that there will be differences in

subjective judgments, which affect the reasonable quality evaluation

of fragrant pear. Although machine vision and colourimeters

technology can judge the colour of the fruit, these measurement

results are easily affected by the lighting environment, and cannot

detect other quality indexes of the fruit. Therefore, researching an

accurate and efficient online detection method for the colour of

fragrant pear can provide theoretical guidance for the quality

control and grading of fragrant pear, and is of great significance

to promote the industrial development of fragrant pear.

At present, the methods for detecting quality indexes, such as

the colour of fruits, include machine vision (Liu et al., 2019; Al-Dairi

et al., 2024), hyperspectral imaging (Shao et al., 2024), near-infrared

spectroscopy (Alhamdan and Atia, 2017), and dielectric

spectroscopy (Silva Júnior et al., 2020). For these methods, the

light and background can affect the accuracy of the colour. Further,

for machine vision systems, the maintenance of high-precision

equipment and algorithms makes them expensive, and their

versatility and adaptability are limited. Hyperspectral imaging

systems have high calibration requirements, low spatial

resolution, poor environmental adaptability, and high data and

algorithmic complexity, limiting their applicability. Near-infrared

spectroscopy is too model-dependent and sensitive to temperature

and light. When the environment changes, it may lead to the

spectral signal drift or distortion, which affects the detection

accuracy, and the long data acquisition and processing time

makes real-time detection difficult. As an emerging technology,

dielectric spectroscopy technology has been applied to the detection

of fruit quality indexes due to its advantages of fast, non-destructive,

sensitive, efficient, and simple operation (Silva Júnior et al., 2020).

used dielectric spectroscopy technology to explore the relationship

between dielectric properties and the maturity of Tommy Atkins

Mango, and found that the dielectric parameters were correlated

with physical chemical indicators such as color of Tommy Atkins

Mango during the mature stage (Krapac et al., 2024). explored the

potential of electrical impedance spectroscopy as a rapid and

objective technique for detecting the harvesting time of olives,
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and indicated that differently colored olive fruits can be classified

by electrical impedancet (Tang et al., 2024). predicted soluble solid

content (SSC) and hardness of fragrant pear based on dielectric

spectroscopy technology and machine learning algorithms, and

found that the PLSR model had the highest accuracy (Cao et al.,

2023). established the relationship between dielectric properties and

the internal quality of peaches based on dielectric spectroscopy and

the least squares support vector machine (LSSVM) algorithm,

finding that the LSSVM model predicted the quality of peaches

with high accuracy (Rashvand and Soltani, 2020). used dielectric

spectroscopy, artificial neural network and SVR to predict the water

content of olives and found that the artificial neural network model

had the best predictions. Many scholars have shown that the

combination of dielectric spectroscopy with machine learning

algorithms achieves good accuracy when predicting fruit quality

indexes. However, most research has applied full-band dielectric

spectroscopy data, which has the disadvantages of high data

dimensionality, redundancy, and data noise, resulting in longer

model training time, reduced model generalization ability, and

difficulty in model training.

Scholars usually use feature variable extraction methods, such as

SPA and UVE, for the full-band data to effectively reduce the impact

of redundant dielectric spectroscopy data on the model, accelerate

the computation rate, and improve the detection accuracy of the

machine learning model. For example (Shang et al., 2013),

established a prediction model of sugar content for nectarines

based on dielectric spectroscopy with UVE and SPA feature

variable extraction methods, and confirmed that the high-

precision detection of the sugar content of nectarine could be

realized by UVE and SPA feature variable extraction methods

(Liu and Guo, 2017). established an SSC nondestructive testing

model for persimmons of multiple origins using the LSSVM

algorithm based on dielectric spectroscopy and the feature

variable extraction method, confirming that the feature variable

extraction method could improve the prediction accuracy of the

SSC model for persimmons (Guo et al., 2015a). used SPA and UVE

to extract the dielectric spectroscopy data of apples and combined

them with extreme learning machine (ELM) and other models to

predict the soluble solid content of apples. The results showed that

the SPA-ELM model had the best prediction, and SPA could

effectively improve the prediction accuracy of the soluble solid

content of apples. These studies suggest that the prediction

performance of the fruit quality index prediction model can be

improved after using feature variable extraction. However, research

on establishing a machine learning model based on dielectric

spectroscopy and feature variable extraction to predict the colour

index of Korla fragrant pear has rarely been reported, making it a

significant research gap.

This study proposed an efficient method for the non-destructive

detection of the color quality of Korla fragrant pears, aiming to

combine dielectric spectroscopy technology and machine learning

algorithms to achieve rapid and accurate prediction of pear color.

The developed method not only provides a reliable technical means

for pear quality evaluation but also establishes a transferable

analytical framework for the non-destructive detection of other
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fruits and vegetables. The specific work is as follows: (1) Using a

vector network analyzer and coaxial probe technology, the dielectric

constant e’ and dielectric loss factor e’’ of pear samples were

measured at 100 frequency points within the frequency range of

0.1–26.5 GHz, and the correlation between the dielectric parameters

and color indicators of the pears was analyzed. (2) PLSR, SVR, and

LSSVR modeling methods were used to establish prediction models

for pear color. (3) The predictive performance of the three models

and the accuracy of the models combined with UVE and SPA

algorithms were compared and analyzed to determine the optimal

prediction model for achieving accurate prediction of pear color.
2 Materials and methods

2.1 Test materials

The Korla fragrant pear samples used in this experiment were

collected from a conventionally managed orchard in Block 10,

Regiment 10, Alar City, Xinjiang Production and Construction

Corps First Division, on October 1 and October 8, 2023. The pear

trees featured uniform canopy sizes and were all 9 years old. To

prevent damage and browning of the samples during collection,

which could affect the experimental results, all pears were manually

harvested with gloves and wrapped in foam nets. Samples were

selected based on uniform size (115 ± 5 g), smooth surface, and

absence of damage or disease. Fifty pears were collected on each

date, resulting in a total of 100 samples for subsequent experiments.

On the day of collection, the pears were transported to the Textile

Engineering Laboratory of Tarim University.
2.2 Measurement methods

2.2.1 Determination of dielectric parameters
The vector network analyser (3671D, Siyi Science and

Technology Co., Ltd. of China Electric Equipment Group,

Qingdao, Shandong Province, China) and end coaxial probe were

used to measure the dielectric parameters e’ and e’’, as shown in

Figure 1. e’ represents the ability of a dielectric material to store

energy in an electric field, and e′′ represents a measure of the loss

energy of a dielectric material under the action of an external

electric field (Nelson, 2006; Sosa et al., 2010). Before the test, the

coaxial probe was connected to the preheated vector network

analyser by a cable. Then, the instrument was calibrated

according to open circuit, short circuit, and load standards.

Finally, the frequency range was set from 0.1 to 26.5GHz, and a

total of 100 frequency points were selected.

The test was carried out at room temperature, with a mean

temperature of 15°C. The fragrant pear is placed on the lifting

platform, and the height is adjusted to ensure close contact with the

probe while preventing any damage to avoid compromising the

detection results. At the largest diameter of the fragrant pear, a

point was selected at 120° intervals and marked. A total of three

points on each fragrant pear sample were selected as the
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measurement points for the dielectric parameter to measure e’
and e’’, and the arithmetic mean value of the three measurement

results was taken as the dielectric parameter of the fragrant pear.

2.2.2 Determination of L*, a*, and b*
The CIELab system is a uniform color space based on human

visual perception, proposed by the International Commission on

Illumination (CIE) (Soraya, 2021; Li et al., 2023). This system

quantifies color through three dimensions: L*, a*, and b*, and is

widely used for the quantitative assessment of the appearance

quality of fruits and vegetables (Zhang et al., 2023). Therefore,

this study adopted L*, a*, and b* as the color quality indicators of

the fragrant pears, which were measured using a colorimeter (SC-

10, Shenzhen 3nh Technology Co., Ltd., Shenzhen, China). Where

L* indicates the brightness, with a value interval of 0–100, and a

larger L* value indicates a higher surface brightness of fragrant pear;
a* indicates the red and green difference, the value interval is -128 –

+127, where +a* is red, -a* is green, and a larger absolute value

indicates deeper red or green; b* indicates the yellow and blue

difference, the value interval is -128 – +127, where +b* is yellow, -b*
is blue, and a larger absolute value indicates a deeper yellow or blue.

The measurement point of the dielectric parameter is the

measurement point of colour, and the three measurement points

of L*, a*, and b* take the arithmetic mean value as the colour data of

each fragrant pear.
2.3 Modelling

Three modelling methods, PLSR, SVR, and LSSVR, were used to

establish the colour prediction models for Korla fragrant pear. This
FIGURE 1

Test platform for dielectric parameters of fragrant pear. 1: Vector
network analyser 2: Connecting cable 3: Coaxial probe with end
opening 4: Fragrant pear 5: Lifting platform.
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study sets e’+e’’ as the input variables of the model and L*, a*, and

b* as the output variables in both the training set and the test set.

Randomly, 70% of the data were used as the training set and 30% as

the test set.

2.3.1 PLSR model
PLSR is a regression modelling method for multiple dependent

variables Y on multiple independent variables X, which combines

techniques such as multiple linear regression analysis, correlation

analysis, and principal component analysis. PLSR extracts and

maximizes the correlation between the principal components in Y

and X in the modelling process. Therefore, PLSR can analyse

complex datasets comprehensively, extracting key information

and constructing predictive models (Ramıŕez-Sánchez et al.,

2025). In addition, PLSR can efficiently solve the issue of

multicollinearity between the dependent and independent

variables for the purpose of regression modelling. PLSR also has

the advantage of obtaining desirable prediction results even with a

small sample size because it emphasizes the relationship between

the variables rather than the sample size.

2.3.2 SVR model
SVR is a machine learning method that constructs a nonlinear

regression model by a kernel function and improves the trainer’s

ability to handle nonlinear problems (Abdollahpour et al., 2020; Al-

Rousan and Al-Najjar, 2021). It forms an “isolation band” on both

sides of the linear function with a spacing of e (e-insensitive loss

function), and samples between e do not incur a loss. Only the

support vectors have an effect on its function model, and the

optimized model is finally derived by minimizing the total loss

and maximizing the spacing.

2.3.3 LSSVR model
LSSVR is an improved version of support vector machines. It

changes the inequality constraints in the traditional support vector

machine to equational constraints and uses the error squared and

loss function as the empirical loss in the training set to convert

quadratic programming into solving a system of linear equations to

increase the speed and convergence accuracy of solutions (Huang

et al., 2024; Liu et al., 2024).
2.4 Model evaluation standards

To screen the optimal prediction model, the root mean squared

error (RMSE) and coefficient of determination (R2) were used to

evaluate the model’s ability to predict colour. The lower the value of

RMSE and the higher the value of R2, the better the prediction effect

of the model. Relative percent difference (RPD) is an important

metric in model evaluation for assessing prediction accuracy. A

higher RPD value indicates that the model’s predictions are more

precise relative to the inherent variability of the data, and the model

is more stable. When RPD > 2.5, it indicates that the model

possesses excellent predictive capability, high prediction accuracy,

and is highly reliable (Guo et al., 2025); When 2.0 < RPD ≤ 2.5, it
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indicates that the model has good predictive ability and can be used

for approximate quantitative predictions and trend analysis; When

RPD < 1.4, it indicates that the model has poor predictive ability and

can only be used for rough qualitative discrimination of samples

(Wang et al., 2022). The calculation formulas for RMSE, R2 and

RPD are as follows, respectively in Equationa 1–3:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
N

i=1
(Mj − Tj)

2

N

vuuut
(1)

R2 = 1 −
o
N

i=1
(Mj − Tj)

2

o
N

i=1
(Mj − Tj)

2
(2)

RPD ¼ SD
RMSE

(3)

where Mj is the measured values of data j, and Tj is the

prediction values of data j. Tj is the mean of the measured values.

N is the total number of data, and SD is the standard deviation of

the analytical samples.
2.5 Methods for extracting feature
variables

UVE and SPA are techniques used in data analysis and machine

learning for identifying and selecting effective feature variables to

improve the predictive performance of models. UVE aims to

automatically remove “useless” variables that do not carry more

information than noise, reduce the dimensionality of the data,

prevent model overfitting, and improve model interpretability.

UVE, based on the principles of information theory and statistics,

is highly reliable and robust, and only requires input of raw data,

can be easily used, and has wide applicability. The principle of the

UVE algorithm first specifies the standards for variable evaluation,

and the weak correlation between the variables and the feature

variables in the dataset is usually eliminated by using the Pearson

correlation coefficient and chi-square tests, until the decline in the

number of features in the dataset reaches a preset threshold. The

feature selection process is iterated until the desired features are

removed, and the specific steps of the algorithm are described in a

previous study literature (Centner et al., 1996).

In addition to deleting the variables with the lowest information

gain or information entropy, covariance or redundant variables

could also exist in the original data set, and SPA aims to minimize

the covariance by screening out the variables with the least

redundant information. SPA is a forward feature variable

selection algorithm, which projects wavelengths to other

wavelengths after projection analysis of vectors, considering the

wavelength with the largest projection vector as the wavelength to

be selected, and uses the correction model to select the final feature

wavelength (Zhang et al., 2022). The specific steps of the algorithm

are described in a previous study (Araújo et al., 2001).
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3 Results and analysis

3.1 Analysis of the linear relationship
between dielectric parameters and values
of L*, a*, and b* of fragrant pear’s colour
index

The Pearson correlation analysis between the dielectric constant

e’ and colour indexes L*, a*, b* of fragrant pear is conducted first at

a single frequency. The linear relationship of e’ and e” with colour

indexes at different frequencies is shown in Figures 2, 3. As shown

in Figure 2, L*, b*, and e’ are positively correlated, and the value of

the correlation coefficient is not more than 0.16. a* and e’ are
Frontiers in Plant Science 05
negatively correlated, and the absolute value of the correlation

coefficient is not more than 0.04, indicating that the correlation

between e’ and L*, a*, b* is relatively small at a single frequency.

Next, this study analyses the linear relationship between loss

factor e’’ and colour indexes L*, a*, b* of fragrant pear at a single

frequency. As shown in Figure 3, the correlation between L* and e’’
changed from positive to negative, and the absolute value of the

correlation coefficient was not more than 0.03. The correlation

between b* and e’’ became weaker, and the correlation between a*
and e’’ changed from negative to positive. Therefore, the linear

correlation between e’’ and L*, a*, and b* is weak at a single

frequency (Guo et al., 2015b). investigated the feasibility of

dielectric spectroscopy as a nondestructive technique in

determining SSC and firmness of pears during ripening period

and found that it is impossible to select one permittivity value at a

single frequency for accurate prediction of SSC and firmness of

pears. This is consistent with the research conclusion of this study.

The reason might be that the spatial information of the fruits

obtained at a single frequency is limited (Cao et al., 2024), resulting

in a poor correlation between the dielectric parameters and the

color indexes.

From Figures 2, 3, it can be seen that it is difficult to predict the

colour of fragrant pear using dielectric parameters at a single

frequency. Therefore, dielectric parameters at multiple frequencies

should be used to predict the L*, a*, and b* of fragrant pear.
3.2 Prediction of fragrant pear quality
based on dielectric spectroscopy
technology

3.2.1 Prediction of colour indexes L*, a*, b* of
fragrant pear based on PLSR, SVR, and LSSVR

Table 1 presents the results of various models for predicting the

color parameters of Korla fragrant pears. The PLSR model

performed best in predicting the color parameters L*, a*, and b*,
exhibiting the highest R2 and RPD, along with the lowest RMSE. For

the prediction of L*, the training set yielded R2, RMSE, and RPD

values of 0.85, 0.753, and 2.560, respectively, while the test set

produced corresponding values of 0.80, 0.962, and 2.250. For a*
prediction, the R2, RMSE, and RPD in the training set were 0.96,

0.344, and 3.965, respectively; in the test set, they were 0.80, 0.996,

and 2.360. For b* prediction, the PLSR model achieved R2, RMSE,

and RPD values of 0.72, 0.890, and 1.963 in the training set, and

0.67, 0.988, and 1.734 in the test set. Furthermore, compared to the

L* and a* parameters, all models demonstrated inferior

performance in predicting b*. The average R2, RMSE, and RPD

for predicting L*, a*, and b* were only 0.56, 1.098, and 1.545,

respectively. This may be due to the extensive redundant

information contained within the dielectric spectrum data, which

can impair model prediction accuracy (Guo et al., 2015a).

Consequently, there remains room for improving the accuracy of
FIGURE 2

Linear relationship between e' and L*, a*, b*.
FIGURE 3

Linear relationship between e'' and L*, a*, b.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1691673
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1691673
PLSR models in predicting the color of Korla fragrant pears;

employing feature variable extraction methods could further

enhance prediction precision.

3.2.2 Prediction of colour indexes of fragrant
pear after extraction of feature variables
3.2.2.1 Prediction of colour indexes of fragrant pear based
on UVE

Table 2 shows the prediction results for the color indices of

Korla fragrant pears using the UVE method. Models trained with

feature variables extracted by UVE exhibited enhanced

performance in predicting L*, a*, and b* values. Specifically, the

UVE-SVR model achieved test set R2 values of 0.76, 0.77, and 0.62

for L*, a*, and b*, respectively, with corresponding RMSEs of 0.996,

1.001, and 1.023, and RPDs of 1.999, 2.139, and 1.658. The UVE-

LSSVR model yielded test set R2 values of 0.65, 0.71, and 0.65 for L*,
a*, and b*, respectively, with RMSEs of 1.036, 1.044, and 0.983, and

RPDs of 1.710, 1.882, and 1.726. Among the compared methods,

UVE-PLSR demonstrated superior performance. For predicting L*,
Frontiers in Plant Science 06
the test set R2, RMSE, and RPD were 0.82, 0.938, and 2.368,

respectively, representing a 2.5% improvement in R2 over the

standard PLSR model. For a*, the test set R2, RMSE, and RPD

were 0.85, 0.901, and 2.523, respectively, reflecting a 6.25% increase

in R2 compared to standard PLSR. For b*, the test set R2, RMSE, and

RPD were 0.73, 0.895, and 1.973, respectively, indicating an 8.96%

gain in R2 over standard PLSR.

The results indicated that processing the dielectric spectrum

data with UVE effectively improved the detection accuracy of the

PLSR, SVR, and LSSVR models, with the UVE-PLSR model

demonstrating the best performance in detecting the color indices

L*, a*, and b*. Furthermore, when predicting the color index data of

fragrant pears, the UVE-PLSR model extracted 12 feature variables

for L*, 15 for a*, and 18 for b*, accounting for 6.0%, 7.5%, and 9.0%
of the total input variables, respectively. This demonstrates that the

UVE method can reliably identify and eliminate noise and

redundant spectral variables that do not contribute to the model,

thereby effectively enhancing the signal-to-noise ratio. This process

simplified the model structure, reduced the risk of overfitting, and
TABLE 1 Prediction results of colour indexes of fragrant pear based on PLSR, SVR, and LSSVR.

Testing
index

Prediction
model

Training set Test set

R2 RMSE RPD R2 RMSE RPD

L*

PLSR 0.85 0.753 2.560 0.80 0.962 2.250

SVR 0.78 0.862 2.120 0.70 1.279 1.855

LSSVR 0.82 0.76 2.438 0.59 1.564 1.571

a*

PLSR 0.96 0.344 3.965 0.80 0.996 2.360

SVR 0.79 0.800 2.195 0.68 1.280 1.767

LSSVR 0.83 0.723 2.514 0.64 1.280 1.723

b*

PLSR 0.72 0.890 1.963 0.67 0.988 1.734

SVR 0.63 0.947 1.646 0.50 1.179 1.441

LSSVR 0.72 0.834 1.897 0.52 1.127 1.460
TABLE 2 Prediction results of colour indexes of fragrant pear based on UVE.

Testing
index

Prediction
model

Selected
variables

Training set Test set

R2 RMSE RPD R2 RMSE RPD

L*

PLSR 12 0.85 0.743 2.566 0.82 0.938 2.368

SVR 13 0.75 0.947 2.068 0.76 0.996 1.999

LSSVR 16 0.66 1.127 1.741 0.65 1.036 1.710

a*

PLSR 15 0.86 0.602 2.672 0.85 0.901 2.523

SVR 29 0.88 0.586 3.045 0.77 1.001 2.139

LSSVR 21 0.73 0.997 1.963 0.71 1.044 1.882

b*

PLSR 18 0.76 0.752 2.041 0.73 0.895 1.973

SVR 5 0.66 0.920 1.759 0.62 1.023 1.658

LSSVR 10 0.71 0.854 1.857 0.65 0.983 1.726
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improved the model’s predictive robustness and accuracy,

providing key guidance for developing low-cost detection

equipment for fruits and vegetables.

3.2.2.2 Prediction of colour indexes of fragrant pear
based on SPA

The prediction results for the color indices of Korla fragrant

pears based on the SPA method are shown in Table 3. When SPA

was combined with PLSR to predict the color index L*, the R2,

RMSE, and RPD in the test set were 0.83, 0.866, and 2.477,

respectively. For predicting a*, the values were 0.81, 0.982, and

2.357; for predicting b*, they were 0.72, 0.940, and 1.924. When SPA

was combined with the SVR model to predict L*, the R2, RMSE, and

RPD in the test set were 0.74, 1.108, and 1.960, respectively. For

predicting a*, the values were 0.70, 1.157, and 1.832; for b*, they
were 0.61, 1.142, and 1.628. When SPA was combined with the

LSSVR model to predict L*, the R2, RMSE, and RPD in the test set

were 0.68, 1.155, and 1.774, respectively. For predicting a*, the
values were 0.71, 0.977, and 1.913; for b*, they were 0.56, 1.116, and
1.536. After extracting feature variables from the dielectric

spectrum data using SPA, the prediction accuracy of the PLSR,

SVR, and LSSVR models was effectively improved. Among them,

the SPA-PLSR model demonstrated the best performance in
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predicting the color parameters L*, a*, and b*. For predicting the

L*, a*, and b* values of Korla fragrant pears in the test set, the R2

values achieved by the SPA-PLSR model were 3.75%, 1.25%, and

7.46% higher, respectively, compared to those obtained by the

PLSR model.

As a forward feature selection method, SPA effectively

eliminates redundant information. Table 3 presents the number

of feature variables selected by the SPA method. For predicting the

color indices of Korla fragrant pears using the SPA-PLSR model, the

numbers of feature variables extracted for L*, a*, and b* were 20, 20,
and 15, respectively, accounting for 10.00%, 10.00%, and 7.50% of

the total input variables. This demonstrates that SPA processing

effectively reduces data dimensionality. Furthermore, when

integrated with the PLSR model, SPA selected fewer feature

variables compared to SVR and LSSVR, while achieving higher

prediction accuracy, further confirming the superior accuracy and

robustness of the SPA-PLSR model in predicting the color indices of

fragrant pears.

3.3 Determination of the optimal prediction
model

Both the UVE and SPA feature variable extraction methods

effectively improved the prediction accuracy of the colour index of
TABLE 3 Prediction results of colour indexes of fragrant pear based on SPA.

Testing
index

Prediction
model

Selected
variables

Training set Test set

R2 RMSE RPD R2 RMSE RPD

L*

PLSR 20 0.85 0.767 2.629 0.83 0.866 2.477

SVR 20 0.74 0.980 1.964 0.74 1.108 1.960

LSSVR 25 0.68 1.139 1.780 0.68 1.155 1.774

a*

PLSR 20 0.89 0.586 3.030 0.81 0.982 2.357

SVR 60 0.78 0.817 2.154 0.70 1.157 1.832

LSSVR 60 0.83 0.803 1.781 0.71 0.977 1.913

b*

PLSR 15 0.80 0.691 2.267 0.72 0.940 1.924

SVR 60 0.61 0.931 1.653 0.61 1.142 1.628

LSSVR 60 0.63 0.950 1.658 0.56 1.116 1.536
TABLE 4 Optimal prediction results for the colour indexes of fragrant pear.

Testing
index

Prediction
model

Selected
variables

Training set Test set

R2 RMSE RPD R2 RMSE RPD

L*
UVE-PLSR 12 0.85 0.743 2.566 0.82 0.938 2.368

SPA-PLSR 20 0.85 0.767 2.629 0.83 0.866 2.477

a*
UVE-PLSR 15 0.86 0.602 2.672 0.85 0.901 2.523

SPA-PLSR 20 0.89 0.586 3.030 0.81 0.982 2.357

b*
UVE-PLSR 18 0.76 0.752 2.041 0.73 0.895 1.973

SPA-PLSR 15 0.80 0.691 2.267 0.72 0.940 1.924
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fragrant pear, and the optimal prediction results of the colour

indexes of fragrant pear are shown in Table 4. In the prediction

of L*, the SPA-PLSR exhibited slightly higher prediction accuracy

than the UVE-PLSR, with R², RMSE, and RPD values in the test set

of 0.83, 0.866, and 2.477, respectively. When predicting a*, UVE-
PLSR had the highest R2 and RPD, and the lowest RMSE in the test

set, at 0.85, 0.901 and 2.523, respectively. When predicting b*,
although the accuracy of UVE-PLSR was slightly lower than that of

SPA-PLSR in the training set, UVE-PLSR had a higher accuracy

than the SPA-PLSR model in the test set, whose R2, RPD and RMSE

values were 0.73 0.895 and 1.973, respectively. Overall, the

prediction accuracy of the colour indexes of fragrant pear L* and

a* are high, but the prediction accuracy of b* needs to be improved.
4 Discussion

In this study, dielectric spectroscopy was combined with the

feature variable extraction method to establish a machine learning

prediction model for the colour of Korla fragrant pear. The optimal

prediction model for L* was SPA-PLSR (with R2 of 0.83, RMSE of

0.866, and RPD of 2.477), the optimal prediction model for a* was
UVE-PLSR (with R2 of 0.85, RMSE of 0.901, and RPD of 2.523), and

the optimal prediction model for b* was UVE-PLSR (with R2 of

0.73, RMSE of 0.895, and RPD of 1.973) (Xia et al., 2025). combined

near-infrared spectroscopy with UVE and SPA to establish a PLSR

prediction model for the colour of Korla fragrant pear, and found

that the UVE and SPA feature extraction variable methods can

effectively improve the prediction accuracy of the PLSR model,

which is in line with the conclusions of this study. The R2 of the

optimal model for predicting L*, a*, and b* were 0.64, 0.71, and

0.71, and the RMSE of the optimal model were 1.19, 1.28, and 1.25,

respectively. However, this study used dielectric spectroscopy

technology to predict the colour of fragrant pear, which had a

higher accuracy. Therefore, dielectric spectroscopy technology may

be more suitable for detecting the colour indexes of fragrant pear. In

addition, previous studies have shown that dielectric spectroscopy

technology can also be used for the online detection of fruit quality

indexes, such as the sugar degree (Hua et al., 2024), hardness (Guo

et al., 2015b), and SSC (Cao et al., 2024). In comparison to machine

vision and colourimeters technology, the use of dielectric

spectroscopy technology in the online detection of multiple

quality indexes of fruits is more in line with the production needs.

The combination of nondestructive testing technology and

feature variable extraction methods (such as UVE and SPA) can

effectively improve the accuracy of machine learning models to

predict the fruit quality (Li et al., 2020; Gao et al., 2025; Hu et al.,

2019). The feature variables with the best predictive ability can be

selected after processing using the feature variable extraction

method, which reduces the model complexity and information

overlap, and improves the prediction accuracy and stability of the

model (Meng et al., 2025). combined hyperspectral imaging with
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various algorithmic models, such as UVE, SPA, and PLSR, to

nondestructively test the soluble solid content of multi-species

blueberries, finding that the UVE-PLSR prediction model had the

highest accuracy (Che et al., 2024). combined near-infrared

spectroscopy with UVE and SPA to extract effective wavelengths,

and the results showed that the model established by PLSR

predicted the hardness and SSC of fragrant pear better (Tang

et al., 2024). predicted SSC and hardness of fragrant pear based

on dielectric spectroscopy technology and machine learning

models, and found that compared with the SVR and PSO-LSSVR

models, the PLSR model had the highest accuracy (Tian et al.,

2024). used PLSR and random forest algorithms to establish

quantitative prediction models for SSC and random forest based

on the bulk optical properties of apples, and indicated that the PLSR

models were optimal for quantitative prediction of SSC and fruit

firmness. This study also shows that the colour prediction of

fragrant pear established by UVE- PLSR and SPA- PLSR was

better, which suggests that the PLSR is more effective for

establishing fruit quality prediction models. It may be that PLSR

model can effectively deal with the problem of covariance and

construct a stable prediction model even if the independent

variables are highly correlated with each other.

This study merely provides an new detection method for the

colour of fragrant pear based on dielectric spectroscopy combined

with machine learning models. This methodology can be broadly

scaled up to diverse sectors in agricultural testing, offering novel

approaches for enhancing food safety and quality surveillance. To

achieve practical application, further improvement is still needed.

Further, differences in the growth environment and planting

management mode will lead to differences in samples of fragrant

pear from different origins. The fragrant pear used in this study are

from the First Division of Xinjiang, so the sample source is single. In

future research, fragrant pear from multiple origins and growth

conditions should be added as samples to further improve the

generalization ability of the prediction model. In addition, the

existing machine learning model will be continuously optimized,

and new algorithms such as deep learning will be established to

further enhance the application ability of dielectric spectroscopy to

fruit quality detection, and relevant intelligent detection equipment

will be developed to meet the needs of fruit enterprises and

consumers for high-quality fruits.
5 Conclusion

In this study, a vector network analyser and coaxial probe were

applied to detect dielectric parameters of fragrant pear in the

frequency range of 0.1–26.5GHz. A new method for colour

detection was proposed based on dielectric spectroscopy

combined with machine learning models. The correlations

between colour indexes (L*, a* and b*) of fragrant pear and

dielectric parameters (e’ and e’’) were poor at a single frequency,
frontiersin.org

https://doi.org/10.3389/fpls.2025.1691673
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1691673
and it was difficult to predict the colour of fragrant pear under these

conditions. Dielectric parameters at multiple frequencies should be

used to predict the L*, a*, and b* of fragrant pear. In comparison to

the colour prediction model of fragrant pear established by full-

frequency dielectric spectroscopy, the prediction accuracies of

PLSR, SVR, and LSSVR models after UVE and SPA processing

were improved. The optimal prediction model for L* was SPA-

PLSR (with R2 of 0.83, RMSE of 0.866, and RPD of 2.477), the

optimal prediction model for a* was UVE-PLSR (with R2 of 0.85,

RMSE of 0.901, and RPD of 2.523), and the optimal prediction

model for b* was UVE-PLSR (with R2 of 0.73, RMSE of 0.895, and

RPD of 1.973). In the future, more studies on quality detection

methods of fragrant pear from multiple origins will be conducted,

and novel algorithms will be explored to improve the practical

application of dielectric spectroscopy.
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