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Introduction: Accurate control of fruit quality determines the commercial value
of Korla fragrant pear. The rapid and accurate detection of the colour of fragrant
pear is crucial for improving its commercial value.

Methods: In this study, a vector network analyser and coaxial probe were applied
to detect the dielectric constant €' and dielectric loss factor €” of fragrant pear
samples in the frequency range of 0.1-26.5GHz, and to analyse the linear
relationship between the colour of fragrant pear and the dielectric parameter.
Uninformative variables elimination (UVE) and the successive projections
algorithm (SPA) were used to extract feature variables from the dielectric
spectroscopy data; partial least squares regression (PLSR), support vector
regression (SVR), and least squares support vector regression (LSSVR) were
used to establish the colour prediction models of Korla f.agrant pear,
respectively. The prediction results of color prediction model with full
frequency band of dielectric spectrum and feature variable extraction were
compared, facilitating the identification of the best prediction model.

Results: The results showed that the linear correlation between ¢/, ¢” and L*, a*, b* at
a single frequency was weak. Both feature variable extraction methods, UVE and
SPA, were able to improve the prediction accuracy of the colour of fragrant pear. The
SPA-PLSR model showed the best prediction for L* (R? = 0.83, RMSE = 0.866, RPD =
2.477), while the UVE-PLSR model showed the best prediction for both a* (R? = 0.85,
RMSE = 0.901, RPD = 2.523) and b* (R? = 0.73, RMSE = 0.895, RPD = 1.973).
Discussion: The results can provide a new method for the accurate detection of
the quality of Korla fragrant pear.
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dielectric spectroscopy technology, Korla fragrant pear, colour, machine learning,
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1 Introduction

Korla fragrant pears are a national geographical indication
product of China, and hold the titles of “Queen of World Pears”,
“Pear of Rare Quality”, and “King of Fruits” because of their
aesthetic colour, sweet and smooth taste, thin skin, fine pulp, and
crispy texture, with an annual production exceeding 1.5 million
tons (Liu et al., 2021; Yu et al,, 2023; Liu et al,, 2025). In developing
Asian countries, the annual postharvest loss of fruits and vegetables
exceeds 50%, which has aroused widespread concern regarding food
security and sustainable development (He et al, 2025). As an
important index for measuring the quality of fragrant pear, colour
is an important reference point for identifying fruit maturity and
fruit grade and selling price (Zhang et al., 2023), which determines
its commercial value (Yu et al., 2022). The evaluation of fruit colour
is crucial in the sales of agricultural products (Zhang et al., 2023; Yu
etal., 2022; Sanaeifar et al., 2016). Traditionally, fruit growers judge
the fruit maturity and commercial value by observing the colour of
fragrant pear, so it is inevitable that there will be differences in
subjective judgments, which affect the reasonable quality evaluation
of fragrant pear. Although machine vision and colourimeters
technology can judge the colour of the fruit, these measurement
results are easily affected by the lighting environment, and cannot
detect other quality indexes of the fruit. Therefore, researching an
accurate and efficient online detection method for the colour of
fragrant pear can provide theoretical guidance for the quality
control and grading of fragrant pear, and is of great significance
to promote the industrial development of fragrant pear.

At present, the methods for detecting quality indexes, such as
the colour of fruits, include machine vision (Liu et al., 2019; Al-Dairi
etal., 2024), hyperspectral imaging (Shao et al., 2024), near-infrared
spectroscopy (Alhamdan and Atia, 2017), and dielectric
spectroscopy (Silva Junior et al., 2020). For these methods, the
light and background can affect the accuracy of the colour. Further,
for machine vision systems, the maintenance of high-precision
equipment and algorithms makes them expensive, and their
versatility and adaptability are limited. Hyperspectral imaging
systems have high calibration requirements, low spatial
resolution, poor environmental adaptability, and high data and
algorithmic complexity, limiting their applicability. Near-infrared
spectroscopy is too model-dependent and sensitive to temperature
and light. When the environment changes, it may lead to the
spectral signal drift or distortion, which affects the detection
accuracy, and the long data acquisition and processing time
makes real-time detection difficult. As an emerging technology,
dielectric spectroscopy technology has been applied to the detection
of fruit quality indexes due to its advantages of fast, non-destructive,
sensitive, efficient, and simple operation (Silva Junior et al., 2020).
used dielectric spectroscopy technology to explore the relationship
between dielectric properties and the maturity of Tommy Atkins
Mango, and found that the dielectric parameters were correlated
with physical chemical indicators such as color of Tommy Atkins
Mango during the mature stage (Krapac et al., 2024). explored the
potential of electrical impedance spectroscopy as a rapid and
objective technique for detecting the harvesting time of olives,
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and indicated that differently colored olive fruits can be classified
by electrical impedancet (Tang et al., 2024). predicted soluble solid
content (SSC) and hardness of fragrant pear based on dielectric
spectroscopy technology and machine learning algorithms, and
found that the PLSR model had the highest accuracy (Cao et al,
2023). established the relationship between dielectric properties and
the internal quality of peaches based on dielectric spectroscopy and
the least squares support vector machine (LSSVM) algorithm,
finding that the LSSVM model predicted the quality of peaches
with high accuracy (Rashvand and Soltani, 2020). used dielectric
spectroscopy, artificial neural network and SVR to predict the water
content of olives and found that the artificial neural network model
had the best predictions. Many scholars have shown that the
combination of dielectric spectroscopy with machine learning
algorithms achieves good accuracy when predicting fruit quality
indexes. However, most research has applied full-band dielectric
spectroscopy data, which has the disadvantages of high data
dimensionality, redundancy, and data noise, resulting in longer
model training time, reduced model generalization ability, and
difficulty in model training.

Scholars usually use feature variable extraction methods, such as
SPA and UVE, for the full-band data to effectively reduce the impact
of redundant dielectric spectroscopy data on the model, accelerate
the computation rate, and improve the detection accuracy of the
machine learning model. For example (Shang et al., 2013),
established a prediction model of sugar content for nectarines
based on dielectric spectroscopy with UVE and SPA feature
variable extraction methods, and confirmed that the high-
precision detection of the sugar content of nectarine could be
realized by UVE and SPA feature variable extraction methods
(Liu and Guo, 2017). established an SSC nondestructive testing
model for persimmons of multiple origins using the LSSVM
algorithm based on dielectric spectroscopy and the feature
variable extraction method, confirming that the feature variable
extraction method could improve the prediction accuracy of the
SSC model for persimmons (Guo et al., 2015a). used SPA and UVE
to extract the dielectric spectroscopy data of apples and combined
them with extreme learning machine (ELM) and other models to
predict the soluble solid content of apples. The results showed that
the SPA-ELM model had the best prediction, and SPA could
effectively improve the prediction accuracy of the soluble solid
content of apples. These studies suggest that the prediction
performance of the fruit quality index prediction model can be
improved after using feature variable extraction. However, research
on establishing a machine learning model based on dielectric
spectroscopy and feature variable extraction to predict the colour
index of Korla fragrant pear has rarely been reported, making it a
significant research gap.

This study proposed an efficient method for the non-destructive
detection of the color quality of Korla fragrant pears, aiming to
combine dielectric spectroscopy technology and machine learning
algorithms to achieve rapid and accurate prediction of pear color.
The developed method not only provides a reliable technical means
for pear quality evaluation but also establishes a transferable
analytical framework for the non-destructive detection of other
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fruits and vegetables. The specific work is as follows: (1) Using a
vector network analyzer and coaxial probe technology, the dielectric
constant € and dielectric loss factor €’ of pear samples were
measured at 100 frequency points within the frequency range of
0.1-26.5 GHz, and the correlation between the dielectric parameters
and color indicators of the pears was analyzed. (2) PLSR, SVR, and
LSSVR modeling methods were used to establish prediction models
for pear color. (3) The predictive performance of the three models
and the accuracy of the models combined with UVE and SPA
algorithms were compared and analyzed to determine the optimal
prediction model for achieving accurate prediction of pear color.

2 Materials and methods
2.1 Test materials

The Korla fragrant pear samples used in this experiment were
collected from a conventionally managed orchard in Block 10,
Regiment 10, Alar City, Xinjiang Production and Construction
Corps First Division, on October 1 and October 8, 2023. The pear
trees featured uniform canopy sizes and were all 9 years old. To
prevent damage and browning of the samples during collection,
which could affect the experimental results, all pears were manually
harvested with gloves and wrapped in foam nets. Samples were
selected based on uniform size (115 * 5 g), smooth surface, and
absence of damage or disease. Fifty pears were collected on each
date, resulting in a total of 100 samples for subsequent experiments.
On the day of collection, the pears were transported to the Textile
Engineering Laboratory of Tarim University.

2.2 Measurement methods

2.2.1 Determination of dielectric parameters

The vector network analyser (3671D, Siyi Science and
Technology Co., Ltd. of China Electric Equipment Group,
Qingdao, Shandong Province, China) and end coaxial probe were
used to measure the dielectric parameters € and €”, as shown in
Figure 1. € represents the ability of a dielectric material to store
energy in an electric field, and €’ represents a measure of the loss
energy of a dielectric material under the action of an external
electric field (Nelson, 2006; Sosa et al., 2010). Before the test, the
coaxial probe was connected to the preheated vector network
analyser by a cable. Then, the instrument was calibrated
according to open circuit, short circuit, and load standards.
Finally, the frequency range was set from 0.1 to 26.5GHz, and a
total of 100 frequency points were selected.

The test was carried out at room temperature, with a mean
temperature of 15°C. The fragrant pear is placed on the lifting
platform, and the height is adjusted to ensure close contact with the
probe while preventing any damage to avoid compromising the
detection results. At the largest diameter of the fragrant pear, a
point was selected at 120° intervals and marked. A total of three
points on each fragrant pear sample were selected as the
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FIGURE 1

Test platform for dielectric parameters of fragrant pear. 1: Vector
network analyser 2: Connecting cable 3: Coaxial probe with end
opening 4: Fragrant pear 5: Lifting platform.

measurement points for the dielectric parameter to measure €
and €7, and the arithmetic mean value of the three measurement
results was taken as the dielectric parameter of the fragrant pear.

2.2.2 Determination of L*, a* and b*

The CIELab system is a uniform color space based on human
visual perception, proposed by the International Commission on
Mumination (CIE) (Soraya, 2021; Li et al, 2023). This system
quantifies color through three dimensions: L*, a*¥, and b*, and is
widely used for the quantitative assessment of the appearance
quality of fruits and vegetables (Zhang et al., 2023). Therefore,
this study adopted L¥, a*, and b* as the color quality indicators of
the fragrant pears, which were measured using a colorimeter (SC-
10, Shenzhen 3nh Technology Co., Ltd., Shenzhen, China). Where
L* indicates the brightness, with a value interval of 0-100, and a
larger L* value indicates a higher surface brightness of fragrant pear;
a* indicates the red and green difference, the value interval is -128 -
+127, where +a* is red, -a* is green, and a larger absolute value
indicates deeper red or green; b* indicates the yellow and blue
difterence, the value interval is -128 — +127, where +b* is yellow, -b*
is blue, and a larger absolute value indicates a deeper yellow or blue.
The measurement point of the dielectric parameter is the
measurement point of colour, and the three measurement points
of L*, a¥, and b* take the arithmetic mean value as the colour data of
each fragrant pear.

2.3 Modelling

Three modelling methods, PLSR, SVR, and LSSVR, were used to
establish the colour prediction models for Korla fragrant pear. This
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study sets €+€” as the input variables of the model and L*, a*, and
b* as the output variables in both the training set and the test set.
Randomly, 70% of the data were used as the training set and 30% as
the test set.

2.3.1 PLSR model

PLSR is a regression modelling method for multiple dependent
variables Y on multiple independent variables X, which combines
techniques such as multiple linear regression analysis, correlation
analysis, and principal component analysis. PLSR extracts and
maximizes the correlation between the principal components in Y
and X in the modelling process. Therefore, PLSR can analyse
complex datasets comprehensively, extracting key information
and constructing predictive models (Ramirez-Sanchez et al,
2025). In addition, PLSR can efficiently solve the issue of
multicollinearity between the dependent and independent
variables for the purpose of regression modelling. PLSR also has
the advantage of obtaining desirable prediction results even with a
small sample size because it emphasizes the relationship between
the variables rather than the sample size.

2.3.2 SVR model

SVR is a machine learning method that constructs a nonlinear
regression model by a kernel function and improves the trainer’s
ability to handle nonlinear problems (Abdollahpour et al., 2020; Al-
Rousan and Al-Najjar, 2021). It forms an “isolation band” on both
sides of the linear function with a spacing of € (€-insensitive loss
function), and samples between € do not incur a loss. Only the
support vectors have an effect on its function model, and the
optimized model is finally derived by minimizing the total loss
and maximizing the spacing.

2.3.3 LSSVR model

LSSVR is an improved version of support vector machines. It
changes the inequality constraints in the traditional support vector
machine to equational constraints and uses the error squared and
loss function as the empirical loss in the training set to convert
quadratic programming into solving a system of linear equations to
increase the speed and convergence accuracy of solutions (Huang
et al., 2024; Liu et al., 2024).

2.4 Model evaluation standards

To screen the optimal prediction model, the root mean squared
error (RMSE) and coefficient of determination (R*) were used to
evaluate the model’s ability to predict colour. The lower the value of
RMSE and the higher the value of R?, the better the prediction effect
of the model. Relative percent difference (RPD) is an important
metric in model evaluation for assessing prediction accuracy. A
higher RPD value indicates that the model’s predictions are more
precise relative to the inherent variability of the data, and the model
is more stable. When RPD > 2.5, it indicates that the model
possesses excellent predictive capability, high prediction accuracy,
and is highly reliable (Guo et al,, 2025); When 2.0 < RPD < 2.5, it
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indicates that the model has good predictive ability and can be used
for approximate quantitative predictions and trend analysis; When
RPD < 14, it indicates that the model has poor predictive ability and
can only be used for rough qualitative discrimination of samples
(Wang et al,, 2022). The calculation formulas for RMSE, R? and
RPD are as follows, respectively in Equationa 1-3:

(1)
N
> - T)?
R=1- ‘;17 2)
;(Mj -T)?
RPD _ b (3)
RMSE

where M is the measured values of data j, and Tj is the
prediction values of data j. T; is the mean of the measured values.
N is the total number of data, and SD is the standard deviation of
the analytical samples.

2.5 Methods for extracting feature
variables

UVE and SPA are techniques used in data analysis and machine
learning for identifying and selecting effective feature variables to
improve the predictive performance of models. UVE aims to
automatically remove “useless” variables that do not carry more
information than noise, reduce the dimensionality of the data,
prevent model overfitting, and improve model interpretability.
UVE, based on the principles of information theory and statistics,
is highly reliable and robust, and only requires input of raw data,
can be easily used, and has wide applicability. The principle of the
UVE algorithm first specifies the standards for variable evaluation,
and the weak correlation between the variables and the feature
variables in the dataset is usually eliminated by using the Pearson
correlation coefficient and chi-square tests, until the decline in the
number of features in the dataset reaches a preset threshold. The
feature selection process is iterated until the desired features are
removed, and the specific steps of the algorithm are described in a
previous study literature (Centner et al., 1996).

In addition to deleting the variables with the lowest information
gain or information entropy, covariance or redundant variables
could also exist in the original data set, and SPA aims to minimize
the covariance by screening out the variables with the least
redundant information. SPA is a forward feature variable
selection algorithm, which projects wavelengths to other
wavelengths after projection analysis of vectors, considering the
wavelength with the largest projection vector as the wavelength to
be selected, and uses the correction model to select the final feature
wavelength (Zhang et al., 2022). The specific steps of the algorithm
are described in a previous study (Aratjo et al., 2001).
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3 Results and analysis

3.1 Analysis of the linear relationship
between dielectric parameters and values
of L*, a*, and b* of fragrant pear’s colour
index

The Pearson correlation analysis between the dielectric constant
€ and colour indexes L¥, a*, b* of fragrant pear is conducted first at
a single frequency. The linear relationship of € and €” with colour
indexes at different frequencies is shown in Figures 2, 3. As shown
in Figure 2, L*, b*, and € are positively correlated, and the value of
the correlation coefficient is not more than 0.16. a* and € are
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negatively correlated, and the absolute value of the correlation
coefficient is not more than 0.04, indicating that the correlation
between € and L¥, a*, b* is relatively small at a single frequency.

Next, this study analyses the linear relationship between loss
factor €” and colour indexes L¥, a*, b* of fragrant pear at a single
frequency. As shown in Figure 3, the correlation between L* and €”
changed from positive to negative, and the absolute value of the
correlation coefficient was not more than 0.03. The correlation
between b* and €” became weaker, and the correlation between a*
and €” changed from negative to positive. Therefore, the linear
correlation between €” and L¥, a¥, and b* is weak at a single
frequency (Guo et al., 2015b). investigated the feasibility of
dielectric spectroscopy as a nondestructive technique in
determining SSC and firmness of pears during ripening period
and found that it is impossible to select one permittivity value at a
single frequency for accurate prediction of SSC and firmness of
pears. This is consistent with the research conclusion of this study.
The reason might be that the spatial information of the fruits
obtained at a single frequency is limited (Cao et al., 2024), resulting
in a poor correlation between the dielectric parameters and the
color indexes.

From Figures 2, 3, it can be seen that it is difficult to predict the
colour of fragrant pear using dielectric parameters at a single
frequency. Therefore, dielectric parameters at multiple frequencies
should be used to predict the L¥, a*, and b* of fragrant pear.

3.2 Prediction of fragrant pear quality
based on dielectric spectroscopy
technology

3.2.1 Prediction of colour indexes L*, a*, b* of
fragrant pear based on PLSR, SVR, and LSSVR
Table 1 presents the results of various models for predicting the
color parameters of Korla fragrant pears. The PLSR model
performed best in predicting the color parameters L*, a*, and b*,
exhibiting the highest R* and RPD, along with the lowest RMSE. For
the prediction of L*, the training set yielded R%, RMSE, and RPD
values of 0.85, 0.753, and 2.560, respectively, while the test set
produced corresponding values of 0.80, 0.962, and 2.250. For a*
prediction, the R*, RMSE, and RPD in the training set were 0.96,
0.344, and 3.965, respectively; in the test set, they were 0.80, 0.996,
and 2.360. For b* prediction, the PLSR model achieved R?, RMSE,
and RPD values of 0.72, 0.890, and 1.963 in the training set, and
0.67, 0.988, and 1.734 in the test set. Furthermore, compared to the
L* and a* parameters, all models demonstrated inferior
performance in predicting b*. The average R*, RMSE, and RPD
for predicting L*, a*, and b* were only 0.56, 1.098, and 1.545,
respectively. This may be due to the extensive redundant
information contained within the dielectric spectrum data, which
can impair model prediction accuracy (Guo et al, 2015a).
Consequently, there remains room for improving the accuracy of
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TABLE 1 Prediction results of colour indexes of fragrant pear based on PLSR, SVR, and LSSVR.

Testing Prediction Training set Test set
index model RMSE RMSE
PLSR 0.85 0.753 2560 0.80 0.962 2250
L SVR 0.78 0.862 2.120 0.70 1.279 1.855
LSSVR 0.82 0.76 2438 0.59 1.564 1.571
PLSR 0.96 0344 3.965 0.80 0.996 2360
a* SVR 0.79 0.800 2.195 0.68 1.280 1.767
LSSVR 0.83 0.723 2514 0.64 1.280 1.723
PLSR 0.72 0.890 1.963 0.67 0.988 1.734
b* SVR 0.63 0.947 1.646 0.50 1179 1.441
LSSVR 0.72 0.834 1.897 0.52 1.127 1.460

TABLE 2 Prediction results of colour indexes of fragrant pear based on UVE.

Testing Prediction Selected Training set Test set
index model variables RMSE RMSE
PLSR 12 0.85 0.743 2.566 0.82 0.938 2.368
L SVR 13 0.75 0.947 2.068 0.76 0.996 1.999
LSSVR 16 0.66 1.127 1.741 0.65 1.036 1.710
PLSR 15 0.86 0.602 2,672 0.85 0.901 2.523
a* SVR 29 0.88 0.586 3.045 0.77 1.001 2.139
LSSVR 21 073 0.997 1.963 0.71 1.044 1.882
PLSR 18 0.76 0.752 2.041 0.73 0.895 1.973
b* SVR 5 0.66 0.920 1.759 0.62 1.023 1.658
LSSVR 10 071 0.854 1.857 0.65 0.983 1.726

PLSR models in predicting the color of Korla fragrant pears;
employing feature variable extraction methods could further
enhance prediction precision.

3.2.2 Prediction of colour indexes of fragrant
pear after extraction of feature variables
3.2.2.1 Prediction of colour indexes of fragrant pear based
on UVE

Table 2 shows the prediction results for the color indices of
Korla fragrant pears using the UVE method. Models trained with
feature variables extracted by UVE exhibited enhanced
performance in predicting L*, a*, and b* values. Specifically, the
UVE-SVR model achieved test set R? values of 0.76, 0.77, and 0.62
for L*, a*, and b, respectively, with corresponding RMSEs of 0.996,
1.001, and 1.023, and RPDs of 1.999, 2.139, and 1.658. The UVE-
LSSVR model yielded test set R? values of 0.65, 0.71, and 0.65 for L*,
a*, and b*, respectively, with RMSEs of 1.036, 1.044, and 0.983, and
RPDs of 1.710, 1.882, and 1.726. Among the compared methods,
UVE-PLSR demonstrated superior performance. For predicting L*,
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the test set R, RMSE, and RPD were 0.82, 0.938, and 2.368,
respectively, representing a 2.5% improvement in R*> over the
standard PLSR model. For a*, the test set R%, RMSE, and RPD
were 0.85, 0.901, and 2.523, respectively, reflecting a 6.25% increase
in R* compared to standard PLSR. For b*, the test set R*, RMSE, and
RPD were 0.73, 0.895, and 1.973, respectively, indicating an 8.96%
gain in R* over standard PLSR.

The results indicated that processing the dielectric spectrum
data with UVE effectively improved the detection accuracy of the
PLSR, SVR, and LSSVR models, with the UVE-PLSR model
demonstrating the best performance in detecting the color indices
L¥, a*¥, and b*. Furthermore, when predicting the color index data of
fragrant pears, the UVE-PLSR model extracted 12 feature variables
for L*, 15 for a*, and 18 for b¥, accounting for 6.0%, 7.5%, and 9.0%
of the total input variables, respectively. This demonstrates that the
UVE method can reliably identify and eliminate noise and
redundant spectral variables that do not contribute to the model,
thereby effectively enhancing the signal-to-noise ratio. This process
simplified the model structure, reduced the risk of overfitting, and
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TABLE 3 Prediction results of colour indexes of fragrant pear based on SPA.

10.3389/fpls.2025.1691673

Testing Prediction Selected Training set Test set
index model variables RMSE RMSE
PLSR 20 0.5 0.767 2629 0.83 0.866 2477
L SVR 20 0.74 0.980 1.964 0.74 1.108 1.960
LSSVR 25 0.68 1.139 1.780 0.68 1.155 1774
PLSR 20 0.89 0.586 3.030 081 0982 2357
a SVR 60 078 0.817 2154 0.70 1.157 1.832
LSSVR 60 0.83 0.803 1781 071 0977 1913
PLSR 15 0.80 0.691 2267 072 0940 1.924
b* SVR 60 0.61 0.931 1.653 061 1142 1.628
LSSVR 60 0.63 0.950 1.658 056 1116 1.536

TABLE 4 Optimal prediction results for the colour indexes of fragrant pear.

Testing Prediction Selected Training set Test set
index model variables RMSE RMSE

UVE-PLSR 12 0.5 0.743 2566 0.82 0938 2368

.
' SPA-PLSR 20 0.5 0.767 2629 0.83 0.866 2477
UVE-PLSR 15 0.86 0.602 2672 0.85 0.901 2523

.
‘ SPA-PLSR 20 0.89 0.586 3.030 0.81 0982 2357
UVE-PLSR 18 076 0752 2,041 073 0.895 1973
° SPA-PLSR 15 0.80 0.691 2267 0.72 0.940 1.924

improved the model’s predictive robustness and accuracy,
providing key guidance for developing low-cost detection
equipment for fruits and vegetables.

3.2.2.2 Prediction of colour indexes of fragrant pear
based on SPA

The prediction results for the color indices of Korla fragrant
pears based on the SPA method are shown in Table 3. When SPA
was combined with PLSR to predict the color index L*, the R,
RMSE, and RPD in the test set were 0.83, 0.866, and 2.477,
respectively. For predicting a¥, the values were 0.81, 0.982, and
2.357; for predicting b*, they were 0.72, 0.940, and 1.924. When SPA
was combined with the SVR model to predict L¥, the R?, RMSE, and
RPD in the test set were 0.74, 1.108, and 1.960, respectively. For
predicting a*, the values were 0.70, 1.157, and 1.832; for b*, they
were 0.61, 1.142, and 1.628. When SPA was combined with the
LSSVR model to predict L*, the R% RMSE, and RPD in the test set
were 0.68, 1.155, and 1.774, respectively. For predicting a*, the
values were 0.71, 0.977, and 1.913; for b¥, they were 0.56, 1.116, and
1.536. After extracting feature variables from the dielectric
spectrum data using SPA, the prediction accuracy of the PLSR,
SVR, and LSSVR models was effectively improved. Among them,
the SPA-PLSR model demonstrated the best performance in
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predicting the color parameters L*, a*, and b*. For predicting the
L*, a*, and b* values of Korla fragrant pears in the test set, the R?
values achieved by the SPA-PLSR model were 3.75%, 1.25%, and
7.46% higher, respectively, compared to those obtained by the
PLSR model.

As a forward feature selection method, SPA effectively
eliminates redundant information. Table 3 presents the number
of feature variables selected by the SPA method. For predicting the
color indices of Korla fragrant pears using the SPA-PLSR model, the
numbers of feature variables extracted for L*, a*, and b* were 20, 20,
and 15, respectively, accounting for 10.00%, 10.00%, and 7.50% of
the total input variables. This demonstrates that SPA processing
effectively reduces data dimensionality. Furthermore, when
integrated with the PLSR model, SPA selected fewer feature
variables compared to SVR and LSSVR, while achieving higher
prediction accuracy, further confirming the superior accuracy and
robustness of the SPA-PLSR model in predicting the color indices of
fragrant pears.

3.3 Determination of the optimal prediction
model

Both the UVE and SPA feature variable extraction methods
effectively improved the prediction accuracy of the colour index of
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fragrant pear, and the optimal prediction results of the colour
indexes of fragrant pear are shown in Table 4. In the prediction
of L*, the SPA-PLSR exhibited slightly higher prediction accuracy
than the UVE-PLSR, with R%, RMSE, and RPD values in the test set
of 0.83, 0.866, and 2.477, respectively. When predicting a*, UVE-
PLSR had the highest R? and RPD, and the lowest RMSE in the test
set, at 0.85, 0.901 and 2.523, respectively. When predicting b*,
although the accuracy of UVE-PLSR was slightly lower than that of
SPA-PLSR in the training set, UVE-PLSR had a higher accuracy
than the SPA-PLSR model in the test set, whose R*, RPD and RMSE
values were 0.73 0.895 and 1.973, respectively. Overall, the
prediction accuracy of the colour indexes of fragrant pear L* and
a* are high, but the prediction accuracy of b* needs to be improved.

4 Discussion

In this study, dielectric spectroscopy was combined with the
feature variable extraction method to establish a machine learning
prediction model for the colour of Korla fragrant pear. The optimal
prediction model for L* was SPA-PLSR (with R* of 0.83, RMSE of
0.866, and RPD of 2.477), the optimal prediction model for a* was
UVE-PLSR (with R? of 0.85, RMSE of 0.901, and RPD of 2.523), and
the optimal prediction model for b* was UVE-PLSR (with R* of
0.73, RMSE of 0.895, and RPD of 1.973) (Xia et al., 2025). combined
near-infrared spectroscopy with UVE and SPA to establish a PLSR
prediction model for the colour of Korla fragrant pear, and found
that the UVE and SPA feature extraction variable methods can
effectively improve the prediction accuracy of the PLSR model,
which is in line with the conclusions of this study. The R* of the
optimal model for predicting L*, a*, and b* were 0.64, 0.71, and
0.71, and the RMSE of the optimal model were 1.19, 1.28, and 1.25,
respectively. However, this study used dielectric spectroscopy
technology to predict the colour of fragrant pear, which had a
higher accuracy. Therefore, dielectric spectroscopy technology may
be more suitable for detecting the colour indexes of fragrant pear. In
addition, previous studies have shown that dielectric spectroscopy
technology can also be used for the online detection of fruit quality
indexes, such as the sugar degree (Hua et al., 2024), hardness (Guo
etal., 2015b), and SSC (Cao et al., 2024). In comparison to machine
vision and colourimeters technology, the use of dielectric
spectroscopy technology in the online detection of multiple
quality indexes of fruits is more in line with the production needs.

The combination of nondestructive testing technology and
feature variable extraction methods (such as UVE and SPA) can
effectively improve the accuracy of machine learning models to
predict the fruit quality (Li et al., 2020; Gao et al., 2025; Hu et al,
2019). The feature variables with the best predictive ability can be
selected after processing using the feature variable extraction
method, which reduces the model complexity and information
overlap, and improves the prediction accuracy and stability of the
model (Meng et al.,, 2025). combined hyperspectral imaging with
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various algorithmic models, such as UVE, SPA, and PLSR, to
nondestructively test the soluble solid content of multi-species
blueberries, finding that the UVE-PLSR prediction model had the
highest accuracy (Che et al, 2024). combined near-infrared
spectroscopy with UVE and SPA to extract effective wavelengths,
and the results showed that the model established by PLSR
predicted the hardness and SSC of fragrant pear better (Tang
et al., 2024). predicted SSC and hardness of fragrant pear based
on dielectric spectroscopy technology and machine learning
models, and found that compared with the SVR and PSO-LSSVR
models, the PLSR model had the highest accuracy (Tian et al,
2024). used PLSR and random forest algorithms to establish
quantitative prediction models for SSC and random forest based
on the bulk optical properties of apples, and indicated that the PLSR
models were optimal for quantitative prediction of SSC and fruit
firmness. This study also shows that the colour prediction of
fragrant pear established by UVE- PLSR and SPA- PLSR was
better, which suggests that the PLSR is more effective for
establishing fruit quality prediction models. It may be that PLSR
model can effectively deal with the problem of covariance and
construct a stable prediction model even if the independent
variables are highly correlated with each other.

This study merely provides an new detection method for the
colour of fragrant pear based on dielectric spectroscopy combined
with machine learning models. This methodology can be broadly
scaled up to diverse sectors in agricultural testing, offering novel
approaches for enhancing food safety and quality surveillance. To
achieve practical application, further improvement is still needed.
Further, differences in the growth environment and planting
management mode will lead to differences in samples of fragrant
pear from different origins. The fragrant pear used in this study are
from the First Division of Xinjiang, so the sample source is single. In
future research, fragrant pear from multiple origins and growth
conditions should be added as samples to further improve the
generalization ability of the prediction model. In addition, the
existing machine learning model will be continuously optimized,
and new algorithms such as deep learning will be established to
further enhance the application ability of dielectric spectroscopy to
fruit quality detection, and relevant intelligent detection equipment
will be developed to meet the needs of fruit enterprises and
consumers for high-quality fruits.

5 Conclusion

In this study, a vector network analyser and coaxial probe were
applied to detect dielectric parameters of fragrant pear in the
frequency range of 0.1-26.5GHz. A new method for colour
detection was proposed based on dielectric spectroscopy
combined with machine learning models. The correlations
between colour indexes (L*, a* and b*) of fragrant pear and
dielectric parameters (€ and €”) were poor at a single frequency,
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and it was difficult to predict the colour of fragrant pear under these
conditions. Dielectric parameters at multiple frequencies should be
used to predict the L*, a*¥, and b* of fragrant pear. In comparison to
the colour prediction model of fragrant pear established by full-
frequency dielectric spectroscopy, the prediction accuracies of
PLSR, SVR, and LSSVR models after UVE and SPA processing
were improved. The optimal prediction model for L* was SPA-
PLSR (with R® of 0.83, RMSE of 0.866, and RPD of 2.477), the
optimal prediction model for a* was UVE-PLSR (with R* of 0.85,
RMSE of 0.901, and RPD of 2.523), and the optimal prediction
model for b* was UVE-PLSR (with R? of 0.73, RMSE of 0.895, and
RPD of 1.973). In the future, more studies on quality detection
methods of fragrant pear from multiple origins will be conducted,
and novel algorithms will be explored to improve the practical
application of dielectric spectroscopy.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material. Further inquiries can be
directed to the corresponding author.

Author contributions

HZ: Writing - review & editing, Funding acquisition, Software,
Resources, Project administration, Formal analysis, Writing -
original draft, Visualization, Methodology, Validation,
Conceptualization, Investigation, Supervision, Data curation. YX:
Investigation, Software, Supervision, Writing - review & editing. JL:
Methodology, Writing - review & editing, Data curation,
Supervision, Investigation, Software, Conceptualization,
Visualization, Project administration, Funding acquisition,
Resources, Formal analysis, Validation.

References

Abdollahpour, S., Kosari-Moghaddam, A., and Bannayan, M. (2020). Prediction of
wheat moisture content at harvest time through ANN and SVR modeling techniques.
Inf. Process. Agriculture. 7, 500-510. doi: 10.1016/j.inpa.2020.01.003

Al-Dairi, M., Pathare, P. B,, Al-Yahyai, R., AI-Habsi, N., Jayasuriya, H., and Al-
Attabi, Z. (2024). Machine vision system combined with multiple regression for
damage and quality detection of bananas during storage. Appl. Food Res. 4, 100641.
doi: 10.1016/j.afres.2024.100641

Alhamdan, A. M., and Atia, A. (2017). Non-destructive method to predict Barhi
dates quality at different stages of maturity utilising near-infrared (NIR) spectroscopy.
Int. J. Food Properties. 20, $2950-S2959. doi: 10.1080/10942912.2017.1387794

Al-Rousan, N., and Al-Najjar, H. (2021). Optimizing the performance of MLP and
SVR predictors based on logical oring and experimental ranking equation. J. Chin.
Institute Engineers. 44, 149-157. doi: 10.1080/02533839.2020.1856726

Araujo, M. C. U,, Saldanha, T. C. B, Galvao, R. K. H., Takashi, Y. Y., Chame, C. H,,
and Visani, V. (2001). The successive projections algorithm for variable selection in
spectroscopic multicomponent analysis. Chemometrics intelligent Lab. systems. 57, 65—
73. doi: 10.1016/s0169-7439(01)00119-8

Cao, M. K, Zeng, S. C., Wang, J. X., and Guo, W. C. (2023). Dielectric properties of
peaches with and without skin during storage and their relationship to internal quality.
Postharvest Biol. Technology. 204, 112433. doi: 10.1016/j.postharvbio.2023.112433

Frontiers in Plant Science

10.3389/fpls.2025.1691673

Funding

The author(s) declare financial support was received for the
research, and/or publication of this article. Tarim University
President Fund Project: TDZKSS202427. National Natural Science
Foundation of China:32202139.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Cao, M., Zeng, S., Wang, J., and Guo, W. C. (2024). Assessment of SSC and soluble
sugar content of three pear cultivars during storage using dielectric method. Postharvest
Biol. Technology. 212, 112906. doi: 10.1016/j.postharvbio.2024.112906

Centner, V., Massart, D. L., Noord, O. E,, Jong, S. J., Vandeginste, B. M., et al. (1996).
Elimination of uninformative variables for multivariate calibration. Analytical Chem.
68, 3851-3858. doi: 10.1021/ac960321m

Che, J. K, Liang, Q., Xia, Y. F,, Liu, Y., Li, H. S., Hu, N. G,, et al. (2024). The study on
nondestructive detection methods for internal quality of Korla fragrant pears based on
near-infrared spectroscopy and machine learning. Foods 13, 3522. doi: 10.3390/
foods13213522

Gao, F,, Xing, Y., Li, J. L., Guo, L., Sun, Y. Y., Shi, W,, et al. (2025). Prediction of total
soluble solids in apricot using adaptive boosting ensemble model combined with NIR
and high-frequency UVE-selected variables. Molecules 30, 1543. doi: 10.3390/
molecules30071543

Guo, W. C, Fang, L. J, Liu, D. Y,, and Wang, Z. W. (2015b). Determination of
soluble solids content and firmness of pears during ripening by using dielectric
spectroscopy. Comput. Electron. Agriculture. 117, 226-233. doi: 10.1016/
j.compag.2015.08.012

Guo, W. C,, Shang, L., Zhu, X. H, and Nelson, S. O. (2015a). Nondestructive
detection of soluble solids content of apples from dielectric spectra with ANN and

frontiersin.org


https://doi.org/10.1016/j.inpa.2020.01.003
https://doi.org/10.1016/j.afres.2024.100641
https://doi.org/10.1080/10942912.2017.1387794
https://doi.org/10.1080/02533839.2020.1856726
https://doi.org/10.1016/s0169-7439(01)00119-8
https://doi.org/10.1016/j.postharvbio.2023.112433
https://doi.org/10.1016/j.postharvbio.2024.112906
https://doi.org/10.1021/ac960321m
https://doi.org/10.3390/foods13213522
https://doi.org/10.3390/foods13213522
https://doi.org/10.3390/molecules30071543
https://doi.org/10.3390/molecules30071543
https://doi.org/10.1016/j.compag.2015.08.012
https://doi.org/10.1016/j.compag.2015.08.012
https://doi.org/10.3389/fpls.2025.1691673
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhang et al.

chemometric methods. Food Bioprocess Technology. 8, 1126-1138. doi: 10.1007/
511947-015-1477-0

Guo, J., Zhang, H,, Xu, Q. Liu, Y., Xue, H., and Dong, S. (2025). Synchronous
detection method of physical quality for korla fragrant pear with different damage types
during storage. Horticulturae 11, 1030. doi: 10.3390/horticulturae11091030

He, Z., Yu, J., Zhou, X,, Tang, T., Chen, B., Wang, H,, et al. (2025). Multi-sensor
fusion with optimized machine learning for non-destructive freshness monitoring of
stored Korla fragrant pears. Food Control. 181, 111692. doi: 10.1016/
j.foodcont.2025.111692

Hu, R, Zhang, L., Yu, Z,, Zhai, Z. Q., and Zhang, R. Y. (2019). Optimization of
soluble solids content prediction models in ‘Hami’melons by means of Vis-NIR
spectroscopy and chemometric tools. Infrared Phys. Technology. 102, 102999.
doi: 10.1016/j.infrared.2019.102999

Hua, Y., Hao, Y., and Zhang, X. (2024). Prediction of the apple sugar content of multiple
varieties by dielectric spectroscopy. J. ASABE. 67, 785-796. doi: 10.13031/ja.15624

Huang, Z., Huang, Z., An, P., Liu, J., Gao, C., and Huang, J. C. (2024). Reconstruction
and prediction of tunnel surrounding rock deformation data based on PSO optimized
LSSVR and GPR models. Results Engineering. 24, 103445. doi: 10.1016/
jrineng.2024.103445

Krapac, M., Gunjaca, J., Sladonja, B., Ben¢i¢, P., and Brki¢, B. K. (2024). Electrical
impedance spectroscopy: A tool for determining the harvesting time of olive fruit.
Horticulturae 10, 1131. doi: 10.3390/horticulturae10111131

Li, S., Xiao, K., and Li, P. (2023). Spectra reconstruction for human facial color from
RGB images via clusters in 3D uniform CIELab* and its subordinate color space.
Sensors 23, 810. doi: 10.3390/s23020810

Li, J. B, Zhang, H. L., Zhan, B. S,, Zhang, Y. F,, Li, R. L, and Li, J. B. (2020).
Nondestructive firmness measurement of the multiple cultivars of pears by Vis-NIR
spectroscopy coupled with multivariate calibration analysis and MC-UVE-SPA
method. Infrared Phys. Technology. 104, 103154. doi: 10.1016/j.infrared.2019.103154

Liu, D. Y., and Guo, W. C. (2017). Nondestructive determination of soluble solids
content of persimmons by using dielectric spectroscopy. Int. J. Food properties. 20,
§2596-S2611. doi: 10.1080/10942912.2017.1381114

Liu, G., Mao, S., and Kim, J. H. (2019). A mature-tomato detection algorithm using
machine learning and color analysis. Sensors 19, 2023. doi: 10.3390/s19092023

Liu, B,, Zhang, W., Chen, F., Cai, ]., Wang, X. M,, Liu, Y., et al. (2024). Performance
prediction and optimization strategy for LNG multistage centrifugal pump based on
PSO-LSSVR surrogate model. Cryogenics 140, 103856. doi: 10.1016/
j.cryogenics.2024.103856

Liu, Y., Zhang, Q., Niu, H., Zhang, H., Lan, H. P., Zeng, Y., et al. (2021). Prediction

method for nutritional quality of Korla pear during storage. Int. J. Agric. Biol.
engineering. 14, 247-254. doi: 10.25165/j.ijabe.20211403.5990

Liu, S., Zhang, L., Wang, M., Liu, W., Cui, R,, Du, B,, et al. (2025). Effect of different
pretreatment methods on soluble dietary fiber macromolecules extracted from Korla
fragrant pear (Pyrus sinkiangensis Yii): Structure, physicochemical properties, and
biological activity. Int. J. Biol. Macromolecules. 302, 140901. doi: 10.1016/
j.ijbiomac.2025.140901

Meng, L. Q., Chen, G. L, Liu, D. Y., and Tian, N. (2025). Universal modeling for non-
destructive testing of soluble solids content in multi-variety blueberries based on
hyperspectral imaging technology. Appl. Sci. 15, 3888. doi: 10.3390/app15073888

Nelson, S. (2006). Agricultural applications of dielectric measurements. IEEE Trans.
Dielectrics Electrical Insulation. 4, 688-702. doi: 10.1109/TDEI.2006.1667726

Ramirez-Sanchez, E., Muioz-Aguirre, S., Castillo-Mixcoatl, J., Gonzalez-Leon, K.,
and Rodriguez-Torres, M. (2025). A comparative study between PCR and PLSR in a

Frontiers in Plant Science

10

10.3389/fpls.2025.1691673

tapered optical fiber sensor for acetone detection. Optics Laser Technology. 181, 111838.
doi: 10.1016/j.optlastec.2024.111838

Rashvand, M., and Soltani, F. M. (2020). Dielectric technique combined with
artificial neural network and support vector regression in moisture content
prediction of olive. Res. Agric. Engineering. 66, 1-7.0. doi: 10.17221/13/2019-RAE

Sanaeifar, A., Bakhshipour, A., and De, L. G. M. (2016). Prediction of banana quality
indices from color features using support vector regression. Talanta 148, 54-61.
doi: 10.1016/j.talanta.2015.10.073

Shang, L., Gu, J., and Guo, W. (2013). Non-destructively detecting sugar content of
nectarines based on dielectric properties and ANN. Trans. Chin. Soc. Agric. Eng. 29,
257-264. doi: 10.3969/j.issn.1002-6819.2013.17.033

Shao, Y., Ji, S., Shi, Y., Xuan, G,, Jia, H., Guan, X, et al. (2024). Growth period
determination and color coordinates visual analysis of tomato using hyperspectral
imaging technology. Spectrochimica Acta Part A: Mol. Biomolecular Spectroscopy. 319,
124538. doi: 10.1016/j.saa.2024.124538

Silva Jnior, P. F., Santana, E. E. C,, Pinto, M. S. S., Andrade, E. P., Carvalho, J. N.,
Freire, R. C,, et al. (2020). Characterization of the dielectric properties of the tommy
atkins mango. J. Microwaves Optoelectronics Electromagnetic Applications. 19, 86-93.
doi: 10.1590/2179-10742020v19i11868

Soraya, M. P. (2021). Physicochemical characterization of pomegranate (Punica
granatum L.) native to Jordan during different maturity stages: Color evaluation using
the CIELab and CIELCh systems. J. Ecol. Eng. 22, 214-221. doi: 10.12911/22998993/
137440

Sosa, M., Valerio, J., Lopez, M., and Garcia, H. (2010). Dielectric properties of food:
Reported data in the 21st century and their potential applications. LWT - Food Sci.
Technology 43, 1169-1179. doi: 10.1016/j.Iwt.2010.03.017

Tang, Y. R, Zhang, H., Liang, Q., Xia, Y. F., Che, J. K,, and Liu, Y. (2024). Non-
destructive testing of the internal quality of Korla fragrant pears based on dielectric
properties. Horticulturae 10, 572. doi: 10.3390/horticulturae10060572

Tian, K., Zhu, W. ], Wang, M. J,, Chen, T, Li, F. Q, Xie, J. C, et al. (2024).
Qualitative and quantitative assessment of apple quality using bulk optical properties in
combination with machine learning and chemometrics techniques. LWT - Food Sci.
Technology. 11, 94. doi: 10.1016/j.lwt.2024.116894

Wang, Z. Z., Wu, Q. Y., and Kamruzzaman, M. H. (2022). Portable NIR spectroscopy
and PLS based variable selection for adulterati ondetection in quinoa flour. Food
Control. 138, 108970. doi: 10.1016/j.foodcont.2022.108970

Xia, Y. F., Liu, Y., Zhang, H., Che, J. K, and Liang, Q. (2025). Study on color

detection of Korla fragrant pears by near-infrared spectroscopy combined with PLSR.
Horticulturae 11, 352. doi: 10.3390/horticulturae11040352

Yu, S. H,, Liu, Y., Niu, X. Y., Tang, Y. R,, Lan, H. P., and Zeng, Y. (2023). Comparison
of prediction models for determining the degree of damage to korla fragrant pears.
Agronomy 13, 1670. doi: 10.1111/jfpe.13902

Yu, S, Liu, Y., Tang, Y., Li, X,, Li, W,, Li, C,, et al. (2022). Non-destructive quality
assessment method for Korla fragrant pears based on electrical properties and adaptive

neural-fuzzy inference system. Comput. Electron. Agriculture. 203, 107492.
doi: 10.1016/j.compag.2022.107492

Zhang, R, Li, S, Liu, Y., Li, G,, Jiang, X., and Fan, X. (2023). Construction of color
prediction model for damaged Korla pears during storage period. Appl. Sci. 13, 7885.
doi: 10.3390/app13137885

Zhang, Y. F,, Wang, Z. L, Tian, X,, Yang, X. H,, Cai, Z. L., and Li, J. B. (2022). Online
analysis of watercore apples by considering different speeds and orientations based on
Vis/NIR full-transmittance spectroscopy. Infrared Phys. Technology. 122, 104090.
doi: 10.1016/j.infrared.2022.104090

frontiersin.org


https://doi.org/10.1007/s11947-015-1477-0
https://doi.org/10.1007/s11947-015-1477-0
https://doi.org/10.3390/horticulturae11091030
https://doi.org/10.1016/j.foodcont.2025.111692
https://doi.org/10.1016/j.foodcont.2025.111692
https://doi.org/10.1016/j.infrared.2019.102999
https://doi.org/10.13031/ja.15624
https://doi.org/10.1016/j.rineng.2024.103445
https://doi.org/10.1016/j.rineng.2024.103445
https://doi.org/10.3390/horticulturae10111131
https://doi.org/10.3390/s23020810
https://doi.org/10.1016/j.infrared.2019.103154
https://doi.org/10.1080/10942912.2017.1381114
https://doi.org/10.3390/s19092023
https://doi.org/10.1016/j.cryogenics.2024.103856
https://doi.org/10.1016/j.cryogenics.2024.103856
https://doi.org/10.25165/j.ijabe.20211403.5990
https://doi.org/10.1016/j.ijbiomac.2025.140901
https://doi.org/10.1016/j.ijbiomac.2025.140901
https://doi.org/10.3390/app15073888
https://doi.org/10.1109/TDEI.2006.1667726
https://doi.org/10.1016/j.optlastec.2024.111838
https://doi.org/10.17221/13/2019-RAE
https://doi.org/10.1016/j.talanta.2015.10.073
https://doi.org/10.3969/j.issn.1002-6819.2013.17.033
https://doi.org/10.1016/j.saa.2024.124538
https://doi.org/10.1590/2179-10742020v19i11868
https://doi.org/10.12911/22998993/137440
https://doi.org/10.12911/22998993/137440
https://doi.org/10.1016/j.lwt.2010.03.017
https://doi.org/10.3390/horticulturae10060572
https://doi.org/10.1016/j.lwt.2024.116894
https://doi.org/10.1016/j.foodcont.2022.108970
https://doi.org/10.3390/horticulturae11040352
https://doi.org/10.1111/jfpe.13902
https://doi.org/10.1016/j.compag.2022.107492
https://doi.org/10.3390/app13137885
https://doi.org/10.1016/j.infrared.2022.104090
https://doi.org/10.3389/fpls.2025.1691673
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Colour detection method of Korla fragrant pear based on dielectric spectroscopy technology
	1 Introduction
	2 Materials and methods
	2.1 Test materials
	2.2 Measurement methods
	2.2.1 Determination of dielectric parameters
	2.2.2 Determination of L&ast;, a&ast;, and b&ast;

	2.3 Modelling
	2.3.1 PLSR model
	2.3.2 SVR model
	2.3.3 LSSVR model

	2.4 Model evaluation standards
	2.5 Methods for extracting feature variables

	3 Results and analysis
	3.1 Analysis of the linear relationship between dielectric parameters and values of L&ast;, a&ast;, and b&ast; of fragrant pear’s colour index
	3.2 Prediction of fragrant pear quality based on dielectric spectroscopy technology
	3.2.1 Prediction of colour indexes L&ast;, a&ast;, b&ast; of fragrant pear based on PLSR, SVR, and LSSVR
	3.2.2 Prediction of colour indexes of fragrant pear after extraction of feature variables
	3.2.2.1 Prediction of colour indexes of fragrant pear based on UVE
	3.2.2.2 Prediction of colour indexes of fragrant pear based on SPA

	3.3 Determination of the optimal prediction model


	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


