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Introduction:Diseases of plants remain one of the greatest threats to sustainable

agriculture, with a direct adverse effect on crop productivity and threatening food

security worldwide. Conventional detection methods rely heavily on manual

detection and laboratory analysis, which are time-consuming, subjective, and

unsuitable for large-scale monitoring. The use of the most recent progress in

computer vision and artificial intelligence has opened up a prospect of

automated, scalable, and precise disease diagnosis.

Methods: This paper introduces a feature-efficient hybrid model that trains

classical Machie Learning (ML) classifiers with Deep Neural Network (DNN)

using ResNet-based feature extraction and Principal Component Analysis

(PCA). The PlantVillage dataset with mixed crop-disease pairs is used to

implement and thoroughly test five hybrid models.

Results: Wide-ranging experiments proved that the Logistic Regression (LR)

+DNN hybrid resulted in the best classification accuracy of 96.22% as

compared to other models and available benchmarks. Besides being able to

outperform other techniques in terms of predictive power, the framework

displayed good training stability and robustness to class imbalance as well as a

higher degree of interpretability based on LIME-based analysis.

Discussion: The obtained results confirm the hybrid ML+DNN paradigm as a safe,

transparent, scalable disease recognition framework when applied to plant

diseases. Providing opportunities for timely and accurate disease detection, the

proposed framework can help with precision agriculture, where pesticide use

can be reduced, consequently, and a significant contribution to sustainable

farming can be achieved.
KEYWORDS

hybrid machine learning–deep learning, intelligent smart sensing, sustainable disease
detection, ResNet feature extraction, Principal Component Analysis (PCA)
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1 Introduction

Plant diseases pose a serious threat to global agriculture, directly

affecting crop productivity, food security, and the livelihoods of

farmers (Gai and Wang, 2024). According to the Food and

Agriculture Organization (FAO), crop losses due to plant

pathogens and pests can reach as high as 40 percent worldwide,

resulting in significant economic losses and threatening the

sustainability of agricultural systems (Junaid and Gokce, 2024).

The current approach to diagnosing these diseases relies heavily on

manual examinations by trained professionals, which can be time-

consuming, labor-intensive, and subjective, leading to inaccuracies,

particularly in regions with a shortage of agronomists (Elangovan

et al., 2024). This makes early and accurate diagnosis crucial for

sustainable crop management and minimizing avoidable losses

(Rajendiran and Rethnaraj, 2024). Inadequate diagnosis often

leads to other issues, such as the overuse of pesticides, which can

have detrimental effects on both environmental balance and soil

quality (Shahbazi et al., 2025).

However, advancements in digital imaging technology and

artificial intelligence (AI) have paved the way for automated plant

disease detection (Negi and Anand, 2024). Traditional plant

pathology methods, including physical symptom observation and

lab-based diagnostics, while reliable, fall short for large-scale

monitoring (Khakimov et al., 2022). In contrast, computer vision

techniques leveraging ML and (DL) can rapidly and effectively

identify disease patterns directly from leaf images (Upadhyay et al.,

2025). Despite these advancements, research has predominantly

focused on singular ML or DL models, which can be limited in their

feature extraction abilities and may lack robustness when analyzing

disease trends across different crop species. Although deep learning

models such as ResNet, VGG, and Inception have achieved state-of-

the-art performance in plant disease classification, they are

computationally expensive, data-hungry, and often lack

interpretability. In contrast, traditional machine learning models

are lightweight and explainable but struggle with high-dimensional

image data. Very few studies have attempted to bridge these two

paradigms by combining deep feature extraction with

dimensionality reduction and hybrid classifiers. To address this

gap, our study employs ResNet to extract rich feature

representations from plant leaf images, applies Principal

Component Analysis (PCA) to reduce dimensionality and

computational overhead, and then leverages both machine

learning and deep neural network classifiers for final prediction.

This unique ResNet-PCA + ML/DNN framework offers a balance

between efficiency and accuracy, enabling high-performance

classification without the full cost of end-to-end CNN training,

thereby making the approach more practical for real-world

agricultural applications where computational resources and

annotated data may be limited.
Fron
• The study underscores the critical role of early disease

identification in agriculture and proposes a hybrid

modeling pipeline that addresses the limitations of

conventional expert-based and purely DL approaches.
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• This research systematically explores hybrid combinations,

including LR+DNN, RF+DNN, GB+DNN, KNN+DNN,

and XGB+DNN. The experimental results demonstrated

competitive performance across all hybrids, with accuracies

of 91.78% for RF+DNN, 93.78% for XGB+DNN, 90.22% for

GB+DNN, 80.89% for KNN+DNN, and 96.22% for

LR+DNN.

• Through detailed analysis of classification metrics and

learning curves, it was established that the LR+DNN

hybrid consistently outperformed all other models,

achieving the highest accuracy of 96.22%. This finding

validates the effectiveness of hybrid learning strategies in

plant disease recognition and sets a new benchmark for

future research in agricultural AI applications.
This paper is organized into six sections. Section 2 reviews

previous work related to the subject matter. In Section 3, we

describe the dataset and system design, followed by Section 4,

which outlines the proposed approach utilized to achieve the

results. The findings are detailed in Section 5. Finally, Section 6

concludes the paper and discusses potential future directions.

Additionally, Table 1 lists the acronyms used throughout this paper.
2 Literature review

Authors in (Reddy et al., 2024) presented a DNN-based model

to detect plant diseases in leaves by using their pictures and trained

on the New Plant Diseases (Augmented) data that contains

information about 38 classes, and the Rice Leaf dataset, which is

associated with 4 classes. Different features, including grey level and

shape features of leaves, are extracted by the model to analyze the

characteristics of leaves comprehensively. These features are total

area, infected area, perimeter, coordinate of centroid, mean

intensity, entropy, eccentricity, energy, homogeneity, and

dissimilarity. The hyperparameters considered included epoch,

batch size, type of activation, and dropout rates, which resulted in

the model achieving accuracy between 96 and 99 percent,

outperforming traditional ML models. In (Chaitanya and

Posonia, 2024), the author suggests the development of an

efficient plant disease recognition system that would operate in a

mobile format. The framework enhances the visual representation

of plants by extracting two sets of features: one using CO-KMC

segmentation and the MRV-BWO network to capture color, shape,

and texture features, and another using the Multi-scale Dilated

Attention CNN (MSDA-CNN) network to capture deep semantic

features. These are fused with a weighted strategy referred to as

MRV-BWO and then classified using a Hybridized DNN-RNN

model, which is further optimized with MRV-BWO. Findings

reveal that the method is effective in plant disease detection

because it offers better resources and performance compared to

conventional methods.

In (Jafar et al., 2024), the authors reviewed the use of artificial

intelligence in revolutionizing agricultural processes by considering

the approach of AI and IoT in detecting plant diseases used in
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tomato, chili, potato, and cucumber crops. It explains the disease

detection process in terms of the significant stages of image

acquisition, preprocessing, segmentation, feature selection, and

classification, comparing different ML and DL methods applied in

recent research. The study also notes that often-utilized datasets are

used to evaluate the most frequent diseases, outlining their

symptoms and pinpointing the drawbacks of existing detection

methods. Besides, it focuses on future opportunities of combining

AI with IoT technologies, e.g., smart drones to monitor plants in the

field, which provides information about the actual challenges and

possibilities of developing automated disease diagnosis of plants.

Authors in (Dey et al., 2024) presented a DL-based system for

automated plant disease detection, integrating precision agriculture

and transfer learning via pre-trained CNN models (AlexNet,

VGG16, and VGG19). The study utilized the PlantVillage dataset,

which comprises healthy and diseased leaves, and preprocessed the

images to enhance their quality. The models were then trained on

80 percent of the data and validated on 20 percent. These findings

revealed that all models had high performance in the classification

of plant diseases, and AlexNet had the highest performance, which

indicated the possibilities of DL as a viable mechanism of early

disease detection and proper management of crops. Shahi et al

(Shahi et al., 2023). presented a review of the latest advances in

UAV-based remote sensing for detecting crop diseases, with a

particular emphasis on combining sophisticated sensors, image

processing methods, and DL applications. It also introduces a

taxonomy to conveniently sort the available literature as well as

comparing the performance of ML and DL approaches to estimate

the disease, and underlining the importance of using UAV imagery

to increase the accuracy. The study concludes by presenting current

challenges, opportunities, and recommendations for future

research, highlighting the use of UAVs as a potent means of

detecting early diseases and precision agriculture.

Authors in (Raman and Jayaraman, 2025) presented a hybrid

deep learning model by Dual Branch Convolutional Graph
Frontiers in Plant Science 03
Attention Neural Network (DB-CGANNet) to detect rice leaf

disease. Noise reduction is done by Upgraded Weighted Median

Filtering (Up-WMF), and AG-CLAHE does contrast enhancement.

The Discrete Wavelet Transform (DWT), Gray Level Run Length

Matrix (GLRLM), and VGG19 are used to extract features, and the

Bio-Inspired Artificial Hummingbird (BI-AHB) algorithm is

optimal in the selection of features. The dual-branch model is an

extension of handcrafted and deep features, achieving an accuracy

of 98.9% in the Rice Leaf Diseases Dataset and 99.08% in the Rice

Disease Images Dataset, which is higher than the known methods

and is beneficial to the sustainable farming of rice. In (Haridasan

et al., 2023), the authors suggested a deep learning-based automated

system to detect and classify paddy plant diseases to enhance crop

health and productivity (ID). The system combines computer vision

technology with machine learning and deep learning to decrease the

reliance on traditional diagnostic approaches. Segmentation is then

used to separate diseased areas after preprocessing of the image, and

is followed by five major rice diseases common in the Indian fields.

To achieve an accurate classification, a hybrid model that integrates

the support vector machines (SVM) with convolutional neural

networks (CNN) is used. The system was able to reach a

validation accuracy of 91.45 percent and goes ahead to offer

predictive remedies to assist farmers and agricultural organizations.

The systematic literature review (SLR) on plant disease

detection proposed by (Shafik et al., 2023) consists of the details

of the motivations, approaches to classification, data, and

difficulties, as well as perspectives. The researchers scoured

through 1349 articles in the leading databases. They settled on

176 studies examining applications of AI, ML, and DL in the

agricultural context, especially vision- and hyperspectral-based

approaches to grapes, rice, apples, maize, and other crops. They

note that SVM and LR models perform better than the conventional

classifiers and that more recent developments follow on the path of

CNNs with attention and transfer learning. The paper also surveys

11 datasets (9 publicly available) and observes limitations, including

dataset size, the absence of standard metrics of evaluation, and

constraints in localizing the disease. Finally, the paper stipulates

that to substantiate the proposed model, it will be necessary to have

lightweight, robust models that can be implemented on small

devices and are scalable to a variety of crops and diseases.

Authors in (Kulkarni and Shastri, 2024) suggested an automatic

system based on convolutional neural networks (CNN) to detect

and classify rice leaf diseases to assist in the timely diagnosis and

treatment of the disease in agriculture. The model, utilizing the

concept of image processing, is designed to handle challenging

scenarios such as updating background and background

illumination, which would have been problematic for traditional

manual identification methods. The CNN is well-portrayed as it can

correctly classify rice leaf images sampled across various

environments, which shows excellent robustness in the

agricultural environment. As a result of this method, the authors

attained a setting accuracy of 95 percent, indicating the potential of

DL solutions in precision farming and creating an effective,

automated diagnostic tool for farmers to identify diseases.
TABLE 1 List of acronyms.

Full form Acronyms

Machine Learning ML

Deep Learning DL

Principal Component Analysis PCA

Random Forest RF

Extreme Gradient Boosting XGB

Gradient Boosting GB

K Nearest Neighbors KNN

Logistic Regression LR

Deep Neural Network DNN

Local Interpretable Model-Agnostic Explanation LIME

Receiver Operating Characteristic ROC
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3 Dataset and system design

Experiments in this paper rely on the open resource of plant leaf

images known as PlantVillage, currently under development and

growing in popularity, and which has been carefully curated to

assist in research on plant disease detection (Mohanty et al., 2016).

The dataset is available on GitHub and Kaggle and contains

thousands of pictures of different types of crops, such as

tomatoes, potatoes, and bell peppers, and a disease type or health

outcome accompanies the category. Examples of PlantVillage were

taken in controlled light and on a uniform ground, which increases

the consistency and lessens noise, and consequently, the feature

learning of both classical and DL networks.

The original collection of images in PlantVillage consists of

around 54,306 images of 14 crop species and 26 disease conditions

(including healthy), with 38 unique classes of crop-disease from

which we have selected the 15 unique classes to work that are shown

in Table 2. The dataset was modeled in controlled settings using

uniform backgrounds, similar light, and mostly individual leaves

photographed in the flat position in order to reduce visual noise and

environmental differences. To facilitate the needs of various

researchers, there are various versions of the images: the original

RGB (color) versions, a grayscale version and a segmented version

in which the background is eliminated and the color correction is

used to minimize possible bias due to lighting or background effects.

To ensure consistency in the studies, all pictures are downsampled

to 256 × 256 pixels before the training of models.

The data includes a broader set of disease states, and healthy

leaves are labeled, which allows the multi-class classification with

fine-grained accuracy. In this paper, a subset of the dataset of the

PlantVillag, including crop-disease pairs, including those affecting

pepper, potato and tomato, was used to test the performance of the

hybrid models by the ML+DNN designs. In order to have a strong

stratified sampling, the dataset was separated into training,

validation and test batches, with similar proportions of classes in

those subsets. This method resulted in a high degree of strength of

the evaluation measures in measuring the generalization potential

of the models in different disease categories, and even in rare classes.
3.1 Data preprocessing

A classification system performs well based on the caliber of the

feature representation of the system. About plant disease detection,

the leaf images usually show some changes in color, texture, and

morphology, all of which can be considered as possible disease

severity predictors. Since these aspects were needed in detail, the

two-stage preprocessing pipeline was used. At the first step, a

handcrafted feature was obtained according to color, texture, and

shape descriptors. The second stage also entailed the acquisition of

deep convolutional neural representations via a pretrained

ResNet50 model. Lastly, feature fusion was used to merge both

representations to give a more discriminating feature space. At the

handcrafted feature extraction step, all images were uniformly
Frontiers in Plant Science 04
reduced in size to 224 × 224 pixels. The initial descriptors were

related to color information, which is vital in distinguishing

diseased leaf occurrences from healthy ones, as most infections

have a noticeable discoloration. The color histograms were formed

in HSV spaces, as well as in LAB spaces, to capture the changes

in chroma and be resistant enough to differences in illumination.

The channel c is mathematically described in Equation 1, where the

histogram of a channel is given by the bin numbered by b, and the

intensity of the i-th pixel is written as Ic(i), and d ( · ) is its indicator.

Hc(b) =o
N

i=1
d (Ic(i) ∈ b) : (1)

To derive even more indicative color hues, the predominant

color was calculated through k-means clustering in three classes, i.e.,

k = 3. The mean of every cluster was computed as given in Equation

2 where n_j represents the number of pixels under cluster j.

C* =
1
nj
o
nj

i=1
xi,       xi ∈ R3 : (2)

There were also texture descriptors used that quantify the

pathogen-induced micro-patterns on the leaf surface. Local

Binary Patterns (LBP) were calculated by Equation 3 where gc
refers to the gray intensity of the center pixel, gp corresponds to the

neighbor under consideration, and the thresholding function is

denoted by s(z).

LBPP,R(x, y) = o
P−1

p=0
s(gp − gc) 2

p, s(z) =
1, z ≥ 0

0, z < 0

(
(3)

Besides LBP, statistical texture features, such as Gray-Level Co-

occurrence Matrices (GLCM), were also underlying. Contrast and

Angular Second Moment (ASM) were calculated, respectively, as

indicated below in Equations 4, 5, where the variables P(i,j) give the

normalized probability of the co-occurrence of gray levels i and j.

Contrast =o
i,j
(i − j)2P(i, j), (4)

ASM =o
i,j
P(i, j)2 : (5)

Shape descriptors were extracted to pick up irregularities in the

structure of diseased leaves. The three morphological features that

were kept included leaf area (A), perimeter (P) and circularity (C)

after segmentation by using contour detection. Circularity is also

very applicable in that damage inflicted on the leaves can alter the

shape of the leaf. It is given as in Equation 6.

C =
4pA
P2 : (6)

Each handcrafted descriptor was concatenated to form a single

feature vector. The number of classes was then selected to ensure

equal numbers in each category, achieved by randomly selecting

150 images from each category. Although handcrafted features offer

expressive properties that present perceptible descriptors in terms
frontiersin.org
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of color, texture, and shape, in complex semantics, these features are

unable to capture the semantics. To counter this, deep feature

representations through a ResNet50 network pretrained in

ImageNet were used. The network was cut after the global

average pooling (GAP) layer, and its output served as a compact,

but highly expressive descriptor. Formally, the deep feature vector

can be defined as in Equation 7, i.e., the transform f(x;q) of the
input x is a conformally-learned convolutional operation with

parameters q, which are pretrained on a separate task.

fdeep = GAP(f(x; q)) : (7)

Lastly, to maximize the advantages of the two forms of

representations, namely, handcrafted and deep representations,

they were fused by concatenating the two vectors. The fused

representation is written out in Equation 8.

F = ftraditional    fdeep
�� �

,
�

(8)

Where “traditional” refers to handcrafted descriptors, and

“deep” refers to CNN features. PCA (PCA) was next used to

reduce dimensionality by retaining the most informative

components. To visually verify the effectiveness of the technique

and to demonstrate the capacity for distinguishing between the

classes of diseases, t-SNE was utilized in projecting the features into

two dimensions. Moreover, RF importance scores demonstrated the

discriminative value of handcrafted features at a low level as well as

deep features at a high level. Such a combined preprocessing

pipeline, therefore, generated sufficiently balanced, high-

dimensional and semantically rich feature vectors that formed

the basis of the hybrid ML+DNN classification framework

proposed here.
Frontiers in Plant Science 05
3.2 High level system design

The system proposed for plant disease detection is a hybrid

architecture that integrates conventional image-processing routines

with deep representation approaches to achieve robust

classification, as illustrated in Figure 1. It starts with the gathering

of plant leaf photographs, which is marked as the core dataset.

These images undergo processing, including resizing to a fixed

resolution (224 x 224) and normalization, to ensure uniformity and

improve model performance. A feature extraction pipeline

processes the data within the scope of the problem after

preprocessing; two parallel methods are used. The first one

involves extracting conventional features, including color

histograms, dominant color values, Local Binary Patterns (LBP),

Gray-Level Co-occurrence Matrix (GLCM) features, and shape

descriptors. The second method uses the pre-trained

convolutional neural networks (e.g., the ResNet50, VGG16, and

EfficientNetB0) to extract deep representations. The feature fusion

takes place based on the concatenation of the results of these two

streams, thus forming a highly detailed feature set. The fused

representation is then sent on to a hybrid classification model,

which is a hybrid of RF and DNN classifiers, to maximize predictive

accuracy and generalization. The system then provides the

classification result, indicating whether the input leaf falls into a

diseased or healthy type. Such a hybrid design forms higher

reliability through integration of the strengths of handcrafted

features and DL-based features to detect disease in

plants accurately.
4 Proposed approach

The proposed approach presents the Hybrid-Plant-Disease-

Detection-Framework, which is an efficient combination of image

processing and deep learning to support reliable detection of plant-

leaf diseases. As given in Figure 2 and given in Algorithm 1, the

framework uses a sequential pipeline that starts with the image

preprocessing, feature-extraction, feature-fusion, dimensionality

reduction and the final classification step. The combination of

handcrafted radiomic features and deep features based on CNNs

allows the approach to capture textural features at low levels and

semantic patterns at high levels, coupled with the ability to improve

accuracy and generalization across a range of disease classes due to

the application of ensemble-based classification.
4.1 Machine learning models

The work applies a combination of the different classic ML

classifiers as sublearners in the hybrid ML-DNN architecture. The

features, reduced using principal component extraction and passed

through the ResNet model, are used with each classifier to achieve

initial predictions, which are subsequently refined using a DNN.

The range of selected algorithms (RF, XGB, GB, KNN, LR) was

chosen owing to their advantageous combination of properties in
TABLE 2 Class distribution of plant disease dataset.

Class Number of images

Pepper_bell_Bacterial_spot 997

Pepper_bell_healthy 1478

Potato_Early_blight 1000

Potato_Late_blight 1000

Potato_healthy 152

Tomato_Bacterial_spot 2127

Tomato_Early_blight 1000

Tomato_Late_blight 1909

Tomato_Leaf_Mold 952

Tomato_Septoria_leaf_spot 1771

Tomato_Spider_mites_Two_spotted_spide_mite 1676

Tomato_Target_Spot 1404

Tomato_Tomato_YellowLeaf_Curl_Virus 3208

Tomato_Tomato_mosaic_virus 373

Tomato_healthy 1591
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terms of non-linearity of decision boundaries, noise robustness, and

generalization to a wide variety of plant disease types.

4.1.1 Random forest
RF is an ensemble ML algorithm that trains many decision

trees. In the case of classification, the mode of predictions is output

(Salman et al., 2024). The fact is that PCA transforms the features,

making them one-dimensional and reducing the dimensionality of

the features, which in turn reduces overfitting and computational

complexity in this work. RF exhibits high noise and variability

robustness in plant disease images due to the use of bootstrap

aggregation (bagging) and feature randomness, making it applicable

to more complex visual patterns in the dataset. The decision rule

takes the form of Equation 9.

ŷ = mode ht(x)f gTt=1 (9)

where ht(x) denotes the prediction from the t-th decision tree,

and T is the total number of trees.

4.1.2 Extreme gradient boosting
XGBoost is a fast, computationally efficient, and optimization-

friendly extension of the GB framework that supports regularization,

parallel acceptance, and efficient tree pruning to enhance predictive

performance (Wen et al., 2023). Here, given ResNet PC features,

resistance to noise and accurate continuation of complex classes are

carried out by the XGBoost of this framework. Overfitting is reduced

through the built-in L1 and L2 regularization terms, and the

scalability allows fast training even in agents with high-dimensional

collected features. It will be presented by Equation 10.
Frontiers in Plant Science 06
Require: Dataset D = (Ii ,yi)f gNi=1 where Ii is plant leaf

image, yi is disease label

Require: Maximum samples per class M = 150

Require: Image size S = 224 × 224

Require: CNN models {ResNet50,V GG16,EfficientNetB0}

E n s u r e : T r a i n e d h y b r i d m o d e l f o r

disease classification

1: Phase 1: Data Preprocessing

2: for each image Ii ∈ D do

3: Ii ← resize(Ii,S)

4: Ii ← normalize(Ii)

5: end for

6: Phase 2: Traditional Feature Extraction

7: Initialize Xtrad ← [], Y ← []

8: for each class c in classes do

9: Sample M images from class c

10: for each sampled image I do

11: Convert to HSV and LAB, compute

histograms hhsv,hlab

12: fcolor ← concat([hhsv,hlab])

13: Apply K-means clustering (k = 3), extract

dominant color fdominant

14: Convert to grayscale, compute LBP

histogram flbp

15: Compute GLCM features: contrast,

dissimilarity, homogeneity, ASM, energy, correlation

→ fglcm

16: Extract shape features: area, perimeter,

circularity → fshape
FIGURE 1

Basic system architecture for plant disease detection.
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Fron
17: Concatenate features: ftrad ← concat

([fcolor,fdominant,flbp,fglcm,fshape])

18: Append ftrad to Xtrad, label c to Y

19: end for

20: end for

21: Phase 3: Deep Feature Extraction

22: Initialize Xdeep ← []

23: for each CNN model Mcnn ∈ {ResNet50, VGG16,

EfficientNetB0} do

24: Load pre-trained Mcnn, remove top layers, add

global pooling

25: for each preprocessed image I do

26: fdeep ← Mcnn(I)

27: Append fdeep to Xdeep

28: end for

29: end for

30: Phase 4: Feature Fusion

31: Xfused ← concat([Xtrad, Xdeep], axis = 1)

32: Phase 5: Dimensionality Reduction

33: Xreduced ← PCA(150).fit_transform(Xfused)

34: Phase 6: Data Splitting and Scaling

35: Split into (Xtrain, Xtest, ytrain, ytest)

36: Standardize features with scaler

37: Phase 7: Hybrid Model Training

38: Train RF on (Xtrain, ytrain)

39: Get probability outputs Ptrain, Ptest

40: Train DNN MDNN on Ptrain with categorical labels

41: Phase 8: Evaluation
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42: Predict ŷ test using MDNN

43: Compute accuracy, precision, recall, F1-score,

confusion matrix

44: Phase 9: Interpretability

45: Apply LIME explainer on test samples to

interpret predictions return Trained hybrid model

(RF, MDNN) with metrics and explanations
Algorithm 1. Hybrid plant disease detection framework.

ŷ i = o
K

k=1

fk(xi), fk ∈ F (10)

where F represents the space of regression trees and K is the

number of trees. The overall objective combines the loss function

and regularization as shown in Equation 11.

Obj =o
n

i=1
L(yi, ŷ i) +o

K

k=1

W(fk) (11)

4.1.3 Gradient boosting
GB constructs additive models through ML by sequentially

fitting a decision tree to the error of each previous decision tree,

fitting errors in an additive manner (Zhang et al., 2024). Hence, the

model becomes more accurate as it proceeds. GB is also good at

finding subtle variability in feature patterns, which in the case of

visually similar classes of plant diseases becomes critical as to how

to tell them apart. During combination with reduced deep features

by PCA, GB provides a good bias-variance tradeoff and enhances

the overall hybrid framework in terms of discriminative power. In
FIGURE 2

Detailed framework of the proposed hybrid ML+DL model.
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Equation 12, the additive update rule is described.

Fm(x) = Fm−1(x) + gmhm(x) (12)

where Fm is the ensemble at iteration m, hm is the weak learner,

and gm is the step size.

4.1.4 K-Nearest neighbors
KNN is a non-parametric learning algorithm applied in

instance-based learning to classify a new sample based on the

majority of the samples among its KNN in the feature space

(Halder et al., 2024). PCA transformation enhances the efficiency

of KNN, as it reduces the cost associated with the distance metric by

minimizing noise and feature dimensionality. KNN is a baseline

nonlinear classifier in this paradigm, which is highly interpretable

and utilizes the abundant semantic representation afforded by

ResNet. This is written as Equation 13.

ŷ = mode yi   xi ∈ N k(x)j gf (13)

where N k(x) denotes the set of k nearest neighbors of x.

4.1.5 Logistic regression
The LR is one of the linear classification algorithms that

estimates the probability of a class based on a logistic sigmoidal

function (Zaidi and Al Luhayb, 2023). Although it is a simple

method, LR can act as a useful scale of effectiveness of deep feature

extraction and PCA transformation. Using LR on the compressed

ResNet representations, the model embodies linear separable

patterns within the dataset and can be used as an effective yet

computationally efficient node in the hybrid ML-DNN pipeline.

The probability in each class will be binary as shown in Equation 14.

P(y = 1jx) = s (w⊤x + b) =
1

1 + e−(w
⊤x+b)

(14)

where w is the weight vector, b is the bias, and s ( · ) is the

sigmoid activation.
4.2 Dense neural network

The proposed structure has two stages with an ML classifier

paired with a specific DNN dedicated to each of them (Girdhar et al.,

2023). The first step entails training the ML model of interests on the

PCA-reduced ResNet features to produce intermediary predictions or

probability scores. Mathematically, it corresponds to Equation 15,

where pj refers to the output of the ML model number j.

pj = Mj(XPCA) (15)

Here, XPCA ∈ Rn�k represents the k-dimensional features

obtained after PCA, and pj ∈ Rn�m is the predicted probability

distribution over m classes.

In stage two, the output pj is the input to the relevant DNN,

which further non-linearly transforms the data. In the forward pass,

the computation at a particular hidden layer l is given as the formula

Equation 16.
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z(l) = W(l)a(l−1) + b(l) (16)

The activation for layer l is then obtained by applying a

nonlinear activation function g( · ), such as ReLU, as shown in

Equation 17.

a(l) = g(z(l)) (17)

Last, a softmax activation is applied on the final layer of the

DNN to yield the optimized score over m disease classes of plant

diseases, which is shown in Equation 18.

ŷ j =
ezj

om
c=1e

zc
(18)

The Dense Neural Network architecture applied in the given

work is represented in Table 3. It comprises 512 neurons in the

input layer, activated by the Rectified Linear Unit (ReLU) form,

with subsequent alternating dense and dropout layers to enhance

generalization and to avert overfitting. Particularly, dropout layers

at a rate of 0.3 are used between each dense layer in the hidden layer

and a random amount of neurons are deactivated during training to

minimize co-adaptation of weights. The network sequentially

decreases dimensionality with the first hidden layer having 256

neurons, the second layer having 128 neurons, then arriving at the

output layer that has final units neurons and final activation, which

performs an activation suitable to the classification task (softmax on

multi-class or sigmoid on binary classes). This structure strikes a

balance between representation power and regularization, which

helps optimize the outputs of each ML model.
4.3 Principal component analysis

PCA is a dimension reduction method that projects information

onto a smaller subspace while maximizing the retained variance.

On the same note, PCA is used with the feature vectors of the

already-trained ResNet model in this research to minimize

redundancy and computational complexities, hence enhancing the

efficiency of training the model. Given a dataset  X ∈ Rn�d , the

first step is to center the data by subtracting the mean from each

feature. The covariance matrix C is then computed as shown in

Equation 19.

C =
1

n − 1
X⊤X (19)

Eigen decomposition shown in Equation 20 is performed on C

to obtain eigenvalues li and eigenvectors vi.

Cvi = livi (20)

The selection is then made based on the largest eigenvalues,

using the k top eigenvectors to constitute the projection matrix:Wk.

We also have a reduced representation of the set of features, denoted

as Z, which is calculated using Equation 21.

Z = XWk (21)
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4.4 Model explainability using LIME

This study uses the technique of LIME to achieve post-hoc

interpretability of the hybrid ML+DNN models. LIME uses locally

faithful explanations constructed by approximating the

interpretable surrogate model to the complex one in the area of a

prediction. LIME takes a black-box classifier in the form of a

classifier f, and an instance x, and uses perturbed samples

surrounding x whose respective predicted output by f is returned

by LIME. Each sample (or point) z is assigned with the locality-

awareweight px(z) which favors or prioritizes points closer to x as in
Equation 22.

px(z) = exp   −
D(x, z)2

s 2

� �
(22)

with a distance metric D( · ) and the kernel width s . Then, a
simple, interpretable model g ∈ G (e.g., sparse linear model) is

learned that minimizes the objective function as indicated in

Equation 23.

x(x) =  arg  min
g∈G

L(f , g, px) +W(g)  (23)

where Lmeasures the fidelity of g to f in the locality defined by

px , and W(g) enforces model simplicity.
5 Results, discussion and limitations

The presentation of the experimental assessment of the

proposed hybrid ML-DNN framework is carried out in this

section. The experiments aimed to evaluate the classification

accuracy of various ML models, incorporating Dense Neural

Networks (DNNs) with ResNet-extracted and PCA-reduced

features. The assessment is based on classical performance

metrics, e.g., accuracy and F1-score, and interpretability metrics,

including the LIME. Standard metrics and visual diagnostics,

including prediction training and validation curves, confusion

matrices, and ROC curves, are used to report the results and are

supplementary to providing a view on robustness, reliability, and

explainability of the proposed framework.

Along with these scalar metrics, training and validation

accuracy/loss should be used to analyze the model convergence

behavior, which is helpful to correct some problems like overfitting

or underfitting. Stable generalization implies a constant decrease in

the difference between training and validation performance per

epoch. Additionally, the confusion matrix gives a precise

perspective of the legitimacy of the classification performance in

each class. The Confusion Matrix demonstrates more insight than

aggregate metrics because, by plotting actual vs. predicted labels, the

user should also be able to see which types of misclassifications a

model is prone to (as opposed to the effective average result). The

ROC curve is also depicted to assess the ratio between the actual

positive rate (TPR) and the false positive rate (FPR) at different

thresholds. The ROC-based Area-Under-the-Curve (AUC) would

be a good measure of the discriminative ability of the classifier.
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Lastly, the interpretability of the models is guaranteed through the

application of LIME. LIME only outputs local surrogates to

complex hybrid ML-DNNs, where the most essential features for

making predictions are emphasized. This makes the model

trustworthy as it provides transparency in decision-making,

which is crucial in key agricultural applications, particularly in

detecting plant diseases.
5.1 Results

Each of the proposed hybrid models was tested using

classification reports concerning each of the classes of crop

diseases. Tables 4-8 show the precision, recall and F1-score values

in all disease categories under a variety of model combinations, and

Table 9 gives the general performance of each model. The RF+DNN

model presented in Table 4 achieved a competitive accuracy of 91.7%,

with high precision and recall values across nearly all classes.

Indicatively, Tomato mosaic virus and Tomato healthy achieved

the same F1-score of 0.98, and courses like Tomato Early blight

(F1 = 0.79) and Tomato Spider mites (F1 = 0.86) were more

problematic, thus could be compared as hard to distinguish virus

diseases which may be visually related.

The generalization performance of the XGB+DNN model was

better in terms of overall accuracy of 93.8% observed in Table 5. It is

noteworthy that it got perfect classification concerning

Tomato_mosaic_virus (F1 = 1.0) and an extremely high score

with Potato_healthy and Tomato_YellowLeafCurlVirus .

Nevertheless, the Tomato_Early_blight turned out to be a

problematic group, too, as its precision was relatively low (0.66),

but its recall was quite high (0.97), indicating false-positive prone.

Contrarily, the overall accuracy of the GB+DNN model was

lower by 0.2% as indicated in Table 6. Whereas the model achieved

outstanding performance on various classes, such as Pepper_healthy

and Tomato_Bacterial_spot, it performed poorly on other courses,

like Tomato_Late_blight, with recall decreasing to 0.69, thus

increasing its vulnerability compared to RF+DNN and XGB+DNN.

Among all the hybrid models included in Table 7, the KNN

+DNN model got the lowest performance with an overall accuracy

of 80.9%. There were a few bad classes, such as the class

T oma t o _ L a t e _ b l i g h t ( F 1 = 0 . 6 3 ) a n d t h e c l a s s
TABLE 3 Dense neural network (DNN) architecture used in the proposed
framework.

Layer no. Layer type Units Activation/Dropout

1 Dense (Input) 512 ReLU

2 Dropout – 0.3

3 Dense 256 ReLU

4 Dropout – 0.3

5 Dense 128 ReLU

6 Dropout – 0.3

7 Dense (Output) 15 softmax
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TABLE 4 Classification report for RF+DNN.

Class Precision Recall F1-score

Pepper_bell_Bacterial_spot 1.00 0.93 0.97

Pepper_bell_healthy 0.94 1.00 0.97

Potato_Early_blight 0.93 0.87 0.90

Potato_Late_blight 0.93 0.90 0.92

Potato_healthy 0.91 1.00 0.95

Tomato_Bacterial_spot 0.90 0.93 0.92

Tomato_Early_blight 0.85 0.73 0.79

Tomato_Late_blight 0.96 0.83 0.89

Tomato_Leaf_Mold 0.88 0.97 0.92

Tomato_Septoria_leaf_spot 0.96 0.87 0.91

Tomato_Spider_mites_Two_spotted_spider_mite 0.82 0.90 0.86

Tomato_Target_Spot 1.00 0.83 0.91

Tomato_Tomato_YellowLeaf_Curl_Virus 0.81 1.00 0.90

Tomato_Tomato_mosaic_virus 0.97 1.00 0.98

Tomato_healthy 0.97 1.00 0.98

Weighted Avg 0.92 0.92 0.92
F
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TABLE 5 Classification report for XGB+DNN.

Class Precision Recall F1-score

Pepper_bell_Bacterial_spot 1.00 0.93 0.97

Pepper_bell_healthy 0.97 1.00 0.98

Potato_Early_blight 0.97 0.93 0.95

Potato_Late_blight 0.97 0.93 0.95

Potato_healthy 0.97 1.00 0.98

Tomato_Bacterial_spot 1.00 0.87 0.93

Tomato_Early_blight 0.66 0.97 0.78

Tomato_Late_blight 0.89 0.80 0.84

Tomato_Leaf_Mold 0.93 0.93 0.93

Tomato_Septoria_leaf_spot 0.93 0.87 0.90

Tomato_Spider_mites_Two_spotted_spider_mite 1.00 0.93 0.97

Tomato_Target_Spot 0.97 0.97 0.97

Tomato_Tomato_YellowLeaf_Curl_Virus 1.00 0.97 0.98

Tomato_Tomato_mosaic_virus 1.00 1.00 1.00

Tomato_healthy 0.97 0.97 0.97

Weighted Avg 0.95 0.94 0.94
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Tomato_Target_Spot (F1 = 0.70). This indicates the low

compatibility of KNN with deep features, as it is sensitive to

high-dimensional feature spaces.

Among all of the models, LR+DNN displayed in Table 8 had the

highest accuracy of 96.2%, the best performing model. It gave

almost perfect classification in the vast majority of the classes,

with the exceptions of Potato_healthy, Tomato_Bacterial_spot, and

Tomato_Target_Spot that reported only slightly lower (but still

nearly 1.0) F1-scores. The model performed well even in the case

of problematic classes like Tomato_Early_blight (F1 = 0.92).

A consolidated comparison of the models was calculated as

shown in Table 9. It can be seen that the combination of DNN

features and LR performed substantially better than the other

combinations in terms of accuracy, precision, recall, and F1-score.

XGB+DNN produced good results as well, with RF+DNN and GB

+DNN considerably more competitive. The poor performance of

KNN DNN also supports the notion of selecting classifiers that

wou ld be su i t a b l e f o r t h e h i gh -d imen s i ona l d e ep

feature representations.

In the order of theoretical measures, the analysis will be further

supplemented with other studies that explain in more detail the

workings of the hybrid models.

Observations on the accuracy curves (Figure 3) indicated that

there were changes between the generalization abilities of the hybrid

models. On the one hand, both KNN+DNN and RF+DNN had

increasing training accuracy over the epochs, but their validation

accuracy exhibited errors and stagnation, implying that validation

accuracy was prone to overfitting. Notably, KNN+DNN was highly

dependent on the local data distribution, whereas RF+DNN even

exhibited oscillatory behavior within validation. On the flip side, GB
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+DNN and XGB+DNN converged more smoothly, and validation

accuracy closely mirrored training accuracy in the early epochs.

However, because of training, small gaps opened up, which implied

that minimal overfitting occurred later. LR+DNN achieved the

most stable performance, with the accuracy of training and

validation increasing simultaneously and remaining stable up to a

certain point. Such linear agreement indicates the high level of

generalization of the model that takes advantage of the simplicity of

LR and the representational power of the DNN, allowing it to both

represent linear dependencies and nonlinear ones.

The loss curves (Figure 4) also strengthened these observations.

KNN+DNN and RF+DNN demonstrated smooth decreasing

training loss. Yet, their validation curves became quite erratic and

leveled off or even rose, which again attests to overfitting of the

training data and lack of further optimization on the unseen

samples. GB+DNN and XGB+DNN also showed a nicer decline

in training and validation loss. However, slight differences emerged

after epoch 500, suggesting that the models remained somewhat

fragile regarding the complexity of boosting and the depth of

optimization. In comparison, LR+DNN exhibited the most

leveled-out behaviors, such that the training and validation loss

reduced almost simultaneously across the epochs. The two curves

did not show any significant differences, indicating that the model

was not only effective in minimizing training error but also in

transferring learning to the validation set, thereby signifying

its robustness.

The confusion matrices in Figure 5 provide a detailed view of

the success of the performance of each of the models in

differentiating classes. The XGB+DNN and GB+DNN have been

shown to exhibit good characteristics on the majority classes with
TABLE 6 Classification report for GB+DNN.

Class Precision Recall F1-score

Pepper_bell_Bacterial_spot 0.96 0.87 0.91

Pepper_bell_healthy 1.00 0.93 0.97

Potato_Early_blight 0.93 0.93 0.93

Potato_Late_blight 0.93 0.83 0.88

Potato_healthy 0.94 0.97 0.95

Tomato_Bacterial_spot 0.97 0.93 0.95

Tomato_Early_blight 0.84 0.87 0.85

Tomato_Late_blight 0.69 0.90 0.78

Tomato_Leaf_Mold 0.93 0.87 0.90

Tomato_Septoria_leaf_spot 0.77 0.90 0.83

Tomato_Spider_mites_Two_spotted_spider_mite 0.88 0.93 0.90

Tomato_Target_Spot 0.93 0.87 0.90

Tomato_Tomato_YellowLeaf_Curl_Virus 0.96 0.87 0.91

Tomato_Tomato_mosaic_virus 0.97 0.93 0.95

Tomato_healthy 0.97 0.93 0.95

Weighted Avg 0.91 0.90 0.90
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strong diagonal dominance over frequent categories. Nonetheless,

the two models did not deal well with minority classes, as their false

negatives were high, proving a bias to well-represented samples.

This indicates that, even though the boosting increased the
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predictive power, the skew in the data did not allow them to

generalize to the entire set of classes. This was partially

compromised in the RF+DNN model, as some enhancements in

the visualization were related to the distribution of the classes. It
TABLE 7 Classification report for KNN+DNN.

Class Precision Recall F1-score

Pepper_bell_Bacterial_spot 0.80 0.80 0.80

Pepper_bell_healthy 0.93 0.83 0.88

Potato_Early_blight 1.00 0.83 0.91

Potato_Late_blight 0.78 0.83 0.81

Potato_healthy 0.94 1.00 0.97

Tomato_Bacterial_spot 0.97 0.97 0.97

Tomato_Early_blight 0.70 0.63 0.67

Tomato_Late_blight 0.71 0.57 0.63

Tomato_Leaf_Mold 0.78 0.83 0.81

Tomato_Septoria_leaf_spot 0.70 0.77 0.73

Tomato_Spider_mites_Two_spotted_spider_mite 0.70 0.63 0.67

Tomato_Target_Spot 0.62 0.80 0.70

Tomato_Tomato_YellowLeaf_Curl_Virus 0.87 0.87 0.87

Tomato_Tomato_mosaic_virus 0.91 0.97 0.94

Tomato_healthy 0.80 0.80 0.80

Weighted Avg 0.81 0.81 0.81
TABLE 8 Classification report for LR+DNN.

Class Precision Recall F1-score

Pepper_bell_Bacterial_spot 0.97 0.93 0.95

Pepper_bell_healthy 0.97 0.97 0.97

Potato_Early_blight 0.97 1.00 0.98

Potato_Late_blight 1.00 0.97 0.98

Potato_healthy 1.00 1.00 1.00

Tomato_Bacterial_spot 1.00 1.00 1.00

Tomato_Early_blight 0.90 0.93 0.92

Tomato_Late_blight 0.93 0.87 0.90

Tomato_Leaf_Mold 0.94 0.97 0.95

Tomato_Septoria_leaf_spot 0.93 0.93 0.93

Tomato_Spider mites_Two_spotted_spider_mite 0.93 0.93 0.93

Tomato_Target_Spot 1.00 0.97 0.98

Tomato_Tomato_YellowLeaf_Curl_Virus 0.97 0.97 0.97

Tomato_Tomato_mosaic_virus 0.97 1.00 0.98

Tomato_healthy 0.97 1.00 0.98

Weighted Avg 0.96 0.96 0.96
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had a better balance in its confusion matrix than boosting-based

hybrids, but the misclassifications were non-trivially low, especially

in the differentiation between closely related categories. The same

can be said about KNN+DNN, which considers only the structure

of local neighbors, thus being vulnerable to noise and overlapping

classes, which contributed to the increased off-diagonal entries. The

LR+DNN model was consistently proven to be superior in terms of

confusion matrix structure, as evident from the apparent diagonal

dominance in most classes and a significant reduction in off-

diagonal errors. The fact that it can generate only a few false

negatives, while also producing fewer false positives, illustrates its

strength. This result indicates that LR+DNN is at once

demonstrating greater overall accuracy but also predictive

performance that is more fairly distributed across both more

common and less common categories, a highly preferable

property in real-world deployments in which imbalanced classes

are prevalent.

ROC analysis (Figure 6) presents a global perspective of the

discriminative ability of every model at different thresholds. Although

all the models yielded decent results in terms of the ROC, differences

in steepness of the curves and AUC underline that LR+DNN was

superior to others. Models such as KNN+DNN and RF+DNN

produced moderate ROC curves with less sharp increases,

indicating their inability to find the optimal balance between

sensitivity (true positive rate) and specificity (false positive rate).

GB+DNN and XGB+DNN were viewed as superior due to their

decent AUC rankings and sharper curves. However, their use was

also constrained by their distributional varieties, which led to over-

interpretation of minority classes, as reflected in the confusion

matrices. However, the LR+DNN model showed that the steepest

rise in the ROC curve was at the y-axis, and the AUC was the highest

across all the models. This sharp slope indicates that the model

rapidly achieves high sensitivity with minimal false positives, a crucial

quality in model deployment for sensitive fields where false alarms

are particularly problematic. The superior discriminating nature is

substantiated by the high AUC, which attests that LR+DNN is very

dependable regarding deciphering between positive and negative

cases at all decision thresholds.

LIME (Figure 7) is more transparent because it highlights the

most critical features in classification. In all models, LIME was

found to focus on features obtained through PCA-reduction of

ResNet embeddings as essential discriminators. Nevertheless, LR

+DNN had the most intelligible and readable feature importance

profiles. In contrast to such tree-based hybrids spreading weight
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over several less-informative features, LR+DNN focused on a few

strong predictors and both the model output and the predictions

were more aligned with what could be expected in the domain. This

interpretability increases confidence in the results and offers

practical information to future monitoring and diagnosis

approaches of the disease.

The experimental findings clearly demonstrated that among the

proposed hybrid models, the LR+DNN model outperformed the

others across all evaluation metrics, establishing it as the most

efficient model. In comparison, the XGB+DNN model secured the

second-best performance, while the KNN+DNN model ranked

lowest, indicating its limited suitability for the task at hand. A

systematic evaluation of the models was conducted using a robust

assessment framework that included the classification report,

accuracy, precision, recall, F1-score, training history curves,

confusion matrix, ROC analysis, and LIME for interpretability.

This comprehensive analysis not only reinforces the superiority of

the LR+DNN model but also provides valuable insights into the

relative strengths and weaknesses of each model. Such clarity allows

for a better understanding of their applicability in future tasks, thus

guiding the selection of the most appropriate model for specific

predictive challenges.
5.2 Discussion

In this paper, an optimized hybrid framework that uses pre-

trained ResNet to extract features, as well as using the PCA and a

combination of each of the ML classifiers (RF, XGB, GB, KNN, and

LR) and corresponding dedicated DNN was introduced to detect

plant diseases. By critically comparing the output of each of the

models’ classification reports, learning curves, confusion matrices,

ROC analysis, and LIME interpretability, we showed that in all the

difficult plant disease classes, the LR+DNNmodel recorded the best

stability and accuracy in general. In comparison to available

literature especially the model proposed by (Haridasan et al.,

2023) where authors used a combination of convolutional neural

networks and support vector machines to detect five diseases in rice;

it is worth mentioning that this model got an accuracy of 91.45% in

validation, which is lower as compared to what our hybrid model

using LR and DNN achieved with 96.2% accuracy as depicted in

Table 10. In addition, our framework covered a wider range of

disease classes in various crops (pepper, potato, tomato), and this

exhibited better generalization to other species and disease types.

Our model was effective in reducing feature redundancy to a

significant extent by considering PCA. Additionally, the coupled

ML and DNN framework enabled improved representation

learning and classification stability.

Nevertheless, in addition to raw accuracy, the LR+DNN model

demonstrated better learning dynamics. Coincidence of training

and validation accuracy, the loss line of convergence is a

representation of sound optimization and lower overfitting as

opposed to the SVM-CNN method. Class-wise evaluations also

support this strength; confusion matrices indicated that LR+DNN

reduced false positive and false negative values in both the majority
TABLE 9 Performance of hybrid ML+DNN models on plant disease
dataset.

Model Accuracy Precision Recall F1 score

RF+DNN 0.9178 0.9216 0.9178 0.9171

XGB+DNN 0.9356 0.9392 0.9356 0.9348

GB+DNN 0.9022 0.9101 0.9022 0.9041

KNN+DNN 0.8089 0.8129 0.8089 0.8083

LR+DNN 0.9622 0.9624 0.9622 0.9621
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and minority classes, a degree of detail underlying the proper

performance in the comparison-based research. Lastly, model

explainability, as provided by LIME, resulted in more transparent

and more interpretable feature attributions. This is particularly

notable in the case of LR+DNN, which led to increased trust in its

decisions, a quality that is often lacking in end-to-end DL models,

such as those employed by (Haridasan et al., 2023).
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Overall, the Hybrid LR+DNN has the advantage of being

superior to the other methods in terms of its classification-related

outcome, but also provides better stability, interpretability, and

generalizability to various plant disease data papers. Such attributes

strengthen its potential as a user-friendly tool in plant disease

diagnosis in automated systems and especially in resource-poor

agricultural environments.
FIGURE 3

Accuracy curves of proposed models: (a) RF+DNN Model, (b) XGB+DNN Model, (c) GB+DNN Model, (d) KNN+DNN Model, and (e) LR+DNN Model.
FIGURE 4

Loss curves of proposed models: (a) RF+DNN Model, (b) XGB+DNN Model, (c) GB+DNN Model, (d) KNN+DNN Model, and (e) LR+DNN Model.
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5.3 Limitations

Although the suggested hybrid learning model has high

predictive accuracy, it has several limitations that need to be

taken into consideration to put the findings in perspective and
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inform future studies. The initial and most obvious limitation is the

data set. Although popular in the study of plant pathology, the

collection of images in PlantVillage has been collected under very

controlled laboratory conditions, with uniform lighting

background, and individual leaves photographed in isolation.
FIGURE 5

Confusion matrix of proposed models: (a) RF+DNN Model, (b) XGB+DNN Model, (c) GB+DNN Model, (d) KNN+DNN Model, and (e) LR+DNN Model.
FIGURE 6

ROC curves of proposed models: (a) RF+DNN Model, (b) XGB+DNN Model, (c) GB+DNN Model, (d) KNN+DNN Model, and (e) LR+DNN Model.
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These design decisions, although they would help reduce noise and

standardize the input data, do not completely emulate the situation

of the real world in agriculture. In the sphere, other foliage usually

covers the leaf; it is prone to shadows or uneven lighting, and dust

or soil particles, as well as different distances and positions are likely

to be photographed using a consumer-grade smartphone camera.

Therefore, the accuracy obtained in this experiment (96.22% with

the help of LR+DNN on ResNet features) might not directly apply

to the field, and the results might decline considerably when having

more heterogeneous inputs.

The other limitation is related to the representation of diseases

and the type of crops. Despite the size of the PlantVillage dataset, it

is eventually limited to 14 crop species and 26 diseases, which

creates a 38-label dataset. A smaller set was picked in this research,

which included tomato, potato and pepper, thus the disease

coverage is further reduced. Such a narrowness implies that

trained models are only trained on a particular set of crops and

diseases, and their use in other crops, new pathogens, or disease

strains in the region is untested. In addition, there is an insufficient

number of examples of early stages of the disease in the dataset,

when visual signals are faint, unclear, or intersect with the

indicators of abiotic stress. The lack of a large and diverse sample

of such early stages of the disease may be a limiting factor to the use

of the model in the timely intervention of the disease in the actual

farming situation. This paper methodologically uses feature

extraction with pre-trained ResNet models and then classification
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with hybrid machine learning algorithms. Although the given

transfer learning method utilizes the representational potential of

ResNet, it comes with its limitations. The original ResNet designs

are not specifically designed to address plant pathology, but generic

object recognition (like ImageNet classification). Consequently,

some of the fine-grained visual features that are specific to the

plant diseases might not be fully represented in the extracted

features. Also, the fact that a static feature extractor is selected

implies that the hybrid models are not trainable and may limit their

capacity to learn representations corresponding to plant disease

classification. Future studies can help to refine the convolutional

backbone or use domain-specific designs that are more sensitive to

texture, venation patterns and lesion morphology.

The other significant weakness is associated with

generalizability and strength. The existing analysis was based

solely on stratified sampling in the PlantVillage dataset. Whereas

stratification provides a balanced distribution of training and

testing, it is not a solution to the larger problem of domain shift

between the laboratory and field conditions. Moreover, the data set

has more than one image of a single leaf (taken in various

orientations or positions). Even though efforts were made to rely

on training and testing splits, it is still possible that there will be

some feature redundancy across subsets of features, which will

unnaturally inflate the estimates of performance. The accuracy of

the suggested models in various real-life conditions cannot be

assured without testing them on external, in-the-wild data. Lastly,

the accuracy that is reported is high, but interpretability and aspects

of practical deployment are not investigated in this study. The

hybrid model gives good classification performance, but lacks in

telling agronomists and farmers which visual symptoms are driving

the predictions, which may be detrimental to its interpretability.

Also, mobile deployment, particularly in terms of computational

efficiency and scalability, which are relevant in real-world

agricultural tasks, was not directly tested. Discussing these points,

and incorporating bigger and more heterogeneous datasets

measured in the real field would assist in moving away from the

proof-of-concept research to the practical decision-support tools

that can be used to support precision agriculture.
FIGURE 7

Local interpretable model-agnostic explanations of proposed models.
TABLE 10 Accuracy comparison of existing work and proposed models.

Model Accuracy (%)

CNN+SVM (Haridasan et al., 2023) 91.45

RF+DNN (Proposed) 91.77

XGB+DNN (Proposed) 93.56

GB+DNN (Proposed) 90.22

KNN+DNN (Proposed) 80.89

LR+DNN (Proposed) 96.22
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6 Conclusion and future scope

This study proposed hybrid ML and DNN networks that were

found useful in the diagnosis of plant diseases using both handcrafted

descriptors and deep ResNet-based features enhanced using PCA.

Hybrid combinations of RF+DNN (91.78%), XGB+DNN (93.56%),

GB+DNN (90.22%), KNN+DNN (80.89%) and LR+DNN (96.22%)

had been thoroughly tested. The LR+DNN hybrid performed best

and showed a high level of consistent robustness on the majority and

minority classes. Its training and validation curves were well aligned,

demonstrating the trustworthy convergence and a reduced chance of

overfitting, whereas LIME analysis made the role of the features easy

to understand. These findings validate the superior predictability

efficiency of hybridization over independent models, and the LR +

DNN set another level of performance and accuracy in automated

detection of plant diseases. On the whole, the framework has

represented an efficient, precise, and understandable agricultural

diagnostic solution, which can prove greatly beneficial in early

disease management and help address sustainable farming.

Based on the weaknesses of the existing study, it is possible to

conduct several further research directions. First, it would be useful

to extend the analysis to field-acquired datasets that have different

backgrounds and lighting conditions and also overlap in leaves, to

have more evidence on the generalizability of the model. The early-

stage imagery of diseases and abiotic stress conditions should be

incorporated to enhance the sensitivity of the model to subtle

symptoms and the practical usefulness of the model in managing

the disease on time. Methodologically speaking, future research may

seek to focus on fine-tuning deep convolutional backbones or

implementing domain-specific designs in plant pathology to

achieve fine-grained lesion morphology and venation patterns

further. Besides, it would be better to incorporate explainable AI

methods, which would increase interpretability and credibility,

allowing farmers and agronomists to be aware of the visual

means by which the predictions are made. Lastly, exploring the

implementation of lightweight hybrid models on mobile or edge

devices would bridge the research and real-world gap in agricultural

applications and therefore, automated plant disease detection would

be more accessible and scalable in resource-constrained conditions.
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