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Introduction: Diseases of plants remain one of the greatest threats to sustainable
agriculture, with a direct adverse effect on crop productivity and threatening food
security worldwide. Conventional detection methods rely heavily on manual
detection and laboratory analysis, which are time-consuming, subjective, and
unsuitable for large-scale monitoring. The use of the most recent progress in
computer vision and artificial intelligence has opened up a prospect of
automated, scalable, and precise disease diagnosis.

Methods: This paper introduces a feature-efficient hybrid model that trains
classical Machie Learning (ML) classifiers with Deep Neural Network (DNN)
using ResNet-based feature extraction and Principal Component Analysis
(PCA). The PlantVillage dataset with mixed crop-disease pairs is used to
implement and thoroughly test five hybrid models.

Results: Wide-ranging experiments proved that the Logistic Regression (LR)
+DNN hybrid resulted in the best classification accuracy of 96.22% as
compared to other models and available benchmarks. Besides being able to
outperform other techniques in terms of predictive power, the framework
displayed good training stability and robustness to class imbalance as well as a
higher degree of interpretability based on LIME-based analysis.

Discussion: The obtained results confirm the hybrid ML+DNN paradigm as a safe,
transparent, scalable disease recognition framework when applied to plant
diseases. Providing opportunities for timely and accurate disease detection, the
proposed framework can help with precision agriculture, where pesticide use
can be reduced, consequently, and a significant contribution to sustainable
farming can be achieved.

KEYWORDS

hybrid machine learning—deep learning, intelligent smart sensing, sustainable disease
detection, ResNet feature extraction, Principal Component Analysis (PCA)
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1 Introduction

Plant diseases pose a serious threat to global agriculture, directly
affecting crop productivity, food security, and the livelihoods of
farmers (Gai and Wang, 2024). According to the Food and
Agriculture Organization (FAO), crop losses due to plant
pathogens and pests can reach as high as 40 percent worldwide,
resulting in significant economic losses and threatening the
sustainability of agricultural systems (Junaid and Gokce, 2024).
The current approach to diagnosing these diseases relies heavily on
manual examinations by trained professionals, which can be time-
consuming, labor-intensive, and subjective, leading to inaccuracies,
particularly in regions with a shortage of agronomists (Elangovan
et al, 2024). This makes early and accurate diagnosis crucial for
sustainable crop management and minimizing avoidable losses
(Rajendiran and Rethnaraj, 2024). Inadequate diagnosis often
leads to other issues, such as the overuse of pesticides, which can
have detrimental effects on both environmental balance and soil
quality (Shahbazi et al., 2025).

However, advancements in digital imaging technology and
artificial intelligence (AI) have paved the way for automated plant
disease detection (Negi and Anand, 2024). Traditional plant
pathology methods, including physical symptom observation and
lab-based diagnostics, while reliable, fall short for large-scale
monitoring (Khakimov et al., 2022). In contrast, computer vision
techniques leveraging ML and (DL) can rapidly and effectively
identify disease patterns directly from leaf images (Upadhyay et al.,
2025). Despite these advancements, research has predominantly
focused on singular ML or DL models, which can be limited in their
feature extraction abilities and may lack robustness when analyzing
disease trends across different crop species. Although deep learning
models such as ResNet, VGG, and Inception have achieved state-of-
the-art performance in plant disease classification, they are
computationally expensive, data-hungry, and often lack
interpretability. In contrast, traditional machine learning models
are lightweight and explainable but struggle with high-dimensional
image data. Very few studies have attempted to bridge these two
paradigms by combining deep feature extraction with
dimensionality reduction and hybrid classifiers. To address this
gap, our study employs ResNet to extract rich feature
representations from plant leaf images, applies Principal
Component Analysis (PCA) to reduce dimensionality and
computational overhead, and then leverages both machine
learning and deep neural network classifiers for final prediction.
This unique ResNet-PCA + ML/DNN framework offers a balance
between efficiency and accuracy, enabling high-performance
classification without the full cost of end-to-end CNN training,
thereby making the approach more practical for real-world
agricultural applications where computational resources and
annotated data may be limited.

* The study underscores the critical role of early disease
identification in agriculture and proposes a hybrid
modeling pipeline that addresses the limitations of
conventional expert-based and purely DL approaches.
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* This research systematically explores hybrid combinations,
including LR+DNN, RF+DNN, GB+DNN, KNN+DNN,
and XGB+DNN. The experimental results demonstrated
competitive performance across all hybrids, with accuracies
0f 91.78% for RE+DNN, 93.78% for XGB+DNN, 90.22% for
GB+DNN, 80.89% for KNN+DNN, and 96.22% for
LR+DNN.

* Through detailed analysis of classification metrics and
learning curves, it was established that the LR+DNN
hybrid consistently outperformed all other models,
achieving the highest accuracy of 96.22%. This finding
validates the effectiveness of hybrid learning strategies in
plant disease recognition and sets a new benchmark for
future research in agricultural AI applications.

This paper is organized into six sections. Section 2 reviews
previous work related to the subject matter. In Section 3, we
describe the dataset and system design, followed by Section 4,
which outlines the proposed approach utilized to achieve the
results. The findings are detailed in Section 5. Finally, Section 6
concludes the paper and discusses potential future directions.
Additionally, Table 1 lists the acronyms used throughout this paper.

2 Literature review

Authors in (Reddy et al., 2024) presented a DNN-based model
to detect plant diseases in leaves by using their pictures and trained
on the New Plant Diseases (Augmented) data that contains
information about 38 classes, and the Rice Leaf dataset, which is
associated with 4 classes. Different features, including grey level and
shape features of leaves, are extracted by the model to analyze the
characteristics of leaves comprehensively. These features are total
area, infected area, perimeter, coordinate of centroid, mean
intensity, entropy, eccentricity, energy, homogeneity, and
dissimilarity. The hyperparameters considered included epoch,
batch size, type of activation, and dropout rates, which resulted in
the model achieving accuracy between 96 and 99 percent,
outperforming traditional ML models. In (Chaitanya and
Posonia, 2024), the author suggests the development of an
efficient plant disease recognition system that would operate in a
mobile format. The framework enhances the visual representation
of plants by extracting two sets of features: one using CO-KMC
segmentation and the MRV-BWO network to capture color, shape,
and texture features, and another using the Multi-scale Dilated
Attention CNN (MSDA-CNN) network to capture deep semantic
features. These are fused with a weighted strategy referred to as
MRV-BWO and then classified using a Hybridized DNN-RNN
model, which is further optimized with MRV-BWO. Findings
reveal that the method is effective in plant disease detection
because it offers better resources and performance compared to
conventional methods.

In (Jafar et al., 2024), the authors reviewed the use of artificial
intelligence in revolutionizing agricultural processes by considering
the approach of AI and IoT in detecting plant diseases used in
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TABLE 1 List of acronyms.

Full form Acronyms

Machine Learning ML
Deep Learning DL
Principal Component Analysis PCA
Random Forest RF
Extreme Gradient Boosting XGB
Gradient Boosting GB
K Nearest Neighbors KNN
Logistic Regression LR
Deep Neural Network DNN
Local Interpretable Model-Agnostic Explanation LIME
Receiver Operating Characteristic ROC

tomato, chili, potato, and cucumber crops. It explains the disease
detection process in terms of the significant stages of image
acquisition, preprocessing, segmentation, feature selection, and
classification, comparing different ML and DL methods applied in
recent research. The study also notes that often-utilized datasets are
used to evaluate the most frequent diseases, outlining their
symptoms and pinpointing the drawbacks of existing detection
methods. Besides, it focuses on future opportunities of combining
AT with IoT technologies, e.g., smart drones to monitor plants in the
field, which provides information about the actual challenges and
possibilities of developing automated disease diagnosis of plants.
Authors in (Dey et al., 2024) presented a DL-based system for
automated plant disease detection, integrating precision agriculture
and transfer learning via pre-trained CNN models (AlexNet,
VGG16, and VGG19). The study utilized the PlantVillage dataset,
which comprises healthy and diseased leaves, and preprocessed the
images to enhance their quality. The models were then trained on
80 percent of the data and validated on 20 percent. These findings
revealed that all models had high performance in the classification
of plant diseases, and AlexNet had the highest performance, which
indicated the possibilities of DL as a viable mechanism of early
disease detection and proper management of crops. Shahi et al
(Shahi et al., 2023). presented a review of the latest advances in
UAV-based remote sensing for detecting crop diseases, with a
particular emphasis on combining sophisticated sensors, image
processing methods, and DL applications. It also introduces a
taxonomy to conveniently sort the available literature as well as
comparing the performance of ML and DL approaches to estimate
the disease, and underlining the importance of using UAV imagery
to increase the accuracy. The study concludes by presenting current
challenges, opportunities, and recommendations for future
research, highlighting the use of UAVs as a potent means of
detecting early diseases and precision agriculture.

Authors in (Raman and Jayaraman, 2025) presented a hybrid
deep learning model by Dual Branch Convolutional Graph
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Attention Neural Network (DB-CGANNet) to detect rice leaf
disease. Noise reduction is done by Upgraded Weighted Median
Filtering (Up-WME), and AG-CLAHE does contrast enhancement.
The Discrete Wavelet Transform (DWT), Gray Level Run Length
Matrix (GLRLM), and VGG19 are used to extract features, and the
Bio-Inspired Artificial Hummingbird (BI-AHB) algorithm is
optimal in the selection of features. The dual-branch model is an
extension of handcrafted and deep features, achieving an accuracy
of 98.9% in the Rice Leaf Diseases Dataset and 99.08% in the Rice
Disease Images Dataset, which is higher than the known methods
and is beneficial to the sustainable farming of rice. In (Haridasan
etal,, 2023), the authors suggested a deep learning-based automated
system to detect and classify paddy plant diseases to enhance crop
health and productivity (ID). The system combines computer vision
technology with machine learning and deep learning to decrease the
reliance on traditional diagnostic approaches. Segmentation is then
used to separate diseased areas after preprocessing of the image, and
is followed by five major rice diseases common in the Indian fields.
To achieve an accurate classification, a hybrid model that integrates
the support vector machines (SVM) with convolutional neural
networks (CNN) is used. The system was able to reach a
validation accuracy of 91.45 percent and goes ahead to offer
predictive remedies to assist farmers and agricultural organizations.
The systematic literature review (SLR) on plant disease
detection proposed by (Shafik et al., 2023) consists of the details
of the motivations, approaches to classification, data, and
difficulties, as well as perspectives. The researchers scoured
through 1349 articles in the leading databases. They settled on
176 studies examining applications of AI, ML, and DL in the
agricultural context, especially vision- and hyperspectral-based
approaches to grapes, rice, apples, maize, and other crops. They
note that SVM and LR models perform better than the conventional
classifiers and that more recent developments follow on the path of
CNNs with attention and transfer learning. The paper also surveys
11 datasets (9 publicly available) and observes limitations, including
dataset size, the absence of standard metrics of evaluation, and
constraints in localizing the disease. Finally, the paper stipulates
that to substantiate the proposed model, it will be necessary to have
lightweight, robust models that can be implemented on small
devices and are scalable to a variety of crops and diseases.
Authors in (Kulkarni and Shastri, 2024) suggested an automatic
system based on convolutional neural networks (CNN) to detect
and classify rice leaf diseases to assist in the timely diagnosis and
treatment of the disease in agriculture. The model, utilizing the
concept of image processing, is designed to handle challenging
scenarios such as updating background and background
illumination, which would have been problematic for traditional
manual identification methods. The CNN is well-portrayed as it can
correctly classify rice leaf images sampled across various
environments, which shows excellent robustness in the
agricultural environment. As a result of this method, the authors
attained a setting accuracy of 95 percent, indicating the potential of
DL solutions in precision farming and creating an effective,
automated diagnostic tool for farmers to identify diseases.
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3 Dataset and system design

Experiments in this paper rely on the open resource of plant leaf
images known as PlantVillage, currently under development and
growing in popularity, and which has been carefully curated to
assist in research on plant disease detection (Mohanty et al., 2016).
The dataset is available on GitHub and Kaggle and contains
thousands of pictures of different types of crops, such as
tomatoes, potatoes, and bell peppers, and a disease type or health
outcome accompanies the category. Examples of PlantVillage were
taken in controlled light and on a uniform ground, which increases
the consistency and lessens noise, and consequently, the feature
learning of both classical and DL networks.

The original collection of images in PlantVillage consists of
around 54,306 images of 14 crop species and 26 disease conditions
(including healthy), with 38 unique classes of crop-disease from
which we have selected the 15 unique classes to work that are shown
in Table 2. The dataset was modeled in controlled settings using
uniform backgrounds, similar light, and mostly individual leaves
photographed in the flat position in order to reduce visual noise and
environmental differences. To facilitate the needs of various
researchers, there are various versions of the images: the original
RGB (color) versions, a grayscale version and a segmented version
in which the background is eliminated and the color correction is
used to minimize possible bias due to lighting or background effects.
To ensure consistency in the studies, all pictures are downsampled
to 256 x 256 pixels before the training of models.

The data includes a broader set of disease states, and healthy
leaves are labeled, which allows the multi-class classification with
fine-grained accuracy. In this paper, a subset of the dataset of the
PlantVillag, including crop-disease pairs, including those affecting
pepper, potato and tomato, was used to test the performance of the
hybrid models by the ML+DNN designs. In order to have a strong
stratified sampling, the dataset was separated into training,
validation and test batches, with similar proportions of classes in
those subsets. This method resulted in a high degree of strength of
the evaluation measures in measuring the generalization potential
of the models in different disease categories, and even in rare classes.

3.1 Data preprocessing

A classification system performs well based on the caliber of the
feature representation of the system. About plant disease detection,
the leaf images usually show some changes in color, texture, and
morphology, all of which can be considered as possible disease
severity predictors. Since these aspects were needed in detail, the
two-stage preprocessing pipeline was used. At the first step, a
handcrafted feature was obtained according to color, texture, and
shape descriptors. The second stage also entailed the acquisition of
deep convolutional neural representations via a pretrained
ResNet50 model. Lastly, feature fusion was used to merge both
representations to give a more discriminating feature space. At the
handcrafted feature extraction step, all images were uniformly
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reduced in size to 224 x 224 pixels. The initial descriptors were
related to color information, which is vital in distinguishing
diseased leaf occurrences from healthy ones, as most infections
have a noticeable discoloration. The color histograms were formed
in HSV spaces, as well as in LAB spaces, to capture the changes
in chroma and be resistant enough to differences in illumination.
The channel ¢ is mathematically described in Equation 1, where the
histogram of a channel is given by the bin numbered by b, and the
intensity of the i-th pixel is written as I.(i), and &( - ) is its indicator.

N
Hy(b) = X 6(1.(1) € b). (1)
i=1

To derive even more indicative color hues, the predominant
color was calculated through k-means clustering in three classes, i.e.,
k = 3. The mean of every cluster was computed as given in Equation
2 where n_j represents the number of pixels under cluster j.

10
C'=—3x x€ER. )
nj i3

There were also texture descriptors used that quantify the
pathogen-induced micro-patterns on the leaf surface. Local
Binary Patterns (LBP) were calculated by Equation 3 where g,
refers to the gray intensity of the center pixel, g, corresponds to the
neighbor under consideration, and the thresholding function is
denoted by s(z).

P-1 1,z20
LBPpR(x,y) = > s(g, — &) 2P, s(z) = (3)

=0 0,z<0
Besides LBP, statistical texture features, such as Gray-Level Co-
occurrence Matrices (GLCM), were also underlying. Contrast and
Angular Second Moment (ASM) were calculated, respectively, as
indicated below in Equations 4, 5, where the variables P(i,j) give the
normalized probability of the co-occurrence of gray levels i and j.

Contrast = (i - /) P(i, ), (4)
i

ASM = S P(i,j)’ . (5)
i

Shape descriptors were extracted to pick up irregularities in the
structure of diseased leaves. The three morphological features that
were kept included leaf area (A), perimeter (P) and circularity (C)
after segmentation by using contour detection. Circularity is also
very applicable in that damage inflicted on the leaves can alter the

shape of the leaf. It is given as in Equation 6.

c=="" ©6)

Each handcrafted descriptor was concatenated to form a single
feature vector. The number of classes was then selected to ensure
equal numbers in each category, achieved by randomly selecting
150 images from each category. Although handcrafted features offer
expressive properties that present perceptible descriptors in terms
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TABLE 2 Class distribution of plant disease dataset.

Class Number of images

Pepper_bell_Bacterial_spot 997
Pepper_bell_healthy 1478
Potato_Early_blight 1000
Potato_Late_blight 1000
Potato_healthy 152
Tomato_Bacterial_spot 2127
Tomato_Early_blight 1000
Tomato_Late_blight 1909
Tomato_Leaf Mold 952
Tomato_Septoria_leaf spot 1771
Tomato_Spider_mites_Two_spotted_spide_mite 1676
Tomato_Target_Spot 1404
Tomato_Tomato_YellowLeaf_Curl_Virus 3208
Tomato_Tomato_mosaic_virus 373
Tomato_healthy 1591

of color, texture, and shape, in complex semantics, these features are
unable to capture the semantics. To counter this, deep feature
representations through a ResNet50 network pretrained in
ImageNet were used. The network was cut after the global
average pooling (GAP) layer, and its output served as a compact,
but highly expressive descriptor. Formally, the deep feature vector
can be defined as in Equation 7, i.e., the transform ¢(x;60) of the
input x is a conformally-learned convolutional operation with
parameters 6, which are pretrained on a separate task.

freep = GAP(9(x; 6)) . )

Lastly, to maximize the advantages of the two forms of
representations, namely, handcrafted and deep representations,
they were fused by concatenating the two vectors. The fused
representation is written out in Equation 8.

F= [ftmditionul ”fdeep]» (8)

Where “traditional” refers to handcrafted descriptors, and
“deep” refers to CNN features. PCA (PCA) was next used to
reduce dimensionality by retaining the most informative
components. To visually verify the effectiveness of the technique
and to demonstrate the capacity for distinguishing between the
classes of diseases, t-SNE was utilized in projecting the features into
two dimensions. Moreover, RF importance scores demonstrated the
discriminative value of handcrafted features at a low level as well as
deep features at a high level. Such a combined preprocessing
pipeline, therefore, generated sufficiently balanced, high-
dimensional and semantically rich feature vectors that formed
the basis of the hybrid ML+DNN classification framework
proposed here.
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3.2 High level system design

The system proposed for plant disease detection is a hybrid
architecture that integrates conventional image-processing routines
with deep representation approaches to achieve robust
classification, as illustrated in Figure 1. It starts with the gathering
of plant leaf photographs, which is marked as the core dataset.
These images undergo processing, including resizing to a fixed
resolution (224 x 224) and normalization, to ensure uniformity and
improve model performance. A feature extraction pipeline
processes the data within the scope of the problem after
preprocessing; two parallel methods are used. The first one
involves extracting conventional features, including color
histograms, dominant color values, Local Binary Patterns (LBP),
Gray-Level Co-occurrence Matrix (GLCM) features, and shape
descriptors. The second method uses the pre-trained
convolutional neural networks (e.g., the ResNet50, VGG16, and
EfficientNetB0) to extract deep representations. The feature fusion
takes place based on the concatenation of the results of these two
streams, thus forming a highly detailed feature set. The fused
representation is then sent on to a hybrid classification model,
which is a hybrid of RF and DNN classifiers, to maximize predictive
accuracy and generalization. The system then provides the
classification result, indicating whether the input leaf falls into a
diseased or healthy type. Such a hybrid design forms higher
reliability through integration of the strengths of handcrafted
features and DL-based features to detect disease in
plants accurately.

4 Proposed approach

The proposed approach presents the Hybrid-Plant-Disease-
Detection-Framework, which is an efficient combination of image
processing and deep learning to support reliable detection of plant-
leaf diseases. As given in Figure 2 and given in Algorithm 1, the
framework uses a sequential pipeline that starts with the image
preprocessing, feature-extraction, feature-fusion, dimensionality
reduction and the final classification step. The combination of
handcrafted radiomic features and deep features based on CNNs
allows the approach to capture textural features at low levels and
semantic patterns at high levels, coupled with the ability to improve
accuracy and generalization across a range of disease classes due to
the application of ensemble-based classification.

4.1 Machine learning models

The work applies a combination of the different classic ML
classifiers as sublearners in the hybrid ML-DNN architecture. The
features, reduced using principal component extraction and passed
through the ResNet model, are used with each classifier to achieve
initial predictions, which are subsequently refined using a DNN.
The range of selected algorithms (RF, XGB, GB, KNN, LR) was
chosen owing to their advantageous combination of properties in
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Plant Leaf
Images
Dataset

Hybrid Classification

Model N
(RF + DNN) Concatenation
\ 4
Disease
Classification Evaluation

Result

FIGURE 1
Basic system architecture for plant disease detection.

terms of non-linearity of decision boundaries, noise robustness, and
generalization to a wide variety of plant disease types.

4.1.1 Random forest

RF is an ensemble ML algorithm that trains many decision
trees. In the case of classification, the mode of predictions is output
(Salman et al., 2024). The fact is that PCA transforms the features,
making them one-dimensional and reducing the dimensionality of
the features, which in turn reduces overfitting and computational
complexity in this work. RF exhibits high noise and variability
robustness in plant disease images due to the use of bootstrap
aggregation (bagging) and feature randomness, making it applicable
to more complex visual patterns in the dataset. The decision rule
takes the form of Equation 9.

§ = mode{h,(x)};, ©9)

where h,(x) denotes the prediction from the ¢-th decision tree,
and T is the total number of trees.

4.1.2 Extreme gradient boosting

XGBoost is a fast, computationally efficient, and optimization-
friendly extension of the GB framework that supports regularization,
parallel acceptance, and efficient tree pruning to enhance predictive
performance (Wen et al, 2023). Here, given ResNet PC features,
resistance to noise and accurate continuation of complex classes are
carried out by the XGBoost of this framework. Overfitting is reduced
through the built-in L1 and L2 regularization terms, and the
scalability allows fast training even in agents with high-dimensional
collected features. It will be presented by Equation 10.
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Require: Dataset D={(I;,y;)}}_, where I, is plant leaf

image, y; is disease label

Require: Maximum samples per class M= 150

Require: Image size S =224 x 224

Require: CNN models {ResNet50, V GG16, EfficientNetBO}

Ensure: Trained hybrid model for
disease classification

1: Phase 1: Data Preprocessing

2: for each image I; € D do

3: I; < resize(I;,9)

4: I; < normalize(I;)

5: end for

6: Phase2: Traditional Feature Extraction

7. Initialize Xiraq«[], YV []

8: for each class c in classes do

9: Sample M images from class c

10: for each sampled image I do

11 Convert to HSV and LAB, compute
histograms hhsy, h1ab

12 fcolor « concat([hhsyv, h1ab])

13: Apply K-means clustering (k=3), extract
dominant color fyominant

14: Convert to grayscale, compute LBP
histogram fipp

15: Compute GLCM features: contrast,
dissimilarity, homogeneity, ASM, energy, correlation
— fgicm

16: Extract shape features: area, perimeter,

circularity — fepape
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FIGURE 2

Detailed framework of the proposed hybrid ML+DL model.

17:

Concatenate features: ftrad « concat

( [fcolorr fdominant/ 7Clbp: fglcm: fshape] )

18:
19:
20:
21
22
23:

Append firaq tO Xtraq, label c toY
end for
end for
Phase 3: Deep Feature Extraction
Initialize Xgeep « [ ]
for each CNN model M.,, € {ResNet50, VGG16,

EfficientNetB0} do

24

Load pre-trained M.,,, remove top layers, add

global pooling

25:
26:
27
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40 :
41

for each preprocessed image I do
fdeep « Mcnn(I)
Append fgeep TO Xdeep
end for
end for
Phase 4: Feature Fusion
Xfused <= concat ([ Xrad, Xdeepl, axis =1)
Phase 5: Dimensionality Reduction
Xreduced < PCA(150) . fit_transform(Xfused)
Phase 6: Data Splitting and Scaling
Split into (Xtrain, Xtest, Ytrain, Ytest)
Standardize features with scaler
Phase 7: Hybrid Model Training
Train RFon (Xtrain, Ytrain)
Get probability outputs Pirain, Prest
Train DNN Mpyn ON Prain With categorical labels
Phase 8: Evaluation
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42:  Predict ¥y USiNg Mpnw

43: Compute accuracy, precision, recall, Fl1-score,
confusion matrix

44: Phase 9: Interpretability

45:
interpret predictions return Trained hybrid model

Apply LIME explainer on test samples to
(RF, Mpyy) with metrics and explanations

Algorithm 1. Hybrid plant diseas?{detection framework.
vi=2fx), KEF (10)
k=1
where F represents the space of regression trees and K is the
number of trees. The overall objective combines the loss function
and regularization as shown in Equation 11.

n K
Obj = 3Ly, 5:) + DQ(f) (1n
i=1 k=1

4.1.3 Gradient boosting

GB constructs additive models through ML by sequentially
fitting a decision tree to the error of each previous decision tree,
fitting errors in an additive manner (Zhang et al., 2024). Hence, the
model becomes more accurate as it proceeds. GB is also good at
finding subtle variability in feature patterns, which in the case of
visually similar classes of plant diseases becomes critical as to how
to tell them apart. During combination with reduced deep features
by PCA, GB provides a good bias-variance tradeoff and enhances
the overall hybrid framework in terms of discriminative power. In
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Equation 12, the additive update rule is described.

Fm(x) = Fm—l(x) + ymhm(x) (12)

where F,, is the ensemble at iteration m, h,, is the weak learner,
and 7y, is the step size.

4.1.4 K-Nearest neighbors

KNN is a non-parametric learning algorithm applied in
instance-based learning to classify a new sample based on the
majority of the samples among its KNN in the feature space
(Halder et al., 2024). PCA transformation enhances the efficiency
of KNN, as it reduces the cost associated with the distance metric by
minimizing noise and feature dimensionality. KNN is a baseline
nonlinear classifier in this paradigm, which is highly interpretable
and utilizes the abundant semantic representation afforded by
ResNet. This is written as Equation 13.

y =mode{y; | x; & N(x)} (13)

where N (x) denotes the set of k nearest neighbors of x.

4.1.5 Logistic regression

The LR is one of the linear classification algorithms that
estimates the probability of a class based on a logistic sigmoidal
function (Zaidi and Al Luhayb, 2023). Although it is a simple
method, LR can act as a useful scale of effectiveness of deep feature
extraction and PCA transformation. Using LR on the compressed
ResNet representations, the model embodies linear separable
patterns within the dataset and can be used as an effective yet
computationally efficient node in the hybrid ML-DNN pipeline.
The probability in each class will be binary as shown in Equation 14.

1

— —_— T =—
P(y=1]x) =o(w x+b) = e

(14)
where w is the weight vector, b is the bias, and o(-) is the
sigmoid activation.

4.2 Dense neural network

The proposed structure has two stages with an ML classifier
paired with a specific DNN dedicated to each of them (Girdhar et al.,
2023). The first step entails training the ML model of interests on the
PCA-reduced ResNet features to produce intermediary predictions or
probability scores. Mathematically, it corresponds to Equation 15,
where p; refers to the output of the ML model number j.

p; = M;(Xpca) (15)

Here, Xpcy € R™F represents the k-dimensional features
obtained after PCA, and p; € R™"™ is the predicted probability
distribution over m classes.

In stage two, the output p; is the input to the relevant DNN,
which further non-linearly transforms the data. In the forward pass,
the computation at a particular hidden layer 1 is given as the formula
Equation 16.
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20— WOt 4 (16)

The activation for layer [ is then obtained by applying a
nonlinear activation function g(-), such as ReLU, as shown in
Equation 17.

al) = g(z(l)) (17)

Last, a softmax activation is applied on the final layer of the
DNN to yield the optimized score over m disease classes of plant
diseases, which is shown in Equation 18.

" e

Tsne "

The Dense Neural Network architecture applied in the given
work is represented in Table 3. It comprises 512 neurons in the
input layer, activated by the Rectified Linear Unit (ReLU) form,
with subsequent alternating dense and dropout layers to enhance
generalization and to avert overfitting. Particularly, dropout layers
at a rate of 0.3 are used between each dense layer in the hidden layer
and a random amount of neurons are deactivated during training to
minimize co-adaptation of weights. The network sequentially
decreases dimensionality with the first hidden layer having 256
neurons, the second layer having 128 neurons, then arriving at the
output layer that has final units neurons and final activation, which
performs an activation suitable to the classification task (softmax on
multi-class or sigmoid on binary classes). This structure strikes a
balance between representation power and regularization, which
helps optimize the outputs of each ML model.

4.3 Principal component analysis

PCA is a dimension reduction method that projects information
onto a smaller subspace while maximizing the retained variance.
On the same note, PCA is used with the feature vectors of the
already-trained ResNet model in this research to minimize
redundancy and computational complexities, hence enhancing the
efficiency of training the model. Given a dataset X & R™, the
first step is to center the data by subtracting the mean from each
feature. The covariance matrix C is then computed as shown in
Equation 19.

1

— XX (19)

C-=

Eigen decomposition shown in Equation 20 is performed on C
to obtain eigenvalues A; and eigenvectors v;.

CV,‘ = 7\1,‘\’1‘ (20)

The selection is then made based on the largest eigenvalues,
using the k top eigenvectors to constitute the projection matrix: Wy.
We also have a reduced representation of the set of features, denoted
as Z, which is calculated using Equation 21.

Z = XW, 21
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4.4 Model explainability using LIME

This study uses the technique of LIME to achieve post-hoc
interpretability of the hybrid ML+DNN models. LIME uses locally
faithful explanations constructed by approximating the
interpretable surrogate model to the complex one in the area of a
prediction. LIME takes a black-box classifier in the form of a
classifier f, and an instance x, and uses perturbed samples
surrounding x whose respective predicted output by f is returned
by LIME. Each sample (or point) z is assigned with the locality-
awareweight 7, (z) which favors or prioritizes points closer to x as in
Equation 22.

2
D(x, 2) ) (22)

O-2

7. (z) = exp <—

with a distance metric D(-) and the kernel width ¢. Then, a
simple, interpretable model g & G (e.g., sparse linear model) is
learned that minimizes the objective function as indicated in
Equation 23.

E(x) = arg minL(f, g, 7,) + Q(g) (23)
g§=G
where £ measures the fidelity of g to f in the locality defined by
7., and Q(g) enforces model simplicity.

5 Results, discussion and limitations

The presentation of the experimental assessment of the
proposed hybrid ML-DNN framework is carried out in this
section. The experiments aimed to evaluate the classification
accuracy of various ML models, incorporating Dense Neural
Networks (DNNs) with ResNet-extracted and PCA-reduced
features. The assessment is based on classical performance
metrics, e.g., accuracy and Fl-score, and interpretability metrics,
including the LIME. Standard metrics and visual diagnostics,
including prediction training and validation curves, confusion
matrices, and ROC curves, are used to report the results and are
supplementary to providing a view on robustness, reliability, and
explainability of the proposed framework.

Along with these scalar metrics, training and validation
accuracy/loss should be used to analyze the model convergence
behavior, which is helpful to correct some problems like overfitting
or underfitting. Stable generalization implies a constant decrease in
the difference between training and validation performance per
epoch. Additionally, the confusion matrix gives a precise
perspective of the legitimacy of the classification performance in
each class. The Confusion Matrix demonstrates more insight than
aggregate metrics because, by plotting actual vs. predicted labels, the
user should also be able to see which types of misclassifications a
model is prone to (as opposed to the effective average result). The
ROC curve is also depicted to assess the ratio between the actual
positive rate (TPR) and the false positive rate (FPR) at different
thresholds. The ROC-based Area-Under-the-Curve (AUC) would
be a good measure of the discriminative ability of the classifier.

Frontiers in Plant Science

10.3389/fpls.2025.1691415

TABLE 3 Dense neural network (DNN) architecture used in the proposed
framework.

Layer no. Layer type Units = Activation/Dropout

1 Dense (Input) 512 ReLU

2 Dropout - 0.3

3 Dense 256 ReLU

4 Dropout - 0.3

5 Dense 128 ReLU

6 Dropout - 0.3

7 Dense (Output) 15 softmax

Lastly, the interpretability of the models is guaranteed through the
application of LIME. LIME only outputs local surrogates to
complex hybrid ML-DNNs, where the most essential features for
making predictions are emphasized. This makes the model
trustworthy as it provides transparency in decision-making,
which is crucial in key agricultural applications, particularly in
detecting plant diseases.

5.1 Results

Each of the proposed hybrid models was tested using
classification reports concerning each of the classes of crop
diseases. Tables 4-8 show the precision, recall and Fl-score values
in all disease categories under a variety of model combinations, and
Table 9 gives the general performance of each model. The RE+DNN
model presented in Table 4 achieved a competitive accuracy of 91.7%,
with high precision and recall values across nearly all classes.
Indicatively, Tomato mosaic virus and Tomato healthy achieved
the same Fl-score of 0.98, and courses like Tomato Early blight
(F1 = 0.79) and Tomato Spider mites (F1 = 0.86) were more
problematic, thus could be compared as hard to distinguish virus
diseases which may be visually related.

The generalization performance of the XGB+DNN model was
better in terms of overall accuracy of 93.8% observed in Table 5. It is
noteworthy that it got perfect classification concerning
Tomato_mosaic_virus (F1 = 1.0) and an extremely high score
with Potato_healthy and Tomato_YellowLeafCurlVirus.
Nevertheless, the Tomato_Early_blight turned out to be a
problematic group, too, as its precision was relatively low (0.66),
but its recall was quite high (0.97), indicating false-positive prone.

Contrarily, the overall accuracy of the GB+DNN model was
lower by 0.2% as indicated in Table 6. Whereas the model achieved
outstanding performance on various classes, such as Pepper_healthy
and Tomato_Bacterial_spot, it performed poorly on other courses,
like Tomato_Late_blight, with recall decreasing to 0.69, thus
increasing its vulnerability compared to RE+DNN and XGB+DNN.

Among all the hybrid models included in Table 7, the KNN
+DNN model got the lowest performance with an overall accuracy
of 80.9%. There were a few bad classes, such as the class
Tomato_Late_blight (F1 = 0.63) and the class
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TABLE 4 Classification report for RF+DNN.

10.3389/fpls.2025.1691415

Class Precision Recall Fl-score
Pepper_bell_Bacterial_spot 1.00 0.93 0.97
Pepper_bell_healthy 0.94 1.00 0.97
Potato_Early_blight 0.93 0.87 0.90
Potato_Late_blight 0.93 0.90 0.92
Potato_healthy 091 1.00 0.95
Tomato_Bacterial_spot 0.90 0.93 0.92
Tomato_Early_blight 0.85 0.73 0.79
Tomato_Late_blight 0.96 0.83 0.89
Tomato_Leaf Mold 0.88 0.97 0.92
Tomato_Septoria_leaf_spot 0.96 0.87 0.91
Tomato_Spider_mites_Two_spotted_spider_mite 0.82 0.90 0.86
Tomato_Target_Spot 1.00 0.83 0.91
Tomato_Tomato_YellowLeaf_Curl_Virus 0.81 1.00 0.90
Tomato_Tomato_mosaic_virus 0.97 1.00 0.98
Tomato_healthy 0.97 1.00 0.98
Weighted Avg 0.92 0.92 0.92
TABLE 5 Classification report for XGB+DNN.
Class Precision Recall F1-score
Pepper_bell_Bacterial_spot 1.00 0.93 0.97
Pepper_bell_healthy 0.97 1.00 0.98
Potato_Early_blight 0.97 0.93 0.95
Potato_Late_blight 0.97 0.93 0.95
Potato_healthy 0.97 1.00 0.98
Tomato_Bacterial_spot 1.00 0.87 0.93
Tomato_Early_blight 0.66 0.97 0.78
Tomato_Late_blight 0.89 0.80 0.84
Tomato_Leaf_Mold 0.93 0.93 0.93
Tomato_Septoria_leaf_spot 0.93 0.87 0.90
Tomato_Spider_mites_Two_spotted_spider_mite 1.00 0.93 0.97
Tomato_Target_Spot 0.97 0.97 0.97
Tomato_Tomato_YellowLeaf_Curl_Virus 1.00 0.97 0.98
Tomato_Tomato_mosaic_virus 1.00 1.00 1.00
Tomato_healthy 0.97 0.97 0.97
Weighted Avg 0.95 0.94 0.94
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TABLE 6 Classification report for GB+DNN.

10.3389/fpls.2025.1691415

Class Precision Recall Fl-score
Pepper_bell_Bacterial_spot 0.96 0.87 0.91
Pepper_bell_healthy 1.00 0.93 0.97
Potato_Early_blight 0.93 0.93 0.93
Potato_Late_blight 0.93 0.83 0.88
Potato_healthy 0.94 0.97 0.95
Tomato_Bacterial_spot 0.97 0.93 0.95
Tomato_Early_blight 0.84 0.87 0.85
Tomato_Late_blight 0.69 0.90 0.78
Tomato_Leaf Mold 0.93 0.87 0.90
Tomato_Septoria_leaf spot 0.77 0.90 0.83
Tomato_Spider_mites_Two_spotted_spider_mite 0.88 0.93 0.90
Tomato_Target_Spot 0.93 0.87 0.90
Tomato_Tomato_YellowLeaf_Curl_Virus 0.96 0.87 091
Tomato_Tomato_mosaic_virus 0.97 0.93 0.95
Tomato_healthy 0.97 0.93 0.95
Weighted Avg 0.91 0.90 0.90

Tomato_Target_Spot (F1 0.70). This indicates the low
compatibility of KNN with deep features, as it is sensitive to
high-dimensional feature spaces.

Among all of the models, LR+DNN displayed in Table 8 had the
highest accuracy of 96.2%, the best performing model. It gave
almost perfect classification in the vast majority of the classes,
with the exceptions of Potato_healthy, Tomato_Bacterial_spot, and
Tomato_Target_Spot that reported only slightly lower (but still
nearly 1.0) Fl-scores. The model performed well even in the case
of problematic classes like Tomato_Early_blight (F1 = 0.92).

A consolidated comparison of the models was calculated as
shown in Table 9. It can be seen that the combination of DNN
features and LR performed substantially better than the other
combinations in terms of accuracy, precision, recall, and F1-score.
XGB+DNN produced good results as well, with RF+DNN and GB
+DNN considerably more competitive. The poor performance of
KNN DNN also supports the notion of selecting classifiers that
would be suitable for the high-dimensional deep
feature representations.

In the order of theoretical measures, the analysis will be further
supplemented with other studies that explain in more detail the
workings of the hybrid models.

Observations on the accuracy curves (Figure 3) indicated that
there were changes between the generalization abilities of the hybrid
models. On the one hand, both KNN+DNN and RF+DNN had
increasing training accuracy over the epochs, but their validation
accuracy exhibited errors and stagnation, implying that validation
accuracy was prone to overfitting. Notably, KNN+DNN was highly
dependent on the local data distribution, whereas RF+DNN even
exhibited oscillatory behavior within validation. On the flip side, GB
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+DNN and XGB+DNN converged more smoothly, and validation
accuracy closely mirrored training accuracy in the early epochs.
However, because of training, small gaps opened up, which implied
that minimal overfitting occurred later. LR+DNN achieved the
most stable performance, with the accuracy of training and
validation increasing simultaneously and remaining stable up to a
certain point. Such linear agreement indicates the high level of
generalization of the model that takes advantage of the simplicity of
LR and the representational power of the DNN, allowing it to both
represent linear dependencies and nonlinear ones.

The loss curves (Figure 4) also strengthened these observations.
KNN+DNN and RF+DNN demonstrated smooth decreasing
training loss. Yet, their validation curves became quite erratic and
leveled off or even rose, which again attests to overfitting of the
training data and lack of further optimization on the unseen
samples. GB+DNN and XGB+DNN also showed a nicer decline
in training and validation loss. However, slight differences emerged
after epoch 500, suggesting that the models remained somewhat
fragile regarding the complexity of boosting and the depth of
optimization. In comparison, LR+DNN exhibited the most
leveled-out behaviors, such that the training and validation loss
reduced almost simultaneously across the epochs. The two curves
did not show any significant differences, indicating that the model
was not only effective in minimizing training error but also in
transferring learning to the validation set, thereby signifying
its robustness.

The confusion matrices in Figure 5 provide a detailed view of
the success of the performance of each of the models in
differentiating classes. The XGB+DNN and GB+DNN have been
shown to exhibit good characteristics on the majority classes with
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TABLE 7 Classification report for KNN+DNN.

10.3389/fpls.2025.1691415

Class Precision Recall Fl-score
Pepper_bell_Bacterial_spot 0.80 0.80 0.80
Pepper_bell_healthy 0.93 0.83 0.88
Potato_Early_blight 1.00 0.83 091
Potato_Late_blight 0.78 0.83 0.81
Potato_healthy 0.94 1.00 0.97
Tomato_Bacterial_spot 0.97 0.97 0.97
Tomato_Early_blight 0.70 0.63 0.67
Tomato_Late_blight 0.71 0.57 0.63
Tomato_Leaf Mold 0.78 0.83 0.81
Tomato_Septoria_leaf_spot 0.70 0.77 0.73
Tomato_Spider_mites_Two_spotted_spider_mite 0.70 0.63 0.67
Tomato_Target_Spot 0.62 0.80 0.70
Tomato_Tomato_YellowLeaf_Curl_Virus 0.87 0.87 0.87
Tomato_Tomato_mosaic_virus 0.91 0.97 0.94
Tomato_healthy 0.80 0.80 0.80
Weighted Avg 0.81 0.81 0.81

strong diagonal dominance over frequent categories. Nonetheless,
the two models did not deal well with minority classes, as their false
negatives were high, proving a bias to well-represented samples.
This indicates that, even though the boosting increased the

TABLE 8 Classification report for LR+DNN.

predictive power, the skew in the data did not allow them to
generalize to the entire set of classes. This was partially
compromised in the RF+DNN model, as some enhancements in
the visualization were related to the distribution of the classes. It

Class Precision Recall F1-score
Pepper_bell_Bacterial_spot 0.97 0.93 0.95
Pepper_bell_healthy 0.97 0.97 0.97
Potato_Early_blight 0.97 1.00 0.98
Potato_Late_blight 1.00 0.97 0.98
Potato_healthy 1.00 1.00 1.00
Tomato_Bacterial_spot 1.00 1.00 1.00
Tomato_Early_blight 0.90 0.93 0.92
Tomato_Late_blight 0.93 0.87 0.90
Tomato_Leaf_Mold 0.94 0.97 0.95
Tomato_Septoria_leaf_spot 0.93 0.93 0.93
Tomato_Spider mites_Two_spotted_spider_mite 0.93 0.93 0.93
Tomato_Target_Spot 1.00 0.97 0.98
Tomato_Tomato_YellowLeaf_Curl_Virus 0.97 0.97 0.97
Tomato_Tomato_mosaic_virus 0.97 1.00 0.98
Tomato_healthy 0.97 1.00 0.98
Weighted Avg 0.96 0.96 0.96
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TABLE 9 Performance of hybrid ML+DNN models on plant disease
dataset.

Model Accuracy Precision Recall F1 score
RF+DNN 0.9178 0.9216 0.9178 0.9171
XGB+DNN 0.9356 0.9392 0.9356 0.9348
GB+DNN 0.9022 0.9101 0.9022 0.9041
KNN+DNN 0.8089 0.8129 0.8089 0.8083
LR+DNN 0.9622 0.9624 0.9622 0.9621

had a better balance in its confusion matrix than boosting-based
hybrids, but the misclassifications were non-trivially low, especially
in the differentiation between closely related categories. The same
can be said about KNN+DNN, which considers only the structure
of local neighbors, thus being vulnerable to noise and overlapping
classes, which contributed to the increased off-diagonal entries. The
LR+DNN model was consistently proven to be superior in terms of
confusion matrix structure, as evident from the apparent diagonal
dominance in most classes and a significant reduction in off-
diagonal errors. The fact that it can generate only a few false
negatives, while also producing fewer false positives, illustrates its
strength. This result indicates that LR+DNN is at once
demonstrating greater overall accuracy but also predictive
performance that is more fairly distributed across both more
common and less common categories, a highly preferable
property in real-world deployments in which imbalanced classes
are prevalent.

ROC analysis (Figure 6) presents a global perspective of the
discriminative ability of every model at different thresholds. Although
all the models yielded decent results in terms of the ROC, differences
in steepness of the curves and AUC underline that LR+DNN was
superior to others. Models such as KNN+DNN and RF+DNN
produced moderate ROC curves with less sharp increases,
indicating their inability to find the optimal balance between
sensitivity (true positive rate) and specificity (false positive rate).
GB+DNN and XGB+DNN were viewed as superior due to their
decent AUC rankings and sharper curves. However, their use was
also constrained by their distributional varieties, which led to over-
interpretation of minority classes, as reflected in the confusion
matrices. However, the LR+DNN model showed that the steepest
rise in the ROC curve was at the y-axis, and the AUC was the highest
across all the models. This sharp slope indicates that the model
rapidly achieves high sensitivity with minimal false positives, a crucial
quality in model deployment for sensitive fields where false alarms
are particularly problematic. The superior discriminating nature is
substantiated by the high AUC, which attests that LR+DNN is very
dependable regarding deciphering between positive and negative
cases at all decision thresholds.

LIME (Figure 7) is more transparent because it highlights the
most critical features in classification. In all models, LIME was
found to focus on features obtained through PCA-reduction of
ResNet embeddings as essential discriminators. Nevertheless, LR
+DNN had the most intelligible and readable feature importance
profiles. In contrast to such tree-based hybrids spreading weight
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over several less-informative features, LR+DNN focused on a few
strong predictors and both the model output and the predictions
were more aligned with what could be expected in the domain. This
interpretability increases confidence in the results and offers
practical information to future monitoring and diagnosis
approaches of the disease.

The experimental findings clearly demonstrated that among the
proposed hybrid models, the LR+DNN model outperformed the
others across all evaluation metrics, establishing it as the most
efficient model. In comparison, the XGB+DNN model secured the
second-best performance, while the KNN+DNN model ranked
lowest, indicating its limited suitability for the task at hand. A
systematic evaluation of the models was conducted using a robust
assessment framework that included the classification report,
accuracy, precision, recall, Fl-score, training history curves,
confusion matrix, ROC analysis, and LIME for interpretability.
This comprehensive analysis not only reinforces the superiority of
the LR+DNN model but also provides valuable insights into the
relative strengths and weaknesses of each model. Such clarity allows
for a better understanding of their applicability in future tasks, thus
guiding the selection of the most appropriate model for specific
predictive challenges.

5.2 Discussion

In this paper, an optimized hybrid framework that uses pre-
trained ResNet to extract features, as well as using the PCA and a
combination of each of the ML classifiers (RF, XGB, GB, KNN, and
LR) and corresponding dedicated DNN was introduced to detect
plant diseases. By critically comparing the output of each of the
models’ classification reports, learning curves, confusion matrices,
ROC analysis, and LIME interpretability, we showed that in all the
difficult plant disease classes, the LR+DNN model recorded the best
stability and accuracy in general. In comparison to available
literature especially the model proposed by (Haridasan et al,
2023) where authors used a combination of convolutional neural
networks and support vector machines to detect five diseases in rice;
it is worth mentioning that this model got an accuracy of 91.45% in
validation, which is lower as compared to what our hybrid model
using LR and DNN achieved with 96.2% accuracy as depicted in
Table 10. In addition, our framework covered a wider range of
disease classes in various crops (pepper, potato, tomato), and this
exhibited better generalization to other species and disease types.
Our model was effective in reducing feature redundancy to a
significant extent by considering PCA. Additionally, the coupled
ML and DNN framework enabled improved representation
learning and classification stability.

Nevertheless, in addition to raw accuracy, the LR+DNN model
demonstrated better learning dynamics. Coincidence of training
and validation accuracy, the loss line of convergence is a
representation of sound optimization and lower overfitting as
opposed to the SVM-CNN method. Class-wise evaluations also
support this strength; confusion matrices indicated that LR+DNN
reduced false positive and false negative values in both the majority
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FIGURE 3

Accuracy curves of proposed models: (a) RF+DNN Model, (b) XGB+DNN Model, (c) GB+DNN Model, (d) KNN+DNN Model, and (e) LR+DNN Model.

and minority classes, a degree of detail underlying the proper
performance in the comparison-based research. Lastly, model
explainability, as provided by LIME, resulted in more transparent
and more interpretable feature attributions. This is particularly
notable in the case of LR+DNN, which led to increased trust in its
decisions, a quality that is often lacking in end-to-end DL models,
such as those employed by (Haridasan et al., 2023).

Overall, the Hybrid LR+DNN has the advantage of being
superior to the other methods in terms of its classification-related
outcome, but also provides better stability, interpretability, and
generalizability to various plant disease data papers. Such attributes
strengthen its potential as a user-friendly tool in plant disease
diagnosis in automated systems and especially in resource-poor
agricultural environments.
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Loss curves of proposed models: (a) RF+DNN Model, (b) XGB+DNN Model, (c) GB+DNN Model, (d) KNN+DNN Model, and (e) LR+DNN Model.
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FIGURE 5

Confusion matrix of proposed models: (a) RF+DNN Model, (b) XGB+DNN Model, (c) GB+DNN Model, (d) KNN+DNN Model, and (e) LR+DNN Model.

(d) KNN+DNN Model

(e) LR+DNN Model

5.3 Limitations

Although the suggested hybrid learning model has high
predictive accuracy, it has several limitations that need to be
taken into consideration to put the findings in perspective and

inform future studies. The initial and most obvious limitation is the
data set. Although popular in the study of plant pathology, the
collection of images in PlantVillage has been collected under very
controlled laboratory conditions, with uniform lighting
background, and individual leaves photographed in isolation.
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ROC curves of proposed models: (a) RF+DNN Model, (b) XGB+DNN Model, (c) GB+DNN Model, (d) KNN+DNN Model, and (e) LR+DNN Model.
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FIGURE 7
Local interpretable model-agnostic explanations of proposed models.

These design decisions, although they would help reduce noise and
standardize the input data, do not completely emulate the situation
of the real world in agriculture. In the sphere, other foliage usually
covers the leaf; it is prone to shadows or uneven lighting, and dust
or soil particles, as well as different distances and positions are likely
to be photographed using a consumer-grade smartphone camera.
Therefore, the accuracy obtained in this experiment (96.22% with
the help of LR+DNN on ResNet features) might not directly apply
to the field, and the results might decline considerably when having
more heterogeneous inputs.

The other limitation is related to the representation of diseases
and the type of crops. Despite the size of the PlantVillage dataset, it
is eventually limited to 14 crop species and 26 diseases, which
creates a 38-label dataset. A smaller set was picked in this research,
which included tomato, potato and pepper, thus the disease
coverage is further reduced. Such a narrowness implies that
trained models are only trained on a particular set of crops and
diseases, and their use in other crops, new pathogens, or disease
strains in the region is untested. In addition, there is an insufficient
number of examples of early stages of the disease in the dataset,
when visual signals are faint, unclear, or intersect with the
indicators of abiotic stress. The lack of a large and diverse sample
of such early stages of the disease may be a limiting factor to the use
of the model in the timely intervention of the disease in the actual
farming situation. This paper methodologically uses feature
extraction with pre-trained ResNet models and then classification

TABLE 10 Accuracy comparison of existing work and proposed models.

Model Accuracy (%)

CNN+SVM (Haridasan et al., 2023) 91.45
RF+DNN (Proposed) 91.77
XGB+DNN (Proposed) 93.56
GB+DNN (Proposed) 90.22
KNN+DNN (Proposed) 80.89
LR+DNN (Proposed) 96.22
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with hybrid machine learning algorithms. Although the given
transfer learning method utilizes the representational potential of
ResNet, it comes with its limitations. The original ResNet designs
are not specifically designed to address plant pathology, but generic
object recognition (like ImageNet classification). Consequently,
some of the fine-grained visual features that are specific to the
plant diseases might not be fully represented in the extracted
features. Also, the fact that a static feature extractor is selected
implies that the hybrid models are not trainable and may limit their
capacity to learn representations corresponding to plant disease
classification. Future studies can help to refine the convolutional
backbone or use domain-specific designs that are more sensitive to
texture, venation patterns and lesion morphology.

The other significant weakness is associated with
generalizability and strength. The existing analysis was based
solely on stratified sampling in the PlantVillage dataset. Whereas
stratification provides a balanced distribution of training and
testing, it is not a solution to the larger problem of domain shift
between the laboratory and field conditions. Moreover, the data set
has more than one image of a single leaf (taken in various
orientations or positions). Even though efforts were made to rely
on training and testing splits, it is still possible that there will be
some feature redundancy across subsets of features, which will
unnaturally inflate the estimates of performance. The accuracy of
the suggested models in various real-life conditions cannot be
assured without testing them on external, in-the-wild data. Lastly,
the accuracy that is reported is high, but interpretability and aspects
of practical deployment are not investigated in this study. The
hybrid model gives good classification performance, but lacks in
telling agronomists and farmers which visual symptoms are driving
the predictions, which may be detrimental to its interpretability.
Also, mobile deployment, particularly in terms of computational
efficiency and scalability, which are relevant in real-world
agricultural tasks, was not directly tested. Discussing these points,
and incorporating bigger and more heterogeneous datasets
measured in the real field would assist in moving away from the
proof-of-concept research to the practical decision-support tools
that can be used to support precision agriculture.
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6 Conclusion and future scope

This study proposed hybrid ML and DNN networks that were
found useful in the diagnosis of plant diseases using both handcrafted
descriptors and deep ResNet-based features enhanced using PCA.
Hybrid combinations of RF+DNN (91.78%), XGB+DNN (93.56%),
GB+DNN (90.22%), KNN+DNN (80.89%) and LR+DNN (96.22%)
had been thoroughly tested. The LR+DNN hybrid performed best
and showed a high level of consistent robustness on the majority and
minority classes. Its training and validation curves were well aligned,
demonstrating the trustworthy convergence and a reduced chance of
overfitting, whereas LIME analysis made the role of the features easy
to understand. These findings validate the superior predictability
efficiency of hybridization over independent models, and the LR +
DNN set another level of performance and accuracy in automated
detection of plant diseases. On the whole, the framework has
represented an efficient, precise, and understandable agricultural
diagnostic solution, which can prove greatly beneficial in early
disease management and help address sustainable farming.

Based on the weaknesses of the existing study, it is possible to
conduct several further research directions. First, it would be useful
to extend the analysis to field-acquired datasets that have different
backgrounds and lighting conditions and also overlap in leaves, to
have more evidence on the generalizability of the model. The early-
stage imagery of diseases and abiotic stress conditions should be
incorporated to enhance the sensitivity of the model to subtle
symptoms and the practical usefulness of the model in managing
the disease on time. Methodologically speaking, future research may
seek to focus on fine-tuning deep convolutional backbones or
implementing domain-specific designs in plant pathology to
achieve fine-grained lesion morphology and venation patterns
further. Besides, it would be better to incorporate explainable AI
methods, which would increase interpretability and credibility,
allowing farmers and agronomists to be aware of the visual
means by which the predictions are made. Lastly, exploring the
implementation of lightweight hybrid models on mobile or edge
devices would bridge the research and real-world gap in agricultural
applications and therefore, automated plant disease detection would
be more accessible and scalable in resource-constrained conditions.
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