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Soil moisture (SM) is central to the global land-atmosphere interaction and is of

significant research importance. However, the dynamic structural features of SM

remain insufficiently explored. This study utilizes GLDAS-Noah SM data from 1948 to

2024 to develop a collaborative framework for quantifying SM contributions, based

on “three-dimensional decomposition + covariance attribution.” It decomposes

Total Soil Moisture Variability (TSMV) into two major temporal dynamics: long-

term trends (Trend) and inter-annual variability (IAV), assessing the contributions of

different soil depths, seasonal variations, and temporal dynamics to TSMV, thereby

laying themethodological groundwork for analyzing global TSMV structural features.

Furthermore, the relationship between SM and the gross primary productivity (GPP)

of different ecosystems remains unclear. This study further integrates the MODIS

MCD12C1 and GOSIF GPP datasets to explore the correlation between SM and GPP

on a global scale. The results indicate that between 2000 and 2024, global Total Soil

Moisture (TSM) shows a marked declining trend, with SM decreasing synchronously

across all seasons. The IAV contribution from the 40–200 cm soil layer to TSMV is

more significant, and this contribution exhibits notable spatial variation. Globally, SM

and GPP show an overall positive correlation, particularly in the 10–100 cm root

zone of grasslands and croplands, where the correlation is especially pronounced.
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1 Introduction

Global warming, through both direct warming and water cycle

feedbacks, has profoundly altered soil moisture (SM), a

fundamental land–atmosphere interaction variable (Xu et al.,

2013). As a regulator of the water–carbon cycle, agriculture, and

climate systems, SM has long been central to global change studies

(Seneviratne et al., 2010; Hao et al., 2025). Yet, widespread declines

have been observed in recent decades. In East Asia (1948–2010), SM

decreased significantly at –0.000645 m³/m³/10y, with severe drying

in Northeast and North China, Mongolia, and near Lake Baikal

(Cheng et al., 2015). The Himalaya–Tibetan Plateau (HTP) has

shown persistent SM loss since the 21st century, projected to

accelerate to –0.372 kg/m²/10a after 2080 under RCP8.5 (Zhang

et al., 2019). In the Pearl River Basin, autumn SM declined

markedly, while spring and autumn decreases dominate in North

and Northwest China (Zhang et al., 2018; Han et al., 2020). Extreme

events and land-use change have further amplified SM

heterogeneity, driven by multi-scale nonlinear mechanisms:

autumn drying in the Pearl River Basin reflects both reduced

rainfall and higher temperatures, whereas winter is mainly

warming-driven (Zhang et al., 2018); in East Asia, reduced

precipitation dominates SM drying, but warming nearly doubles

the effect (Cheng et al., 2015); on the HTP, precipitation gains are

offset by 2–3-fold larger increases in potential evapotranspiration,

intensifying aridification (Zhang et al., 2019). These shifts impair

ecosystem functioning and, through land–atmosphere feedbacks

(e.g., the North American heatwave), further accelerate drying,

highlighting the urgency of understanding SM dynamics (Liu

et al., 2020; 2021 North American heatwave amplified by climate

change-driven nonlinear interactions; Vereecken et al., 2022).

Advances in remote sensing and monitoring have confirmed

that SM variability arises from coupled climate, soil, and human

influences (Lathuillière et al., 2016; Xu et al., 2019; Chen et al.,

2020). Yet, current work rarely quantifies the structural features of

SM variability, particularly across depth and season (Loew and

Schlenz, 2011; Lee and Kim, 2017). Many studies emphasize surface

SM (0–10 cm), overlooking the pivotal role of deep SM (40–100 cm)

in water storage and drought recovery. This deep-layer contribution

to TSM is especially critical in regions such as the HTP and arid

zones (Zhang et al., 2019). In the Pearl River Basin, seasonal spatial

differences in SM have been mapped (e.g., east–west gradients in

spring; high east/west and low center in summer), but the

contributions of different soil layers to these patterns remain

unquantified (Zhang et al., 2018). Moreover, most research has

focused on external climatic drivers (precipitation, circulation),

without decomposing the variance structure of TSMV or

assessing how soil depth and season shape Trend and IAV

contributions (Cheng et al., 2015; Feng and Liu, 2015; Cheng and

Huang, 2016; Wu et al., 2020). SM dynamics also show regional

contrasts: warming may lower SM in drylands but increase it in

humid zones (Feng and Zhang, 2015; Seddon et al., 2016; Hu et al.,

2021). A multidimensional analysis of structural contributions to

TSMV and their spatiotemporal expressions is urgently needed to

disentangle ecosystem- and region-specific patterns.
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Unlike near-surface atmospheric humidity, SM exhibits vertical

stratification (Wei et al., 2025). While surface SM primarily tracks

short-term climatic fluctuations, deeper SM regulates water storage

and drought recovery, functions especially critical in arid systems

(Wen et al., 2024). Yet, many investigations have focused narrowly

on surface layers, thereby underestimating the systemic significance

of deeper SM (Traff et al., 2015; Li et al., 2024). This bias limits

robust evaluation of how soil-layer dynamics differentially affect

Total Soil Moisture (TSM) trends and variability. Seasonal

segmentation is equally indispensable for decoding SM cycles

(Renninger et al., 2010; Wang et al., 2018). In A-S, heightened

evaporation and diminished precipitation sustain SM deficits,

whereas H-S replenishes water and stabilizes ecosystem

functioning. These seasonal transitions strongly regulate

terrestrial carbon fluxes, but multi-layer seasonal contributions

remain underexplored. Elucidating such synergistic dynamics is

thus crucial for refining hydrological models and guiding

ecosystem management.

Conventional methods face challenges in disentangling

temporal dynamics of SM variations across soil depths and

seasons and their relative roles in TSMV. Here, using GLDAS-

Noah SM data, we establish a “3D decomposition + covariance

attribution” framework (Zhou et al., 2017) to quantify coordinated

SM variability across depths and seasons and its contributions to

TSMV. Coupled with covariance decomposition, this approach

isolates the dominant drivers of TSMV. Notably, the framework

innovatively applies linear regression to separate TSMV into Trend

and IAV components (Equations 1–3), offering a novel strategy for

quantifying the structural contributions to global TSMV.

Gross Primary Productivity (GPP), an indicator of plant capacity

to convert solar energy into organic matter, is directly constrained by

SM supply (Peng et al., 2024). Through its control of root water

uptake and stomatal conductance, SM governs photosynthetic carbon

assimilation (Li et al., 2020). Ecosystem-specific differences in rooting

architecture and water-use strategies yield divergent responses to SM

shifts. Yet, global-scale analyses linking SM stratification and seasonal

dynamics with GPP remain limited. We address this gap by

systematically quantifying SM–GPP relationships, thereby

informing ecosystem vulnerability evaluations.

In summary, this work seeks to resolve the spatiotemporal

dynamics of global SM, assess how soil depth, seasonal cycles,

and temporal features contribute to TSMV, and examine its

linkages with ecosystem-level GPP. Through this, we aim to

advance scientific understanding of global SM variability and its

ecological response mechanisms.
2 Data and methods

2.1 Dataset description and selection basis

To comprehensively resolve the spatiotemporal characteristics

and dynamic contributions of global SM, and to evaluate its effects

on ecosystem GPP under different land-cover contexts, we

employed three key datasets:
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The GLDAS (Global Land Data Assimilation System)–Noah

Land Surface Model L4 monthly 1.0° × 1.0° degree V2.0 (1948–

1999) and V2.1 (2000–2024) datasets (Rodell et al., 2004),

developed by NASA, provide SM data across four depth layers

(0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm). With monthly

temporal resolution and global coverage, the 1.0° spatial resolution

balances detail with computational efficiency for large-scale studies.

GLDAS integrates multi-source observations to deliver consistent

0–200 cm SM data since 1948. Independent evaluations have

demonstrated strong agreement between GLDAS-Noah and

GRACE gravimetry as well as ground hydrological networks,

though uncertainties remain in high-latitude and hyper-arid

regions (Gou and Soja, 2024). Its reliability surpasses most

comparable products and it has been widely applied in global

hydrology and climate change research (Wang et al., 2016; Yang

and Zhang, 2018), providing robust support for multi-layer and

cross-season SM attribution analyses. To examine seasonal SM

dynamics, we classified the 12 months into four categories based

on each year’s monthly mean SM: the wettest three months as

Humid Season (H-S), the next wettest as Sub-Humid Season (SH-

S), the next driest as Semi-Arid Season (SA-S), and the driest three

months as Arid Season (A-S). This classification framework

balances regional heterogeneity at the global scale and facilitates

unified analyses of seasonal SM dynamics.

The MODIS (Moderate Resolution Imaging Spectroradiometer)

MCD12C1 land-cover dataset, derived from Terra and Aqua

MODIS imagery using supervised classification algorithms,

provides global land-cover information. Based on the

International Geosphere–Biosphere Program (IGBP) classification

system, it offers 0.05° resolution and distinguishes 17 land-cover

types. Calibrated with MODIS remote sensing and ground

observations, this dataset ensures classification reliability and

provides essential support for land-cover analysis in this study

(Friedl et al., 2010).

The GOSIF (Global OCO-2 SIF) GPP dataset is constructed

from solar-induced chlorophyll fluorescence (SIF) observations

acquired by the Orbiting Carbon Observatory-2 (OCO-2) (Li and

Xiao, 2019a). Using a data-driven approach, it integrates OCO-2

SIF, MODIS remote sensing, and meteorological reanalysis to

generate global GPP estimates with 0.05° spatial resolution, 8-day

temporal resolution, and coverage from 2000–2024. Validated

against GPP observations from 91 FLUXNET sites, the dataset

shows strong correlations (R² = 0.73, p< 0.001), effectively capturing

GPP seasonal dynamics. It has significant value for studying global

GPP variability and ecosystem dynamics (Li and Xiao, 2019b).
2.2 Methodology

We extracted SM data for four representative soil layers (0–10

cm, 10–40 cm, 40–100 cm, 100–200 cm) from the GLDAS-Noah

dataset. Soil water content (kg·m-²) was calculated as soil layer

thickness (m) × water density (~1000 kg·m-³). Based on GLDAS-

Noah’s layer structure (0–0.1 m, 0.1–0.4 m, 0.4–1.0 m, 1.0–2.0 m),

the theoretical maximum capacities were about 100, 300, 600, and
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1000 kg·m-², respectively. To filter unrealistic values, thresholds

were set to 99.9, 299.9, 599.9, and 999 kg·m-² (slightly below these

limits to avoid floating-point artifacts). Values above the thresholds

were marked as missing (NaN) during preprocessing. This quality-

control step removed obvious nonphysical anomalies and

safeguarded the reliability of subsequent statistical analyses. For

long-term trend analysis, the preprocessed SM was aggregated

annually by computing mean values for each layer and summing

across all four layers to derive TSM, representing annual soil-profile

dynamics. Trend detection employed Sen’s slope estimator

combined with the Mann–Kendall test (Gocic and Trajkovic,

2013), a distribution-free and outlier-robust method widely

applied in climate research, enabling robust identification of long-

term SM trends globally.

To quantify the contributions of soil depth and seasonality to

TSMV, we applied an integrated attribution framework combining

variance decomposition with regression analysis (He et al., 2022;

Ma et al., 2022). The core principle is to partition SM variability into

Trend and IAV components using regression, followed by variance

decomposition to assess the contributions of depth and seasonal

factors (see Sections 2.3–2.4).

For SM–GPP correlation analysis, we first preprocessed the 17

land-cover categories (codes 0–16) in the MCD12C1 dataset. The

“Majority_Land_Cover_Type_1” layer, which encodes land-cover

types as integers, was extracted, and non-vegetated/artificial

surfaces were excluded by assigning NaN to Water Bodies (0),

Urban and Built-up Lands (13), Permanent Snow and Ice (15), and

Barren (16). Based on ecological similarity and study objectives, the

remaining 11 IGBP types were regrouped into four

major categories:
- Forests (Class 1): combining Evergreen Needleleaf Forests

(1), Evergreen Broadleaf Forests (2), Deciduous Needleleaf

Forests (3), Deciduous Broadleaf Forests (4), and Mixed

Forests (5).

- Shrublands (Class 2): including Closed Shrublands (6),

Open Shrublands (7), Woody Savannas (8), Savannas (9),

and Permanent Wetlands (11).

- Grasslands (Class 3): corresponding to Grasslands (10).

- Croplands (Class 4): comprising Croplands (12) and

Cropland/Natural Vegetation Mosaics (14).
To match the spatial resolution of GLDAS SM, a block-mode

resampling approach was applied: the original 0.05° × 0.05° data

were aggregated to 1° × 1° grids using 20 × 20 pixel blocks, with the

mode within each block representing land cover. Binary masks were

generated for each of the four land-cover classes (target = 1, others =

NaN). This classification optimization enhanced dataset specificity

and provided a robust basis for analyzing SM–GPP relationships

across land-use types. Finally, we used Pearson’s correlation

coefficient to assess the relationships between seasonal multi-layer

SM from GLDAS and GPP. This coefficient quantifies linear

dependence by normalizing covariance with the product of

standard deviations.
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2.3 Decomposition of SM time series into
trend and IAV

To elucidate the spatiotemporal structure and drivers of global

TSMV, we developed a three-dimensional attribution framework

integrating seasonality, soil depth, and temporal variability (Trend

and IAV). This decomposition represents a structural simplification

of dominant drivers and is well-suited for characterizing the overall

behavior of TSMV (Zhou et al., 2017). SM variability at each grid cell

was partitioned into two components: a long-term trend (Trend) and

interannual variability (IAV). For each grid cell, raw SM data were

stratified by four seasons (s) and four soil depths (d), and Trend and

IAV were independently fitted for each subgroup, as expressed by:

SMs,d(t) = as,d(t) + bs,d(t) (1)

SMs,d(t): SM value at time t, season s, and soil depth d as,d(t):

the Trend component for a given season s and depth d, defined

within each subgroup by a linear regression model:

as,d(t) = ks,d · t + b (2)

where ks,d · t is the regression coefficient and b is the intercept;

bs,d(t): the IAV component, defined as the residual between raw SM

and the fitted Trend for season s and depth d:

bs,d(t) = SMs,d(t) − as,d(t) (3)
2.4 Covariance decomposition and relative
contribution estimation

To quantify the contributions of soil depth and seasonal factors

to SM variability more precisely, we utilized a variance partitioning

method that decomposes the total variance Var(Df) of SM changes

into the sum of several covariances. Under the assumption that SM

variability is jointly influenced by soil depth and seasonality, the

total variance was partitioned into these four principal terms:

In univariate regression, the Trend component (a) and IAV

component (b) are independent (covariance = 0). Thus, the

covariance between TSM   and SMs,d , Cov(TSM, SMs,d), can be

expressed as:

Cov(TSM, SMs,d) = Cov½(a + b), (as,d + bs,d)�
= Cov(a ,as,d) + Cov(a , bs,d) + Cov(b ,as,d) + Cov(b , bs,d)

= Cov(a ,as,d) + Cov(b , bs,d) (4)

Following the principle of variance decomposition, the total

variance of SM, Var(TSM), can be partitioned into 32 covariance

terms:

Var(TSM) = Var(a) + Var(b)

=o4
s=1o4

d=1Cov(a ,as,d)

+o4
s=1o4

d=1Cov(b , bs,d) =o4
s=1o4

d=1½Cov(a ,as,d)

+ Cov(b , bs,d)� = 1

(5)
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In the formula, Var(a) represents the contribution of the long-

term trend (a) across the four seasons s and four soil depths d to

TSMV, while Var(b)   represents the contribution of the IAV

component (b) to TSMV. The 32 terms refer to the subgroups

formed by the combinations of four seasons s and four soil depths d,

representing the variance contributions of these subgroups to

TSMV in both Trend and IAV dimensions.

Based on the ratio of the 32 covariance terms to Var(TSM), the

relative contributions to TSMV can be calculated. Taking the IAV

component at 0–10 cm in H-S as an example, the Relative

Contribution (RC) is:

RCIAV
s1,d1 =

Cov(b , bs1,d1)
Var(TSM)

(6)

Relative Contribution of the IAV Component to TSMV in H-S:

RCIAV
s1 = RCIAV

s1,d1 + RCIAV
s1,d2 + RCIAV

s1,d3 + RCIAV
s1,d4 (7)

The relative contribution of the 0–10 cm Trend component to

TSMV is:

RCTrend
d1 = RCTrend

s1,d1 + RCTrend
s2,d1 + RCTrend

s3,d1 + RCTrend
s4,d1 (8)

The relative contribution of the 0–10 cm layer in H-S to TSMV

is:

RCs1,d1 =
Cov(a ,as1,d1)
Var(TSM)

+
Cov(b , bs1,d1)
Var(TSM)

(9)

Furthermore, for each spatial grid cell, the 32 terms are ranked

by contribution, and the top two dominant components (Top1/

Top2) and their contributions are extracted:

cRC
(k)

= T op − k
(s,d)

(RCa
s,d + RCb

s,d), k = 1, 2 (10)

From the 4 × 4 × 2 = 32 component combinations, the top two

contributors to TSMV are selected as key controlling factors, and

their relative contributions and structural attributes (soil depth d

and season s) are extracted.
3 Results

3.1 Spatiotemporal changes in global TSM
(1948–2024)

We first analyzed the long-term dynamics of global TSMV

during 1948–2024, dividing the record into two subperiods

(1948–1999 and 2000–2024) for comparison. Overall, relative to

1948–1999, global TSM exhibited a pronounced decline during

2000–2024, with a mean reduction rate of 0.87 kg·m-²·year-¹

(Figure 1a; Supplementary Figure S1a). Spatially, ~68.46% of

terrestrial areas experienced declines, with 25.56% decreasing by

more than 2 kg·m-²·year-¹, concentrated in Siberia, Canada, and the

South African Plateau; only 7.63% of land areas showed increases

>2 kg·m-²·year-¹, mainly in Northeast Asia. In contrast, during

1948–1999, TSM displayed a weak upward trend at a rate of only
frontiersin.org
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0.11 kg·m-²·year-¹, with regions exceeding 2 kg·m-²·year-¹

accounting for just 1.06% (Figure 1c; Supplementary Figure S1a).

Spatial trend analysis of SM by depth for 2000–2024 revealed

pronounced declines at 40–200 cm. Specifically, SM in the

100–200 cm and 40–100 cm layers declined at rates of 0.38 and

0.36 kg·m-²·year-¹, respectively (Supplementary Figures S2a, b); the

10–40 cm layer exhibited a milder decrease of 0.13 kg·m-²·year-¹

(Supplementary Figure S2c); while the 0–10 cm layer showed

negligible change at 0.03 kg·m-²·year-¹ (Supplementary Figure

S2d). Except for the surface layer, depth-specific SM trends

aligned with overall TSM, with declines concentrated in North

America, Siberia, and the South African Plateau. Differences in

decline rates likely relate to baseline water content: the 100–200 cm

layer consistently exceeded 230 kg·m-² across seasons, whereas the

0–10 cm layer typically remained below 35 kg·m-² (Figure 1b).

Long-term Trend diagnostics over 1948–2024 show only weak

increases in seasonal SM prior to 2000 (Figure 1c). In contrast, after

2000, seasonal SM exhibits a sharp and significant decline

(Figures 1a,c), closely mirroring the overall reduction in global

TSM. IAV analysis further indicates consistently larger variability in

the 0–10 cm layer across seasons—most pronounced in A-S—

whereas the 100–200 cm layer exhibits the lowest IAV and

greater stability in H-S (Figure 1d). Seasonally, IAV in A-S

markedly exceeds that in H-S, implying higher sensitivity to

short-term climate fluctuations. Collectively, global TSM has
Frontiers in Plant Science 05
declined since 2000, while IAV persists; the 0–10 cm layer under

A-S is particularly sensitive to short-term variability.
3.2 Spatial differentiation dominating
global TSM: comparative contributions of
seasonality, soil depth, and trend-IAV

Pixel-wise analysis of global TSMV relative contributions

during 2000–2024 shows that seasonal components are nearly

balanced, each averaging close to 25% (Figure 2). Specifically, H-

S, SH-S, SA-S, and A-S contribute 24.30%, 25.20%, 25.57%, and

24.93%, respectively (Figures 2a–d). While seasonal means differ

only slightly, spatial heterogeneity is pronounced, particularly

across North America, Central Asia, Europe, and tropical

rainforest regions. Notably, in rainforest areas, the relative

contribution of H-S is typically<10%, whereas that of drier

seasons often exceeds 30%.

Depth-wise comparisons indicate that SM in the 100–200 cm

layer contributes most strongly to TSMV, accounting for 42.93%.

Contributions decline progressively with shallower depths: 37.80%

(40–100 cm), 15.27% (10–40 cm), and 4.00% (0–10 cm)

(Figures 2e–h). Partitioning SM into long-term trend and IAV

components shows IAV as the dominant driver of TSMV,

contributing 75.02%, compared with only 24.98% for the trend
FIGURE 1

Long-term trends, vertical distribution, and IAV of global SM (1948–2024). (a) Spatial distribution of global SM trends for 2000–2024; (b) seasonal
and depth-based SM distributions illustrated by ridge line color and height, with vertical dashed lines indicating mean SM; (c) long-term trends of
seasonal mean SM during 1948–2024; (d) detrended IAV of seasonal and depth-resolved SM during 1948–2024, with variability represented by color
gradients in heatmaps.
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FIGURE 2

(a–d) spatial distributions of seasonal contributions to global pixel-wise TSMV during 2000–2024; (e–h) spatial distributions of contributions from
soil layers; (i, j) relative contributions of Trend and IAV components.
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(Figures 2i, j). Overall, both depth-specific and trend–IAV

contributions exhibit substantial spatial heterogeneity.
3.3 Relative contributions of SM trend and
IAV to TSMV under seasonal–depth
interactions

We partitioned SM data from 1948–1999 and 2000–2024 into

four seasons, four soil depths, and two temporal components (IAV

and Trend) to assess their contributions to TSMV (Figure 3a)

(Equations 4–10). During 2000–2024, IAV in the 40–200 cm

profile emerged as the dominant driver of TSMV, contributing

>6.5% across all seasons, with the 100–200 cm IAV in SA-S and SH-

S peaking at 7.76%. In 1948–1999, IAV contributions from 40–200

cm layers exceeded 7% for all seasons, with the 100–200 cm layer in

H-S and SH-S reaching 8.99%.

Comparing the two periods shows an increase in Trend

contributions and a decrease in IAV contributions during 2000–

2024 relative to 1948–1999 (Figure 3b1). Depth-wise, Trend

contributions vary more strongly with increasing soil depth;

seasonally, wetter conditions amplify Trend shifts, with the 100–200

cm H-S component showing the largest change (+1.24%) (Figures 3a,

b1). Moreover, differences in IAV contributions reveal that deeper

soils exhibit larger inter-period changes within the same season.

Analysis of w values across seasons and soil depths (Figure 3b2)

indicates that within the 0–100 cm profile, w values increase with

decreasing wetness, strengthening relative contributions. The 40–

100 cm layer consistently exhibits the highest w across seasons,

exceeding 1.4 in A-S and SA-S, thereby amplifying its contribution

to TSMV. The 10–40 cm layer ranks second, with w >1 in all but H-

S, indicating moderate enhancement. By contrast, the 0–10 cm and
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100–200 cm layers generally show w<1, except for a slight elevation
in 0–10 cm under A-S. Their contributions to TSMV thus mainly

depend on share proportion, reflecting a weakening effect and

underscoring depth–season contrasts in relative contributions.
3.4 Correlations between global TSM and
ecosystem-specific GPP

Figure 4 evaluates the correlations and significance distributions

of SM–GPP relationships across seasons, soil depths, and ecosystem

types. Overall, SM and GPP are generally positively correlated, but

the strength and fraction of significant regions exhibit pronounced

heterogeneity across temporal, vertical, and ecological dimensions.

At the global scale, SM–GPP correlations range from 0.07 to

0.18, indicating weak overall associations but clear depth

stratification and climatic dependence. Correlations are strongest

in the 40–100 cm layer, peaking under SA-S (r = 0.1801), and

weakest in the 100–200 cm layer, with a minimum under A-S (r =

0.0770) (Figure 4a). Spatially, pixel-wise correlations in the 10–100

cm layer show R > 0.2 across most regions, with the exception of

high-latitude northern areas and parts of equatorial rainforests.

Strong correlations are observed in the Northeast China Plain

croplands, Ganges croplands, U.S. western plains, and Australia.

By contrast, the 100–200 cm layer exhibits predominantly negative

correlations globally, with only a few regions showing positive

values (Figures 4c,d). Significance tests corroborate this pattern:

mean p-values range from 0.28 to 0.33, with 7.1%–9.6% of pixels

significant. While the global effects are modest, localized clusters of

significance emerge (Figure 4b).

Seasonal conditions modulate these correlations. Under H-S

and SH-S, SM–GPP linkages and significant fractions are relatively
FIGURE 3

(a) Donut charts showing relative contributions of seasonal and depth-specific SM Trend and IAV to TSMV for 1948–2024; (b1) differences in
seasonal and depth-specific contributions between 2000–2024 and 1948–1999; (b2) w values by season and depth, defined as the sum of Trend
and IAV relative contributions normalized by their proportion in TSM.
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low (~8%). In contrast, under SA-S and A-S, correlations

strengthen markedly, with the 40–100 cm and 10–40 cm layers

contributing 9.1%–9.6% significant areas. In particular, the 10–40

cm layer under A-S shows the highest correlation (r = 0.1407; 9.58%

significant), indicating stronger water limitation of GPP under

moisture stress, especially in shallow to mid-depth layers. Despite

weaker overall correlations under H-S, localized strong SM–GPP

coupling persists, especially in the 100–200 cm layer, where 7.91%

of pixels remain significant at p< 0.05 (Figures 4a, b).

Clear ecosystem-specific contrasts also emerge. In Forests, SM–

GPP correlations are largely negative (r = −0.0945 to −0.0028),

suggesting weak water dependence of GPP; weak but significant

areas account for 9%–21%, likely reflecting deep-root architecture

and nonlinear water-use strategies. Grasslands and Croplands

display markedly stronger correlations, with significant areas

covering 29.6% and 27.2%, respectively. Grasslands show peak

correlations in the 40–100 cm layer under SH-S and H-S (r ≈

0.31; >35% significant), whereas Croplands peak under A-S in the

10–40 cm layer (r = 0.3102; 34.78% significant) (Figures 4a, b).

These results highlight the heightened sensitivity of Grasslands and

Croplands to shallow–midroot SM. By contrast, deep soil water

(100–200 cm) exerts only a weak influence on GPP in both

ecosystems, with r generally<0.16.
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Shrublands occupy an intermediate position, with r values of

0.08–0.18 across depths and significant areas covering 26.9%. The

10–40 cm layer under A-S is most influential, with 31.33% of pixels

significant, highlighting the strong control of shallow–mid SM on

photosynthesis under drought conditions.

To provide a clearer overview of the results, we constructed the

Comprehensive Table of the Relationships between SM and GPP and

Associated Indicators across the Globe and in Different Ecosystems.

This table compiles correlation coefficients, significance levels (P-

values), numbers of significant pixels, and their proportions across

ecosystems, seasons, and soil depths (see Supplementary Table).

In summary, global SM–GPP correlations are weak on average

(mostly<0.18), and mean p-values generally exceed 0.25, indicating

limited overall effects. Nonetheless, the presence of localized

significant clusters highlights SM’s critical regulatory role in

shaping GPP at regional scales.

4 Discussions

4.1 Enhanced aridity of global SM

Analysis of GLDAS-Noah SM data indicates relatively stable

conditions from 1948–1999, followed by a progressive decline since
FIGURE 4

Donut plots showing SM–GPP correlations across seasons and depths for Forests, Shrublands, Grasslands, Croplands, and at the global scale.
Subplots: (a) distribution of Pearson correlation coefficients; (b) distribution of significance p-values; (c) pixel-wise correlation of 100–200 cm SM
with GPP globally; (d) pixel-wise correlation of 10–100 cm SM with GPP globally.
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the 21st century, evident across seasons and depths. This finding

aligns with previous reports: global surface SM declined

significantly during 1979–2017, with drying rates accelerating

after 2001 (Deng et al., 2020). Other studies similarly noted SM

reductions in most regions during the 21st century, particularly

across mid-latitude and tropical zones, driven by warming and

intensified evapotranspiration (Zhao and Dai, 2015). Our analysis

further reveals that over the past 25 years, the relative contribution

of Trend to SM change increased by at least 2% compared with the

late 20th century, potentially linked to a “warming amplification

effect” in arid–semiarid zones, where SM depletion and vegetation

loss enhance sensible heat flux and intensify land–energy imbalance

(Huang et al., 2016). Seasonal SM consistently shows declining

Trends. Land–atmosphere coupling experiments confirm that

seasonal SM reductions largely result from internal feedbacks of

seasonal SM variability on surface water availability. As the primary

water source for terrestrial evapotranspiration, declining SM limits

transpiration and soil evaporation, reducing regional ET, altering

circulation, and enhancing moisture convergence—highlighting

SM–atmosphere feedbacks as key drivers of seasonal water

availability (Zhou et al., 2022). SM variability is jointly shaped by

climate change and anthropogenic activity. Large-scale irrigation,

land-use change, and overexploitation of water resources alter

regional hydrological cycles, further intensifying SM declines in

certain regions (Liu et al., 2023).

Global TSMV exhibits marked spatial heterogeneity. For

example, SM declined in Canada and southern Africa, whereas

slight increases were observed in Alaska and Northeast China, likely

linked to greater precipitation and snowmelt inputs. Contrasting

SM Trends in adjacent high-latitude regions—Canada versus

Alaska—are particularly noteworthy. CLM simulations suggest

that although permafrost zones receive increasing net water input

(precipitation–evaporation), thaw-induced permeability enhances

drainage, potentially causing widespread soil drying (Lawrence

et al., 2015). In Canada, SM decreases as thaw-driven drainage

offsets water gains, whereas Alaska shows SM increases where

slower thaw, terrain-limited drainage, or greater recharge mitigate

losses. These patterns underscore the spatial heterogeneity of

permafrost impacts, governed by the balance of recharge versus

drainage (Lawrence et al., 2015).

Similarly, regional SM heterogeneity across high-altitude cold

zones such as the Tibetan Plateau (TP) reflects temperature-driven

hydro-ecological processes. In northern TP highlands, SM increases

and correlates positively with temperature, primarily due to

thawing permafrost and glacier meltwater inputs (Shi et al.,

2021). Conversely, in southern and southeastern TP, SM declines

and correlates negatively with temperature, as warming accelerates

evapotranspiration and alleviates low-temperature constraints on

vegetation growth, enhancing water consumption (Shi et al., 2021).

This dual mechanism of “warming-driven ET intensification +

vegetation water use” complements the high-latitude permafrost

“thaw–drainage” mechanism, together illustrating both shared and

region-specific SM responses to climate change.

Rising ET in western North America and southern Africa has

intensified soil drying, causing marked SM declines, consistent with
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our global TSM spatiotemporal analyses (Lal et al., 2023). Against

the backdrop of global warming, SM dynamics have shifted from

short-term fluctuations to persistent long-term decline, with

accelerated downward Trends in the past 25 years. Projections

under high-emission scenarios indicate further intensification of

global TSM drying, with disproportionate impacts on drought-

sensitive and agriculturally intensive regions, posing critical risks to

ecosystems, food production, and water management (Salley et al.,

2016; Berg et al., 2017). Satellite observations corroborate the global

SM decline. For example, ESA CCI surface SM data (2000–2021)

highlighted single-factor influences of land cover, soil texture,

climate (precipitation/temperature), and vegetation on SM

decreases, without addressing vertical heterogeneity or IAV (Peng

et al., 2023; Feng et al., 2025). Our study extends this scope to the

full soil profile (0–200 cm), innovatively decomposing TSMV into

three dimensions—depth, season, and temporal dynamics (Trend/

IAV)—and quantifying 32 intrinsic components (4 depths × 4

seasons × 2 dynamics). We also provide the first quantification of

seasonal and depth-specific Trend versus IAV divergence. Future

research should strengthen sensitivity analyses of regional SM

changes, incorporating multi-factor synergies to improve

prediction accuracy under climate change.
4.2 Dominant role of mid–deep SM IAV in
governing TSMV

Our results show that IAV of mid–deep SM (40–200 cm) exerts

primary control on TSMV during A-S. Although the 0–10 cm layer

exhibits pronounced interannual and seasonal fluctuations, its

limited storage constrains contributions to TSMV; by contrast,

larger storage at depth allows moisture variations to dominate

TSMV’s IAV (Harper et al., 2010). The effect is especially

pronounced in SA-S and A-S, where deep soils act as a

stabilizing reservoir that buffers shallow-layer volatility. Under

A-S, when surface SM is rapidly depleted by evaporation and

transpiration, mid–deep SM sustains system stability via two

pathways: hydraulic lift transports deep water to the surface

within dense rooting zones, easing shallow drought stress (Tong

et al., 2020); and in the 100–200 cm layer, gravity-driven matric

gradients promote downward–upward redistribution, creating a

“cryptic water source,” consistent with deep-profile observations

on the Loess Plateau (Tong et al., 2020). These findings highlight

the hydrologic importance of deep SM as a steady release reservoir

under drought.

Comparing 2000–2024 with 1948–1999, the contribution of

mid–deep SM IAV to TSMV declined somewhat yet remained

dominant. This attenuation likely reflects enhanced extraction of

deep SM by intensified ET under climate change. Attribution using

ERA5-Land indicates that post-2000 the ET share from mid–deep

soils increased, accelerating depletion of deep storage (Jiang et al.,

2022). In addition, groundwater overexploitation weakens capillary

recharge to mid–deep SM—a pattern corroborated by numerical

experiments for the North China Plain and elsewhere (Sun

et al., 2025).
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We also find pronounced vertical differentiation in IAV

contributions: with depth, the influence on TSMV strengthens,

consistent with the “soil reservoir effect.” In this view, deep soils act

as a slow climate variable with long memory for land-surface

processes, whereas shallow SM primarily tracks short-term

weather fluctuations (Vereecken et al., 2022). This vertical

heterogeneity is operationally salient for drought management:

integrating deep-soil monitoring into regional early-warning

systems can anticipate shifts in vegetation productivity (Sheffield

et al., 2012).
4.3 Seasonal differentiation of TSMV
contributions in tropical rainforests

In tropical rainforests, SM IAV shows marked seasonal

asymmetry: A-S variability exceeds H-S, diverging from the global

midlatitude pattern where H-S dominates. This highlights unique

hydrothermal coupling and heightened sensitivity of rainforests to

extreme climate. Elevated A-S variability in rainforests arises from

large rainfall fluctuations coupled with strong transpiration. During

El Niño events, anomalous Pacific SST shifts the ITCZ southward,

sharply reducing A-S precipitation and triggering cascading SM

declines (Le and Bae, 2022). Prolonged A-S further enhances SM

variability: vegetation reduces stomatal conductance to limit losses,

but canopy interception declines, producing a positive feedback that

amplifies SM fluctuations (Barros et al., 2019). Additional drivers

include climate warming, which raises potential ET, and human

disturbances such as deforestation that elevate albedo, suppress

rainfall, and reduce soil water-holding capacity—together

intensifying SM variability (Leite-Filho et al., 2019; Leite-Filho

et al., 2021; Xu et al., 2022). Satellite records reveal that in Brazil’s

Amazon agricultural frontiers, A-S SM variability coefficients are

markedly higher than in intact forests (Leite-Filho et al., 2021).

By contrast, rainforest H-S exhibits low SM IAV due to

balanced water budgets: abundant rainfall and moderate ET

maintain SM near field capacity, restricting interannual variability

(Lathuillière et al., 2012; Aguilos et al., 2019). Crucially, deep-root

systems (mean depth ~2.5 m) hydraulically lift deep water to the

surface, stabilizing SM during rainfall gaps (Harper et al., 2010;

Kühnhammer et al., 2023). In H-S, these roots also form a hydraulic

redistribution network that stores excess water in aquifers, buffering

subsequent A-S deficits.

Global climate change is disrupting this balance (Lynn and

Peeva, 2021). In the Amazon, SM stability during dry seasons has

relied on deep reservoirs (to ~10 m), hydraulic redistribution, and

deep-root uptake (Baker et al., 2008; Lan et al., 2016; Huang et al.,

2021). Yet evidence shows that when dry-season rainfall falls below

~100 mm per month or droughts extend, surface SM rapidly

depletes and deep-soil recharge efficiency declines with drought

intensity (Baker et al., 2008). This implies that if climate change

increases extreme drought frequency in the Amazon, dry-season

SM stability will be severely disrupted, with variability exceeding

that of climatically stable periods (Baker et al., 2008; Aguilos et al.,
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2018). The seasonal asymmetry of SM variability identified here

offers new insights into land-surface processes under global change.
4.4 Vertical differentiation of global SM–
GPP relationships

Intensifying human activity is amplifying the influence of SM

on GPP (Ren et al., 2025). Although deep SM (100–200 cm)

contributes substantially to TSMV, its correlation with GPP is

limited. By contrast, SM in the 10–100 cm zone—directly

accessible to plant uptake—plays the dominant role, especially in

Croplands and Grasslands, consistent with the “root-depth–

productivity” paradigm (Mueller et al., 2013).

In Croplands and Grasslands, root biomass is concentrated in

the 10–100 cm profile, where water uptake per unit root length is far

higher than in deeper layers (Cordeiro et al., 2020; Ma et al., 2021).

Thus, water availability here directly governs stomatal conductance,

strongly influencing photosynthetic carbon fixation (Hu et al., 2018;

Vargas Zeppetello et al., 2023). This underscores the central role of

shallow–mid SM in modulating plant water stress and directly

driving photosynthetic assimilation.

In contrast, deep SM (100–200 cm) influences GPP indirectly.

During extreme drought, it sustains plants via lagged mechanisms

such as embolism repair and capillary rise that buffer shallow–mid

moisture, providing a “cryptic water source” capable of extending

supply by 3–6 months (Kitajima et al., 2013; Nazarieh et al., 2018;

Guo et al., 2024). Under prolonged drought, ABA signaling

promotes deep-root proliferation, but requires 2–3 weeks of

physiological adjustment (Cenzano et al., 2014), whereas shallow–

mid roots respond more rapidly (Li et al., 2022). Thus, while deep

SM aids drought resistance, its effect on GPP is delayed.

Increasing frequency of extreme drought is likely to amplify

shallow–mid SM fluctuations, further strengthening the dominance

of the 10–100 cm zone over GPP. Such changes may heighten

ecosystem vulnerability and risk “soil–vegetation” feedback

imbalances in semiarid regions (Li and Sawada, 2022). By

quantifying vertical differentiation in SM–GPP linkages, our study

underscores the primacy of root-zone SM for productivity and

informs both SM model optimization and drought-sensitive

SM management.
5 Conclusions

This study analyzed global TSM trends, structural

contributions, and linkages with ecosystem GPP. Results show

that global TSM declined significantly during 2000–2024. The

100–200 cm layer and IAV dominate TSMV, with pronounced

spatial heterogeneity. Globally, SM is positively correlated with

GPP, with the 40–100 cm layer showing the strongest correlation,

particularly in Grasslands and Croplands. The novelty of this study

lies in moving beyond regional analyses to, for the first time,

quantify component-wise contributions to TSMV at the global
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scale across temporal and spatial dimensions, incorporating soil-

depth and seasonal differentiation to fill a major gap in coupled

TSM dynamics research.

Theoretical implications include: (i) revealing the dominant

role of deep SM IAV and the rising Trend contribution to TSMV,

challenging the long-held view that surface SM governs land–

atmosphere exchange; (ii) establishing quantitative links between

TSM dynamics in cold regions and near-surface energy fluxes

(albedo shifts from permafrost thaw, latent heat adjustments from

enhanced ET) and atmospheric moisture cycling (precipitation

feedbacks from TSM anomalies), thereby improving land-surface

models by incorporating “TSM–energy–moisture” coupling and

correcting biases from neglecting cold-region heterogeneity; (iii)

demonstrating vertical and seasonal differentiation in SM–GPP

linkages, providing global-scale evidence of water–carbon

coordination within the soil–plant–atmosphere continuum (SPAC).

Practically, this work offers a theoretical foundation for

ecosystem management, with implications for agriculture, water-

resource governance, and climate-change adaptation. Limitations

include insufficient spatiotemporal resolution of datasets,

constraining representation of fine-scale processes and lowering

precision in quantifying mechanisms such as recharge–drainage

balance or ET–vegetation coupling. Moreover, the framework does

not encompass all possible complex interactions. Future directions

include: acquiring high-resolution long-term datasets to isolate

small-scale drivers masked in large-scale simulations, improving

attribution of recharge–drainage and ET–vegetation feedbacks;

refining methods and conducting deeper regional sensitivity

analyses; and ultimately enhancing TSMV predictive accuracy to

support global ecological sustainability.
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