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Soil moisture (SM) is central to the global land-atmosphere interaction and is of
significant research importance. However, the dynamic structural features of SM
remain insufficiently explored. This study utilizes GLDAS-Noah SM data from 1948 to
2024 to develop a collaborative framework for quantifying SM contributions, based
on “three-dimensional decomposition 4+ covariance attribution.” It decomposes
Total Soil Moisture Variability (TSMV) into two major temporal dynamics: long-
term trends (Trend) and inter-annual variability (IAV), assessing the contributions of
different soil depths, seasonal variations, and temporal dynamics to TSMV, thereby
laying the methodological groundwork for analyzing global TSMV structural features.
Furthermore, the relationship between SM and the gross primary productivity (GPP)
of different ecosystems remains unclear. This study further integrates the MODIS
MCD12C1 and GOSIF GPP datasets to explore the correlation between SM and GPP
on a global scale. The results indicate that between 2000 and 2024, global Total Soil
Moisture (TSM) shows a marked declining trend, with SM decreasing synchronously
across all seasons. The IAV contribution from the 40—-200 cm soil layer to TSMV is
more significant, and this contribution exhibits notable spatial variation. Globally, SM
and GPP show an overall positive correlation, particularly in the 10-100 cm root
zone of grasslands and croplands, where the correlation is especially pronounced.
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1 Introduction

Global warming, through both direct warming and water cycle
feedbacks, has profoundly altered soil moisture (SM), a
fundamental land-atmosphere interaction variable (Xu et al,
2013). As a regulator of the water-carbon cycle, agriculture, and
climate systems, SM has long been central to global change studies
(Seneviratne et al., 2010; Hao et al., 2025). Yet, widespread declines
have been observed in recent decades. In East Asia (1948-2010), SM
decreased significantly at —0.000645 m*/m?/10y, with severe drying
in Northeast and North China, Mongolia, and near Lake Baikal
(Cheng et al, 2015). The Himalaya-Tibetan Plateau (HTP) has
shown persistent SM loss since the 21st century, projected to
accelerate to -0.372 kg/m?*/10a after 2080 under RCP8.5 (Zhang
et al., 2019). In the Pearl River Basin, autumn SM declined
markedly, while spring and autumn decreases dominate in North
and Northwest China (Zhang et al., 2018; Han et al., 2020). Extreme
events and land-use change have further amplified SM
heterogeneity, driven by multi-scale nonlinear mechanisms:
autumn drying in the Pearl River Basin reflects both reduced
rainfall and higher temperatures, whereas winter is mainly
warming-driven (Zhang et al., 2018); in East Asia, reduced
precipitation dominates SM drying, but warming nearly doubles
the effect (Cheng et al., 2015); on the HTP, precipitation gains are
offset by 2-3-fold larger increases in potential evapotranspiration,
intensifying aridification (Zhang et al., 2019). These shifts impair
ecosystem functioning and, through land-atmosphere feedbacks
(e.g., the North American heatwave), further accelerate drying,
highlighting the urgency of understanding SM dynamics (Liu
et al.,, 2020; 2021 North American heatwave amplified by climate
change-driven nonlinear interactions; Vereecken et al., 2022).

Advances in remote sensing and monitoring have confirmed
that SM variability arises from coupled climate, soil, and human
influences (Lathuilliére et al., 2016; Xu et al., 2019; Chen et al.,
2020). Yet, current work rarely quantifies the structural features of
SM variability, particularly across depth and season (Loew and
Schlenz, 2011; Lee and Kim, 2017). Many studies emphasize surface
SM (0-10 cm), overlooking the pivotal role of deep SM (40-100 cm)
in water storage and drought recovery. This deep-layer contribution
to TSM is especially critical in regions such as the HTP and arid
zones (Zhang et al., 2019). In the Pearl River Basin, seasonal spatial
differences in SM have been mapped (e.g., east-west gradients in
spring; high east/west and low center in summer), but the
contributions of different soil layers to these patterns remain
unquantified (Zhang et al., 2018). Moreover, most research has
focused on external climatic drivers (precipitation, circulation),
without decomposing the variance structure of TSMV or
assessing how soil depth and season shape Trend and IAV
contributions (Cheng et al., 2015; Feng and Liu, 2015; Cheng and
Huang, 2016; Wu et al., 2020). SM dynamics also show regional
contrasts: warming may lower SM in drylands but increase it in
humid zones (Feng and Zhang, 2015; Seddon et al., 2016; Hu et al.,
2021). A multidimensional analysis of structural contributions to
TSMV and their spatiotemporal expressions is urgently needed to
disentangle ecosystem- and region-specific patterns.
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Unlike near-surface atmospheric humidity, SM exhibits vertical
stratification (Wei et al., 2025). While surface SM primarily tracks
short-term climatic fluctuations, deeper SM regulates water storage
and drought recovery, functions especially critical in arid systems
(Wen et al,, 2024). Yet, many investigations have focused narrowly
on surface layers, thereby underestimating the systemic significance
of deeper SM (Traff et al., 2015; Li et al., 2024). This bias limits
robust evaluation of how soil-layer dynamics differentially affect
Total Soil Moisture (TSM) trends and variability. Seasonal
segmentation is equally indispensable for decoding SM cycles
(Renninger et al, 2010; Wang et al, 2018). In A-S, heightened
evaporation and diminished precipitation sustain SM deficits,
whereas H-S replenishes water and stabilizes ecosystem
functioning. These seasonal transitions strongly regulate
terrestrial carbon fluxes, but multi-layer seasonal contributions
remain underexplored. Elucidating such synergistic dynamics is
thus crucial for refining hydrological models and guiding
ecosystem management.

Conventional methods face challenges in disentangling
temporal dynamics of SM variations across soil depths and
seasons and their relative roles in TSMV. Here, using GLDAS-
Noah SM data, we establish a “3D decomposition + covariance
attribution” framework (Zhou et al., 2017) to quantify coordinated
SM variability across depths and seasons and its contributions to
TSMV. Coupled with covariance decomposition, this approach
isolates the dominant drivers of TSMV. Notably, the framework
innovatively applies linear regression to separate TSMV into Trend
and IAV components (Equations 1-3), offering a novel strategy for
quantifying the structural contributions to global TSMV.

Gross Primary Productivity (GPP), an indicator of plant capacity
to convert solar energy into organic matter, is directly constrained by
SM supply (Peng et al., 2024). Through its control of root water
uptake and stomatal conductance, SM governs photosynthetic carbon
assimilation (Li et al., 2020). Ecosystem-specific differences in rooting
architecture and water-use strategies yield divergent responses to SM
shifts. Yet, global-scale analyses linking SM stratification and seasonal
dynamics with GPP remain limited. We address this gap by
systematically quantifying SM-GPP relationships, thereby
informing ecosystem vulnerability evaluations.

In summary, this work seeks to resolve the spatiotemporal
dynamics of global SM, assess how soil depth, seasonal cycles,
and temporal features contribute to TSMV, and examine its
linkages with ecosystem-level GPP. Through this, we aim to
advance scientific understanding of global SM variability and its
ecological response mechanisms.

2 Data and methods

2.1 Dataset description and selection basis
To comprehensively resolve the spatiotemporal characteristics

and dynamic contributions of global SM, and to evaluate its effects

on ecosystem GPP under different land-cover contexts, we
employed three key datasets:
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The GLDAS (Global Land Data Assimilation System)-Noah
Land Surface Model L4 monthly 1.0° x 1.0° degree V2.0 (1948-
1999) and V2.1 (2000-2024) datasets (Rodell et al., 2004),
developed by NASA, provide SM data across four depth layers
(0-10 cm, 10-40 cm, 40-100 cm, and 100-200 cm). With monthly
temporal resolution and global coverage, the 1.0° spatial resolution
balances detail with computational efficiency for large-scale studies.
GLDAS integrates multi-source observations to deliver consistent
0-200 cm SM data since 1948. Independent evaluations have
demonstrated strong agreement between GLDAS-Noah and
GRACE gravimetry as well as ground hydrological networks,
though uncertainties remain in high-latitude and hyper-arid
regions (Gou and Soja, 2024). Its reliability surpasses most
comparable products and it has been widely applied in global
hydrology and climate change research (Wang et al., 2016; Yang
and Zhang, 2018), providing robust support for multi-layer and
cross-season SM attribution analyses. To examine seasonal SM
dynamics, we classified the 12 months into four categories based
on each year’s monthly mean SM: the wettest three months as
Humid Season (H-S), the next wettest as Sub-Humid Season (SH-
S), the next driest as Semi-Arid Season (SA-S), and the driest three
months as Arid Season (A-S). This classification framework
balances regional heterogeneity at the global scale and facilitates
unified analyses of seasonal SM dynamics.

The MODIS (Moderate Resolution Imaging Spectroradiometer)
MCDI12C1 land-cover dataset, derived from Terra and Aqua
MODIS imagery using supervised classification algorithms,
provides global land-cover information. Based on the
International Geosphere-Biosphere Program (IGBP) classification
system, it offers 0.05° resolution and distinguishes 17 land-cover
types. Calibrated with MODIS remote sensing and ground
observations, this dataset ensures classification reliability and
provides essential support for land-cover analysis in this study
(Friedl et al., 2010).

The GOSIF (Global OCO-2 SIF) GPP dataset is constructed
from solar-induced chlorophyll fluorescence (SIF) observations
acquired by the Orbiting Carbon Observatory-2 (OCO-2) (Li and
Xiao, 2019a). Using a data-driven approach, it integrates OCO-2
SIF, MODIS remote sensing, and meteorological reanalysis to
generate global GPP estimates with 0.05° spatial resolution, 8-day
temporal resolution, and coverage from 2000-2024. Validated
against GPP observations from 91 FLUXNET sites, the dataset
shows strong correlations (R* = 0.73, p< 0.001), effectively capturing
GPP seasonal dynamics. It has significant value for studying global
GPP variability and ecosystem dynamics (Li and Xiao, 2019b).

2.2 Methodology

We extracted SM data for four representative soil layers (0-10
cm, 10-40 cm, 40-100 cm, 100-200 cm) from the GLDAS-Noah
dataset. Soil water content (kg:m™>) was calculated as soil layer
thickness (m) x water density (~1000 kg-m*). Based on GLDAS-
Noah’s layer structure (0-0.1 m, 0.1-0.4 m, 0.4-1.0 m, 1.0-2.0 m),
the theoretical maximum capacities were about 100, 300, 600, and

Frontiers in Plant Science

10.3389/fpls.2025.1691082

1000 kg:m™, respectively. To filter unrealistic values, thresholds
were set t0 99.9, 299.9, 599.9, and 999 kg-m™ (slightly below these
limits to avoid floating-point artifacts). Values above the thresholds
were marked as missing (NaN) during preprocessing. This quality-
control step removed obvious nonphysical anomalies and
safeguarded the reliability of subsequent statistical analyses. For
long-term trend analysis, the preprocessed SM was aggregated
annually by computing mean values for each layer and summing
across all four layers to derive TSM, representing annual soil-profile
dynamics. Trend detection employed Sen’s slope estimator
combined with the Mann-Kendall test (Gocic and Trajkovic,
2013), a distribution-free and outlier-robust method widely
applied in climate research, enabling robust identification of long-
term SM trends globally.

To quantify the contributions of soil depth and seasonality to
TSMV, we applied an integrated attribution framework combining
variance decomposition with regression analysis (He et al., 2022;
Ma et al., 2022). The core principle is to partition SM variability into
Trend and IAV components using regression, followed by variance
decomposition to assess the contributions of depth and seasonal
factors (see Sections 2.3-2.4).

For SM-GPP correlation analysis, we first preprocessed the 17
land-cover categories (codes 0-16) in the MCD12C1 dataset. The
“Majority_Land_Cover_Type_1” layer, which encodes land-cover
types as integers, was extracted, and non-vegetated/artificial
surfaces were excluded by assigning NaN to Water Bodies (0),
Urban and Built-up Lands (13), Permanent Snow and Ice (15), and
Barren (16). Based on ecological similarity and study objectives, the
remaining 11 IGBP types were regrouped into four
major categories:

- Forests (Class 1): combining Evergreen Needleleaf Forests
(1), Evergreen Broadleaf Forests (2), Deciduous Needleleaf
Forests (3), Deciduous Broadleaf Forests (4), and Mixed
Forests (5).

- Shrublands (Class 2): including Closed Shrublands (6),
Open Shrublands (7), Woody Savannas (8), Savannas (9),
and Permanent Wetlands (11).

- Grasslands (Class 3): corresponding to Grasslands (10).

- Croplands (Class 4): comprising Croplands (12) and
Cropland/Natural Vegetation Mosaics (14).

To match the spatial resolution of GLDAS SM, a block-mode
resampling approach was applied: the original 0.05° x 0.05° data
were aggregated to 1° x 1° grids using 20 x 20 pixel blocks, with the
mode within each block representing land cover. Binary masks were
generated for each of the four land-cover classes (target = 1, others =
NaN). This classification optimization enhanced dataset specificity
and provided a robust basis for analyzing SM—-GPP relationships
across land-use types. Finally, we used Pearson’s correlation
coefficient to assess the relationships between seasonal multi-layer
SM from GLDAS and GPP. This coefficient quantifies linear
dependence by normalizing covariance with the product of
standard deviations.
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2.3 Decomposition of SM time series into
trend and IAV

To elucidate the spatiotemporal structure and drivers of global
TSMV, we developed a three-dimensional attribution framework
integrating seasonality, soil depth, and temporal variability (Trend
and IAV). This decomposition represents a structural simplification
of dominant drivers and is well-suited for characterizing the overall
behavior of TSMV (Zhou et al., 2017). SM variability at each grid cell
was partitioned into two components: a long-term trend (Trend) and
interannual variability (IAV). For each grid cell, raw SM data were
stratified by four seasons (s) and four soil depths (d), and Trend and
IAV were independently fitted for each subgroup, as expressed by:

SMs,d(t) = as,d(t) + ﬁs,d(t) (1)

SM; 4(t): SM value at time t, season s, and soil depth d o 4(1):
the Trend component for a given season s and depth d, defined
within each subgroup by a linear regression model:

O q(t) = keg-t+b (2)

where k- t is the regression coefficient and b is the intercept;
B:a(t): the IAV component, defined as the residual between raw SM
and the fitted Trend for season s and depth d:

ﬂs,d(t) = SMs,d(t) - as,d(t) (3)

2.4 Covariance decomposition and relative
contribution estimation

To quantify the contributions of soil depth and seasonal factors
to SM variability more precisely, we utilized a variance partitioning
method that decomposes the total variance Var(A¢) of SM changes
into the sum of several covariances. Under the assumption that SM
variability is jointly influenced by soil depth and seasonality, the
total variance was partitioned into these four principal terms:

In univariate regression, the Trend component (o) and IAV
component (f) are independent (covariance = 0). Thus, the
covariance between TSM and SM,, Cov(TSM,SM;,), can be
expressed as:

COV( TSM, SMs,d) = COV[((Z + ﬂ)s (as,d + ﬂs,d)]
= Cov(a, 0 4) + Cov(as, B 4) + Cov(PB, 0 1) + Cov(B, B 4)
= COV(OC, as,d) + COV(B’ ﬂs,d) (4)

Following the principle of variance decomposition, the total
variance of SM, Var(TSM), can be partitioned into 32 covariance
terms:

Var(TSM) = Var(er) + Var(B)
= i i1 Covlen o)
+ 34 S CovlB, Bog) =S S [Cov(a, ) (5)
+ Covl(B. B.)] = 1
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In the formula, Var(a) represents the contribution of the long-
term trend (o) across the four seasons s and four soil depths d to
TSMV, while Var(J)
component () to TSMV. The 32 terms refer to the subgroups

represents the contribution of the IAV

formed by the combinations of four seasons s and four soil depths d,
representing the variance contributions of these subgroups to
TSMV in both Trend and IAV dimensions.

Based on the ratio of the 32 covariance terms to Var(TSM), the
relative contributions to TSMV can be calculated. Taking the IAV
component at 0-10 cm in H-S as an example, the Relative
Contribution (RC) is:

COV(ﬁ’ ﬁsl,dl)

Var(TSM) ©

RCHY =
Relative Contribution of the IAV Component to TSMV in H-S:
RCq" )

The relative contribution of the 0-10 cm Trend component to
TSMV is:

IAV
=RC Ldl

IAV AV
sudl + RC g + RC s

IAV
s + Rcsl,d4

(8)

The relative contribution of the 0-10 ¢cm layer in H-S to TSMV

Trend Trend Trend Trend Trend
RCy™ =RCa +RCqa1 + RC3a1" + RCyy g

COV(O!, asl,dl )

. Cov(B, Bira1)
Var(TSM)

RC =
stdl Var(TSM)

)

Furthermore, for each spatial grid cell, the 32 terms are ranked
by contribution, and the top two dominant components (Topl/
Top2) and their contributions are extracted:

(k)
RC=Top-k(RCY +RCP), Kk
(s,d)

=1,2 (10)

From the 4 x 4 x 2 = 32 component combinations, the top two
contributors to TSMV are selected as key controlling factors, and
their relative contributions and structural attributes (soil depth d

and season s) are extracted.

3 Results

3.1 Spatiotemporal changes in global TSM
(1948-2024)

We first analyzed the long-term dynamics of global TSMV
during 1948-2024, dividing the record into two subperiods
(1948-1999 and 2000-2024) for comparison. Overall, relative to
1948-1999, global TSM exhibited a pronounced decline during
2000-2024, with a mean reduction rate of 0.87 kg-m>.year”
(Figure la; Supplementary Figure Sla). Spatially, ~68.46% of
terrestrial areas experienced declines, with 25.56% decreasing by
more than 2 kg-m’z-year’l, concentrated in Siberia, Canada, and the
South African Plateau; only 7.63% of land areas showed increases
>2 kg:m™year”, mainly in Northeast Asia. In contrast, during
1948-1999, TSM displayed a weak upward trend at a rate of only
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0.11 kg:m™.year', with regions exceeding 2 kg-m>.year™
accounting for just 1.06% (Figure lc; Supplementary Figure Sla).
Spatial trend analysis of SM by depth for 2000-2024 revealed
pronounced declines at 40-200 cm. Specifically, SM in the
100-200 cm and 40-100 cm layers declined at rates of 0.38 and
0.36 kg-m *year™, respectively (Supplementary Figures S2a, b); the
10-40 cm layer exhibited a milder decrease of 0.13 kg:m*year™
(Supplementary Figure S2c); while the 0-10 ¢cm layer showed
negligible change at 0.03 kg:m™year" (Supplementary Figure
S2d). Except for the surface layer, depth-specific SM trends
aligned with overall TSM, with declines concentrated in North
America, Siberia, and the South African Plateau. Differences in
decline rates likely relate to baseline water content: the 100-200 cm
layer consistently exceeded 230 kg:-m™ across seasons, whereas the
0-10 cm layer typically remained below 35 kg-m™ (Figure 1b).
Long-term Trend diagnostics over 1948-2024 show only weak
increases in seasonal SM prior to 2000 (Figure 1¢). In contrast, after
2000, seasonal SM exhibits a sharp and significant decline
(Figures la,c), closely mirroring the overall reduction in global
TSM. IAV analysis further indicates consistently larger variability in
the 0-10 cm layer across seasons—most pronounced in A-S—
whereas the 100-200 cm layer exhibits the lowest IAV and
greater stability in H-S (Figure 1d). Seasonally, IAV in A-S
markedly exceeds that in H-S, implying higher sensitivity to
short-term climate fluctuations. Collectively, global TSM has
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declined since 2000, while IAV persists; the 0-10 ¢cm layer under
A-S is particularly sensitive to short-term variability.

3.2 Spatial differentiation dominating
global TSM: comparative contributions of
seasonality, soil depth, and trend-1AV

Pixel-wise analysis of global TSMV relative contributions
during 2000-2024 shows that seasonal components are nearly
balanced, each averaging close to 25% (Figure 2). Specifically, H-
S, SH-S, SA-S, and A-S contribute 24.30%, 25.20%, 25.57%, and
24.93%, respectively (Figures 2a-d). While seasonal means differ
only slightly, spatial heterogeneity is pronounced, particularly
across North America, Central Asia, Europe, and tropical
rainforest regions. Notably, in rainforest areas, the relative
contribution of H-S is typically<10%, whereas that of drier
seasons often exceeds 30%.

Depth-wise comparisons indicate that SM in the 100-200 cm
layer contributes most strongly to TSMV, accounting for 42.93%.
Contributions decline progressively with shallower depths: 37.80%
(40-100 cm), 15.27% (10-40 cm), and 4.00% (0-10 cm)
(Figures 2e-h). Partitioning SM into long-term trend and IAV
components shows IAV as the dominant driver of TSMV,
contributing 75.02%, compared with only 24.98% for the trend
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(Figures 2i, j). Overall, both depth-specific and trend-IAV
contributions exhibit substantial spatial heterogeneity.

3.3 Relative contributions of SM trend and
IAV to TSMV under seasonal—-depth
interactions

We partitioned SM data from 1948-1999 and 2000-2024 into
four seasons, four soil depths, and two temporal components (IAV
and Trend) to assess their contributions to TSMV (Figure 3a)
(Equations 4-10). During 2000-2024, IAV in the 40-200 cm
profile emerged as the dominant driver of TSMV, contributing
>6.5% across all seasons, with the 100-200 cm IAV in SA-S and SH-
S peaking at 7.76%. In 1948-1999, IAV contributions from 40-200
cm layers exceeded 7% for all seasons, with the 100-200 cm layer in
H-S and SH-S reaching 8.99%.

Comparing the two periods shows an increase in Trend
contributions and a decrease in IAV contributions during 2000-
2024 relative to 1948-1999 (Figure 3bl). Depth-wise, Trend
contributions vary more strongly with increasing soil depth;
seasonally, wetter conditions amplify Trend shifts, with the 100-200
cm H-S component showing the largest change (+1.24%) (Figures 3a,
b1). Moreover, differences in IAV contributions reveal that deeper
soils exhibit larger inter-period changes within the same season.

Analysis of o values across seasons and soil depths (Figure 3b2)
indicates that within the 0-100 cm profile, @ values increase with
decreasing wetness, strengthening relative contributions. The 40-
100 cm layer consistently exhibits the highest ® across seasons,
exceeding 1.4 in A-S and SA-S, thereby amplifying its contribution
to TSMV. The 10-40 cm layer ranks second, with ® >1 in all but H-
S, indicating moderate enhancement. By contrast, the 0-10 cm and

o
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100-200 cm layers generally show m<1, except for a slight elevation
in 0-10 cm under A-S. Their contributions to TSMV thus mainly
depend on share proportion, reflecting a weakening effect and
underscoring depth-season contrasts in relative contributions.

3.4 Correlations between global TSM and
ecosystem-specific GPP

Figure 4 evaluates the correlations and significance distributions
of SM-GPP relationships across seasons, soil depths, and ecosystem
types. Overall, SM and GPP are generally positively correlated, but
the strength and fraction of significant regions exhibit pronounced
heterogeneity across temporal, vertical, and ecological dimensions.

At the global scale, SM—GPP correlations range from 0.07 to
0.18, indicating weak overall associations but clear depth
stratification and climatic dependence. Correlations are strongest
in the 40-100 cm layer, peaking under SA-S (r = 0.1801), and
weakest in the 100-200 cm layer, with a minimum under A-S (r =
0.0770) (Figure 4a). Spatially, pixel-wise correlations in the 10-100
cm layer show R > 0.2 across most regions, with the exception of
high-latitude northern areas and parts of equatorial rainforests.
Strong correlations are observed in the Northeast China Plain
croplands, Ganges croplands, U.S. western plains, and Australia.
By contrast, the 100-200 cm layer exhibits predominantly negative
correlations globally, with only a few regions showing positive
values (Figures 4c,d). Significance tests corroborate this pattern:
mean p-values range from 0.28 to 0.33, with 7.1%-9.6% of pixels
significant. While the global effects are modest, localized clusters of
significance emerge (Figure 4b).

Seasonal conditions modulate these correlations. Under H-S
and SH-S, SM-GPP linkages and significant fractions are relatively

(b1) Change in SM Contribution Rates (2000-2024 vs. 1948-1999)
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(a) Donut charts showing relative contributions of seasonal and depth-specific SM Trend and IAV to TSMV for 1948-2024; (b1) differences in
seasonal and depth-specific contributions between 2000-2024 and 1948-1999; (b2) w values by season and depth, defined as the sum of Trend

and IAV relative contributions normalized by their proportion in TSM.
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low (~8%). In contrast, under SA-S and A-S, correlations
strengthen markedly, with the 40-100 cm and 10-40 cm layers
contributing 9.1%-9.6% significant areas. In particular, the 10-40
cm layer under A-S shows the highest correlation (r = 0.1407; 9.58%
significant), indicating stronger water limitation of GPP under
moisture stress, especially in shallow to mid-depth layers. Despite
weaker overall correlations under H-S, localized strong SM-GPP
coupling persists, especially in the 100-200 cm layer, where 7.91%
of pixels remain significant at p< 0.05 (Figures 4a, b).

Clear ecosystem-specific contrasts also emerge. In Forests, SM—-
GPP correlations are largely negative (r = —0.0945 to —0.0028),
suggesting weak water dependence of GPP; weak but significant
areas account for 9%-21%, likely reflecting deep-root architecture
and nonlinear water-use strategies. Grasslands and Croplands

display markedly stronger correlations, with significant areas
covering 29.6% and 27.2%, respectively. Grasslands show peak
correlations in the 40-100 cm layer under SH-S and H-S (r =
0.31; >35% significant), whereas Croplands peak under A-S in the
10-40 cm layer (r = 0.3102; 34.78% significant) (Figures 4a, b).
These results highlight the heightened sensitivity of Grasslands and
Croplands to shallow-midroot SM. By contrast, deep soil water
(100-200 cm) exerts only a weak influence on GPP in both
ecosystems, with r generally<0.16.
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Shrublands occupy an intermediate position, with r values of
0.08-0.18 across depths and significant areas covering 26.9%. The
10-40 cm layer under A-S is most influential, with 31.33% of pixels
significant, highlighting the strong control of shallow-mid SM on
photosynthesis under drought conditions.

To provide a clearer overview of the results, we constructed the
Comprehensive Table of the Relationships between SM and GPP and
Associated Indicators across the Globe and in Different Ecosystems.
This table compiles correlation coefficients, significance levels (P-
values), numbers of significant pixels, and their proportions across
ecosystems, seasons, and soil depths (see Supplementary Table).

In summary, global SM-GPP correlations are weak on average
(mostly<0.18), and mean p-values generally exceed 0.25, indicating
limited overall effects. Nonetheless, the presence of localized
significant clusters highlights SM’s critical regulatory role in
shaping GPP at regional scales.

4 Discussions
4.1 Enhanced aridity of global SM

Analysis of GLDAS-Noah SM data indicates relatively stable
conditions from 1948-1999, followed by a progressive decline since
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the 21st century, evident across seasons and depths. This finding
aligns with previous reports: global surface SM declined
significantly during 1979-2017, with drying rates accelerating
after 2001 (Deng et al., 2020). Other studies similarly noted SM
reductions in most regions during the 21st century, particularly
across mid-latitude and tropical zones, driven by warming and
intensified evapotranspiration (Zhao and Dai, 2015). Our analysis
further reveals that over the past 25 years, the relative contribution
of Trend to SM change increased by at least 2% compared with the
late 20th century, potentially linked to a “warming amplification
effect” in arid-semiarid zones, where SM depletion and vegetation
loss enhance sensible heat flux and intensify land-energy imbalance
(Huang et al., 2016). Seasonal SM consistently shows declining
Trends. Land-atmosphere coupling experiments confirm that
seasonal SM reductions largely result from internal feedbacks of
seasonal SM variability on surface water availability. As the primary
water source for terrestrial evapotranspiration, declining SM limits
transpiration and soil evaporation, reducing regional ET, altering
circulation, and enhancing moisture convergence—highlighting
SM-atmosphere feedbacks as key drivers of seasonal water
availability (Zhou et al., 2022). SM variability is jointly shaped by
climate change and anthropogenic activity. Large-scale irrigation,
land-use change, and overexploitation of water resources alter
regional hydrological cycles, further intensifying SM declines in
certain regions (Liu et al., 2023).

Global TSMV exhibits marked spatial heterogeneity. For
example, SM declined in Canada and southern Africa, whereas
slight increases were observed in Alaska and Northeast China, likely
linked to greater precipitation and snowmelt inputs. Contrasting
SM Trends in adjacent high-latitude regions—Canada versus
Alaska—are particularly noteworthy. CLM simulations suggest
that although permafrost zones receive increasing net water input
(precipitation-evaporation), thaw-induced permeability enhances
drainage, potentially causing widespread soil drying (Lawrence
et al, 2015). In Canada, SM decreases as thaw-driven drainage
offsets water gains, whereas Alaska shows SM increases where
slower thaw, terrain-limited drainage, or greater recharge mitigate
losses. These patterns underscore the spatial heterogeneity of
permafrost impacts, governed by the balance of recharge versus
drainage (Lawrence et al,, 2015).

Similarly, regional SM heterogeneity across high-altitude cold
zones such as the Tibetan Plateau (TP) reflects temperature-driven
hydro-ecological processes. In northern TP highlands, SM increases
and correlates positively with temperature, primarily due to
thawing permafrost and glacier meltwater inputs (Shi et al,
2021). Conversely, in southern and southeastern TP, SM declines
and correlates negatively with temperature, as warming accelerates
evapotranspiration and alleviates low-temperature constraints on
vegetation growth, enhancing water consumption (Shi et al., 2021).
This dual mechanism of “warming-driven ET intensification +
vegetation water use” complements the high-latitude permafrost
“thaw-drainage” mechanism, together illustrating both shared and
region-specific SM responses to climate change.

Rising ET in western North America and southern Africa has
intensified soil drying, causing marked SM declines, consistent with
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our global TSM spatiotemporal analyses (Lal et al., 2023). Against
the backdrop of global warming, SM dynamics have shifted from
short-term fluctuations to persistent long-term decline, with
accelerated downward Trends in the past 25 years. Projections
under high-emission scenarios indicate further intensification of
global TSM drying, with disproportionate impacts on drought-
sensitive and agriculturally intensive regions, posing critical risks to
ecosystems, food production, and water management (Salley et al.,
2016; Berg et al., 2017). Satellite observations corroborate the global
SM decline. For example, ESA CCI surface SM data (2000-2021)
highlighted single-factor influences of land cover, soil texture,
climate (precipitation/temperature), and vegetation on SM
decreases, without addressing vertical heterogeneity or IAV (Peng
et al., 2023; Feng et al., 2025). Our study extends this scope to the
tull soil profile (0-200 cm), innovatively decomposing TSMV into
three dimensions—depth, season, and temporal dynamics (Trend/
IAV)—and quantifying 32 intrinsic components (4 depths x 4
seasons x 2 dynamics). We also provide the first quantification of
seasonal and depth-specific Trend versus IAV divergence. Future
research should strengthen sensitivity analyses of regional SM
changes, incorporating multi-factor synergies to improve
prediction accuracy under climate change.

4.2 Dominant role of mid—deep SM IAV in
governing TSMV

Our results show that IAV of mid-deep SM (40-200 cm) exerts
primary control on TSMV during A-S. Although the 0-10 cm layer
exhibits pronounced interannual and seasonal fluctuations, its
limited storage constrains contributions to TSMV; by contrast,
larger storage at depth allows moisture variations to dominate
TSMV’s TAV (Harper et al, 2010). The effect is especially
pronounced in SA-S and A-S, where deep soils act as a
stabilizing reservoir that buffers shallow-layer volatility. Under
A-S, when surface SM is rapidly depleted by evaporation and
transpiration, mid-deep SM sustains system stability via two
pathways: hydraulic lift transports deep water to the surface
within dense rooting zones, easing shallow drought stress (Tong
et al,, 2020); and in the 100-200 cm layer, gravity-driven matric
gradients promote downward-upward redistribution, creating a
“cryptic water source,” consistent with deep-profile observations
on the Loess Plateau (Tong et al.,, 2020). These findings highlight
the hydrologic importance of deep SM as a steady release reservoir
under drought.

Comparing 2000-2024 with 1948-1999, the contribution of
mid-deep SM TAV to TSMV declined somewhat yet remained
dominant. This attenuation likely reflects enhanced extraction of
deep SM by intensified ET under climate change. Attribution using
ERA5-Land indicates that post-2000 the ET share from mid-deep
soils increased, accelerating depletion of deep storage (Jiang et al.,
2022). In addition, groundwater overexploitation weakens capillary
recharge to mid-deep SM—a pattern corroborated by numerical
experiments for the North China Plain and elsewhere (Sun
et al.,, 2025).
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We also find pronounced vertical differentiation in IAV
contributions: with depth, the influence on TSMV strengthens,
consistent with the “soil reservoir effect.” In this view, deep soils act
as a slow climate variable with long memory for land-surface
processes, whereas shallow SM primarily tracks short-term
weather fluctuations (Vereecken et al., 2022). This vertical
heterogeneity is operationally salient for drought management:
integrating deep-soil monitoring into regional early-warning
systems can anticipate shifts in vegetation productivity (Sheffield
et al., 2012).

4.3 Seasonal differentiation of TSMV
contributions in tropical rainforests

In tropical rainforests, SM IAV shows marked seasonal
asymmetry: A-S variability exceeds H-S, diverging from the global
midlatitude pattern where H-S dominates. This highlights unique
hydrothermal coupling and heightened sensitivity of rainforests to
extreme climate. Elevated A-S variability in rainforests arises from
large rainfall fluctuations coupled with strong transpiration. During
El Niflo events, anomalous Pacific SST shifts the ITCZ southward,
sharply reducing A-S precipitation and triggering cascading SM
declines (Le and Bae, 2022). Prolonged A-S further enhances SM
variability: vegetation reduces stomatal conductance to limit losses,
but canopy interception declines, producing a positive feedback that
amplifies SM fluctuations (Barros et al., 2019). Additional drivers
include climate warming, which raises potential ET, and human
disturbances such as deforestation that elevate albedo, suppress
rainfall, and reduce soil water-holding capacity—together
intensifying SM variability (Leite-Filho et al,, 2019; Leite-Filho
et al,, 2021; Xu et al., 2022). Satellite records reveal that in Brazil’s
Amazon agricultural frontiers, A-S SM variability coefficients are
markedly higher than in intact forests (Leite-Filho et al., 2021).

By contrast, rainforest H-S exhibits low SM IAV due to
balanced water budgets: abundant rainfall and moderate ET
maintain SM near field capacity, restricting interannual variability
(Lathuilliere et al., 2012; Aguilos et al., 2019). Crucially, deep-root
systems (mean depth ~2.5 m) hydraulically lift deep water to the
surface, stabilizing SM during rainfall gaps (Harper et al., 2010;
Kithnhammer et al., 2023). In H-S, these roots also form a hydraulic
redistribution network that stores excess water in aquifers, buffering
subsequent A-S deficits.

Global climate change is disrupting this balance (Lynn and
Peeva, 2021). In the Amazon, SM stability during dry seasons has
relied on deep reservoirs (to ~10 m), hydraulic redistribution, and
deep-root uptake (Baker et al., 2008; Lan et al.,, 2016; Huang et al.,
2021). Yet evidence shows that when dry-season rainfall falls below
~100 mm per month or droughts extend, surface SM rapidly
depletes and deep-soil recharge efficiency declines with drought
intensity (Baker et al.,, 2008). This implies that if climate change
increases extreme drought frequency in the Amazon, dry-season
SM stability will be severely disrupted, with variability exceeding
that of climatically stable periods (Baker et al., 2008; Aguilos et al.,
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2018). The seasonal asymmetry of SM variability identified here
offers new insights into land-surface processes under global change.

4.4 Vertical differentiation of global SM—
GPP relationships

Intensifying human activity is amplifying the influence of SM
on GPP (Ren et al, 2025). Although deep SM (100-200 cm)
contributes substantially to TSMV, its correlation with GPP is
limited. By contrast, SM in the 10-100 cm zone—directly
accessible to plant uptake—plays the dominant role, especially in
Croplands and Grasslands, consistent with the “root-depth-
productivity” paradigm (Mueller et al., 2013).

In Croplands and Grasslands, root biomass is concentrated in
the 10-100 cm profile, where water uptake per unit root length is far
higher than in deeper layers (Cordeiro et al., 2020; Ma et al., 2021).
Thus, water availability here directly governs stomatal conductance,
strongly influencing photosynthetic carbon fixation (Hu et al., 2018;
Vargas Zeppetello et al., 2023). This underscores the central role of
shallow-mid SM in modulating plant water stress and directly
driving photosynthetic assimilation.

In contrast, deep SM (100-200 cm) influences GPP indirectly.
During extreme drought, it sustains plants via lagged mechanisms
such as embolism repair and capillary rise that buffer shallow-mid
moisture, providing a “cryptic water source” capable of extending
supply by 3-6 months (Kitajima et al., 2013; Nazarieh et al., 2018;
Guo et al, 2024). Under prolonged drought, ABA signaling
promotes deep-root proliferation, but requires 2-3 weeks of
physiological adjustment (Cenzano et al., 2014), whereas shallow-
mid roots respond more rapidly (Li et al., 2022). Thus, while deep
SM aids drought resistance, its effect on GPP is delayed.

Increasing frequency of extreme drought is likely to amplify
shallow-mid SM fluctuations, further strengthening the dominance
of the 10-100 cm zone over GPP. Such changes may heighten
ecosystem vulnerability and risk “soil-vegetation” feedback
imbalances in semiarid regions (Li and Sawada, 2022). By
quantifying vertical differentiation in SM-GPP linkages, our study
underscores the primacy of root-zone SM for productivity and
informs both SM model optimization and drought-sensitive
SM management.

5 Conclusions

This study analyzed global TSM trends, structural
contributions, and linkages with ecosystem GPP. Results show
that global TSM declined significantly during 2000-2024. The
100-200 cm layer and IAV dominate TSMV, with pronounced
spatial heterogeneity. Globally, SM is positively correlated with
GPP, with the 40-100 cm layer showing the strongest correlation,
particularly in Grasslands and Croplands. The novelty of this study
lies in moving beyond regional analyses to, for the first time,
quantify component-wise contributions to TSMV at the global
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scale across temporal and spatial dimensions, incorporating soil-
depth and seasonal differentiation to fill a major gap in coupled
TSM dynamics research.

Theoretical implications include: (i) revealing the dominant
role of deep SM IAV and the rising Trend contribution to TSMV,
challenging the long-held view that surface SM governs land-
atmosphere exchange; (ii) establishing quantitative links between
TSM dynamics in cold regions and near-surface energy fluxes
(albedo shifts from permafrost thaw, latent heat adjustments from
enhanced ET) and atmospheric moisture cycling (precipitation
feedbacks from TSM anomalies), thereby improving land-surface
models by incorporating “TSM-energy-moisture” coupling and
correcting biases from neglecting cold-region heterogeneity; (iii)
demonstrating vertical and seasonal differentiation in SM-GPP
linkages, providing global-scale evidence of water-carbon
coordination within the soil-plant-atmosphere continuum (SPAC).

Practically, this work offers a theoretical foundation for
ecosystem management, with implications for agriculture, water-
resource governance, and climate-change adaptation. Limitations
include insufficient spatiotemporal resolution of datasets,
constraining representation of fine-scale processes and lowering
precision in quantifying mechanisms such as recharge-drainage
balance or ET-vegetation coupling. Moreover, the framework does
not encompass all possible complex interactions. Future directions
include: acquiring high-resolution long-term datasets to isolate
small-scale drivers masked in large-scale simulations, improving
attribution of recharge-drainage and ET-vegetation feedbacks;
refining methods and conducting deeper regional sensitivity
analyses; and ultimately enhancing TSMV predictive accuracy to
support global ecological sustainability.
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