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Prediction of global potential
distribution and assessment
of habitat suitability for
Xanthium spinosum driven by
climate change
Yuke Fan 1, Xiaowei Zhang 2, Junlong Yang 1,
Jun Yang 1, Hongmei Zhang 1, Bo Yang 1

and Xiaowei Li 1*

1College of Forestry and Prataculture, Ningxia University, Yinchuan, China, 2College of Forestry, Gansu
Agricultural University, Lanzhou, China
Xanthium spinosum Linn (Asteraceae family), native to South America, is among the

most invasive plant species globally, with major ecological, agricultural, and

livestock-related impacts. However, little is known about how climate change may

alter its future distribution and range shifts. This study assessed the potential global

distribution and habitat suitability of X. spinosum by evaluating its dispersal risk under

climate change. We compiled 13,378 global occurrence records and applied the

MaxEnt model (optimized via the R package ENMeval) to simulate habitat suitability

under current conditions and three future climate scenarios (SSP126, SSP370, and

SSP585) for 2040–2060, 2060–2080, and 2080–2100. The model performed with

high accuracy (area under the curve > 0.979). The most influential factor was the

minimum temperature of the coldest month (Bio6; 67.1% contribution), with an

optimal range of −7.3 °C to 8.7 °C. Other key drivers included Bio10, Bio19, and Bio7.

Currently, core suitable areas include western North America to central/western

Europe, southeastern South America to West Africa, and Southeastern Australia to

East Asia, spanning 2,950.42 × 104 km2 (52.8% of potential distribution). Under

SSP126, suitable habitats expand steadily (+338.15 × 104 km2 by 2080–2100).

SSP370 projects large fluctuations, peaking at + 448.26 × 104 km2 in 2060–2080.

SSP585 predicts rapid early expansion (+392.54 × 104 km2 by 2040–2060), with the

rate of expansion decreasing in the mid and late stages. These findings support

invasion risk assessment, early warning development, and targeted management

strategies for X. spinosum in a changing climate.
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1 Introduction

Invasive alien species are a critical component of global

environmental change that pose substantial threats to national

biosecurity, ecological security, and food security (Seebens et al.,

2017; Van Kleunen et al., 2015; Guo et al., 2025). These invaders

typically exhibit rapid growth, high resource use efficiency, strong

dispersal capacity, and enhanced resistance to pathogens (Máximo

et al., 2020). Through interference mechanisms, such as

hybridization, alteration of natural habitats, and introduction of

pathogenic organisms, they achieve a competitive advantage over

native species, driving the latter toward decline or extinction,

thereby occupying their ecological niches to facilitate self-

expansion (Baldi et al., 2022). Under intensifying global climate

change, phenomena including warming climate, elevated

atmospheric CO2 concentrations, increased nitrogen deposition,

and frequent extreme climatic events have profoundly affected

global ecosystem stability. Such changes drive species adaptation

shifts, further exacerbating the dispersal risks of invasive alien

species (Blackburn et al., 2011; Ren et al., 2022). Invasive plants

are a primary cause of biodiversity loss. Compared with native flora,

they exhibit significant competitive advantages in light acquisition,

soil moisture utilization, and nutrient exploitation (Adkins and

Shabbir, 2014; Karimmojeni et al., 2021). Once successfully

established, highly adaptable and dispersive alien species trigger

drastic declines in native biodiversity. Their effects extend beyond

the direct displacement of indigenous species to fundamentally alter

ecosystem structure and function, destroying habitats for multiple

species and thereby posing severe threats to biodiversity (Zheng and

Li, 2025).

Although native to subtropical South America, X. spinosum has

become naturalized as a wild species across Central Europe,

Southern Europe, the northwestern Pacific (Martin and

Carnahan, 1983), Asia, and North America (Löve and Dansereau,

1959; Gligor et al., 2022). It is a toxic invasive annual weed (Wang

et al., 2025) that is listed by the European Plant Protection

Organization (EPPO) as a highly invasive plant species (EPPO

Global Database, 2025). Its traits include extended flowering

periods, high fecundity, prolific seed production, and strong cold

tolerance (Yuan et al., 2018; Kelečević et al., 2024). Its seeds have

hooked spines, which readily attach to livestock (e.g., cattle and

sheep) and cargo, facilitating dispersal. This not only reduces the

economic value of animal wool and hides but also drives large-scale

spread of X. spinosum through adaptability to Mediterranean

climates and affinity for nitrogen-rich soils (Andreani et al.,

2017). X. spinosum has achieved global distribution (Weber,

2017), and the corresponding effects are particularly severe in

ecologically fragile regions with simplified ecosystem structures

(Wang et al., 2025). It suppresses native plants via allelopathy

and, upon successful establishment, damages various crops (Liu

et al., 2025). Consequently, it severely threatens biodiversity,

agricultural production, and livestock farming in invaded areas

while substantially increasing ecological restoration costs and

economic management burden. Therefore, effective control of

X. spinosum represents a major challenge.
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The capacity of species to respond to climate change partly

depends on their ability to disperse into suitable habitats, which are

subject to climate change effects (Travis et al., 2013). Current

research on invasive species indicate that climate change will

considerably alter habitat suitability for invasive species,

particularly considering the projected continuous increase in

global mean temperatures through 2100 (Aidoo et al., 2025). The

potential distribution of X. spinosum may shift, which is a critical

question needing consideration. Consequently, predicting temporal

changes in the potential distributions of invasive species is essential

for effective management. Species distribution models (SDMs) can

simulate future distribution scenarios, thereby support invasion risk

reduction and optimizing conservation efforts (Guisan and

Zimmermann, 2000); however, limited research on habitat

suitability for X. spinosum hinders the formulation of early

monitoring and prevention strategies. Previous studies have

investigated X. spinosum primarily in terms of bio-ecological

traits (Liu et al., 2025), invasion mechanisms and dispersal

patterns (Xiao et al., 2023), isolation and identification of

bioactive compounds, and allelopathic effects of secondary

metabolites (Yuan et al., 2018). However, SDM-based predictions

of suitable habitats for X. spinosum during climate change are

scarce, with no existing global analysis. Therefore, projecting the

climate-driven global geographic distribution patterns of

X. spinosum is critically important.

SDMs serve as vital tools for studying how suitable habitats of

species respond to climatic and environmental changes (Wiens

et al., 2009; Hosseini et al., 2024). These models use geographic

distribution data obtained from field surveys, herbarium records,

and literature sources to infer the ecological niches of species. Based

on the density patterns of occurrence points, they quantify the

habitat preferences of species through probability estimates, thereby

predicting the response of potentially suitable niches to climate

change (Bellard et al., 2012). Commonly used SDM methods

include bioclimatic envelope models (BIOCLIM) (Booth et al.,

2014), maximum entropy (MaxEnt) models (Phillips et al., 2006),

genetic algorithm for rule-set production models (Stockwell, 1999),

generalized additive models (GAMs) (Hastie and Tibshirani, 1987),

and generalized linear models (GLMs) (Nelder and Wedderburn,

1972; Beaumont et al., 2008). Among these models, the MaxEnt

model demonstrates superior tolerance to sample bias and higher

predictive accuracy compared with other models, yielding relatively

optimal performance (Elith et al., 2006; Merow et al., 2014).

Consequently, it has been widely used for predicting species

distributions (Merow et al., 2013).

In this study, we elucidated the distribution patterns and

dynamic changes of potentially suitable habitats for X. spinosum,

providing scientific references for global invasion risk assessment,

early warning systems, and management strategies. Under global

climate change, we integrated global occurrence records of

X. spinosum with multidimensional environmental factors. Using

an optimized MaxEnt model (implemented via the R package

ENMeval) combined with ArcGIS software, we simulated its

potential suitable habitats under current conditions and three

future periods (2040–2060, 2060–2080, and 2080–2100) across
frontiersin.org
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three Shared Socioeconomic Pathways (SSP126, SSP370, and

SSP585). Through regional-scale suitability classification and an

analysis of key environmental drivers, the results identify current

high-risk invasion hotspots, predict future habitat expansion trends,

and inform targeted control measures, thereby offering critical

scientific guidance for global management.
2 Materials and methods

2.1 Collection of species distribution data

Global distribution records of X. spinosum were compiled from

multiple sources: the iNaturalist (iNat, https://www.inaturalist.org/),

the Global Biodiversity Information Facility (GBIF, https://

www.gbif.org/), relevant literature. For specimen records lacking

latitude and longitude coordinates, precise geographic coordinates

were obtained using the Baidu Map Coordinate Picker System

(http://api.map.baidu.com/lbsapi/getpoint/index.html). A

preliminary total of 25,245 distribution records were collected

(iNat: 4528; GBIF: 20,685; literature: 32). To ensure high-quality

data, a rigorous screening of the raw records was performed.

Records with errors, those falling outside of the species’ actual

distribution range, or those lacking specific geographic information

were excluded. Because data from different sources (databases,

literature) may exhibit spatial clustering (i.e., multiple records at

adjacent locations), which can easily cause spatial autocorrelation in

SDMs, leading to model overfitting and reduced predictive accuracy

(Teng et al., 2018), we applied spatial thinning to the data using the

ENMTools package in R (Warren et al., 2021). In particular, only

one unique distribution point was retained within a 20-km radius.

This mitigated spatial autocorrelation and considerably improved

the accuracy of the model predictions for the potential suitable

geographic distribution of X. spinosum. Ultimately, 9,134 valid

distribution points with latitude and longitude data were

obtained. These data were organized, imported into Excel, and

saved in CSV format for subsequent model construction.
2.2 Collection of environmental variables
and setting of future climate scenarios

This study incorporated two categories of environmental

variables: climate and soil are shown in Table 1. Nineteen

bioclimatic variables (Bio1–Bio19) were sourced from the

WorldClim 2.1 database (https://worldclim.org/) at a spatial

resolution of 2.5 arc-minutes. Ten soil factors were obtained from

the Harmonized World Soil Database (HWSD) v2.0 (https://

www.fao.org/). After model construction, the projections of the

potential suitable habitats of X. spinosum under future climate

scenarios (2040–2060, 2060–2080, and 2080–2100) used future-

period climate data while maintaining current soil conditions. All

environmental layers were standardized to 2.5 arc-minute

resolution. Because CMIP6 (Coupled Model Intercomparison
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Project Phase 6) integrates Shared Socioeconomic Pathways

(SSPs) with socioeconomic factors, considerably enhancing the

scientific robustness of future simulations (Popp et al., 2017;

Khadka et al., 2022), we adopted future bioclimatic data from the

EC-Earth3 climate model under CMIP6, which is well-regarded for

simulations over European regions. Three representative SSP

scenarios were selected to reflect progressively elevated carbon

emissions: SSP126 (Sustainable Development Pathway), SSP370

(Intermediate Development Pathway), and SSP585 (Rapid

Development Pathway).
2.3 Environmental variable screening

High correlations among environmental variables can result in

overfitting in MaxEnt model results, which compromises the

accuracy of variable contribution rates and predicted species

distribution ranges (Evans et al., 2010). We implemented the

following screening protocol: Preliminary Contribution Screening:

All environmental variables were imported into MaxEnt 3.4.4. After

10 replicated runs (cross-validation), the variables were ranked

based on their average contribution rates. Variables with a zero-

contribution rate were excluded. Multicollinearity Check: Pearson

correlation coefficients among retained variables were calculated

using the raster package in R, as shown in Figure 1. Variables were

retained only if absolute correlation coefficients were below 0.8 (|r| <

0.8). For variable pairs with |r| ≥ 0.8, only the variable exhibiting a

higher contribution rate was retained (Sharma et al., 2018).

Through this process, 14 environmental variables were ultimately

selected for modeling.
2.4 MaxEnt model parameter optimization

Using default parameters for habitat prediction across species

increases model sensitivity to sampling bias and risks overfitting,

thus compromising prediction reliability. Regularization Multiplier

(RM) and Feature Class (FC) influence model complexity and

predictive accuracy. RM determines model complexity, while FC

governs potential shapes of marginal response curves (Phillips et al.,

2017). To enhance prediction precision, we used the ENMeval

package in R to optimize RM and FC parameters. Model

complexity was evaluated using corrected Akaike Information

Criterion (AICc) values under different parameter combinations,

with those yielding the lowest complexity selected for modeling

(Muscarella et al., 2014). Default settings included RM = 1. Standard

FC selection proceeded as follows: Linear (L) features always

included, Quadratic (Q) features enabled at ≥ 10 occurrence

points, Hinge (H) features enabled at ≥ 15 points, Threshold (T)

and Product (P) features enabled at ≥ 80 points (West et al., 2016).

We tested RM values from 0.5 to 4 (increments of 0.5) and six FC

combinations: H, L, LQ, LQH, LQHP, and LQHPT. Based on R

analysis, optimized parameters were set to RM = 0.5 and FC=LQ for

final model execution as shown in Figure 2.
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2.5 Model training and accuracy evaluation

Following data preparation and model optimization, 13,378

screened distribution points and 14 environmental variables were

entered into the optimized MaxEnt model (Version 3.4.4). The

dataset was partitioned with 75% of samples for training and 25%

for testing (Zhang et al., 2018). Climate variable importance was

quantified via jackknife tests and contribution rates (Wan et al.,

2019). Model Parameters: maximum background points: 10,000

maximum iterations: 5,000 10-replicate runs to reduce stochastic

error (Santana et al., 2019), model performance was evaluated using

the AUC of the receiver operating characteristic (ROC) (Liu et al.,

2021). AUC values range from 0 to 1, with predictive accuracy

classified as Unacceptable (0.50—0.70), Moderate (0.70—0.80),

Good (0.80—0.90), Excellent (0.90—1.00) (Araújo et al., 2005),

identical parameter configurations were applied for future

scenario projections.
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2.6 Delineation of potential suitable
habitats and distribution dynamics

Habitat suitability probabilities derived from the optimized

MaxEnt model were classified into suitability levels using the

Natural Breaks method (minimizing within-group variance, while

maximizing between-group variance) (Ke et al., 2023) in ArcGIS 10.8.

Based on the observed distribution of X. spinosum, four suitability

classes were defined: Unsuitable (0.00–0.10), Low suitability (0.10–

0.33), Moderate suitability (0.33–0.64), and High suitability (0.64–

1.00). Identical thresholds were applied to future scenarios. Areas

with an occurrence probability ≥ 0.33 demonstrated a higher

likelihood of species survival (Zhang et al., 2025). Consequently,

moderate and high suitability zones were combined as core suitable

habitats. The Reclassify tool in ArcGIS quantified areal extents of

each suitability class per scenario. Regions with an occurrence

probability >0.10 were mapped as potential distribution areas.
TABLE 1 Description of environmental variables.

Type Field Description and unit Type Field Description and unit

Climatic
factors

Bio1 Annual mean temperature °C Bio16
Precipitation of the wettest quarter

(mm)

Bio2* Mean diurnal range °C Bio17*
Precipitation of the driest quarter

(mm)

Bio3* Isothermality Bio18*
Precipitation of the warmest quarter

(mm)

Bio4 Temperature seasonality Bio19*
Precipitation of the coldest quarter

(mm)

Bio5
Max temperature of the warmest

month °C
Soil

factors
t-Ece Soil conductivity dS/m

Bio6*
Min temperature of the coldest month

°C
t-Clay Clay content %wt

Bio7* Temperature annual range °C t-Cec-Clay
Soil cation exchange content cmol/

kg

Bio8*
Mean temperature of the wettest

quarter °C
t-CaSO4* Soil sulfate content %weight

Bio9*
Mean temperature of the driest quarter

°C
t-CaCO3* Soil carbonate content %weight

Bio10*
Mean temperature of the warmest

quarter °C
t-Gravel Soil gravel content %vol.

Bio11
Mean temperature of the coldest

quarter °C
t-Sand Sand content %wt.

Bio12* Annual precipitation (mm) t-Silt Silt content %wt.

Bio13
Precipitation of the wettest month

(mm)
t-Teb Soil exchangeable salts cmol/kg

Bio14
Precipitation of the driest month

(mm)
t-Esp Exchangeable sodium salt %

Bio15* Precipitation seasonality t-Texture Topsoil texture
Environmental factors marked with * are variables used in MaxEnt model predictions. Attributes prefixed with “t-” represent upper soil attributes (0–30 cm).
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Species probability maps (0–1 scale) were converted to binary

presence/absence maps (0/1) using the ArcGIS con function, with

thresholds determined by sensitivity–specificity optimization (Li

et al., 2020). Within ArcGIS, the SDMtoolbox 2.5 extension was

used to classify habitat dynamics into expansion, stability, and

contraction, calculate centroid coordinates for future periods, and

trace centroid migration trajectories relative to current conditions.

3 Results and analysis

3.1 Model predictions and performance
evaluation

Model accuracy depends on sample coverage, with AUC

representing the optimal evaluation metric (Hosseini et al., 2024).

The optimized MaxEnt model simulated the distribution of X.

spinosum showed that the AUC value of the model training set

reached 0.979, as shown in Figure 3. These results indicate excellent

model fit and a robust predictive capacity for the potential habitats

of X. spinosum, which confirms the model’s reliability for projecting

future distributions.
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3.2 Dominant factors in habitat suitability

This study analyzed the contributions of environmental

variables to model construction are shown in Table 2. Based on

the percent contribution, the top three key variables influencing X.

spinosum distribution were Minimum Temperature of Coldest

Month (Bio6, 67.1%), Precipitation of Coldest Quarter (Bio19,

21.8%), and Mean Temperature of Warmest Quarter (Bio10,

4.1%). These three variables collectively accounted for 93.0% of

the total contribution, with Bio6 alone contributing 67.1%,

highlighting the dominant role of bioclimatic variables. Jackknife

tests further validated variable importance, as shown in Figure 4.

The results indicated that for light green bars (single variable),

higher training gain indicates greater information content and

stronger influence on species distribution. For dark green bars

(excluding single variables), lower training gain signifies greater

uniqueness and importance of the removed variable. Based on the

jackknife evaluation of regularized training gain and test gain, the

three most critical variables affecting X. spinosum distribution were

Minimum Temperature of Coldest Month (Bio6), Mean

Temperature of Warmest Quarter (Bio10), and Temperature
FIGURE 1

Heatmap of environmental variable correlations.
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FIGURE 3

AUC values under the ROC curve.
FIGURE 2

ENMeval packet optimization results.
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Annual Range (Bio7). Synthesis of percent contribution and

jackknife results demonstrated that bioclimatic variables (Bio6,

Bio10, Bio19, Bio7) overwhelmingly dominated soil factors in

MaxEnt predictions of X. spinosum distribution. Bio6 (Minimum

Temperature of Coldest Month), Bio10 (Mean Temperature of

Warmest Quarter), Bio19 (Precipitation of Coldest Quarter), and

Bio7 (Temperature Annual Range) were identified as the key

environmental variables for predictive modeling, with Bio6 being

the dominant factor because of its significantly higher

contribution rate.

By analyzing the response curves of environmental factors, the

relationship between the survival probability of the target species

and specific environmental factors can be determined. A higher

survival probability (P) is more conducive to the survival of the

species (Zhang et al., 2025). This study defines areas with a survival

probability of >0.64 as highly suitable habitats. Therefore, this

threshold indicates that the corresponding combination of

environmental factors is more favorable for the growth of the

species. Analysis of the response curves for the four key

environmental factors (Bio6, Bio7, Bio10, Bio19), as shown in

Figure 5 showed the Minimum Temperature of the Coldest

Month (Bio6): The suitable range for X. spinosum survival (P >

0.64) was −7.3°C to 8.7°C. Survival probability drops below 0.64

when temperatures fall below −7.3°C or rise above 8.7°C. Its optimal

growth temperature is approximately 4.2°C (where P peaks).

Temperature Annual Range (Bio7): The suitable survival
Frontiers in Plant Science 07
threshold was −22.4°C to 33.2°C. The optimal value was

approximately 27.5°C (where P peaks). Mean Temperature

of Warmest Quarter (Bio10): The suitable range was narrower

(18.3°C to 24.6°C). The optimal temperature was approximately

24.8°C (where P peaks). Precipitation of the Coldest Quarter

(Bio19): The suitable range was wider (83.45 mm to 421.83 mm).

The optimal precipitation was approximately 207.8 mm

(where P peaks).
3.3 Suitable habitat distribution of
Xanthium spinosum under the current
climatic scenario

Under current climatic conditions, the suitable habitat of the

species exhibits a significant spatial differentiation pattern, as shown

in Figure 6. The potential distribution area of X. spinosum (occurrence

probability >0.1) is widely distributed across central to western North

America (120°W–60°W), northern to southeastern South America (60°

W–0°), central–western Europe (0°–60°E), central to West Africa (0°–

40°E), inland to coastal Asia (60°E–120°E), and southeastern Australia

(120°E–180°E), to form a continuous distribution belt spanning five

continents, with a total area of 5,620.18 × 104 km². The highly suitable

habitat (area 1,380.65×104 km²) exhibits a fragmented, patchy, and

banded distribution pattern, with core concentrations near 30°N in

120°W–60°W (western North America) and 0°–60°E (central–western
FIGURE 4

Jackknife test of the MaxEnt model showing the (a) regularized training and (b) test gains.
TABLE 2 Percent contribution of key environmental variables.

Code
Current/

%

2040—2060/% 2060—2080/% 2080—2100/%

SSP126 SSP370 SSP585 SSP126 SSP370 SSP585 SSP126 SSP370 SSP585

Bio6 67.1 68.9 61.2 65.1 69.8 57.4 58.9 66.2 61.2 65.8

Bio19 21.8 20.1 20.9 19.5 17.0 20.9 23.7 17.3 22.9 16.5

Bio10 4.1 4.2 5.1 4.8 5.3 3.3 5.3 4.2 6.1 4.2

Bio7 1.3 0.9 1.2 1.0 2.2 1.2 2.3 2.5 2.2 1.7
fro
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Europe), and near 40°S in 120°E–180°E (southeastern coastal

Australia). The moderately suitable habitat (1,569.77×104 km²),

serving as a transition zone surrounding the highly suitable areas, is

mainly distributed in 60°W–0° (southeastern South America, West
Frontiers in Plant Science 08
Africa) and 60°E–120°E (coastal East Asia and eastern India), showing

locally contiguous features. The lowly suitable habitat (2,669.76×104

km²) extensively and continuously covers central North America (60°

W–120°W), northern South America (60°W–0°), central Africa (0°–
FIGURE 6

Global distribution of Xanthium spinosum under the current climatic scenario.
FIGURE 5

Response curves of key environmental factors.
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40°E), and inland Asia (60°E–120°E). The unsuitable habitat

(8,473.62×104 km²) is widely distributed in high-latitude polar

regions (>40°N/S), arid inland areas (e.g., western North America,

Central Asia), and core tropical rainforest zones (0°–10° latitude).
3.4 Changes in global distribution under
three future climate scenarios

Under the three future climate scenarios (SSP126, SSP370,

SSP585), the spatial pattern of suitable habitats for X. spinosum

undergoes significant changes, with a pronounced displacement of

the distribution centroid, as shown in Figure 7. Overall, the total

suitable habitat area expands compared with the current climate

scenario, whereas the core suitable habitat (highly suitable area)

generally contracts.

Low-emission pathway (SSP126): The suitable habitat area

continuously expands over time, with the net increase rising from

170.18 × 104 km² in 2040–2060 to 338.15 × 104 km² in 2080–2100,

as shown in Figure 8. The core suitable habitat area exhibits the

most significant reduction initially (−495.32 × 104 km²). The stable

area decreases slightly in the mid-term (−4.77%), recovering to

5105.61 × 104 km² by the end-term, as shown in Figure 9, Table 3.

Medium-emission pathway (SSP370): The suitable habitat area

change shows strong fluctuations. The net change shifts from an

early increase (+89.74 × 104 km²) to a peak expansion during the

mid-term (+448.26 × 104 km²), then returns to an increase by the

end-term (+82.56 × 104 km²). The core suitable habitat area exhibits

the most pronounced reduction initially (−535.21 × 104 km²). The

stable area begins to expand from the mid-term (+151.17 × 104

km²), but decreases slightly by the end-term (−0.70%), with the
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2080–2100 stable area being 4905.94 × 104 km². Under the high-

emission pathway (SSP585), suitable habitat area has an early peak

in net increase (+392.54 × 104 km²), exhibits a sharp slowdown in

expansion mid-term (+46.85 × 104 km²), and returns to an increase

by the end-term (+265.38 × 104 km²). The stable area continuously

decreases; the largest reduction occurs mid-term (−4.00%) and the

area shrinks to 4995.85 × 104 km² by the end-term.
4 Discussion

4.1 Dominant factors influencing the
distribution of Xanthium spinosum

In this study, we used the MaxEnt model optimized through the

R package ENMeval to simulate the potential distribution of X.

spinosum under current and future periods (2040–2060, 2060–2080,

and 2080–2100) across three climate scenarios (SSP126, SSP370,

and SSP585). By comprehensively analyzing the contribution rates

and training gain values of dominant climatic factors and plotting

their response curves, we quantified the environmental

characteristics of the natural distribution of X. spinosum and

analyzed its suitable growth conditions. Results indicated that

under current climatic conditions, temperature and precipitation

are the predominant environmental variables that determine the

distribution of X. spinosum, with temperature being particularly

important as the dominant factor controlling its invasive spread

(Gallardo et al., 2015). Among the environmental factors included

in the model, Bio6 (Min Temperature of Coldest Month), Bio7

(Temperature Annual Range), Bio10 (Mean Temperature of

Warmest Quarter), and Bio19 (Precipitation of Coldest Quarter)
FIGURE 7

Global distribution of Xanthium spinosum under current and future climatic scenarios.
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FIGURE 8

Area by suitability level for Xanthium spinosum under current and future climate scenarios.
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considerably influenced species distribution. Three of these four

factors are temperature-related (Bio6, Bio7, Bio10), and Bio6

exhibited the highest contribution rate, indicating that

temperature factors contribute more substantially to the

geographical distribution of X. spinosum than precipitation. This
Frontiers in Plant Science 10
is consistent with the ecological traits of the species including strong

adaptability to desert environments and low water requirements

(Andreani et al., 2017). Simulation predictions reveal that under

future climate scenarios, Bio6 remains the dominant climatic factor

that limits the potential suitable habitat for X. spinosum. Optimal
FIGURE 9

Changes in global spatial distribution patterns of Xanthium spinosum under current and future climate scenarios.
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seed germination for X. spinosum occurs near 25 °C (Auld, 1993),

whereas germination of the congeneric Xanthium strumarium is

inhibited above 35 °C and shows a sharp decline in germination rate

(Saeed et al., 2020). Our response curve analysis is consistent with

these findings: The optimal Mean Temperature of Warmest

Quarter (Bio10) for X. spinosum growth is approximately 24.8 °C,

and its survival threshold for Temperature Annual Range (Bio7)

spans −22.4 °C to 33.2 °C, beyond which survival probability

decreases. X. spinosum exhibits strong adaptability to

Mediterranean climates (Andreani et al., 2017). Our results

indicate that, under climate change, this species is likely to

further expand into Mediterranean regions. As precipitation is

concentrated during the cold season in most Mediterranean

climates (Moore et al., 2020), and precipitation significantly

influences seedling emergence, survival, and establishment of

annual herbs (Wang and Gou, 2019), this study confirms that

precipitation in the coldest quarter (Bio19) is a key environmental

factor determining its distribution. In addition, X. spinosum exhibits

broad tolerance for Precipitation of Coldest Quarter (Bio19) (69–

458 mm), reflecting its strong adaptability to arid and humid

environments, which is consistent with its inherent stress-tolerant

traits (Tao et al., 2022).
4.2 Distribution pattern under current
climatic conditions

This study reveals the dynamic response of suitable habitats for

X. spinosum to climate change on a global scale. Currently, the core

suitable habitat is concentrated in three regions: the western North

America–central–western Europe corridor (120°W–60°W and 0°–

60°E), the southeastern South America–West Africa transition zone

(60°W–0° and 0°–20°E), and the southeastern Australia–East Asia

coastal chain (120°E–180°E extending to 60°E–120°E), totaling

2,950.42×104 km² (52.8% of the potential distribution area). This

finding aligns closely with documented occurrence records (Güez

et al., 2012; Lin et al., 2014), while simultaneously validating the

reliability of MaxEnt for modeling the habitat suitability of X.

spinosum. This broad adaptability enables establishment of the

population in barren soils (e.g., moderately suitable areas in

southeastern South America); however, the complete absence in

core tropical rainforest zones (0°–10° latitude; unsuitable habitat

covers 58.0% of these areas) indicates that high humidity and

shaded environments constitute dispersal barriers. Furthermore,

plant invasions are often closely associated with human activities.

The seeds of X. spinosum possess a barbed structure on their
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surface; this facilitates unintentional dispersal through human

activities and adheres to animal fur, enabling rapid expansion and

colonization across extensive areas (Auld et al., 1988; Hocking and

Liddle, 1986). In contrast, regions such as arid deserts, cold polar

zones, and pristine tropical rainforests exhibit limited human

activities owing to their extreme climates, complex topography,

and remote location (Goosse et al., 2018; Zhang et al., 2018;

Batterbury and Forsyth, 1999). Our findings also indicate that

these regions for example the Sahara Desert and large parts of

South American tropical rainforests, are classified as unsuitable

distribution areas; this may also be related to the relatively low

intensity of human activities in these regions.
4.3 Distribution patterns under future
climate scenarios

Climate change impacts ecosystem stability by altering

temperature and precipitation patterns, which potentially create

new invasion opportunities for alien species, such as X. spinosum.

Simulations using the optimized MaxEnt model indicate an

expansion in the total suitable habitat area of X. spinosum across

all future climate scenarios, which are consistent with predictions by

Liu et al (Liu et al., 2025). for its distribution in China. Although

total suitable area expands un0der all three scenarios, the core

suitable habitat area decreases across all scenarios, particularly

during early stages (e.g., reductions of 508.75×104 km² under

SSP126 and 548.76×104 km² under SSP370). This phenomenon

may relate to intensified climate change under global warming,

including increased extreme heat events (Tang et al., 2025) and

altered precipitation patterns (Rupp et al., 2022), which shifts

environmental conditions away from the optimal growth

requirements of X. spinosum, thereby contracting core habitats.

These results are consistent with concerns that climate change

exacerbates biodiversity loss and ecosystem vulnerability

(Anderson, 2013; Marzloff et al., 2018).

X. spinosum is known for its high adaptability and reproductive

capacity (Li and Ma, 2019). Its invasion into new regions poses

severe management challenges (Gligor et al., 2022). The results of

this study indicate that future contraction of suitable areas will be

primarily concentrated in regions with high aridity and projected

decreases in precipitation; for example, northern Kazakhstan and

large parts of Africa (Teleubay et al., 2023; Nooni et al., 2022). As

global warming exacerbates drought conditions, these areas may

exceed the physiological tolerance range of X. spinosum, leading to a

significant reduction in suitable habitats. In contrast, the expansion
TABLE 3 Changes in global suitable habitat area of Xanthium spinosum under current and future climate scenarios.

Change
Dynamics

2040—2060 × 104 km² 2060—2080 × 104 km² 2080—2100 × 104 km²

SSP126 SSP370 SSP585 SSP126 SSP370 SSP585 SSP126 SSP370 SSP585

Lose 402.15 445.28 310.65 480.14 325.42 505.73 327.59 523.18 419.37

Gain 572.33 558.46 655.39 485.68 776.12 591.46 722.44 571.82 687.93

Unchanged 5217.85 4968.57 5105.61 4940.67 5091.84 4905.94 5093.76 4889.66 4995.85
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of suitable areas will occur mainly in high-latitude northern regions,

such as western Russia, and areas where future precipitation is

expected to increase, such as northwestern Australia (Watterson

et al., 2016; Cullen and Grierson, 2007). Global climate warming,

particularly the rise in the minimum temperature of the coldest

month (bio6), is projected to facilitate the spread of X. spinosum

into higher latitude regions. Consequently, particular attention

should be given to the invasion risk of X. spinosum in northern

high-latitude zones and other areas where future climate projections

indicate that there will be both suitable temperatures and

increased precipitation.
4.4 Limitations and future prospects

This study examines the suitable habitat patterns of X. spinosum by

analyzing environmental factors and geographic distribution. Our

model mainly incorporates climatic and soil variables, as climate is

widely recognized as a key driver of species distribution (Pacifici et al.,

2017), and soils in high-latitude regions may further constrain plant

migration (Ni and Vellend, 2024). These variables are generally

considered fundamental in shaping species distributions (Ulrich

et al., 2014). However, there remains limited research on the

biological interactions of X. spinosum and the effects of human

activities under future climate scenarios. Despite this gap, the model

developed in this study, based on environmental similarity principles

(Elith et al., 2011), offers meaningful projections. Future studies should

integrate biotic interactions and anthropogenic factors as predictors to

better simulate potential invasion areas and provide more precise

support for global biosecurity governance.
5 Conclusion

In this study, we used an optimized MaxEnt model to predict the

global potential distribution pattern of X. spinosum under climate

change. The main conclusions are as follows: The Min Temperature of

Coldest Month (Bio6) is the core climatic factor determining the

current global distribution of X. spinosum (contribution rate of

67.1%), with a suitable range of −7.3°C to 8.7°C. Under three future

emission scenarios (SSP126, SSP370, and SSP585), Bio6 remains the

most critical limiting factor. Under current climate conditions,

the potential suitable habitat of X. spinosum is primarily distributed

in the central to western regions of North America (120°W–60°W), the

northern to southeastern regions of South America (60°W–0°), the

central to western regions of Europe (0°–60°E), the central to western

regions of Africa (0°–40°E), inland to coastal Asia (60°E–120°E), and

southeastern Australia (120°E–180°E). The total area of the potential

suitable habitat is approximately 5,620.18 × 104 km², with the core

suitable habitat covering 2,950.42 × 104 km². Under three future

climate scenarios, the potential suitable habitat area of X. spinosum

shows an expanding trend, whereas the core suitable habitat area shows

a shrinking trend. The significant reduction in future suitable areasmay

be related to the decreased precipitation in these regions.
Frontiers in Plant Science 12
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

YF: Writing – original draft, Writing – review & editing. XZ:

Supervision, Writing – review & editing. JLY: Supervision, Writing –

review & editing. JY: Formal analysis, Writing – review & editing. HZ:

Conceptualization, Investigation, Writing – review & editing. BY:

Investigation, Writing – review & editing. XL: Investigation,

Methodology, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This research work was

supported by grants from the Ningxia Helan Mountains Vegetation

Survey Project (2025), the Inner Mongolia Helan Mountains

National Nature Reserve Scientific Expedition Project (2023), and

the Ningxia Higher Education First-Class Discipline Construction

(Grass Science) Project (NXLXK2017A01).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1690546
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fan et al. 10.3389/fpls.2025.1690546
References
Adkins, S., and Shabbir, A. (2014). Biology, ecology and management of the invasive
parthenium weed (Parthenium hysterophorus L.). Pest Manag Sci. 70, 1023–1029.
doi: 10.1002/ps.3708

Aidoo, O. F., Amaro, G. C., Souza, P. G. C., Picanço, M. C., Awuah-Mensah, K. A.,
and Silva, R. S. (2025). Climate change impacts on worldwide ecological niche and
invasive potential of Sternochetus mangiferae. Pest Manag Sci. 81, 667–677.
doi: 10.1002/ps.8465

Anderson, R. P. (2013). A framework for using niche models to estimate impacts of
climate change on species distributions. Ann. N Y Acad. Sci. 1297, 8–28. doi: 10.1111/
nyas.12264

Andreani, S., Paolini, J., Costa, J., and Muselli, A. (2017). Chemical composition of
essential oils of Xanthium spinosum L., an invasive species of Corsica. Chem. Biodivers
14, 1600148. doi: 10.1002/cbdv.201600148
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