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Xanthium spinosum Linn (Asteraceae family), native to South America, is among the
most invasive plant species globally, with major ecological, agricultural, and
livestock-related impacts. However, little is known about how climate change may
alter its future distribution and range shifts. This study assessed the potential global
distribution and habitat suitability of X. spinosum by evaluating its dispersal risk under
climate change. We compiled 13,378 global occurrence records and applied the
MaxEnt model (optimized via the R package ENMeval) to simulate habitat suitability
under current conditions and three future climate scenarios (SSP126, SSP370, and
SSP585) for 2040-2060, 2060-2080, and 2080-2100. The model performed with
high accuracy (area under the curve > 0.979). The most influential factor was the
minimum temperature of the coldest month (Bio6; 67.1% contribution), with an
optimal range of —7.3 °C to 8.7 °C. Other key drivers included Bio10, Biol9, and Bio7.
Currently, core suitable areas include western North America to central/western
Europe, southeastern South America to West Africa, and Southeastern Australia to
East Asia, spanning 2,950.42 x 10* km? (52.8% of potential distribution). Under
SSP126, suitable habitats expand steadily (+338.15 x 10% km? by 2080-2100).
SSP370 projects large fluctuations, peaking at + 448.26 x 10* km? in 2060-2080.
SSP585 predicts rapid early expansion (+392.54 x 10% km? by 2040-2060), with the
rate of expansion decreasing in the mid and late stages. These findings support
invasion risk assessment, early warning development, and targeted management
strategies for X. spinosum in a changing climate.

alien invasive plants, Xanthium spinosum, climate change, potential distribution, species
distribution models
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1 Introduction

Invasive alien species are a critical component of global
environmental change that pose substantial threats to national
biosecurity, ecological security, and food security (Seebens et al.,
2017; Van Kleunen et al.,, 2015; Guo et al., 2025). These invaders
typically exhibit rapid growth, high resource use efficiency, strong
dispersal capacity, and enhanced resistance to pathogens (Maximo
et al,, 2020). Through interference mechanisms, such as
hybridization, alteration of natural habitats, and introduction of
pathogenic organisms, they achieve a competitive advantage over
native species, driving the latter toward decline or extinction,
thereby occupying their ecological niches to facilitate self-
expansion (Baldi et al, 2022). Under intensifying global climate
change, phenomena including warming climate, elevated
atmospheric CO, concentrations, increased nitrogen deposition,
and frequent extreme climatic events have profoundly affected
global ecosystem stability. Such changes drive species adaptation
shifts, further exacerbating the dispersal risks of invasive alien
species (Blackburn et al, 2011; Ren et al., 2022). Invasive plants
are a primary cause of biodiversity loss. Compared with native flora,
they exhibit significant competitive advantages in light acquisition,
soil moisture utilization, and nutrient exploitation (Adkins and
Shabbir, 2014; Karimmojeni et al, 2021). Once successfully
established, highly adaptable and dispersive alien species trigger
drastic declines in native biodiversity. Their effects extend beyond
the direct displacement of indigenous species to fundamentally alter
ecosystem structure and function, destroying habitats for multiple
species and thereby posing severe threats to biodiversity (Zheng and
Li, 2025).

Although native to subtropical South America, X. spinosum has
become naturalized as a wild species across Central Europe,
Southern Europe, the northwestern Pacific (Martin and
Carnahan, 1983), Asia, and North America (Love and Dansereau,
1959; Gligor et al,, 2022). It is a toxic invasive annual weed (Wang
et al, 2025) that is listed by the European Plant Protection
Organization (EPPO) as a highly invasive plant species (EPPO
Global Database, 2025). Its traits include extended flowering
periods, high fecundity, prolific seed production, and strong cold
tolerance (Yuan et al., 2018; Kelecevic et al., 2024). Its seeds have
hooked spines, which readily attach to livestock (e.g., cattle and
sheep) and cargo, facilitating dispersal. This not only reduces the
economic value of animal wool and hides but also drives large-scale
spread of X. spinosum through adaptability to Mediterranean
climates and affinity for nitrogen-rich soils (Andreani et al,
2017). X. spinosum has achieved global distribution (Weber,
2017), and the corresponding effects are particularly severe in
ecologically fragile regions with simplified ecosystem structures
(Wang et al, 2025). It suppresses native plants via allelopathy
and, upon successful establishment, damages various crops (Liu
et al, 2025). Consequently, it severely threatens biodiversity,
agricultural production, and livestock farming in invaded areas
while substantially increasing ecological restoration costs and
economic management burden. Therefore, effective control of
X. spinosum represents a major challenge.
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The capacity of species to respond to climate change partly
depends on their ability to disperse into suitable habitats, which are
subject to climate change effects (Travis et al., 2013). Current
research on invasive species indicate that climate change will
considerably alter habitat suitability for invasive species,
particularly considering the projected continuous increase in
global mean temperatures through 2100 (Aidoo et al,, 2025). The
potential distribution of X. spinosum may shift, which is a critical
question needing consideration. Consequently, predicting temporal
changes in the potential distributions of invasive species is essential
for effective management. Species distribution models (SDMs) can
simulate future distribution scenarios, thereby support invasion risk
reduction and optimizing conservation efforts (Guisan and
Zimmermann, 2000); however, limited research on habitat
suitability for X. spinosum hinders the formulation of early
monitoring and prevention strategies. Previous studies have
investigated X. spinosum primarily in terms of bio-ecological
traits (Liu et al., 2025), invasion mechanisms and dispersal
patterns (Xiao et al., 2023), isolation and identification of
bioactive compounds, and allelopathic effects of secondary
metabolites (Yuan et al., 2018). However, SDM-based predictions
of suitable habitats for X. spinosum during climate change are
scarce, with no existing global analysis. Therefore, projecting the
climate-driven global geographic distribution patterns of
X. spinosum is critically important.

SDMs serve as vital tools for studying how suitable habitats of
species respond to climatic and environmental changes (Wiens
et al., 2009; Hosseini et al., 2024). These models use geographic
distribution data obtained from field surveys, herbarium records,
and literature sources to infer the ecological niches of species. Based
on the density patterns of occurrence points, they quantify the
habitat preferences of species through probability estimates, thereby
predicting the response of potentially suitable niches to climate
change (Bellard et al, 2012). Commonly used SDM methods
include bioclimatic envelope models (BIOCLIM) (Booth et al.,
2014), maximum entropy (MaxEnt) models (Phillips et al., 2006),
genetic algorithm for rule-set production models (Stockwell, 1999),
generalized additive models (GAMs) (Hastie and Tibshirani, 1987),
and generalized linear models (GLMs) (Nelder and Wedderburn,
1972; Beaumont et al,, 2008). Among these models, the MaxEnt
model demonstrates superior tolerance to sample bias and higher
predictive accuracy compared with other models, yielding relatively
optimal performance (Elith et al, 2006; Merow et al, 2014).
Consequently, it has been widely used for predicting species
distributions (Merow et al., 2013).

In this study, we elucidated the distribution patterns and
dynamic changes of potentially suitable habitats for X. spinosum,
providing scientific references for global invasion risk assessment,
early warning systems, and management strategies. Under global
climate change, we integrated global occurrence records of
X. spinosum with multidimensional environmental factors. Using
an optimized MaxEnt model (implemented via the R package
ENMeval) combined with ArcGIS software, we simulated its
potential suitable habitats under current conditions and three
future periods (2040-2060, 2060-2080, and 2080-2100) across
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three Shared Socioeconomic Pathways (SSP126, SSP370, and
SSP585). Through regional-scale suitability classification and an
analysis of key environmental drivers, the results identify current
high-risk invasion hotspots, predict future habitat expansion trends,
and inform targeted control measures, thereby offering critical
scientific guidance for global management.

2 Materials and methods
2.1 Collection of species distribution data

Global distribution records of X. spinosum were compiled from
multiple sources: the iNaturalist (iNat, https://www.inaturalist.org/),
the Global Biodiversity Information Facility (GBIF, https://
www.gbif.org/), relevant literature. For specimen records lacking
latitude and longitude coordinates, precise geographic coordinates
were obtained using the Baidu Map Coordinate Picker System
(http://api.map.baidu.com/lbsapi/getpoint/index.html). A
preliminary total of 25,245 distribution records were collected
(iNat: 4528; GBIF: 20,685; literature: 32). To ensure high-quality
data, a rigorous screening of the raw records was performed.
Records with errors, those falling outside of the species’ actual
distribution range, or those lacking specific geographic information
were excluded. Because data from different sources (databases,
literature) may exhibit spatial clustering (i.e., multiple records at
adjacent locations), which can easily cause spatial autocorrelation in
SDMs, leading to model overfitting and reduced predictive accuracy
(Teng et al., 2018), we applied spatial thinning to the data using the
ENMTools package in R (Warren et al., 2021). In particular, only
one unique distribution point was retained within a 20-km radius.
This mitigated spatial autocorrelation and considerably improved
the accuracy of the model predictions for the potential suitable
geographic distribution of X. spinosum. Ultimately, 9,134 valid
distribution points with latitude and longitude data were
obtained. These data were organized, imported into Excel, and
saved in CSV format for subsequent model construction.

2.2 Collection of environmental variables
and setting of future climate scenarios

This study incorporated two categories of environmental
variables: climate and soil are shown in Table 1. Nineteen
bioclimatic variables (Biol-Biol9) were sourced from the
WorldClim 2.1 database (https://worldclim.org/) at a spatial
resolution of 2.5 arc-minutes. Ten soil factors were obtained from
the Harmonized World Soil Database (HWSD) v2.0 (https://
www.fao.org/). After model construction, the projections of the
potential suitable habitats of X. spinosum under future climate
scenarios (2040-2060, 2060-2080, and 2080-2100) used future-
period climate data while maintaining current soil conditions. All
environmental layers were standardized to 2.5 arc-minute
resolution. Because CMIP6 (Coupled Model Intercomparison
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Project Phase 6) integrates Shared Socioeconomic Pathways
(SSPs) with socioeconomic factors, considerably enhancing the
scientific robustness of future simulations (Popp et al., 2017;
Khadka et al., 2022), we adopted future bioclimatic data from the
EC-Earth3 climate model under CMIP6, which is well-regarded for
simulations over European regions. Three representative SSP
scenarios were selected to reflect progressively elevated carbon
emissions: SSP126 (Sustainable Development Pathway), SSP370
(Intermediate Development Pathway), and SSP585 (Rapid
Development Pathway).

2.3 Environmental variable screening

High correlations among environmental variables can result in
overfitting in MaxEnt model results, which compromises the
accuracy of variable contribution rates and predicted species
distribution ranges (Evans et al, 2010). We implemented the
following screening protocol: Preliminary Contribution Screening:
All environmental variables were imported into MaxEnt 3.4.4. After
10 replicated runs (cross-validation), the variables were ranked
based on their average contribution rates. Variables with a zero-
contribution rate were excluded. Multicollinearity Check: Pearson
correlation coefficients among retained variables were calculated
using the raster package in R, as shown in Figure 1. Variables were
retained only if absolute correlation coefficients were below 0.8 (|r| <
0.8). For variable pairs with |r| > 0.8, only the variable exhibiting a
higher contribution rate was retained (Sharma et al, 2018).
Through this process, 14 environmental variables were ultimately
selected for modeling.

2.4 MaxEnt model parameter optimization

Using default parameters for habitat prediction across species
increases model sensitivity to sampling bias and risks overfitting,
thus compromising prediction reliability. Regularization Multiplier
(RM) and Feature Class (FC) influence model complexity and
predictive accuracy. RM determines model complexity, while FC
governs potential shapes of marginal response curves (Phillips et al.,
2017). To enhance prediction precision, we used the ENMeval
package in R to optimize RM and FC parameters. Model
complexity was evaluated using corrected Akaike Information
Criterion (AICc) values under different parameter combinations,
with those yielding the lowest complexity selected for modeling
(Muscarella et al., 2014). Default settings included RM = 1. Standard
FC selection proceeded as follows: Linear (L) features always
included, Quadratic (Q) features enabled at > 10 occurrence
points, Hinge (H) features enabled at > 15 points, Threshold (T)
and Product (P) features enabled at > 80 points (West et al., 2016).
We tested RM values from 0.5 to 4 (increments of 0.5) and six FC
combinations: H, L, LQ, LQH, LQHP, and LQHPT. Based on R
analysis, optimized parameters were set to RM = 0.5 and FC=LQ for
final model execution as shown in Figure 2.
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TABLE 1 Description of environmental variables.

10.3389/fpls.2025.1690546

Description and unit Type Description and unit
Precipitati f th ttest 't
Biol Annual mean temperature °C Biol6 recipitation of the wettest quarter
Climatic (mm)
factors s .
p tat f the driest t
Bio2* Mean diurnal range °C Biol7* recipitation ot the riest quarter
(mm)
Bio3* Isothermality Biolg* Precipitation of the warmest quarter
(mm)
Precipitation of the coldest i€
Bio4 Temperature seasonality Bio19* recipitation of fhe coldest quarter
(mm)
Max temperature of the warmest Soil
Bio5 X temperatu i ! t-Ece Soil conductivity dS/m
month °C factors
Min t t f the coldest th
Bio6* in temperature (: C ¢ cordest mon t-Clay Clay content %wt
Soil cati hi tent 1/
Bio7* Temperature annual range °C t-Cec-Clay off cation exc al?gge content cmo
M t t f th ttest
Bio8* can temperature :’ © wettes t-CaSO4* Soil sulfate content %weight
quarter °C
M t t f the driest T
Bio9* ean tempera ureo(é € qriest quarter t-CaCO3* Soil carbonate content %weight
Mean temperature of the warmest
Biol0* P o ™ t-Gravel Soil gravel content %vol.
quarter °C
Mean t t f the coldest
Bioll can femperature :) ¢ coldes t-Sand Sand content %wt.
quarter °C
Biol2* Annual precipitation (mm) t-Silt Silt content %%wt.
Precipitation of the wettest th
Biol3 recipitation ot the wettest mon t-Teb Soil exchangeable salts cmol/kg
(mm)
X Precipitation of the driest month i
Biol4 t-Esp Exchangeable sodium salt %
(mm)
Biol5* Precipitation seasonality t-Texture Topsoil texture

Environmental factors marked with * are variables used in MaxEnt model predictions. Attributes prefixed with “t-” represent upper soil attributes (0-30 cm).

2.5 Model training and accuracy evaluation

Following data preparation and model optimization, 13,378
screened distribution points and 14 environmental variables were
entered into the optimized MaxEnt model (Version 3.4.4). The
dataset was partitioned with 75% of samples for training and 25%
for testing (Zhang et al.,, 2018). Climate variable importance was
quantified via jackknife tests and contribution rates (Wan et al,
2019). Model Parameters: maximum background points: 10,000
maximum iterations: 5,000 10-replicate runs to reduce stochastic
error (Santana et al,, 2019), model performance was evaluated using
the AUC of the receiver operating characteristic (ROC) (Liu et al,
2021). AUC values range from 0 to 1, with predictive accuracy
classified as Unacceptable (0.50—0.70), Moderate (0.70—0.80),
Good (0.80—0.90), Excellent (0.90—1.00) (Aratjo et al, 2005),
identical parameter configurations were applied for future
scenario projections.
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2.6 Delineation of potential suitable
habitats and distribution dynamics

Habitat suitability probabilities derived from the optimized
MaxEnt model were classified into suitability levels using the
Natural Breaks method (minimizing within-group variance, while
maximizing between-group variance) (Ke et al., 2023) in ArcGIS 10.8.
Based on the observed distribution of X. spinosum, four suitability
classes were defined: Unsuitable (0.00-0.10), Low suitability (0.10-
0.33), Moderate suitability (0.33-0.64), and High suitability (0.64-
1.00). Identical thresholds were applied to future scenarios. Areas
with an occurrence probability > 0.33 demonstrated a higher
likelihood of species survival (Zhang et al, 2025). Consequently,
moderate and high suitability zones were combined as core suitable
habitats. The Reclassify tool in ArcGIS quantified areal extents of
each suitability class per scenario. Regions with an occurrence
probability >0.10 were mapped as potential distribution areas.
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FIGURE 1
Heatmap of environmental variable correlations.

Species probability maps (0-1 scale) were converted to binary
presence/absence maps (0/1) using the ArcGIS con function, with
thresholds determined by sensitivity-specificity optimization (Li
et al, 2020). Within ArcGIS, the SDMtoolbox 2.5 extension was
used to classify habitat dynamics into expansion, stability, and
contraction, calculate centroid coordinates for future periods, and
trace centroid migration trajectories relative to current conditions.

3 Results and analysis

3.1 Model predictions and performance
evaluation

Model accuracy depends on sample coverage, with AUC
representing the optimal evaluation metric (Hosseini et al.,, 2024).
The optimized MaxEnt model simulated the distribution of X.
spinosum showed that the AUC value of the model training set
reached 0.979, as shown in Figure 3. These results indicate excellent
model fit and a robust predictive capacity for the potential habitats
of X. spinosum, which confirms the model’s reliability for projecting
future distributions.
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3.2 Dominant factors in habitat suitability

This study analyzed the contributions of environmental
variables to model construction are shown in Table 2. Based on
the percent contribution, the top three key variables influencing X.
spinosum distribution were Minimum Temperature of Coldest
Month (Bio6, 67.1%), Precipitation of Coldest Quarter (Biol9,
21.8%), and Mean Temperature of Warmest Quarter (Biol0,
4.1%). These three variables collectively accounted for 93.0% of
the total contribution, with Bio6 alone contributing 67.1%,
highlighting the dominant role of bioclimatic variables. Jackknife
tests further validated variable importance, as shown in Figure 4.
The results indicated that for light green bars (single variable),
higher training gain indicates greater information content and
stronger influence on species distribution. For dark green bars
(excluding single variables), lower training gain signifies greater
uniqueness and importance of the removed variable. Based on the
jackknife evaluation of regularized training gain and test gain, the
three most critical variables affecting X. spinosum distribution were
Minimum Temperature of Coldest Month (Bio6), Mean
Temperature of Warmest Quarter (Biol0), and Temperature
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TABLE 2 Percent contribution of key environmental variables.

2040—2060/%

10.3389/fpls.2025.1690546

2060—2080/% 2080—2100/%

Current/
% SSP126 SSP370 SSP585 SSP126 SSP370 SSP585 SSP126 SSP370 SSP585
Bio6 67.1 68.9 61.2 65.1 69.8 57.4 589 662 612 65.8
Biol9 218 20.1 209 19.5 17.0 209 237 17.3 229 165
Biol0 41 42 5.1 48 5.3 3.3 5.3 42 6.1 42
Bio7 13 0.9 12 10 22 12 23 25 22 17

Annual Range (Bio7). Synthesis of percent contribution and
jackknife results demonstrated that bioclimatic variables (Bio6,
Biol0, Biol9, Bio7) overwhelmingly dominated soil factors in
MaxEnt predictions of X. spinosum distribution. Bio6 (Minimum
Temperature of Coldest Month), Biol0 (Mean Temperature of
Warmest Quarter), Biol9 (Precipitation of Coldest Quarter), and
Bio7 (Temperature Annual Range) were identified as the key
environmental variables for predictive modeling, with Bio6 being
the dominant factor because of its significantly higher
contribution rate.

By analyzing the response curves of environmental factors, the
relationship between the survival probability of the target species
and specific environmental factors can be determined. A higher
survival probability (P) is more conducive to the survival of the
species (Zhang et al., 2025). This study defines areas with a survival
probability of >0.64 as highly suitable habitats. Therefore, this
threshold indicates that the corresponding combination of
environmental factors is more favorable for the growth of the
species. Analysis of the response curves for the four key
environmental factors (Bio6, Bio7, Biol0, Biol9), as shown in
Figure 5 showed the Minimum Temperature of the Coldest
Month (Bio6): The suitable range for X. spinosum survival (P >
0.64) was —7.3°C to 8.7°C. Survival probability drops below 0.64
when temperatures fall below —7.3°C or rise above 8.7°C. Its optimal
growth temperature is approximately 4.2°C (where P peaks).
Temperature Annual Range (Bio7): The suitable survival

22 With all variables [__] With only variable Without variable
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Regularized training gain
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FIGURE 4

threshold was -22.4°C to 33.2°C. The optimal value was
approximately 27.5°C (where P peaks). Mean Temperature
of Warmest Quarter (Biol0): The suitable range was narrower
(18.3°C to 24.6°C). The optimal temperature was approximately
24.8°C (where P peaks). Precipitation of the Coldest Quarter
(Bio19): The suitable range was wider (83.45 mm to 421.83 mm).
The optimal precipitation was approximately 207.8 mm
(where P peaks).

3.3 Suitable habitat distribution of
Xanthium spinosum under the current
climatic scenario

Under current climatic conditions, the suitable habitat of the
species exhibits a significant spatial differentiation pattern, as shown
in Figure 6. The potential distribution area of X. spinosum (occurrence
probability >0.1) is widely distributed across central to western North
America (120°W-60°W), northern to southeastern South America (60°
W-0°), central-western Europe (0°-60°E), central to West Africa (0°-
40°E), inland to coastal Asia (60°E-120°E), and southeastern Australia
(120°E-180°E), to form a continuous distribution belt spanning five
continents, with a total area of 5,620.18 x 10* km?. The highly suitable
habitat (area 1,380.65x10* km?) exhibits a fragmented, patchy, and
banded distribution pattern, with core concentrations near 30°N in
120°W-60°W (western North America) and 0°-60°E (central-western

b 22 with all variables [ With only variable Without variable
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Jackknife test of the MaxEnt model showing the (a) regularized training and (b) test gains.
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Response curves of key environmental factors

Europe), and near 40°S in 120°E-180°E (southeastern coastal
Australia). The moderately suitable habitat (1,569.77><104 km?),
serving as a transition zone surrounding the highly suitable areas, is
mainly distributed in 60°W-0° (southeastern South America, West

Africa) and 60°E-120°E (coastal East Asia and eastern India), showing
locally contiguous features. The lowly suitable habitat (2,669.76x10*
km?®) extensively and continuously covers central North America (60°
W-120°W), northern South America (60°W-0°), central Africa (0°-
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FIGURE 6

Global distribution of Xanthium spinosum under the current climatic scenario
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40°E), and inland Asia (60°E-120°E). The unsuitable habitat
(8,473.62x10* km?) is widely distributed in high-latitude polar
regions (>40°N/S), arid inland areas (e.g, western North America,
Central Asia), and core tropical rainforest zones (0°-10° latitude).

3.4 Changes in global distribution under
three future climate scenarios

Under the three future climate scenarios (SSP126, SSP370,
SSP585), the spatial pattern of suitable habitats for X. spinosum
undergoes significant changes, with a pronounced displacement of
the distribution centroid, as shown in Figure 7. Overall, the total
suitable habitat area expands compared with the current climate
scenario, whereas the core suitable habitat (highly suitable area)
generally contracts.

Low-emission pathway (SSP126): The suitable habitat area
continuously expands over time, with the net increase rising from
170.18 x 10* km” in 2040-2060 to 338.15 x 10* km* in 2080-2100,
as shown in Figure 8. The core suitable habitat area exhibits the
most significant reduction initially (-495.32 x 10* km?). The stable
area decreases slightly in the mid-term (-4.77%), recovering to
5105.61 x 10* km? by the end-term, as shown in Figure 9, Table 3.
Medium-emission pathway (SSP370): The suitable habitat area
change shows strong fluctuations. The net change shifts from an
early increase (+89.74 x 10* km?) to a peak expansion during the
mid-term (+448.26 x 10* km?), then returns to an increase by the
end-term (+82.56 x 10* km?). The core suitable habitat area exhibits
the most pronounced reduction initially (-535.21 x 10* km?). The
stable area begins to expand from the mid-term (+151.17 x 10*
km?®), but decreases slightly by the end-term (-0.70%), with the

10.3389/fpls.2025.1690546

2080-2100 stable area being 4905.94 x 10* km?. Under the high-
emission pathway (SSP585), suitable habitat area has an early peak
in net increase (+392.54 x 10* km?), exhibits a sharp slowdown in
expansion mid-term (+46.85 x 10* km?), and returns to an increase
by the end-term (+265.38 x 10* km?). The stable area continuously
decreases; the largest reduction occurs mid-term (—4.00%) and the
area shrinks to 4995.85 x 10* km? by the end-term.

4 Discussion

4.1 Dominant factors influencing the
distribution of Xanthium spinosum

In this study, we used the MaxEnt model optimized through the
R package ENMeval to simulate the potential distribution of X.
spinosum under current and future periods (2040-2060, 2060-2080,
and 2080-2100) across three climate scenarios (SSP126, SSP370,
and SSP585). By comprehensively analyzing the contribution rates
and training gain values of dominant climatic factors and plotting
their response curves, we quantified the environmental
characteristics of the natural distribution of X. spinosum and
analyzed its suitable growth conditions. Results indicated that
under current climatic conditions, temperature and precipitation
are the predominant environmental variables that determine the
distribution of X. spinosum, with temperature being particularly
important as the dominant factor controlling its invasive spread
(Gallardo et al., 2015). Among the environmental factors included
in the model, Bio6 (Min Temperature of Coldest Month), Bio7
(Temperature Annual Range), Biol0 (Mean Temperature of
Warmest Quarter), and Biol9 (Precipitation of Coldest Quarter)
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Global distribution of Xanthium spinosum under current and future climatic scenarios.
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considerably influenced species distribution. Three of these four  is consistent with the ecological traits of the species including strong
factors are temperature-related (Bio6, Bio7, Biol0), and Bio6  adaptability to desert environments and low water requirements
exhibited the highest contribution rate, indicating that  (Andreani et al, 2017). Simulation predictions reveal that under
temperature factors contribute more substantially to the  future climate scenarios, Bio6 remains the dominant climatic factor
geographical distribution of X. spinosum than precipitation. This  that limits the potential suitable habitat for X. spinosum. Optimal
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Changes in global spatial distribution patterns of Xanthium spinosum under current and future climate scenarios.
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TABLE 3 Changes in global suitable habitat area of Xanthium spinosum under current and future climate scenarios.

Change 2040—2060 x 10* km? 2060—2080 x 10* km? 2080—2100 x 10* km?

Dynamics SSP126  SSP370  SSP585  SSP126  SSP370  SSP585  SSP126  SSP370  SSP585
Lose 402.15 44528 310.65 ‘ 480.14 325.42 505.73 327.59 ‘ 523.18 419.37
Gain 572.33 558.46 655.39 ‘ 485.68 776.12 591.46 722.44 ‘ 571.82 687.93

Unchanged 5217.85 4968.57 5105.61 ‘ 4940.67 5091.84 4905.94 5093.76 ‘ 4889.66 4995.85

seed germination for X. spinosum occurs near 25 °C (Auld, 1993),  surface; this facilitates unintentional dispersal through human
whereas germination of the congeneric Xanthium strumarium is  activities and adheres to animal fur, enabling rapid expansion and
inhibited above 35 °C and shows a sharp decline in germination rate ~ colonization across extensive areas (Auld et al., 1988; Hocking and
(Saeed et al.,, 2020). Our response curve analysis is consistent with ~ Liddle, 1986). In contrast, regions such as arid deserts, cold polar
these findings: The optimal Mean Temperature of Warmest  zones, and pristine tropical rainforests exhibit limited human
Quarter (Biol0) for X. spinosum growth is approximately 24.8 °C,  activities owing to their extreme climates, complex topography,
and its survival threshold for Temperature Annual Range (Bio7) and remote location (Goosse et al., 2018; Zhang et al, 2018;
spans —22.4 °C to 33.2 °C, beyond which survival probability = Batterbury and Forsyth, 1999). Our findings also indicate that
decreases. X. spinosum exhibits strong adaptability to  these regions for example the Sahara Desert and large parts of
Mediterranean climates (Andreani et al., 2017). Our results  South American tropical rainforests, are classified as unsuitable
indicate that, under climate change, this species is likely to  distribution areas; this may also be related to the relatively low
further expand into Mediterranean regions. As precipitation is  intensity of human activities in these regions.
concentrated during the cold season in most Mediterranean
climates (Moore et al, 2020), and precipitation significantly
influences seedling emergence, survival, and establishment of 4.3 Distribution patterns under future
annual herbs (Wang and Gou, 2019), this study confirms that climate scenarios
precipitation in the coldest quarter (Biol9) is a key environmental
factor determining its distribution. In addition, X. spinosum exhibits Climate change impacts ecosystem stability by altering
broad tolerance for Precipitation of Coldest Quarter (Biol9) (69—  temperature and precipitation patterns, which potentially create
458 mm), reflecting its strong adaptability to arid and humid  new invasion opportunities for alien species, such as X. spinosum.
environments, which is consistent with its inherent stress-tolerant ~ Simulations using the optimized MaxEnt model indicate an
traits (Tao et al., 2022). expansion in the total suitable habitat area of X. spinosum across
all future climate scenarios, which are consistent with predictions by
Liu et al (Liu et al., 2025). for its distribution in China. Although
4 2 Distribution pattern under current total suitable area expands unOder all three scenarios, the core
climatic conditions suitable habitat area decreases across all scenarios, particularly
during early stages (e.g., reductions of 508.75x10* km? under
This study reveals the dynamic response of suitable habitats for ~ SSP126 and 548.76x10* km? under SSP370). This phenomenon
X. spinosum to climate change on a global scale. Currently, the core  may relate to intensified climate change under global warming,
suitable habitat is concentrated in three regions: the western North  including increased extreme heat events (Tang et al., 2025) and
America-central-western Europe corridor (120°W-60°W and 0°-  altered precipitation patterns (Rupp et al., 2022), which shifts
60°E), the southeastern South America-West Africa transition zone  environmental conditions away from the optimal growth
(60°W-0° and 0°-20°E), and the southeastern Australia—East Asia ~ requirements of X. spinosum, thereby contracting core habitats.
coastal chain (120°E-180°E extending to 60°E-120°E), totaling  These results are consistent with concerns that climate change
2,950.42x10* km? (52.8% of the potential distribution area). This  exacerbates biodiversity loss and ecosystem vulnerability
finding aligns closely with documented occurrence records (Giiez ~ (Anderson, 2013; Marzloff et al., 2018).
et al, 2012; Lin et al., 2014), while simultaneously validating the X. spinosum is known for its high adaptability and reproductive
reliability of MaxEnt for modeling the habitat suitability of X.  capacity (Li and Ma, 2019). Its invasion into new regions poses
spinosum. This broad adaptability enables establishment of the  severe management challenges (Gligor et al., 2022). The results of
population in barren soils (e.g., moderately suitable areas in  this study indicate that future contraction of suitable areas will be
southeastern South America); however, the complete absence in  primarily concentrated in regions with high aridity and projected
core tropical rainforest zones (0°-10° latitude; unsuitable habitat  decreases in precipitation; for example, northern Kazakhstan and
covers 58.0% of these areas) indicates that high humidity and  large parts of Africa (Teleubay et al.,, 2023; Nooni et al., 2022). As
shaded environments constitute dispersal barriers. Furthermore,  global warming exacerbates drought conditions, these areas may
plant invasions are often closely associated with human activities.  exceed the physiological tolerance range of X. spinosum, leading to a
The seeds of X. spinosum possess a barbed structure on their  significant reduction in suitable habitats. In contrast, the expansion
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of suitable areas will occur mainly in high-latitude northern regions,
such as western Russia, and areas where future precipitation is
expected to increase, such as northwestern Australia (Watterson
et al,, 2016; Cullen and Grierson, 2007). Global climate warming,
particularly the rise in the minimum temperature of the coldest
month (bio6), is projected to facilitate the spread of X. spinosum
into higher latitude regions. Consequently, particular attention
should be given to the invasion risk of X. spinosum in northern
high-latitude zones and other areas where future climate projections
indicate that there will be both suitable temperatures and
increased precipitation.

4.4 Limitations and future prospects

This study examines the suitable habitat patterns of X. spinosum by
analyzing environmental factors and geographic distribution. Our
model mainly incorporates climatic and soil variables, as climate is
widely recognized as a key driver of species distribution (Pacifici et al.,
2017), and soils in high-latitude regions may further constrain plant
migration (Ni and Vellend, 2024). These variables are generally
considered fundamental in shaping species distributions (Ulrich
et al, 2014). However, there remains limited research on the
biological interactions of X. spinosum and the effects of human
activities under future climate scenarios. Despite this gap, the model
developed in this study, based on environmental similarity principles
(Elith et al,, 2011), offers meaningful projections. Future studies should
integrate biotic interactions and anthropogenic factors as predictors to
better simulate potential invasion areas and provide more precise
support for global biosecurity governance.

5 Conclusion

In this study, we used an optimized MaxEnt model to predict the
global potential distribution pattern of X. spinosum under climate
change. The main conclusions are as follows: The Min Temperature of
Coldest Month (Bio6) is the core climatic factor determining the
current global distribution of X. spinosum (contribution rate of
67.1%), with a suitable range of —7.3°C to 8.7°C. Under three future
emission scenarios (SSP126, SSP370, and SSP585), Bio6 remains the
most critical limiting factor. Under current climate conditions,
the potential suitable habitat of X. spinosum is primarily distributed
in the central to western regions of North America (120°W-60°W), the
northern to southeastern regions of South America (60°W-0°), the
central to western regions of Europe (0°-60°E), the central to western
regions of Africa (0°-40°E), inland to coastal Asia (60°E-120°E), and
southeastern Australia (120°E-180°E). The total area of the potential
suitable habitat is approximately 5,620.18 x 10* km? with the core
suitable habitat covering 2,950.42 x 10* km? Under three future
climate scenarios, the potential suitable habitat area of X. spinosum
shows an expanding trend, whereas the core suitable habitat area shows
a shrinking trend. The significant reduction in future suitable areas may
be related to the decreased precipitation in these regions.
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