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Tea flowers play a crucial role in taxonomic research and hybrid breeding of tea

plants. As traditional methods of observing tea flower traits are labor-intensive

and inaccurate, TflosYOLO and Tea Flowering Stage Classification (TFSC) models

were proposed for tea flowering quantification, which enable the estimation of

flower count and flowering period. In this study, a highly representative and

diverse dataset was constructed by collecting flower images from 29 tea

accessions in 2 years. Based on this dataset, the TflosYOLO model was built on

the YOLOv5 architecture and enhanced with the Squeeze-and-Excitation (SE)

network, Adaptive Rectangular Convolution, and Attention Free Transformer,

which is the first model to offer a viable solution for detecting and counting tea

flowers. The TflosYOLO model achieved a mean Average Precision at 50% IoU

(mAP50) of 0.844, outperforming YOLOv5, YOLOv7, and YOLOv8. Furthermore,

the TflosYOLOmodel was tested on 31 datasets encompassing 26 tea accessions

and five flowering stages, demonstrating high generalization and robustness. The

correlation coefficient (R2) between the predicted and actual flower counts was

0.964. Additionally, the TFSC model—a seven-layer neural network—was

designed for the automatic classification of the flowering period. The TFSC

model was evaluated for 2 years and achieved an accuracy of 0.738 and 0.899.

Using the TflosYOLO+TFSC model, the tea flowering dynamics were monitored,

and the changes in flowering stages were tracked across various tea accessions.

The framework provides crucial support for tea plant breeding programs and the

phenotypic analysis of germplasm resources.
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1 Introduction

Tea is one of the three major beverages in the world, and the tea

plant is an important economic crop in multiple countries. With a

cultivation history spanning thousands of years, China is home to a

rich diversity of native tea accessions. In recent years, numerous

distinct tea cultivars have been developed across various tea-

growing regions, supporting the growth of the tea industry and

promoting improvements in both quality and efficiency. As a

perennial leaf crop, the economic value of the tea plant primarily

derives from its young shoots, and most research has focused on the

growth and development of these shoots. However, as reproductive

organs, tea flowers are crucial for conducting genetic and taxonomic

studies. The flowering period is crucial for selecting parent plants

for hybrid breeding, as it must be relatively synchronized for

successful cross-breeding. Tea flowering consumes the plant

nutrients so that flower thinning can regulate carbon–nitrogen

metabolism, promoting vegetative growth while suppressing

reproductive growth, further enhancing the yield of young shoots

and increasing the amino acid content, which positively impacts tea

quality (Tan et al., 2024). Therefore, measuring the floral

phenotypes of tea accessions is of great importance.

China has abundant phenotypic resources of tea plants, and

significant differences exist between accessions in terms of flower

quantity and flowering stage (including the onset and cessation of

blooming, and the duration of the flowering stage). Breeding

programs require investigations of flower quantity and flowering

stages. However, traditional methods for observing tea flower traits,

such as manual measurements, are labor-intensive and prone to

inaccuracies. Additionally, previous studies have only selected a

small number of accessions, making it difficult to accurately

describe the regional characteristics of the species. Therefore,

there is a clear need to develop efficient, precise, and highly

generalized phenotyping technologies for tea flowers.

In recent years, advancements in machine learning, deep learning,

computer vision technologies, and drones have significantly impacted

agricultural applications, such as yield prediction, crop growth

monitoring, automated harvesting, and quality detection.

Traditional machine learning (ML) methods, including support

vector machine (SVM), random forest, partial least squares

regression (PLSR), K-means clustering, and artificial neural network

(ANN), take a data-driven approach to model the relationships

between input data and labels, such as crop yield (Paudel et al.,

2021). These machine learning systems are capable of processing large

datasets and handling non-linear tasks efficiently (Chlingaryan et al.,

2018). For example, a machine learning algorithm incorporating K-

means clustering was developed for grapevine inflorescence detection,

classification, and flower number estimation, which demonstrated

high accuracy (Liu et al., 2018). In another study, six different

machine learning algorithms, including ridge regression, SVM,

random forest, Gaussian process, K-means, and Cubist, were

utilized by Song et al. (2023) to establish yield prediction models

based on drone-collected visible and multispectral images of wheat

canopies during the grain filling stage. As for machine learning in tea

research, Tu et al. (2018) utilized Unmanned Aerial Vehicle (UAV)-
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acquired hyperspectral data to build a classification model for tea

accessions and estimate the content of key chemicals related to tea

flavor. Their research indicated that SVM and ANN models were the

most effective for tea plant classification. Chen et al. (2022) compared

the performance of multilayer perceptron (MLP), SVM, random

forest (RF), and PLSR using hyperspectral data from tea plants,

developing a Tea-DTC model for evaluating drought resistance

traits in 10 tea plant germplasm resources.

However, traditional machine learning methods are heavily

reliant on manually selected features under controlled conditions,

and their robustness tends to be limited, particularly in complex field

environments. These methods often struggle to handle the challenges

posed by the dynamic and variable real-world agricultural

environments (Wang et al., 2021; Xia et al., 2023). Deep learning

(DL) methods, however, excel in discovering patterns and hidden

information from large datasets using neural networks (Liu et al.,

2024). Unlike traditional machine learning, DL approaches are better

suited for complex scenarios and require large amounts of data for

training. Recent deep learning algorithms, such as Faster R-CNN,

ResNet, and YOLO-based models, have demonstrated superior

performance in crop yield estimation (Paudel et al., 2023; Li et al.,

2024), growth monitoring (Wu et al., 2020; Li et al., 2024), and object

detection for fruits and other crop targets (Sun et al., 2022; Wang

et al., 2022; Rivera-Palacio et al., 2024). New deep learning modeling

techniques, such as Transformer, have also begun to be applied to the

development of agricultural deep learning models, for example, in

rice disease identification (Lu et al., 2025b). In addition, Long Short-

Term Memory networks with multi-head self-attention mechanisms

have been employed for rice yield prediction (Lu et al., 2025a).

Additionally, the integration of machine learning, deep learning, and

plant phenotyping platforms, along with UAV technology, has

resulted in the development of many new and efficient techniques.

For instance, RGB and multispectral images were utilized to identify

the tasseling stage of maize (Guo et al., 2021). Drone time-series

images and a Res2Net50 model were used to identify five growth

stages of rice germplasm, achieving good prediction results for the

heading and flowering stages by combining RGB and multispectral

images and developing a PLSR model (Lyu et al., 2023). Similarly,

drone time-series images and deep learning models were applied for

the dynamic monitoring of maize ear area (Yu et al., 2022).

These advances have significantly contributed to the rapid and

efficient extraction of plant information, facilitating accurate

plant phenotyping.

YOLOv5, developed by Glenn Jocher et al (Jocher et al., 2022), is

an improved version of YOLOv3. It is characterized by a relatively

small model size and fast processing speed, making it suitable for

mobile deployment. In recent years, YOLO-based algorithms,

particularly YOLOv5, have been widely applied to object

detection in agriculture, demonstrating superior performance on

agricultural datasets (Farjon and Edan, 2024).

Several automatic detection models for various flowers, such as

apple flowers, grapevine flowers, strawberry flowers, and litchi

flowers, have been developed (Liu et al., 2018; Lin et al., 2020;

Sun et al., 2021; Bhattarai and Karkee, 2022; Xia et al., 2023; Lin

et al., 2024), as well as tea shoot detection models (Zhang et al.,
frontiersin.org

https://doi.org/10.3389/fpls.2025.1690413
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mi et al. 10.3389/fpls.2025.1690413
2023; Bai et al., 2024; Chen et al., 2024; Wang et al., 2024; Wu et al.,

2024). For instance, Wang et al. (2018) used color thresholding

followed by SVM classification to estimate mango inflorescence

area, employing Faster R-CNN for panicle detection. Lin et al.

(2024) proposed a framework for counting flowers in litchi panicles

and quantifying male litchi flowers, employing YOLACT++ for

panicle segmentation and a novel algorithm based on density map

regression for accurate flower counting. YOLOX was utilized by Xia

et al. (2023) for tree-level apple inflorescence detection, achieving

the highest AP50 of 0.834 and AR50 of 0.933.

To date, however, no models have been specifically developed to

detect tea plant flowers or observe tea flower phenotypes. To fill this

gap, we proposed a method for tea flowering quantification,

comprising the TflosYOLO model and Tea Flowering Stage

Classification (TFSC) model.
2 Materials and methods

2.1 Experimental design

The estimation of flower count and flowering period was

achieved using time-series images of tea flowers by applying the

TflosYOLO and TFSC model. The framework is shown in Figure 1.

The process was outlined as fronts: mobile phone images of tea

plant flowers were captured to establish a tea flower dataset, which
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was then used to train the TflosYOLO model. The TflosYOLO

model provided the detection results for tea flower buds (bud),

blooming flowers (B flower), and withered flowers (W flower),

which were then used to output flower counts. The Tea Flowering

Stage Classification model was used to determine the flowering

stage [initial flowering stage (IFS), early peak flowering stage (EFS),

mid peak flowering stage (MFS), late peak flowering stage (LFS),

and terminal flowering stage (TFS).
2.2 Study site and materials

The experimental data used in this study were obtained in

November–December 2023 and October–December 2024 at the

National Tea Germplasm Research Garden (Hangzhou). Hangzhou

is located in the southeastern region of China (29°–30°N and 118°–

120°E), within a subtropical monsoon climate zone. Our research

involved 29 tea accessions originating from different regions across

the country; information on these accessions is provided in

Supplementary Tables S1 and S2.
2.3 Data acquisition

Tea plants in tea gardens are typically planted in rows with

dense spacing between individual plants. Their flowers generally
FIGURE 1

Overall framework for dynamic estimation and analysis of tea flowering.
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bloom predominantly on the sides of the plants. Considering this, a

mobile phone was utilized for image capture, as mobile phone

photography offers flexibility, making it feasible for large-scale,

cost-effective, and precise phenotypic monitoring. The mobile

phone captured images in RGB color format as JPG files. The

image resolution was 3280 × 2464 pixels, with a 72-dpi setting. The

actual area corresponding to the regions captured in each image was

calculated using Fiji (Schindelin et al., 2012) and was approximately

3,690.33 cm2 (69.26cm × 53.28cm per image); the detailed method

is shown in Supplementary Figure S1. In order to enhance the

generalization ability of the model, images in the complex

environments were collected in 2023–2024, including different

lighting (e.g., backlight and frontlight), 29 tea accessions, various

flowering densities, and both pruned and unpruned tea plants. In

total, over 9,557 images were tokenized.

To evaluate the reliability of our approach as a substitute for

traditional manual measurement and to explore the relationship

between manual investigations and this framework, we conducted

manual assessments of flower quantity and flowering stages after

every image collection. The method of manual assessments is

illustrated in Supplementary Figure S2.
2.4 Image annotation and dataset analysis

2.4.1 Image annotation
The original images captured using mobile phones had a

resolution of 3280 × 2464 pixels. The input image size for the

YOLO model was determined based on the specific model

configuration and task requirements. In this study, the input size

for model training, validation, and testing was set to 640 × 640

pixels. To ensure compatibility with this input size and reduce

computational cost, the original images were cropped into four sub-

images, each with a size of 1640 × 1232 pixels. Image annotation

was performed using LabelImg (Tzutalin, 2015) in YOLO format.

The labeled images were divided into three datasets for training,

validation, and testing, following a 6:2:2 ratio. Three categories were

defined for annotation: buds, blooming flowers (B flower), and

withered flowers (W flower) (Supplementary Figure S3). In total,

28,668 instances were labeled across 2,361 images in the tea flower

dataset. Additionally, various additional test datasets were

constructed after annotation to assess the model’s performance.

2.4.2 Dataset for TflosYOLO model
Three datasets were constructed for the training, validation, and

testing of the tea flower detection model. The final annotated
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dataset included 2,361 images with a total of 28,668 instances:

57% were buds, 25% were B flower, and 18% were W flower. Buds

accounted for the majority of the instances, while withered flowers

represented only 18%, indicating a class imbalance in the tea flower

dataset (Table 1, Supplementary Figure S4). To ensure the

reliability, generalization capability, and robustness of the tea

flower detection model, the tea flower dataset included images

from 26 tea accessions (Supplementary Table S1).

Moreover, 31 additional test datasets were constructed to

evaluate the model on various tea accessions, flowering stages,

lighting conditions (backlight and frontlight), and unpruned tea

plant images. Except for the unpruned test set, all test datasets were

constructed using pruned tea plant images. The representative

images and the number of images for 31 additional test datasets

are provided in Supplementary Figure S5.
2.5 TflosYOLO model for tea flower
detection

2.5.1 TflosYOLO model and YOLOv5
Although YOLOv7 (Wang et al., 2023) and other YOLOmodels

have also shown excellent performance on agricultural datasets,

considering the trade-off between model accuracy and

computational cost, we adopted YOLOv5m as the baseline model

for further improvement, aiming to achieve accurate and efficient

tea flower detection across various environments and accessions

while minimizing computational costs. TflosYOLO is more suitable

for flower detection and has an additional function for direct

flower counting.

The YOLOv5 network consists of three main components: a)

Backbone: CSPDarknet, b) Neck: PANet, and c) Head: YOLO

Layer. Initially, data are passed through the CSPDarknet for

feature extraction. Next, they are processed through PANet to

achieve feature fusion. Finally, the YOLO layer performs object

detection and classification, outputting the final results in terms of

detected objects and their corresponding classes.

In the detection process of YOLO-based algorithms, the input

image is processed to generate a feature map, which is divided into

an S × S grid. For each grid cell, anchor boxes are scored, and boxes

with low scores are discarded. Non-Maximum Suppression (NMS)

is then applied to eliminate redundant boxes. Only the remaining

boxes, along with their confidence scores, are retained and

displayed. The confidence score is calculated as Equation 1:

conf idence score  =  Pr(object) ∗ IoU(pred,  truth) ∗Pr(class) (1)
TABLE 1 The number of different classes in tea flower dataset.

Class Training set (1,432 images) Validation set (469 images) Test set (460 images) All instances

Bud 9,447 3,300 3,645 16,392

Blooming flower 4,303 1,410 1,538 7,251

Withered flower 2,905 996 1,124 5,025

All classes 16,655 5,706 6,307 28,668
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where
Fron
• Pr(object) represents the probability that an object exists,

• IoU represents the Intersection over Union between the

predicted and ground truth boxes, and

• Pr(class) represents the probability that the predicted box

belongs to each class.
IoU is the Area of Intersection, calculated as Equation 2:

IOU =
area(BP   ∩   Bgt)

area(BP ∪ Bgt)
(2)

BP   is the predicted bounding box, and  Bgt is the ground

truth box.

The YOLOv5 loss function consists of three components:

classification loss, objectness loss, and box loss. To compute the

total loss, these three components are combined as a weighted sum,

which is expressed as Equation 3:

Loss   =   wboxlbox   +wobjlobj + wclslcls (3)
• lbox is the box regression loss, which measures the difference

between the predicted and ground truth box locations;

• lobj is the object confidence loss, which evaluates the

accuracy of the model’s object detection; and

• lcls is the classification loss, which measures the model’s

ability to classify the detected objects accurately.
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2.5.2 Challenges in tea flower detection
There are multiple challenges in tea flower detection, as shown

in Figure 2. The field environment of a tea garden is complex, with

varying light conditions, backgrounds, and other factors

contributing to significant background noise. In addition to this,

tea flowers are small and tend to grow on the side of the tea plant

densely, with buds and flowers often obscuring each other, making

them prone to being obstructed or fragmented by branches and

leaves, and they are also easily influenced by background flowers.

These factors make tea flower detection more challenging compared

to the detection of fruits like apples (Xia et al., 2023). Furthermore,

intermediate forms exist between buds, blooming flowers, and

withered flowers, which are difficult to differentiate and can lead

to a decrease in detection accuracy. Additionally, light interference,

such as light spots, can cause buds to be misidentified. The

imbalance among different flower categories is also one of the

challenges, as the total number of tea buds and blooming flowers

is significantly greater than the number of withered flowers. To

address these challenges, this study proposed the TflosYOLO

model, which aims to improve the accuracy of tea flower

detection under various environmental conditions.

2.5.3 Architecture of TflosYOLO model
The architecture of the TflosYOLO model (Figure 3) includes

the backbone (CSPDarknet-53), the feature fusion neck, and the

final detection layers. In this study, the YOLOv5m model is used as

the baseline. The Squeeze-and-Excitation (SE) network attention

module is integrated into the backbone of YOLOv5. Adaptive
FIGURE 2

Examples of the inflorescences on tea plant and difficult issues in tea flower detection. (a) Crowded flowers obscured by each other. (b) Tea flower
obscured by leaves. (c) Tea flower divided by leaves. (d) Tea flower divided by branches. (e) Intermediate classes. (f) Calyx belongs to withered flower, which
can be easily detected as bud. (g) Background flowers that do not belong to the detected tree. (h) Small-sized detection target. (i) Light interference.
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Rectangular Convolution (ARConv) is also used in the backbone of

TflosYOLO. Additionally, Attention Free Transformer (CAAFT) is

employed, which has lower computational complexity than

traditional Transformer, making the model lighter and more

efficient while improving performance. The additional function is

added to output the flower counts directly as CSV. After

improvement, the TflosYOLO model is more suitable for flower

detection and flower counting.

The images are input into the TflosYOLOmodel, with the input

size scaled to 640 × 640. The images pass through the main feature

extraction network of the TflosYOLO model, generating various

feature maps. These feature maps undergo further subsampling and

feature fusion in the neck section, integrating shallow and deep

features. The C3 modules at layers 18, 21, and 24 output feature

maps of sizes 80 × 80, 40 × 40, and 20 × 20, respectively, for

detecting small, medium, and large targets. Moreover, the

TflosYOLO model outputs flower quantities of three types of tea

flowers in CSV format for further analysis.
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2.5.4 Key improvements in the TflosYOLO model
This model introduces the integration of the SE Module,

ARConv, CAAFT, and direct counting outputs. TflosYOLO can

be regarded as a new version of YOLOv5 for better flower

prediction and flower counting.

The SE network module—a channel attention mechanism (Hu

et al., 2018; Guo et al., 2022)—is added to the seventh layer of the

YOLOv5 model. The structure of SE is shown in Figure 4. The SE

module consists of two key steps: Squeeze and Excitation. It

dynamically adjusts the weights of different channels by learning

the relationships between channels in order to make the

network focus on more important features while suppressing

unimportant channels.

ARConv: To enhance the model’s feature extraction capabilities

and adapt to targets of different sizes, we applied Adaptive

Rectangular Convolution in the backbone of the YOLO model.

ARConv is a flexible and scalable convolutional module designed

to enhance feature extraction for objects of varying sizes in images
FIGURE 3

The model structure of TflosYOLO model. GP, global pooling; FC, fully connected layer.
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(Wang et al., 2025). Unlike standard or even deformable

convolutions, ARConv adaptively learns both the height and width

of the convolution kernel and dynamically determines the number

and positions of sampling points. The structure of ARConv is

illustrated in Figure 5. First, to learn the height and width of the

convolution kernel, given an input feature map X, two subnetworks

fq1   and fq2   predict the height and width feature maps (Equation 4):

yi   =   fq1 (X),   i ∈ 1, 2f g (4)

These outputs are passed through a sigmoid activation and

modulated as Equation 5:

yi   =   ai · Sigmoid(yi) + bi (5)

where ai   and bi are scale factors. The resulting maps h and w

represent the predicted kernel height and width per pixel

location, respectively.

After that, to derive the kernel dimensions kh and kw, the

average of the predicted h and w is computed and converted using

Equation 6:

kh = f(�h), kw = f(�w) (6)

where ∅ (x) = x− [x is even] ensures odd-valued kernels. Thus,

the total number of sampling points is kh · kw.

Next, generating the sampling map, a grid G ∈ Rkh·kw represents

standard convolution offsets. For each center point p0, a scale

matrix Z0 is generated from learned h0, w0 (Equation 7):
Frontiers in Plant Science 07
Z0   =  
h0
kh

,  
w0

kw

� �
(7)

The offset matrix R   ∈  Rkh·kw is calculated via element-wise

multiplication (Equation 8):

R   =   Zo ⊙   G (8)

Sampling positions po + rij are typically non-integer, so bilinear

interpolation is used to estimate the sampled feature values.

In the end, the interpolated features form the sampling map S.

The final output is obtained by Equation 9

y   =   SK  ⊗   S  ⊙   M  ⊕   B (9)

where SK is the selected convolution kernel, M and B are affine

transformation matrices predicted via two lightweight subnets,⊗ is

convolution, ⊙ is element-wise multiplication, and ⊕ is element-

wise addition.

CAAFT: The CAAFT module integrates the Coordinate

Attention mechanism with the Attention Free Transformer.

Coordinate Attention (CA) factorizes global pooling into two 1D

directions (horizontal and vertical), allowing the network to encode

both channel interdependencies and precise spatial (positional)

information with negligible computational overhead (Hou et al.,

2021). Attention Free Transformer (AFT) entirely eliminates the

dot-product attention mechanism, replacing it with a

computationally lightweight structure based solely on element-

wise operations and global (or local) pooling. It has lower
FIGURE 5

The structure of ARConv. ARConv, adaptive rectangular convolution.
FIGURE 4

The structure of SE module. SE, squeeze-and-excitation.
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computational complexity, making the model lighter and more

efficient while improving performance (Zhai et al., 2021). The

structure of the CAAFT module is shown in Figure 6.

Given an input tensor X   ∈  RC�H�W , C is the number of

channels, and H and W are respectively the height and width of the

feature map. Instead of using standard 2D global pooling, CA

performs 1D global pooling along spatial axes.

Horizontal pooling (along width), is calculated by Equation 10:

zhc (h)   =  
1
W

·o
W

i=1
xc(h, i),   for   h = 1,…, H (10)

Vertical pooling (along height), is calculated by Equation 11:

zwc (w)   =  
1
H

·o
H

j=1
xc(w, j),   for   w = 1,…,W (11)

This generates two direction-aware descriptors: zh   ∈  RC�H�1

and zw   ∈  RC�1�W . Then, the two descriptors are concatenated,

the encoded feature is split along the spatial dimension, followed by

sigmoid activation, and the input features are re-weighted.

After that, the matrix RT�d applies linear transformations to

obtain Q, K, and V (Equation 12).

Q0 = QWQ, K
0 = KWK,V

0 = VWV (12)

Subsequently, element-wise operations and pooling are

performed, and the output is computed as Equation 13:

Y = sq(Q
0)⊙Pool(sk(K

0) o ̇V0) (13)

where
Fron
• sq and sK are element-wise non-linearities,

• ⊙ denotes element-wise multiplication,

• pooling is performed along the sequence dimension, and

• sq(Q
0 ) serves as an output gate, controlling how each

position’s query modulates the global context; sk(K
0) acts
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like a forget gate, determining how much each

value contributes.
2.5.5 Training details
The model was trained for 300 epochs with a batch size of 8 and

a learning rate of 0.01, using the SGD optimizer. The input image

was resized to 640 × 640 pixels. The experimental setup and

environmental settings are detailed in Table 2. The training loss

and verification loss of the TflosYOLO model are provided, as

shown in Supplementary Figure S6.

2.5.6 Model evaluation
In order to assess the model for tea flower detection, eight key

performance indicators (KPIs) were adopted in this study. Precision

and recall are commonly used evaluation metrics in deep learning

Algorithm Evaluation, all of which are based on the confusion

matrix (Ji et al., 2022). The confusion matrix is presented in

Supplementary Table S3.

Precision is the proportion of true positives (TPs) in all

detection-predicted positive samples (TP + FP). The formula is

given by Equation 14:

Pr ecision   =  
TP

TP + FP
  =  

TP
all   det ections

(14)

Recall is the proportion of TPs in all actual positive samples (TP

+ FN). The formula is given by Equation 15:

Re call =
TP

TP + FN
=

TP
all   actual   positive

(15)

F1-score combines precision and recall to measure the

performance of a model. The formula is given by Equation 16:

F1 = 2� P� R
P + R

(16)

where R is recall, P is precision, and C denotes class.
FIGURE 6

The structure of CAAFT. CAAFT, coordinate attention mechanism with the attention free transformer.
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In object detection algorithms, Intersection over Union (IoU) is

a commonly used metric to evaluate the accuracy of predicted

bounding boxes against ground truth boxes. The formula is given by

Equation 17:

IOU =
area(BP   ∩   Bgt)

area(BP ∪ Bgt)
  (17)

where Bp is the predicted bounding box, and  Bgt is ground

truth box.

Average Precision (AP) is a key metric used to assess the

performance of detection models over one class, reflecting the

trade-off between precision and recall. Specifically, mean Average

Precision (mAP) averages the AP across different classes; mAP0.5

refers to the mAP calculated at an IoU threshold of 0.5; mAP0.5–

0.95 represents the mean Average Precision calculated across a

range of IoU thresholds from 0.5 to 0.95. The formula is given by

Equations 18, 19:

AP =
Z 1

0
P(R)dR (18)

mAP = o
c
n=0AP(C)

C
(19)

where R is recall, P is precision, and C denotes class.

Additionally, detection speed is used to evaluate detection time

cost, while total parameters, Floating Point Operations Per Second

(FLOPs), and model size are crucial for evaluating model

complexity and computational cost.

In this study, we used the R2 coefficient to assess the strength of

the correlation between the manually observed, annotated, and

predicted tea flower numbers, further validating the reliability of the

tea flower detection model. The formula for R2 calculation is

provided in Equation 20:

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �y)2

(20)

where n is the number of samples, yi is the manually observed or

annotation flower quantity, and ŷ ı́ is the predicted tea flower

quantity from deep learning model, and �y is the average of yi.
2.6 Tea flowering stage classification
model

2.6.1 Flowering stage dataset construction
The tea plant flowering stage is categorized into five stages: IFS,

EFS, MFS, LFS, and TFS. To construct the training and validation
Frontiers in Plant Science 09
datasets, we utilized uncropped raw images of tea flowers collected

in 2023. As the flowering periods of tea plants are influenced by

climatic factors and can vary significantly between years, we

incorporated tea flower images collected in 2024 to establish the

test dataset. This test dataset, comprising 387 samples, aims to

further validate the accuracy and generalizability of the flowering

stage detection model.

Using the TflosYOLO model, the corresponding flower counts

(including the number of flower buds, B flower, and W flower) for

each image were estimated. Additionally, time data were

incorporated. Manually recorded flowering stages were used as

labels. Each image’s flower quantity, manually observed flowering

stage, and time data constituted a flowering stage sample,

collectively forming the original flowering stage dataset.

Subsequently, the original flowering stage dataset was

preprocessed by first filtering out low-quality data. This involved

removing images of varieties with insufficient flower counts, as they

could not provide reliable flowering stage assessments. For the

remaining samples from the same time and accession, the average

value from every three samples was calculated to create a new

sample. This approach mitigates the influence of extreme cases and

reflects the overall flowering characteristics of the accession. Each

sample was then manually labeled with tags that included IFS, EFS,

MFS, LFS, and TFS. The 2023 flowering period data were divided

into training and validation sets in an 8:2 ratio, while the 2024

images served as the test set.

2.6.2 TFSC model design and training
The Flowering Stage Classification model is built using a seven-

layer neural network and the flowering period dataset. ANN, also

known as MLP, consists of fully connected layers. Each layer

contains multiple artificial neural units (neurons). The model was

implemented using PyTorch, with Rectified Linear Unit (ReLU)

activation functions, softmax for classification, cross-entropy loss,

and the Adam optimizer. The training parameters are shown

in Table 3.

The Flowering Stage Classification model is structured as a

seven-layer neural network, shown in Figure 7. The input includes

the number of buds, blooming flowers, and withered flowers, as well

as time information. The labels are manually recorded flowering

stage. After passing through six hidden layers and the softmax

function for classification, the final output is the predicted

probability of each flowering stage class.
TABLE 3 Key training parameters.

Training samples 3,667

Validation samples 671

Test samples 387

Batch size 16

Learning rate 0.001

Epochs 80

Software version pytorch-cuda=11.8, Cuda 11.3, Python 3.8
TABLE 2 Experimental setup and environmental settings.

Operating system Ubuntu 18.04

GPU RTX 3080(10GB) *1

CPU Intel® Xeon® Platinum 8255C

version pytorch-cuda=11.8, Cuda 11.3, Python 3.8
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The softmax function is calculated as Equation 21:

byj = exp (oi)

ok exp (ok)
(21)

where ŷj represents the predicted probability, oi is the

unnormalized prediction for the ith output, and k is the vector of

predicted outputs. The softmax function ensures that the predicted

outputs sum to 1, with each value in the range [0, 1].

The ReLU activation function is commonly used in artificial

neural networks to introduce non-linearity and avoid issues such as

gradient explosion and vanishing gradients. The ReLU function is

defined as Equation 22:

f (x)   =  max (0,   x) (22)
2.6.3 Model evaluation
The accuracy is validated on the test set using the accuracy score

function. The accuracy is calculated as Equation 23:

ACC =
TP + TN

TP + TN + FP + FN
(23)
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where TP, TN, FP, and FN represent true positive, true negative,

false positive, and false negative, respectively.
3 Results

3.1 TflosYOLO model performance and
comparison

3.1.1 TflosYOLO model performance for tea
flower detection

The model performance was evaluated using the test dataset,

and the results are summarized in Table 4. The TflosYOLO model

can accurately detect and locate tea flowers. For the three categories,

the mAP50 was 0.844, the precision was 0.788, the recall was 0.761,

and the F1-score was 0.774. The mAP50 for flower buds, blooming

flowers, and withered flowers all exceeded 0.78, with buds achieving

the highest detection accuracy. The precision, recall, and F1-scores

for bud and blooming flowers were all above 0.76. These results

demonstrate that the model exhibits high accuracy and

generalization capability. The model detection performance on
FIGURE 7

The tea flowering stage classification (TFSC) model.
TABLE 4 Performance of the TflosYOLO model based on test dataset.

Class Precision Recall F1-score mAP50 mAP50–95 Params/M Model_size/M GFLOPs

All classes 0.788 0.761 0.774 0.844 0.562 17.9 34.5 35.9

Bud 0.866 0.778 0.820 0.894 0.619

B flower 0.782 0.76 0.771 0.851 0.551

W flower 0.717 0.745 0.731 0.789 0.517
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one image is provided in Supplementary Figure S7, showing that

TflosYOLO can accurately detect and locate tea flowers, even when

they are obstructed by branches and leaves or when partial

occlusions occur between flowers and buds.

3.1.2 Evaluating the robustness of TflosYOLO
model

To assess the robustness and generalization ability of the

TflosYOLO model, 31 additional test datasets were used, covering

26 tea accessions and five flowering stage datasets: IFS, EFS, MFS,

LFS, and TFS. The test results, as shown in Figure 8, present the

precision, recall, and mAP50 values for the TflosYOLO model

across 31 additional test datasets. For the many accessions, the

mAP50 exceeded 0.75, and for several accessions, such as BHZ and

AH1, it was above 0.8. However, the model performed slightly less

effectively for some accessions, such as the mAP50 of EC1 and FY6

being less than 0.6, and the recall of EC1 being under 0.6. EC1 and

FY6 plants both have very few flowers, which can be the main

reason for the deviation. The model performed best during the Peak

Flowering Stage (PFS) (including EFS, MFS, and LFS), while IFS

and TFS had the lowest accuracy (Figure 8). In summary, the

accuracy of the TflosYOLOmodel across most accessions, flowering

stages under varying light conditions, remained above 0.7,

indicating high robustness and generalization capability.

3.1.3 Correlation analysis
To further evaluate the reliability of the TflosYOLO model,

correlation analysis was conducted using the R2 coefficient. The

correlation between the predicted flower count by TflosYOLO and
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the labeled flower count was computed based on the tea flower test

dataset. The linear regression between the predicted flower count by

TflosYOLO and the actual flower count (from labeled data) is shown

in Figure 9A. The correlation coefficient (R2) for the predicted and

actual flower count was 0.964, indicating a strong correlation between

the predicted flower count and the actual count.

Additionally, the correlation between the predicted flower

count and actual flower quantity levels from traditional manual

surveys was analyzed. As shown in Figure 9B, the predicted flower

count and flower quantity level from traditional manual

investigation across 26 accessions were basically consistent.

3.1.4 Ablation experiments of the TflosYOLO
model

This study used YOLOv5m as the baseline model and

incorporated various improvements into TflosYOLO to improve

model performance in different environmental conditions. The

ablation experiment was conducted based on the validation

dataset. Compared to the YOLOv5m model, TflosYOLO

demonstrated increased accuracy with lower computational costs

(Table 5). The addition of the SE module, ARConv, and CAAFT

further increased the recall, F1-score, mAP50, and mAP50–95, with

no change in the number of parameters, model size, or Giga

Floating-point Operations Per Second (GFLOPs).

In general, these model enhancements were beneficial in

addressing challenges under strong light and frontlight conditions

and were effective in mitigating class imbalance issues.

Furthermore, the Squeeze-and-Excitation networks and Attention

Free Transformer contributed to model performance and resistance
FIGURE 8

The performance of TflosYOLO model on 31 additional test sets.
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to background noise. Adaptive Rectangular Convolution enhances

feature extraction for objects of varying sizes.

3.1.5 Comparative performance of YOLO
algorithms for tea flower detection

To compare the performance of the TflosYOLO model with

other YOLO algorithms, we evaluated the Faster RCNN, YOLOv5

(n/s/m/l/x), YOLOv7 (yolov7-tiny/yolov7/yolov7x), and YOLOv8

(n/s/m/l/x) models based on a validation dataset. We trained the

models using the same parameters, and the results are summarized

in Table 6. Compared to Faster RCNN, YOLOv5, YOLOv7, and

YOLOv8, TflosYOLO performed better in detecting tea flowers,

achieving higher precision, recall, and mAP50–95 while requiring

fewer computational resources. The table presents the average

detection performance for the three classes: buds, blooming

flowers, and withered flowers.
3.2 Evaluation of the Tea Flowering Stage
Classification model

The TFSC based on ANNs achieved an accuracy of 0.738 and

0.899 on the validation dataset and test dataset, respectively. The

confusion matrix (Figure 10) indicates that the classification of the
Frontiers in Plant Science 12
flowering stages is prone to misclassification between adjacent

stages. Specifically, there is frequent confusion between the EFS,

MFS, and LFS, as the agricultural dataset contains a large number of

intermediate periods and intermediate-type samples.
3.3 Application of the TflosYOLO+TFSC
model in flower count and flowering
period estimation

The TflosYOLO+TFSC model was used to perform dynamic

flower counting and flowering period estimation. A time-series

dataset constructed for observing tea flowering dynamics was used,

including 29 tea accessions and five flowering stages in 2023–2024.

The composition of this dataset is summarized in Supplementary

Table S4. The tea flowering observation dataset contained a total of

5,029 and 4345 images in 2023 and 2024, respectively.

3.3.1 Monitoring of tea flowering dynamics with
flowering stage information

Using time-series images of 29 tea accessions in 2023, 2024, and

the TflosYOLO + TFSC model, we monitored the flowering

dynamics and tracked the changes in flowering stages. The

reference for flowering dynamics visualization is shown in
FIGURE 9

The correlation between the predicted flower count by TflosYOLO and the actual flower count. (A) The linear regression between the predicted
flower count and the actual flower count (from labeled data). (B) The flower quantity comparison between the predicted flower quantity and actual
flower quantity levels from traditional manual surveys.
TABLE 5 The evaluation result of the ablation experiment.

Model Precision Recall F1-score mAP50 mAP50–95 Params/M Model_size/M GFLOPs

YOLOv5m 0.759 0.685 0.720 0.760 0.499 20.9 40.2 47.9

YOLOv5+ARConv 0.786 0.704 0.743 0.791 0.485 13.9 28.1 32.7

YOLOv5+SE 0.797 0.701 0.746 0.795 0.478 6.7 13.0 15.5

YOLOv5+CAAFT 0.806 0.700 0.749 0.795 0.482 19.7 38.1 38.1

TflosYOLO 0.799 0.716 0.755 0.799 0.481 17.9 34.5 35.9
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Figure 11. The tea flowering dynamics of other tea accessions in

2023 and 2024 are provided in Supplementary Figure S8 and

Figures 9, 10. The flowering dynamics of different tea accessions

exhibited distinct differences. In 2024, the flowering period of tea

plants was generally later than that in 2023. Moreover, based on the

results, the relatively early or late flowering of tea accessions is

summarized in Supplementary Table S6. With the exception of

BHZ, the flowering stages predicted by the model aligned with those

recorded manually.
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3.3.2 Estimation of flower quantity across
different tea accessions, years, and managements

In this study, TflosYOLO was used to provide flower quantity

data for each accession. The analysis and comparison of flower

quantities across accessions were performed using data from the

2023–2024 PFSs (Figure 12A). Significant variability in flower

quantity was observed across different tea accessions, and the

flower quantity of the same accessions in 2023 and 2024 was

relatively stable.
FIGURE 10

The confusion matrix of predicted flowering stages and manually recorded flowering stages. (A) The confusion matrix based on validation dataset.
(B) The confusion matrix based on test dataset.
TABLE 6 Comparison of Faster RCNN, YOLOv5, YOLOv7, and YOLOv8 model performance.

Model Precision Recall F1-score mAP50 mAP50–95 Params/M Model_size/M GFLOPs

Faster RCNN 0.521 0.687 0.590 0.645 0.489 137.1 523.0 370.2

YOLOv5n 0.764 0.663 0.710 0.738 0.441 1.8 3.68 4.1

YOLOv5s 0.778 0.683 0.727 0.764 0.459 7.0 13.7 15.8

YOLOv5m 0.759 0.685 0.720 0.760 0.499 20.9 40.2 47.9

YOLOv5l 0.819 0.669 0.736 0.748 0.481 46.1 88.5 107.7

YOLOv5x 0.770 0.725 0.747 0.779 0.526 86.2 165 203.8

YOLOv8n 0.740 0.653 0.694 0.734 0.452 3.0 6.2 8.1

YOLOv8s 0.752 0.679 0.714 0.752 0.468 11.1 22.5 28.4

YOLOv8m 0.734 0.682 0.707 0.750 0.461 25.8 52.0 78.7

YOLOv8l 0.737 0.665 0.699 0.743 0.454 43.6 250 164.8

YOLOv8x 0.745 0.673 0.707 0.735 0.458 68.1 136.7 257.4

YOLOv7tiny 0.762 0.687 0.723 0.748 0.455 6.0 12.3 13.2

YOLOv7 0.761 0.720 0.740 0.778 0.490 37.2 74.8 105.1

YOLOv7x 0.726 0.701 0.713 0.744 0.452 70.8 142.1 188.9

TflosYOLO 0.799 0.716 0.755 0.799 0.481 17.9 34.5 35.9
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To further validate the robustness and reliability of the model,

flower quantity under backlighting (BL) and frontlighting (FL)

conditions was compared (Figures 12B, C). The flower quantities

under backlighting and frontlighting for the same tea plants were

similar, with no significant differences (p-value > 0.05). The results

indicate that the TflosYOLOmodel demonstrated stable performance

under both lighting conditions, unaffected by lighting variations.

Additionally, a significant difference in flower quantity was observed

between pruned and unpruned tea plants. The flower quantity of

both pruned and unpruned LJ43 tea plants was compared, and

unpruned LJ43 plants exhibited significantly higher flower

quantities than the pruned ones, with a p-value < 0.01 (Figure 12D).
3.3.3 Distribution of flower quantity across
different tea flowering stages

Furthermore, TflosYOLO was used to analyze the flower

quantity for each flowering stage (IFS, EFS, MFS, LFS, and TFS)
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separately, the flower quantity of two selected accessions was

analyzed and shown in Figure 13, and data of accessions from

other provinces are provided in Supplementary Figure S11.

The flower quantity during different flowering stages varies

significantly. For most tea accessions, they did not show significant

differences in flower quantity between the three PFSs (EFS, MFS,

and LFS), such as HJG (Figure 13D), but significant differences in

flower quantity were observed among IFS, EFS, and MFS. In this

case, conducting observations of flower quantity and flowering

period over only a short period of time is likely to lead to errors.
4 Discussion

4.1 Importance of datasets

Agricultural datasets typically present challenges such as

significant background noise and small object sizes, making the
FIGURE 11

Tea flowering dynamics and flowering period information for two accessions in November–December 2023 and October–December 2024. (A)
DMB in 2023. (B) DMB in 2024. (C) HJG in 2023. (D) HJG in 2024.
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model performance very different from the evaluations conducted

using datasets like COCO. For example, in this study, YOLOv5s

outperformed the more computationally intensive YOLOv5l x and

even YOLOv8. In the training and construction of deep learning

models, such as YOLO, the representativeness and diversity of the

dataset may be more crucial than improvements in the model

architecture. The performance of the model can vary significantly

across different accessions. Therefore, achieving good results on a

single dataset does not guarantee consistent performance across all

scenarios, and it is essential to test the model in different

environments and with different accessions. Moreover, we

validated the feasibility of employing the YOLOv5 computer vision

model in complex field environments, demonstrating its applicability

across different tea varieties. This validation allows us to assess the

extent to which varietal differences influence model performance.

In this study, incorporating attention mechanisms such as SE,

CBAM, and CEA led to significant improvements in cases with

insufficient datasets, while their impact was less pronounced when

the dataset was sufficiently large. Moreover, the composition of the

dataset clearly affects the model performance. For instance, the

predictions for the PFS (including EFS, MFS, and LFS) were the
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most accurate, particularly for the LFS, while performance during

IFS and TFS was poorer. This is likely due to the training dataset

predominantly consisting of images from the PFS.
4.2 Class imbalance

Regarding the issue of class imbalance in the dataset, several

strategies were implemented to improve the overall performance of

the model: (1) data augmentation, (2) incorporation of various

attention mechanisms, and (3) expansion of the original dataset.

First, multiple image augmentation techniques built into YOLOv5

were adopted, including image HSV-Hue augmentation, image

HSV-Saturation augmentation, image HSV-Value augmentation,

image rotation, and image mosaic. These augmentations noticeably

enhanced model recognition performance compared with models

trained without augmentation. Additionally, the integration of

multiple attention mechanisms, such as the SE module used in

this study, also improved accuracy for underrepresented classes.

Furthermore, increasing the dataset size is a highly effective

strategy. When training with approximately 400 images, class
FIGURE 12

Estimation of flower quantity across different tea accessions, years, and managements. (A) Distribution of flower quantity across 29 accessions (2023
and 2024). (B) Flower quantity under frontlighting and backlighting conditions for tea plants from the same plot. (C) Flower quantity of Jin Xuan tea
plants under frontlighting and backlighting conditions. (D) Distribution of flower quantity of pruned/unpruned management LJ43.
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imbalance resulted in significantly poorer detection performance

for the minority class, withered flowers, compared with buds.

However, after expanding the dataset to approximately 2,000

images, the performance gap between buds and withered flowers

was substantially reduced.
4.3 Consideration of agronomic
characteristics in quantifying different crop
traits

When quantifying agronomic traits in crops, it is essential to

account for specific agronomic characteristics. For example, tea

flower quantity is greatly influenced by light exposure, and there are

substantial variations in flower quantity across different tea plants

of the same row. Thus, it is important to collect a sufficient number
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of images from various locations within the field. Additionally, tea

accessions exhibit differences in morphology—ranging from small

trees to shrubs—and the significant image disparities between

pruned and naturally grown trees require models with high

generalization and robustness.
4.4 Influence of plant size and weather on
tea flower quantity

Flower quantity is strongly correlated with the size of the tea

plant. To compare flower quantities across different accessions, it is

important to ensure that the comparisons are made between plants

of similar size and management practices. Additionally, tea flower

quantity is influenced by weather conditions. Due to climatic

differences between 2023 and 2024, the flowering dynamics of the
FIGURE 13

Flower quantity data for different flowering stage (IFS, EFS, MFS, LFS, TFS) across 2 accessions in 2023 and 2024. (A) TGY 2023; (B) TGY 2024; (C)
HJG 2023; (D) HJG 2024. IFS, initial flowering stage; EFS, early peak flowering stage; MFS, mid peak flowering stage; LFS, late peak flowering stage;
TFS, terminal flowering stage.
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same accession varied significantly, and the flowering period was

generally later in 2024 than in 2023, as the extreme low

temperatures in November and December 2023 were lower than

those in November and December 2024. In the future, it would be

valuable to combine tea flowering data with meteorological data to

analyze the dynamics of tea plant flowering. Additionally, the

observed flower quantity is significantly affected by both the

flowering period and the timing of image acquisition.

Consequently, observations made over a short time frame may

not accurately reflect the true flowering dynamics.
4.5 Comparison with previous tea flower
studies

Although previous tea flower studies conducted by manual

survey involved fewer accessions, the overall flower quantity and

flowering stage align with our findings. For instance, the flower

quantity of accessions like MX and TGY was consistently high

across different studies, and HJG displayed relatively high quantity.
4.6 Limitation

Previous studies have shown that the flowering period of tea

plants can be influenced by regional climatic conditions. Therefore,

relying solely on data from Hangzhou lacks verification across

different regions and climatic environments, which limits the

generalizability of the TFSC model. Continued investigation in

this direction would be meaningful, as it could help further

evaluate the model’s robustness and generalizability under diverse

regional and climatic conditions.
5 Conclusions

This study proposed an effective framework for quantifying tea

flowering, comprising the TflosYOLO model and TFSC model.

Compared to traditional manual surveys and observations, this

framework is more efficient and accurate. The TflosYOLO model

demonstrates the ability to accurately detect tea flowers under

various conditions, including different tea accessions, flowering

stage, pruning practices, and lighting conditions. Its high

robustness and generalization capability render it the only model

currently suitable for detecting and counting tea flowers, achieving

state-of-the-art (SOTA) performance in this domain. Additionally,

the TFSC model consistently demonstrates an accuracy exceeding

0.73 across different years, indicating its high generalizability.

TflosYOLO, combined with the TFSC model, enables the accurate

estimation of flower count and flowering period across

different accessions.

Based on TflosYOLO combined with the TFSC model, we

found that there are differences in the flowering dynamics of

various tea accessions. Accessions that are genetically related tend
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to exhibit more similar flower quantities and blooming periods. The

flowering quantity and flowering period of the same accession can

vary between different years due to changes in climate and

management practices.
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