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Tea flowers play a crucial role in taxonomic research and hybrid breeding of tea
plants. As traditional methods of observing tea flower traits are labor-intensive
and inaccurate, TflosYOLO and Tea Flowering Stage Classification (TFSC) models
were proposed for tea flowering quantification, which enable the estimation of
flower count and flowering period. In this study, a highly representative and
diverse dataset was constructed by collecting flower images from 29 tea
accessions in 2 years. Based on this dataset, the TflosYOLO model was built on
the YOLOV5 architecture and enhanced with the Squeeze-and-Excitation (SE)
network, Adaptive Rectangular Convolution, and Attention Free Transformer,
which is the first model to offer a viable solution for detecting and counting tea
flowers. The TflosYOLO model achieved a mean Average Precision at 50% loU
(MAP50) of 0.844, outperforming YOLOVS5, YOLOV7, and YOLOV8. Furthermore,
the TflosYOLO model was tested on 31 datasets encompassing 26 tea accessions
and five flowering stages, demonstrating high generalization and robustness. The
correlation coefficient (R%) between the predicted and actual flower counts was
0.964. Additionally, the TFSC model—a seven-layer neural network—was
designed for the automatic classification of the flowering period. The TFSC
model was evaluated for 2 years and achieved an accuracy of 0.738 and 0.899.
Using the TflosYOLO+TFSC model, the tea flowering dynamics were monitored,
and the changes in flowering stages were tracked across various tea accessions.
The framework provides crucial support for tea plant breeding programs and the
phenotypic analysis of germplasm resources.
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1 Introduction

Tea is one of the three major beverages in the world, and the tea
plant is an important economic crop in multiple countries. With a
cultivation history spanning thousands of years, China is home to a
rich diversity of native tea accessions. In recent years, numerous
distinct tea cultivars have been developed across various tea-
growing regions, supporting the growth of the tea industry and
promoting improvements in both quality and efficiency. As a
perennial leaf crop, the economic value of the tea plant primarily
derives from its young shoots, and most research has focused on the
growth and development of these shoots. However, as reproductive
organs, tea flowers are crucial for conducting genetic and taxonomic
studies. The flowering period is crucial for selecting parent plants
for hybrid breeding, as it must be relatively synchronized for
successful cross-breeding. Tea flowering consumes the plant
nutrients so that flower thinning can regulate carbon-nitrogen
metabolism, promoting vegetative growth while suppressing
reproductive growth, further enhancing the yield of young shoots
and increasing the amino acid content, which positively impacts tea
quality (Tan et al., 2024). Therefore, measuring the floral
phenotypes of tea accessions is of great importance.

China has abundant phenotypic resources of tea plants, and
significant differences exist between accessions in terms of flower
quantity and flowering stage (including the onset and cessation of
blooming, and the duration of the flowering stage). Breeding
programs require investigations of flower quantity and flowering
stages. However, traditional methods for observing tea flower traits,
such as manual measurements, are labor-intensive and prone to
inaccuracies. Additionally, previous studies have only selected a
small number of accessions, making it difficult to accurately
describe the regional characteristics of the species. Therefore,
there is a clear need to develop efficient, precise, and highly
generalized phenotyping technologies for tea flowers.

In recent years, advancements in machine learning, deep learning,
computer vision technologies, and drones have significantly impacted
agricultural applications, such as yield prediction, crop growth
monitoring, automated harvesting, and quality detection.
Traditional machine learning (ML) methods, including support
vector machine (SVM), random forest, partial least squares
regression (PLSR), K-means clustering, and artificial neural network
(ANN), take a data-driven approach to model the relationships
between input data and labels, such as crop yield (Paudel et al,
2021). These machine learning systems are capable of processing large
datasets and handling non-linear tasks efficiently (Chlingaryan et al,
2018). For example, a machine learning algorithm incorporating K-
means clustering was developed for grapevine inflorescence detection,
classification, and flower number estimation, which demonstrated
high accuracy (Liu et al, 2018). In another study, six different
machine learning algorithms, including ridge regression, SVM,
random forest, Gaussian process, K-means, and Cubist, were
utilized by Song et al. (2023) to establish yield prediction models
based on drone-collected visible and multispectral images of wheat
canopies during the grain filling stage. As for machine learning in tea
research, Tu et al. (2018) utilized Unmanned Aerial Vehicle (UAV)-
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acquired hyperspectral data to build a classification model for tea
accessions and estimate the content of key chemicals related to tea
flavor. Their research indicated that SVM and ANN models were the
most effective for tea plant classification. Chen et al. (2022) compared
the performance of multilayer perceptron (MLP), SVM, random
forest (RF), and PLSR using hyperspectral data from tea plants,
developing a Tea-DTC model for evaluating drought resistance
traits in 10 tea plant germplasm resources.

However, traditional machine learning methods are heavily
reliant on manually selected features under controlled conditions,
and their robustness tends to be limited, particularly in complex field
environments. These methods often struggle to handle the challenges
posed by the dynamic and variable real-world agricultural
environments (Wang et al., 2021; Xia et al.,, 2023). Deep learning
(DL) methods, however, excel in discovering patterns and hidden
information from large datasets using neural networks (Liu et al,
2024). Unlike traditional machine learning, DL approaches are better
suited for complex scenarios and require large amounts of data for
training. Recent deep learning algorithms, such as Faster R-CNN,
ResNet, and YOLO-based models, have demonstrated superior
performance in crop yield estimation (Paudel et al., 2023; Li et al,
2024), growth monitoring (Wu et al., 2020; Li et al., 2024), and object
detection for fruits and other crop targets (Sun et al., 2022; Wang
etal,, 2022; Rivera-Palacio et al., 2024). New deep learning modeling
techniques, such as Transformer, have also begun to be applied to the
development of agricultural deep learning models, for example, in
rice disease identification (Lu et al., 2025b). In addition, Long Short-
Term Memory networks with multi-head self-attention mechanisms
have been employed for rice yield prediction (Lu et al, 2025a).
Additionally, the integration of machine learning, deep learning, and
plant phenotyping platforms, along with UAV technology, has
resulted in the development of many new and efficient techniques.
For instance, RGB and multispectral images were utilized to identify
the tasseling stage of maize (Guo et al, 2021). Drone time-series
images and a Res2Net50 model were used to identify five growth
stages of rice germplasm, achieving good prediction results for the
heading and flowering stages by combining RGB and multispectral
images and developing a PLSR model (Lyu et al., 2023). Similarly,
drone time-series images and deep learning models were applied for
the dynamic monitoring of maize ear area (Yu et al, 2022).
These advances have significantly contributed to the rapid and
efficient extraction of plant information, facilitating accurate
plant phenotyping.

YOLOVS5, developed by Glenn Jocher et al (Jocher et al., 2022), is
an improved version of YOLOV3. It is characterized by a relatively
small model size and fast processing speed, making it suitable for
mobile deployment. In recent years, YOLO-based algorithms,
particularly YOLOV5, have been widely applied to object
detection in agriculture, demonstrating superior performance on
agricultural datasets (Farjon and Edan, 2024).

Several automatic detection models for various flowers, such as
apple flowers, grapevine flowers, strawberry flowers, and litchi
flowers, have been developed (Liu et al., 2018; Lin et al., 2020;
Sun et al., 2021; Bhattarai and Karkee, 2022; Xia et al., 2023; Lin
et al,, 2024), as well as tea shoot detection models (Zhang et al.,
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2023; Bai et al., 2024; Chen et al., 2024; Wang et al., 2024; Wu et al.,
2024). For instance, Wang et al. (2018) used color thresholding
followed by SVM classification to estimate mango inflorescence
area, employing Faster R-CNN for panicle detection. Lin et al.
(2024) proposed a framework for counting flowers in litchi panicles
and quantifying male litchi flowers, employing YOLACT++ for
panicle segmentation and a novel algorithm based on density map
regression for accurate flower counting. YOLOX was utilized by Xia
et al. (2023) for tree-level apple inflorescence detection, achieving
the highest AP50 of 0.834 and AR50 of 0.933.

To date, however, no models have been specifically developed to
detect tea plant flowers or observe tea flower phenotypes. To fill this
gap, we proposed a method for tea flowering quantification,
comprising the TflosYOLO model and Tea Flowering Stage
Classification (TFSC) model.

2 Materials and methods
2.1 Experimental design

The estimation of flower count and flowering period was
achieved using time-series images of tea flowers by applying the
TflosYOLO and TFSC model. The framework is shown in Figure 1.
The process was outlined as fronts: mobile phone images of tea
plant flowers were captured to establish a tea flower dataset, which

10.3389/fpls.2025.1690413

was then used to train the TflosYOLO model. The TflosYOLO
model provided the detection results for tea flower buds (bud),
blooming flowers (B flower), and withered flowers (W flower),
which were then used to output flower counts. The Tea Flowering
Stage Classification model was used to determine the flowering
stage [initial flowering stage (IFS), early peak flowering stage (EFS),
mid peak flowering stage (MEFS), late peak flowering stage (LFES),
and terminal flowering stage (TES).

2.2 Study site and materials

The experimental data used in this study were obtained in
November-December 2023 and October-December 2024 at the
National Tea Germplasm Research Garden (Hangzhou). Hangzhou
is located in the southeastern region of China (29°-30°N and 118°-
120°E), within a subtropical monsoon climate zone. Our research
involved 29 tea accessions originating from different regions across
the country; information on these accessions is provided in
Supplementary Tables S1 and S2.

2.3 Data acquisition

Tea plants in tea gardens are typically planted in rows with
dense spacing between individual plants. Their flowers generally
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FIGURE 1
Overall framework for dynamic estimation and analysis of tea flowering.
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bloom predominantly on the sides of the plants. Considering this, a
mobile phone was utilized for image capture, as mobile phone
photography offers flexibility, making it feasible for large-scale,
cost-effective, and precise phenotypic monitoring. The mobile
phone captured images in RGB color format as JPG files. The
image resolution was 3280 x 2464 pixels, with a 72-dpi setting. The
actual area corresponding to the regions captured in each image was
calculated using Fiji (Schindelin et al., 2012) and was approximately
3,690.33 cm” (69.26cm x 53.28cm per image); the detailed method
is shown in Supplementary Figure S1. In order to enhance the
generalization ability of the model, images in the complex
environments were collected in 2023-2024, including different
lighting (e.g., backlight and frontlight), 29 tea accessions, various
flowering densities, and both pruned and unpruned tea plants. In
total, over 9,557 images were tokenized.

To evaluate the reliability of our approach as a substitute for
traditional manual measurement and to explore the relationship
between manual investigations and this framework, we conducted
manual assessments of flower quantity and flowering stages after
every image collection. The method of manual assessments is
illustrated in Supplementary Figure S2.

2.4 Image annotation and dataset analysis

2.4.1 Image annotation

The original images captured using mobile phones had a
resolution of 3280 x 2464 pixels. The input image size for the
YOLO model was determined based on the specific model
configuration and task requirements. In this study, the input size
for model training, validation, and testing was set to 640 x 640
pixels. To ensure compatibility with this input size and reduce
computational cost, the original images were cropped into four sub-
images, each with a size of 1640 x 1232 pixels. Image annotation
was performed using Labellmg (Tzutalin, 2015) in YOLO format.
The labeled images were divided into three datasets for training,
validation, and testing, following a 6:2:2 ratio. Three categories were
defined for annotation: buds, blooming flowers (B flower), and
withered flowers (W flower) (Supplementary Figure S3). In total,
28,668 instances were labeled across 2,361 images in the tea flower
dataset. Additionally, various additional test datasets were
constructed after annotation to assess the model’s performance.

2.4.2 Dataset for TflosYOLO model

Three datasets were constructed for the training, validation, and
testing of the tea flower detection model. The final annotated

TABLE 1 The number of different classes in tea flower dataset.

Training set (1,432 images)

Validation set (469 images)

10.3389/fpls.2025.1690413

dataset included 2,361 images with a total of 28,668 instances:
57% were buds, 25% were B flower, and 18% were W flower. Buds
accounted for the majority of the instances, while withered flowers
represented only 18%, indicating a class imbalance in the tea flower
dataset (Table 1, Supplementary Figure S4). To ensure the
reliability, generalization capability, and robustness of the tea
flower detection model, the tea flower dataset included images
from 26 tea accessions (Supplementary Table SI).

Moreover, 31 additional test datasets were constructed to
evaluate the model on various tea accessions, flowering stages,
lighting conditions (backlight and frontlight), and unpruned tea
plant images. Except for the unpruned test set, all test datasets were
constructed using pruned tea plant images. The representative
images and the number of images for 31 additional test datasets
are provided in Supplementary Figure S5.

2.5 TflosYOLO model for tea flower
detection

2.5.1 TflosYOLO model and YOLOvS

Although YOLOvV7 (Wang et al., 2023) and other YOLO models
have also shown excellent performance on agricultural datasets,
considering the trade-off between model accuracy and
computational cost, we adopted YOLOv5m as the baseline model
for further improvement, aiming to achieve accurate and efficient
tea flower detection across various environments and accessions
while minimizing computational costs. TflosYOLO is more suitable
for flower detection and has an additional function for direct
flower counting.

The YOLOV5 network consists of three main components: a)
Backbone: CSPDarknet, b) Neck: PANet, and ¢) Head: YOLO
Layer. Initially, data are passed through the CSPDarknet for
feature extraction. Next, they are processed through PANet to
achieve feature fusion. Finally, the YOLO layer performs object
detection and classification, outputting the final results in terms of
detected objects and their corresponding classes.

In the detection process of YOLO-based algorithms, the input
image is processed to generate a feature map, which is divided into
an S x S grid. For each grid cell, anchor boxes are scored, and boxes
with low scores are discarded. Non-Maximum Suppression (NMS)
is then applied to eliminate redundant boxes. Only the remaining
boxes, along with their confidence scores, are retained and
displayed. The confidence score is calculated as Equation 1:

confidence score = Pr(object) s IoU(pred, truth) * Pr(class) (1)

Test set (460 images) All instances

Bud 9,447 3,300
Blooming flower 4,303 1,410
Withered flower 2,905 996

All classes 16,655 5,706
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3,645 16,392
1,538 7,251
1,124 5,025
6,307 28,668
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where

* Pr(object) represents the probability that an object exists,

* IoU represents the Intersection over Union between the
predicted and ground truth boxes, and

* Pr(class) represents the probability that the predicted box
belongs to each class.

ToU is the Area of Intersection, calculated as Equation 2:

10U = area(Bp N By) @)
area(Bp U Bg)

Bp is the predicted bounding box, and B, is the ground
truth box.

The YOLOV5 loss function consists of three components:
classification loss, objectness loss, and box loss. To compute the
total loss, these three components are combined as a weighted sum,
which is expressed as Equation 3:

Loss = Wpoylpox +wobjlobj + Werglas (3)

* Iy, is the box regression loss, which measures the difference
between the predicted and ground truth box locations;

* Iy is the object confidence loss, which evaluates the
accuracy of the model’s object detection; and

e [, is the classification loss, which measures the model’s
ability to classify the detected objects accurately.

a. crowded flower

b. obscured by leaves L&

c. divided by leaves

4

LS

b
& >
d. divided by branches : 3

FIGURE 2
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2.5.2 Challenges in tea flower detection

There are multiple challenges in tea flower detection, as shown
in Figure 2. The field environment of a tea garden is complex, with
varying light conditions, backgrounds, and other factors
contributing to significant background noise. In addition to this,
tea flowers are small and tend to grow on the side of the tea plant
densely, with buds and flowers often obscuring each other, making
them prone to being obstructed or fragmented by branches and
leaves, and they are also easily influenced by background flowers.
These factors make tea flower detection more challenging compared
to the detection of fruits like apples (Xia et al., 2023). Furthermore,
intermediate forms exist between buds, blooming flowers, and
withered flowers, which are difficult to differentiate and can lead
to a decrease in detection accuracy. Additionally, light interference,
such as light spots, can cause buds to be misidentified. The
imbalance among different flower categories is also one of the
challenges, as the total number of tea buds and blooming flowers
is significantly greater than the number of withered flowers. To
address these challenges, this study proposed the TflosYOLO
model, which aims to improve the accuracy of tea flower
detection under various environmental conditions.

2.5.3 Architecture of TflosYOLO model

The architecture of the TflosYOLO model (Figure 3) includes
the backbone (CSPDarknet-53), the feature fusion neck, and the
final detection layers. In this study, the YOLOv5m model is used as
the baseline. The Squeeze-and-Excitation (SE) network attention
module is integrated into the backbone of YOLOvV5. Adaptive

e. intermediate classes

g. background flower

h. small size

 i. light interfere

Examples of the inflorescences on tea plant and difficult issues in tea flower detection. (a) Crowded flowers obscured by each other. (b) Tea flower
obscured by leaves. (c) Tea flower divided by leaves. (d) Tea flower divided by branches. (e) Intermediate classes. (f) Calyx belongs to withered flower, which
can be easily detected as bud. (g) Background flowers that do not belong to the detected tree. (h) Small-sized detection target. (i) Light interference.
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FIGURE 3

The model structure of TflosYOLO model. GP, global pooling; FC, fully connected layer.

Rectangular Convolution (ARConv) is also used in the backbone of
TflosYOLO. Additionally, Attention Free Transformer (CAAFT) is
employed, which has lower computational complexity than
traditional Transformer, making the model lighter and more
efficient while improving performance. The additional function is
added to output the flower counts directly as CSV. After
improvement, the TflosYOLO model is more suitable for flower
detection and flower counting.

The images are input into the TflosYOLO model, with the input
size scaled to 640 x 640. The images pass through the main feature
extraction network of the TflosYOLO model, generating various
feature maps. These feature maps undergo further subsampling and
feature fusion in the neck section, integrating shallow and deep
features. The C3 modules at layers 18, 21, and 24 output feature
maps of sizes 80 x 80, 40 x 40, and 20 X 20, respectively, for
detecting small, medium, and large targets. Moreover, the
TflosYOLO model outputs flower quantities of three types of tea
flowers in CSV format for further analysis.

Frontiers in Plant Science
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2.5.4 Key improvements in the TflosYOLO model

This model introduces the integration of the SE Module,
ARConv, CAAFT, and direct counting outputs. TflosYOLO can
be regarded as a new version of YOLOvV5 for better flower
prediction and flower counting.

The SE network module—a channel attention mechanism (Hu
et al, 2018; Guo et al,, 2022)—is added to the seventh layer of the
YOLOV5 model. The structure of SE is shown in Figure 4. The SE
module consists of two key steps: Squeeze and Excitation. It
dynamically adjusts the weights of different channels by learning
the relationships between channels in order to make the
network focus on more important features while suppressing
unimportant channels.

ARConv: To enhance the model’s feature extraction capabilities
and adapt to targets of different sizes, we applied Adaptive
Rectangular Convolution in the backbone of the YOLO model.
ARConv is a flexible and scalable convolutional module designed
to enhance feature extraction for objects of varying sizes in images

frontiersin.org
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FIGURE 4
The structure of SE module. SE, squeeze-and-excitation.

(Wang et al, 2025). Unlike standard or even deformable
convolutions, ARConv adaptively learns both the height and width
of the convolution kernel and dynamically determines the number
and positions of sampling points. The structure of ARConv is
illustrated in Figure 5. First, to learn the height and width of the
convolution kernel, given an input feature map X, two subnetworks
fo, andfy, predict the height and width feature maps (Equation 4):

yi = fo,(X), i€ {1,2} (4)

These outputs are passed through a sigmoid activation and
modulated as Equation 5:

(5)

where g; and b; are scale factors. The resulting maps h and w

yi = a -Sigmoid(y;) + b;

represent the predicted kernel height and width per pixel
location, respectively.

After that, to derive the kernel dimensions k;, and k,, the
average of the predicted h and w is computed and converted using

Equation 6:

ky = 0(h),  ky = 0(W) (6)

where @ (x) = x— [x is even| ensures odd-valued kernels. Thus,
the total number of sampling points is k;, - k,,.

Next, generating the sampling map, a grid G & R¥*» represents
standard convolution offsets. For each center point py, a scale
matrix Z, is generated from learned ho, wy (Equation 7):

hy  wy
Zo = | —, — 7
0 (kh kw) ( )
The offset matrix R € RN is calculated via element-wise
multiplication (Equation 8):

R =2720G (8)

Sampling positions p, + r;; are typically non-integer, so bilinear
interpolation is used to estimate the sampled feature values.
In the end, the interpolated features form the sampling map S.

The final output is obtained by Equation 9
SK® SO M & B ©)

where SK is the selected convolution kernel, M and B are affine

y:

transformation matrices predicted via two lightweight subnets, ® is
convolution, O is element-wise multiplication, and @ is element-
wise addition.

CAAFT: The CAAFT module integrates the Coordinate
Attention mechanism with the Attention Free Transformer.
Coordinate Attention (CA) factorizes global pooling into two 1D
directions (horizontal and vertical), allowing the network to encode
both channel interdependencies and precise spatial (positional)
information with negligible computational overhead (Hou et al.,
2021). Attention Free Transformer (AFT) entirely eliminates the
dot-product attention mechanism, replacing it with a
computationally lightweight structure based solely on element-
wise operations and global (or local) pooling. It has lower

W ( 1 pommmmmmmmmses ' W
far- ; ' . —
91 Height Leamer h Selected Kernel SK % H
(. S
X
H X Calculate Average KpxKy 7
g T\
Y A .
Input 82 Width Learner w l
J
Affine (M. B)
KW
W
KiH _ Bilinear Offset Matrix R Building
s T Interpolation =ZoOG Sampling Grid G H y
Output
FIGURE 5
The structure of ARConv. ARConv, adaptive rectangular convolution.
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computational complexity, making the model lighter and more
efficient while improving performance (Zhai et al, 2021). The
structure of the CAAFT module is shown in Figure 6.

Given an input tensor X € REXHXW " C is the number of
channels, and H and W are respectively the height and width of the
feature map. Instead of using standard 2D global pooling, CA
performs 1D global pooling along spatial axes.

Horizontal pooling (along width), is calculated by Equation 10:

=

2h) = — Sx.(hi), for h=1,..,H

15

(10)

=[-

Vertical pooling (along height), is calculated by Equation 11:

(11)

M=

zl(w) = X (w,j), for w=1,..., W

o=

This generates two direction-aware descriptors: 2" & R

and z¥ € ROV Then, the two descriptors are concatenated,
the encoded feature is split along the spatial dimension, followed by
sigmoid activation, and the input features are re-weighted.

After that, the matrix R™*¢ applies linear transformations to
obtain Q, K, and V (Equation 12).

Q' =QWgq, K =KW, V' = VWy (12)

Subsequently, element-wise operations and pooling are
performed, and the output is computed as Equation 13:

Y = 64(Q) © Pool(cy(K') 6 V') (13)

where

* 0, and ok are element-wise non-linearities,

* @ denotes element-wise multiplication,

+ pooling is performed along the sequence dimension, and

* 0,(Q") serves as an output gate, controlling how each

position’s query modulates the global context; o3(K’) acts

10.3389/fpls.2025.1690413

like a forget gate, determining how much each
value contributes.

2.5.5 Training details

The model was trained for 300 epochs with a batch size of 8 and
a learning rate of 0.01, using the SGD optimizer. The input image
was resized to 640 x 640 pixels. The experimental setup and
environmental settings are detailed in Table 2. The training loss
and verification loss of the TflosYOLO model are provided, as
shown in Supplementary Figure S6.

2.5.6 Model evaluation

In order to assess the model for tea flower detection, eight key
performance indicators (KPIs) were adopted in this study. Precision
and recall are commonly used evaluation metrics in deep learning
Algorithm Evaluation, all of which are based on the confusion
matrix (Ji et al., 2022). The confusion matrix is presented in
Supplementary Table S3.

Precision is the proportion of true positives (TPs) in all
detection-predicted positive samples (TP + FP). The formula is
given by Equation 14:

TP

Precision = =
TP + FP

TP
all detections

(14)

Recall is the proportion of TPs in all actual positive samples (TP
+ FN). The formula is given by Equation 15:

TP TP

Recall = =
T TP YN T all actual positive

(15)
F,-score combines precision and recall to measure the
performance of a model. The formula is given by Equation 16:

P xR
P+R

F1=2x (16)

where R is recall, P is precision, and C denotes class.

Cx1=H C=x1=xH
w —
Avg pool — l—’ Conv —>|Sigmoid j
: CxHx1 C t + BatchN
—>| Residual onca atchNorm ¢ .. . |
" x Conv + Non-linear| F Cx1xW Cx1xW Reweight
Input — > Avg pool —1 L 5 Ccow —> Sigmoid P oaw
CxWx1 C/rx1x(W+H) C/rx1x(W+H)
L4
0g(Q)O

Output Y [

Pool(04(K') O V')

FIGURE 6

Element-wise Multiply

The structure of CAAFT. CAAFT, coordinate attention mechanism with the attention free transformer.
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TABLE 2 Experimental setup and environmental settings.

Operating system Ubuntu 18.04

GPU RTX 3080(10GB) *1
CPU Intel® Xeon® Platinum 8255C

version

pytorch-cuda=11.8, Cuda 11.3, Python 3.8

In object detection algorithms, Intersection over Union (IoU) is
a commonly used metric to evaluate the accuracy of predicted
bounding boxes against ground truth boxes. The formula is given by
Equation 17:

area(Bp N Bgt)

10U = 17
area(Bp U Bg) (7

where By, is the predicted bounding box, and By is ground
truth box.

Average Precision (AP) is a key metric used to assess the
performance of detection models over one class, reflecting the
trade-off between precision and recall. Specifically, mean Average
Precision (mAP) averages the AP across different classes; mAP0.5
refers to the mAP calculated at an IoU threshold of 0.5; mAP0.5-
0.95 represents the mean Average Precision calculated across a
range of IoU thresholds from 0.5 to 0.95. The formula is given by
Equations 18, 19:

1
AP = A P(R)dR (18)
mAP = w (19)

where R is recall, P is precision, and C denotes class.

Additionally, detection speed is used to evaluate detection time
cost, while total parameters, Floating Point Operations Per Second
(FLOPs), and model size are crucial for evaluating model
complexity and computational cost.

In this study, we used the R* coefficient to assess the strength of
the correlation between the manually observed, annotated, and
predicted tea flower numbers, further validating the reliability of the
tea flower detection model. The formula for R® calculation is
provided in Equation 20:

Sy -9’
Eir;l()’i - }7)2

where n is the number of samples, y; is the manually observed or

RP=1- (20)

annotation flower quantity, and y; is the predicted tea flower
quantity from deep learning model, and y is the average of y;.

2.6 Tea flowering stage classification
model

2.6.1 Flowering stage dataset construction

The tea plant flowering stage is categorized into five stages: IFS,
EFS, MFS, LFS, and TFS. To construct the training and validation
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datasets, we utilized uncropped raw images of tea flowers collected
in 2023. As the flowering periods of tea plants are influenced by
climatic factors and can vary significantly between years, we
incorporated tea flower images collected in 2024 to establish the
test dataset. This test dataset, comprising 387 samples, aims to
further validate the accuracy and generalizability of the flowering
stage detection model.

Using the TflosYOLO model, the corresponding flower counts
(including the number of flower buds, B flower, and W flower) for
each image were estimated. Additionally, time data were
incorporated. Manually recorded flowering stages were used as
labels. Each image’s flower quantity, manually observed flowering
stage, and time data constituted a flowering stage sample,
collectively forming the original flowering stage dataset.

Subsequently, the original flowering stage dataset was
preprocessed by first filtering out low-quality data. This involved
removing images of varieties with insufficient flower counts, as they
could not provide reliable flowering stage assessments. For the
remaining samples from the same time and accession, the average
value from every three samples was calculated to create a new
sample. This approach mitigates the influence of extreme cases and
reflects the overall flowering characteristics of the accession. Each
sample was then manually labeled with tags that included IFS, EFS,
MFS, LFS, and TFS. The 2023 flowering period data were divided
into training and validation sets in an 8:2 ratio, while the 2024
images served as the test set.

2.6.2 TFSC model design and training

The Flowering Stage Classification model is built using a seven-
layer neural network and the flowering period dataset. ANN, also
known as MLP, consists of fully connected layers. Each layer
contains multiple artificial neural units (neurons). The model was
implemented using PyTorch, with Rectified Linear Unit (ReLU)
activation functions, softmax for classification, cross-entropy loss,
and the Adam optimizer. The training parameters are shown
in Table 3.

The Flowering Stage Classification model is structured as a
seven-layer neural network, shown in Figure 7. The input includes
the number of buds, blooming flowers, and withered flowers, as well
as time information. The labels are manually recorded flowering
stage. After passing through six hidden layers and the softmax
function for classification, the final output is the predicted
probability of each flowering stage class.

TABLE 3 Key training parameters.

Training samples 3,667
Validation samples 671
Test samples 387
Batch size 16
Learning rate 0.001
Epochs 80

Software version pytorch-cuda=11.8, Cuda 11.3, Python 3.8
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FIGURE 7

The tea flowering stage classification (TFSC) model.

The softmax function is calculated as Equation 21: where TP, TN, FP, and FN represent true positive, true negative,

false positive, and false negative, respectively.
—~ exp (0;)
= 1)

%= > exp (o)

where y; represents the predicted probability, o; is the
unnormalized prediction for the iy, output, and k is the vector of
predicted outputs. The softmax function ensures that the predicted
outputs sum to 1, with each value in the range [0, 1].

The ReLU activation function is commonly used in artificial
neural networks to introduce non-linearity and avoid issues such as
gradient explosion and vanishing gradients. The ReLU function is
defined as Equation 22:

f(x) = max(0, x) (22)

2.6.3 Model evaluation
The accuracy is validated on the test set using the accuracy score
function. The accuracy is calculated as Equation 23:

TP + TN
TP + TN + FP + EN

ACC = (23)

TABLE 4 Performance of the TflosYOLO model based on test dataset.

3 Results

3.1 TflosYOLO model performance and
comparison

3.1.1 TflosYOLO model performance for tea
flower detection

The model performance was evaluated using the test dataset,
and the results are summarized in Table 4. The TflosYOLO model
can accurately detect and locate tea flowers. For the three categories,
the mAP50 was 0.844, the precision was 0.788, the recall was 0.761,
and the Fy-score was 0.774. The mAP50 for flower buds, blooming
flowers, and withered flowers all exceeded 0.78, with buds achieving
the highest detection accuracy. The precision, recall, and F;-scores
for bud and blooming flowers were all above 0.76. These results
demonstrate that the model exhibits high accuracy and
generalization capability. The model detection performance on

Precision  Recall F1-score mAP50 mAP50-95  Params/M Model_size/M  GFLOPs
All classes 0.788 0.761 0.774 0.844 0.562 17.9 345 359
Bud 0.866 0.778 0.820 0.894 0.619
B flower 0.782 0.76 0.771 0.851 0.551
W flower 0.717 0.745 0.731 0.789 0.517
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one image is provided in Supplementary Figure S7, showing that
TflosYOLO can accurately detect and locate tea flowers, even when
they are obstructed by branches and leaves or when partial
occlusions occur between flowers and buds.

3.1.2 Evaluating the robustness of TflosYOLO
model

To assess the robustness and generalization ability of the
TflosYOLO model, 31 additional test datasets were used, covering
26 tea accessions and five flowering stage datasets: IFS, EFS, MFS,
LFS, and TFS. The test results, as shown in Figure 8, present the
precision, recall, and mAP50 values for the TflosYOLO model
across 31 additional test datasets. For the many accessions, the
mAP50 exceeded 0.75, and for several accessions, such as BHZ and
AH]1, it was above 0.8. However, the model performed slightly less
effectively for some accessions, such as the mAP50 of EC1 and FY6
being less than 0.6, and the recall of EC1 being under 0.6. ECI and
FY6 plants both have very few flowers, which can be the main
reason for the deviation. The model performed best during the Peak
Flowering Stage (PFS) (including EFS, MFS, and LES), while IFS
and TFS had the lowest accuracy (Figure 8). In summary, the
accuracy of the TflosYOLO model across most accessions, flowering
stages under varying light conditions, remained above 0.7,
indicating high robustness and generalization capability.

3.1.3 Correlation analysis

To further evaluate the reliability of the TflosYOLO model,
correlation analysis was conducted using the R* coefficient. The
correlation between the predicted flower count by TflosYOLO and

10.3389/fpls.2025.1690413

the labeled flower count was computed based on the tea flower test
dataset. The linear regression between the predicted flower count by
TflosYOLO and the actual flower count (from labeled data) is shown
in Figure 9A. The correlation coefficient (R?) for the predicted and
actual flower count was 0.964, indicating a strong correlation between
the predicted flower count and the actual count.

Additionally, the correlation between the predicted flower
count and actual flower quantity levels from traditional manual
surveys was analyzed. As shown in Figure 9B, the predicted flower
count and flower quantity level from traditional manual
investigation across 26 accessions were basically consistent.

3.1.4 Ablation experiments of the TflosYOLO
model

This study used YOLOv5m as the baseline model and
incorporated various improvements into TflosYOLO to improve
model performance in different environmental conditions. The
ablation experiment was conducted based on the validation
dataset. Compared to the YOLOv5m model, TflosYOLO
demonstrated increased accuracy with lower computational costs
(Table 5). The addition of the SE module, ARConv, and CAAFT
further increased the recall, F;-score, mAP50, and mAP50-95, with
no change in the number of parameters, model size, or Giga
Floating-point Operations Per Second (GFLOPs).

In general, these model enhancements were beneficial in
addressing challenges under strong light and frontlight conditions
and were effective in mitigating class imbalance issues.
Furthermore, the Squeeze-and-Excitation networks and Attention
Free Transformer contributed to model performance and resistance

TFS

LFS

XC11

MX

MK

HGY

- Precision
—— Recall FY6
—— mAP50 ZHDB
FIGURE 8
The performance of TflosYOLO model on 31 additional test sets.
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The correlation between the predicted flower count by TflosYOLO and the actual flower count. (A) The linear regression between the predicted
flower count and the actual flower count (from labeled data). (B) The flower quantity comparison between the predicted flower quantity and actual

flower quantity levels from traditional manual surveys.

to background noise. Adaptive Rectangular Convolution enhances
feature extraction for objects of varying sizes.

3.1.5 Comparative performance of YOLO
algorithms for tea flower detection

To compare the performance of the TflosYOLO model with
other YOLO algorithms, we evaluated the Faster RCNN, YOLOv5
(n/s/m/l/x), YOLOV7 (yolov7-tiny/yolov7/yolov7x), and YOLOv8
(n/s/m/l/x) models based on a validation dataset. We trained the
models using the same parameters, and the results are summarized
in Table 6. Compared to Faster RCNN, YOLOv5, YOLOv7, and
YOLOVS8, TflosYOLO performed better in detecting tea flowers,
achieving higher precision, recall, and mAP50-95 while requiring
fewer computational resources. The table presents the average
detection performance for the three classes: buds, blooming
flowers, and withered flowers.

3.2 Evaluation of the Tea Flowering Stage
Classification model

The TESC based on ANNs achieved an accuracy of 0.738 and
0.899 on the validation dataset and test dataset, respectively. The
confusion matrix (Figure 10) indicates that the classification of the

TABLE 5 The evaluation result of the ablation experiment.

flowering stages is prone to misclassification between adjacent
stages. Specifically, there is frequent confusion between the EFS,
MFS, and LFS, as the agricultural dataset contains a large number of
intermediate periods and intermediate-type samples.

3.3 Application of the TflosYOLO+TFSC
model in flower count and flowering
period estimation

The TflosYOLO+TFSC model was used to perform dynamic
flower counting and flowering period estimation. A time-series
dataset constructed for observing tea flowering dynamics was used,
including 29 tea accessions and five flowering stages in 2023-2024.
The composition of this dataset is summarized in Supplementary
Table S4. The tea flowering observation dataset contained a total of
5,029 and 4345 images in 2023 and 2024, respectively.

3.3.1 Monitoring of tea flowering dynamics with
flowering stage information

Using time-series images of 29 tea accessions in 2023, 2024, and
the TflosYOLO + TFSC model, we monitored the flowering
dynamics and tracked the changes in flowering stages. The
reference for flowering dynamics visualization is shown in

Precision F,-score mAP50
YOLOv5m 0.759 0.685 0.720 0.760
YOLOv5+ARConv  0.786 0.704 0.743 0.791
YOLOV5+SE 0.797 0.701 0.746 0.795
YOLOV5+CAAFT  0.806 0.700 0.749 0.795
TflosYOLO 0.799 0716 0.755 0.799
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mAP50-95 Params/M = Model_size/M = GFLOPs
0.499 209 402 47.9
0.485 13.9 28.1 32.7
0478 6.7 13.0 15.5
0.482 19.7 38.1 38.1
0.481 17.9 345 35.9
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TABLE 6 Comparison of Faster RCNN, YOLOvV5, YOLOv7, and YOLOv8 model performance.

Precision Recall F1-score mAP50 mAP50-95 Params/M Model_size/M GFLOPs

Faster RCNN | 0.521 0.687 0.590 0.645 0.489 137.1 523.0 370.2
YOLOv5n 0.764 0.663 0.710 0.738 0.441 1.8 3.68 4.1
YOLOVv5s 0.778 0.683 0.727 0.764 0.459 7.0 13.7 15.8
YOLOV5m 0.759 0.685 0.720 0.760 0.499 20.9 40.2 479
YOLOV5! 0.819 0.669 0.736 0.748 0.481 46.1 88.5 107.7
YOLOV5x 0.770 0.725 0.747 0.779 0.526 86.2 165 203.8
YOLOv8n 0.740 0.653 0.694 0.734 0.452 3.0 6.2 8.1
YOLOVvSs 0.752 0.679 0.714 0.752 0.468 111 225 284
YOLOv8m 0.734 0.682 0.707 0.750 0.461 25.8 52.0 787
YOLOVSL 0.737 0.665 0.699 0.743 0.454 436 250 164.8
YOLOv8x 0.745 0.673 0.707 0.735 0458 68.1 136.7 257.4
YOLOv7tiny | 0.762 0.687 0.723 0.748 0455 6.0 123 13.2
YOLOV? 0.761 0.720 0.740 0.778 0.490 372 74.8 105.1
YOLOv7x 0.726 0.701 0713 0.744 0452 70.8 142.1 188.9
TflosYOLO 0.799 0.716 0.755 0.799 0.481 17.9 345 359

Figure 11. The tea flowering dynamics of other tea accessions in
2023 and 2024 are provided in Supplementary Figure S8 and
Figures 9, 10. The flowering dynamics of different tea accessions
exhibited distinct differences. In 2024, the flowering period of tea
plants was generally later than that in 2023. Moreover, based on the
results, the relatively early or late flowering of tea accessions is
summarized in Supplementary Table S6. With the exception of
BHZ, the flowering stages predicted by the model aligned with those
recorded manually.

3.3.2 Estimation of flower quantity across
different tea accessions, years, and managements

In this study, TflosYOLO was used to provide flower quantity
data for each accession. The analysis and comparison of flower
quantities across accessions were performed using data from the
2023-2024 PFSs (Figure 12A). Significant variability in flower
quantity was observed across different tea accessions, and the
flower quantity of the same accessions in 2023 and 2024 was
relatively stable.

Confusion Matrix
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FIGURE 11
Tea flowering dynamics and flowering period information for two accessions in November—December 2023 and October—December 2024. (A)
DMB in 2023. (B) DMB in 2024. (C) HJG in 2023. (D) HJG in 2024.

To further validate the robustness and reliability of the model,  separately, the flower quantity of two selected accessions was
flower quantity under backlighting (BL) and frontlighting (FL)  analyzed and shown in Figure 13, and data of accessions from
conditions was compared (Figures 12B, C). The flower quantities  other provinces are provided in Supplementary Figure S11.
under backlighting and frontlighting for the same tea plants were The flower quantity during different flowering stages varies
similar, with no significant differences (p-value > 0.05). The results  significantly. For most tea accessions, they did not show significant
indicate that the TflosYOLO model demonstrated stable performance  differences in flower quantity between the three PESs (EFS, MFS,
under both lighting conditions, unaffected by lighting variations. ~ and LFS), such as HJG (Figure 13D), but significant differences in
Additionally, a significant difference in flower quantity was observed ~ flower quantity were observed among IFS, EFS, and MFS. In this
between pruned and unpruned tea plants. The flower quantity of  case, conducting observations of flower quantity and flowering
both pruned and unpruned LJ43 tea plants was compared, and  period over only a short period of time is likely to lead to errors.
unpruned LJ43 plants exhibited significantly higher flower

quantities than the pruned ones, with a p-value < 0.01 (Figure 12D). 4 Discussion

3.3.3 Distribution of flower quantity across 4.1 Importance of datasets
different tea flowering stages
Furthermore, TflosYOLO was used to analyze the flower Agricultural datasets typically present challenges such as

quantity for each flowering stage (IFS, EFS, MFS, LFS, and TFS)  significant background noise and small object sizes, making the
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Estimation of flower quantity across different tea accessions, years, and managements. (A) Distribution of flower quantity across 29 accessions (2023
and 2024). (B) Flower quantity under frontlighting and backlighting conditions for tea plants from the same plot. (C) Flower quantity of Jin Xuan tea
plants under frontlighting and backlighting conditions. (D) Distribution of flower quantity of pruned/unpruned management LJ43.

model performance very different from the evaluations conducted
using datasets like COCO. For example, in this study, YOLOv5s
outperformed the more computationally intensive YOLOV5! x and
even YOLOVS. In the training and construction of deep learning
models, such as YOLO, the representativeness and diversity of the
dataset may be more crucial than improvements in the model
architecture. The performance of the model can vary significantly
across different accessions. Therefore, achieving good results on a
single dataset does not guarantee consistent performance across all
scenarios, and it is essential to test the model in different
environments and with different accessions. Moreover, we
validated the feasibility of employing the YOLOvV5 computer vision
model in complex field environments, demonstrating its applicability
across different tea varieties. This validation allows us to assess the
extent to which varietal differences influence model performance.
In this study, incorporating attention mechanisms such as SE,
CBAM, and CEA led to significant improvements in cases with
insufficient datasets, while their impact was less pronounced when
the dataset was sufficiently large. Moreover, the composition of the
dataset clearly affects the model performance. For instance, the
predictions for the PFS (including EFS, MFES, and LES) were the

Frontiers in Plant Science

15

most accurate, particularly for the LFS, while performance during
IFS and TFS was poorer. This is likely due to the training dataset
predominantly consisting of images from the PFS.

4.2 Class imbalance

Regarding the issue of class imbalance in the dataset, several
strategies were implemented to improve the overall performance of
the model: (1) data augmentation, (2) incorporation of various
attention mechanisms, and (3) expansion of the original dataset.
First, multiple image augmentation techniques built into YOLOv5
were adopted, including image HSV-Hue augmentation, image
HSV-Saturation augmentation, image HSV-Value augmentation,
image rotation, and image mosaic. These augmentations noticeably
enhanced model recognition performance compared with models
trained without augmentation. Additionally, the integration of
multiple attention mechanisms, such as the SE module used in
this study, also improved accuracy for underrepresented classes.

Furthermore, increasing the dataset size is a highly effective
strategy. When training with approximately 400 images, class
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Flower quantity data for different flowering stage (IFS, EFS, MFS, LFS, TFS) across 2 accessions in 2023 and 2024. (A) TGY 2023; (B) TGY 2024; (C)
HJG 2023; (D) HIG 2024. IFS, initial flowering stage; EFS, early peak flowering stage; MFS, mid peak flowering stage; LFS, late peak flowering stage;

TFS, terminal flowering stage.

imbalance resulted in significantly poorer detection performance
for the minority class, withered flowers, compared with buds.
However, after expanding the dataset to approximately 2,000
images, the performance gap between buds and withered flowers
was substantially reduced.

4.3 Consideration of agronomic
characteristics in quantifying different crop
traits

When quantifying agronomic traits in crops, it is essential to
account for specific agronomic characteristics. For example, tea
flower quantity is greatly influenced by light exposure, and there are
substantial variations in flower quantity across different tea plants
of the same row. Thus, it is important to collect a sufficient number
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of images from various locations within the field. Additionally, tea
accessions exhibit differences in morphology—ranging from small
trees to shrubs—and the significant image disparities between
pruned and naturally grown trees require models with high
generalization and robustness.

4.4 Influence of plant size and weather on
tea flower quantity

Flower quantity is strongly correlated with the size of the tea
plant. To compare flower quantities across different accessions, it is
important to ensure that the comparisons are made between plants
of similar size and management practices. Additionally, tea flower
quantity is influenced by weather conditions. Due to climatic
differences between 2023 and 2024, the flowering dynamics of the
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same accession varied significantly, and the flowering period was
generally later in 2024 than in 2023, as the extreme low
temperatures in November and December 2023 were lower than
those in November and December 2024. In the future, it would be
valuable to combine tea flowering data with meteorological data to
analyze the dynamics of tea plant flowering. Additionally, the
observed flower quantity is significantly affected by both the
flowering period and the timing of image acquisition.
Consequently, observations made over a short time frame may
not accurately reflect the true flowering dynamics.

4.5 Comparison with previous tea flower
studies

Although previous tea flower studies conducted by manual
survey involved fewer accessions, the overall flower quantity and
flowering stage align with our findings. For instance, the flower
quantity of accessions like MX and TGY was consistently high
across different studies, and HJG displayed relatively high quantity.

4.6 Limitation

Previous studies have shown that the flowering period of tea
plants can be influenced by regional climatic conditions. Therefore,
relying solely on data from Hangzhou lacks verification across
different regions and climatic environments, which limits the
generalizability of the TFSC model. Continued investigation in
this direction would be meaningful, as it could help further
evaluate the model’s robustness and generalizability under diverse
regional and climatic conditions.

5 Conclusions

This study proposed an effective framework for quantifying tea
flowering, comprising the TflosYOLO model and TFSC model.
Compared to traditional manual surveys and observations, this
framework is more efficient and accurate. The TflosYOLO model
demonstrates the ability to accurately detect tea flowers under
various conditions, including different tea accessions, flowering
stage, pruning practices, and lighting conditions. Its high
robustness and generalization capability render it the only model
currently suitable for detecting and counting tea flowers, achieving
state-of-the-art (SOTA) performance in this domain. Additionally,
the TFSC model consistently demonstrates an accuracy exceeding
0.73 across different years, indicating its high generalizability.
TflosYOLO, combined with the TFSC model, enables the accurate
estimation of flower count and flowering period across
different accessions.

Based on TflosYOLO combined with the TFSC model, we
found that there are differences in the flowering dynamics of
various tea accessions. Accessions that are genetically related tend
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to exhibit more similar flower quantities and blooming periods. The
flowering quantity and flowering period of the same accession can
vary between different years due to changes in climate and
management practices.
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