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CO, flux from farmland across
salinization gradients during
freeze—thaw periods under
winter irrigation

Fan Luo', Xinghong He®, Yiwei Chen*, Rui Gao*, Yuan Ma",
Shiyuan Liu®, Yao Guan™ and Yuying Ma**

!College of Hydraulic and Architectural Engineering, Tarim University, Xinjiang, China, ?College of
Water Conservancy Engineering, Tianjin Agricultural University, Tianjin, China

Introduction: Winter irrigation, as an effective agricultural practice, exerts
positive effects on spring-sown crops and is widely applied in Xinjiang, China.
Under the influence of seasonal freeze—thaw cycles, the mechanisms by which
winter irrigation affects farmland carbon emissions are of great significance for
both agricultural production and greenhouse gas emissions. Therefore,
conducting relevant research is extremely necessary.

Methods: A field plot experiment was conducted with three salinity gradient
levels. The flood irrigation and drip irrigation were applied during the non-
growing period following cotton harvest, with three irrigation amounts.

Results and discussion: The results indicated that as the soil froze and thawed,
CO, emissions exhibited a trend of initially decreasing and then increasing.
During the pre-freezing period, winter irrigation intensified salt accumulation
in the unfrozen zones, thereby restricting gas emissions. The rate of decline in
CO, fluxes increased with irrigation amount, and this effect became more
pronounced as soil salinity increased. In the high- and medium-salinity
treatments, irrigation significantly reduced CO, emissions, with the emissions
under the irrigation treatments being approximately half of those observed in the
control treatment. However, during the thawing period, the redistribution of soil
salt and moisture weakened the effect of irrigation and irrigation no longer had
no significant effect on CO, emissions. The soil salinity became the only
influential factor. Moreover, since CO, emissions during the thawing period
were much higher than those during the pre-freezing period, the overall effect of
winter irrigation on CO, emissions across the entire freeze—thaw cycle was not
significant. From the perspective of carbon sequestration and emission
reduction, winter irrigation is a neutral agricultural practice, neither reducing
carbon emissions nor increasing the risk of carbon release.
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1 Introduction

Carbon emissions, as a key pathway of soil organic carbon
consumption, are pivotal not only for maintaining agricultural
productivity but also for driving global climate change (Lal, 2003;
Wu et al,, 2025). Located in arid and semi-arid regions, Xinjiang
experiences uneven soil moisture distribution and strong
temperature fluctuations during spring and autumn, leading to
seasonal frozen soil. The transformation between liquid and solid
phases of water during freeze-thaw cycle leads to the breakdown of
soil aggregates (Liu et al., 2023a), which can modify soil porosity
and influence the efficiency of gas exchange (Han et al.,, 2018; Sun
et al,, 2021). In addition, freeze-thaw processes could modify the
redistribution of soil water and salts (Yang and Wang, 2019; Liu
et al., 2022a), and disturb soil microbial activity and community
structure (Skogland et al., 1988; Han et al., 2018). The individual
alterations of these factors, as well as their combined interactions,
can influence soil carbon emissions from farmlands (Snyder et al.,
2009; Wu et al., 2014; Han et al., 2018; Yang et al., 2023b, Yang et al.,
2023d). Moreover, under freeze-thaw conditions, variations in soil
temperature can affect water soil water-salt regulation but also affect
enzyme activity (Liu et al., 2017), thereby impacting the carbon
emission dynamics (Wu and Shen, 2010; Meijide et al,, 2017; Yang
et al., 2023¢; Li et al,, 2025a). Under the unique climatic conditions
of Xinjiang, freeze-thaw action have a particularly significant effect
on soil carbon emissions. Therefore, understanding the impact of
freeze-thaw action on soil carbon emissions is essential, not only for
maintaining soil health and crop productivity but also for
mitigating global greenhouse gas emissions.

Moreover, salinity in the soil can influence the activity of certain
microorganisms, and alter the volume of organic matter decomposition
(Wichern et al,, 2006; Rath and Rousk, 2015). The high salinity reduces
the osmotic potential of the soil solution, thereby inhibiting microbial
activity and slowing the decomposition of organic matter, which
ultimately affects CO, emissions (Yuan et al., 2007; Haj-Amor et al,
2022). However, in certain regions of Xinjiang, soil salinization is
widespread. Elevated salt concentrations may deteriorate soil
structure, affect freeze-thaw processes, and consequently change soil
water movement dynamics (Fu et al., 2018; Liu et al., 2022a, Liu et al,,
2023b; Tan et al,, 2023; Yu et al., 2024; Zhang et al., 2024). The Xinjiang
region is characterized by extensive and severe soil salinization. Effective
control of irrigation water input is not only essential for the remediation
of saline-alkali soils, but also critical for regulating soil moisture and
thermal regimes during freeze-thaw cycles (Kurganova et al., 2007).

Following the autumn harvest in Xinjiang, the flood irrigation is
implemented in agricultural fields (He et al., 2016; Qian et al., 2021).
This conventional approach to saline-alkali land management
facilitates salt leaching into deeper soil profiles, which helps to
maintain favorable germination rates for crops sown in the
subsequent spring (Liu et al., 2022b). Moreover, it contributes to
the replenishment of deep soil moisture. This non-growing season
irrigation, known as winter irrigation, involves a single application
of water that exceeds one-third of the total annual irrigation quota
(Wu et al, 2020). While winter irrigation serves as an effective
approach to ameliorating saline-alkali soils, flood irrigation
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practices may elevate the risk of soil erosion (Cerda et al., 2021),
reduce soil quality, and ultimately threaten food security. In
addition, flood irrigation can damage the surface soil structure,
resulting in non-uniform water infiltration. With the widespread
adoption of drip irrigation technology, some regions in Xinjiang
have begun using drip irrigation for winter irrigation (Feng et al,
2021). Compared with traditional flood irrigation, drip irrigation
offers substantially improved controllability and precision (Hou
et al,, 2025). Irrigation methods have been shown to significantly
influence soil water distribution and gas exchange volumes (Linn
and Doran, 1984; Wong et al., 2010; Chen et al., 2016; Yang et al.,
2023a). Moderate irrigation can alleviate water and salt stress,
enhance soil gas exchange efficiency (Chen et al., 2015; Hou et al,,
2019; Wang et al., 2019; Gao et al,, 2021). The fluctuations in soil
moisture may affect microbial community activity, altering the
decomposition of organic matter (Wang and Xu, 2018; Min et al,,
2023). Moreover, different irrigation methods result in varying soil
desalination efficiencies, which in turn cause heterogeneity in salt
distribution (Wang et al., 2024). This could potentially affect
microbial activity and, in turn, alter carbon emission processes in
agricultural soils (Wei et al., 2016; Liang et al., 2021).

From the perspective of agricultural production, the magnitude
and rate of carbon emissions serve as key indicators of the carbon
balance in agricultural production systems (Lockhart et al., 2023).
Carbon dioxide (CO,) and methane (CH,) are the predominant
pathways of soil carbon emissions (Wu et al., 2014; Yang et al,
2023b). They are strongly influenced by oxygen availability (Min
et al., 2023; Arunrat et al., 2025). Under well-aerated conditions in
dryland fields, carbon loss from farmland occurred primarily in the
form of CO,. Although many studies have examined the effects of
irrigation, freeze—thaw processes, and soil salinity on CO, emissions
from farmland (Badewa et al., 2022; Haj-Amor et al., 2022; Liu et al.,
2022a), research on their combined effects remains limited. Under
the unique climatic conditions of Xinjiang, the effect of winter
irrigation on water and salt distribution in farmland may lead to soil
carbon emission patterns that differ from those during non-freeze-
thaw periods. Given the scarcity of related studies in Xinjiang, it is
of great significance to investigate the effect of winter irrigation on
carbon emissions during freeze—thaw cycles in this region. In order
to understand the influence of winter irrigation on CO, emissions
from salinized farmland subjected to freeze-thaw action, the
following researches were carried out: i) to measure the CO,
emission processes under different experimental conditions; ii) to
analyze the effects of seasonal freeze-thaw cycles, winter irrigation,
and soil salinity on CO, emissions.

2 Method and materials
2.1 Experimental area

The experiment was conducted at the water-saving irrigation
experimental base of the College of Hydraulic and Architectural

Engineering, Tarim University, located in Aral City, Xinjiang Uygur
Autonomous Region, China. The experimental area is situated at 81°17’
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E longitude and 40°32" N latitude, and it has a temperate continental
climate characterized by low precipitation, and strong surface
evaporation. The average annual precipitation ranges from 40.1 to
82.5 mm, while the average annual evaporation ranges from 1876.6 to
25589 mm. The multi-year average temperature in winter is -4.1°C,
with an extreme low of -15°C. The region undergoes seasonal soil
freezing but is not characterized by permafrost. Figure 1 illustrates the
variations in soil and air temperatures during the freeze-thaw period.

2.2 Soil characteristics

The soils in the study area were classified as clay loam,
composed of 33.4% clay (< 0.002 mm), 44.2% silt (0.002 to 0.05
mm), and 22.4% sand (0.05 to 2 mm). The bulk density of the
farmland soil was measured in situ using a cutting ring, and the
value was determined to be 1.35 g cm ™. The field capacity of the soil
in experimental farmland was 28.4% (v/v). Additionally, the soil pH
was approximately 8.3 and the content of soil organic carbon was
14.28 g kg''. Before irrigation, soil samples were collected from
different layers (0-20, 20-40, 40-60 cm) in the experimental field,
and the average electrical conductivity of each soil layer was
subsequently determined. Soil solutions were prepared at a soil-
to-distilled water ratio of 1:5, with the mixtures thoroughly shaken
and then allowed to stand. The average electrical conductivity
(EC;.5) of each soil layer was subsequently determined using the
supernatant. The experimental area was divided into three salinity
gradients: T; (2.0-3.0 dS m’, low salinity), T, (3.0-3.9 dS m’,
medium salinity), and T; (4.5-6.5 dS m™', high salinity).

2.3 Experimental methods

In this study, after the cotton was harvested in the experimental
field, winter irrigation was carried out using two irrigation methods.
The irrigation water used in the experiment was tap water processed
by the water treatment plant, which avoided the introduction of

10.3389/fpls.2025.1690189

excessive additional salts. Alongside traditional flood irrigation,
drip irrigation with enhanced water management capabilities was
implemented, namely drip irrigation and flood irrigation. The
irrigation amounts were set at three levels: 0, 120 and 240 mm.
Among them, the 0 mm treatment served as the blank control.
Among them, W; represents the commonly used water amount for
winter irrigation. Each experimental plot measured 4 m x 4 m, with
a total area of 16 m>. Plots were separated by plastic film buried to a
depth of 60 cm, and earthen ridges were constructed aboveground.
Drip irrigation was implemented using 40 mm-diameter PVC drip
pipes, each connected to three drip tapes within each plot. To
minimize the influence of spatial heterogeneity, the experiment was
conducted in a randomized complete block design with three
replications per treatment, evenly distributed along the soil
salinity gradient. All plots were situated at a uniform elevation
and shared the same diluvial parent material. The experimental
treatments are summarized in Table 1.

2.4 Data collection and analysis

Data were collected from early November 2023 to early April
2024 using the static chamber-gas chromatography method. After
cotton harvesting was completed in late October 2023, stainless steel
bases (50 cm x 50 cm x 20 cm) with a 1 cm deep and 1 cm wide
groove on the top edge were installed in experimental zone. During
sampling, a stainless-steel chamber (50 cm x 50 cm % 50 cm) was
placed into the groove, and the groove was filled with water to
ensure an airtight seal. The outer surface of the chamber was
wrapped with aluminum foil and sponge to minimize the
influence of ambient temperature on internal gas concentration.
Each chamber was equipped with a small fan on the top to ensure
uniform air mixing during sampling, and a thermometer to monitor
and record the internal temperature.

Gas sampling was carried out from the pre-freezing to the
thawing period, between 11:00 a.m. and 1:00 p.m. on each sampling
day. At each sampling event, the gas was extracted using a 50 mL

30 -
— m- Highest Temperature — v- - Minimum Temperature —®— Soil Temperature -
/
20 r-"
n
~ / of
ATINL S S . a4
o \ ‘m—N, - . { .',./ v
2 \ \. ('R =, Vi ‘m. s (’. g
5 ~e - et TS - N v
5] —e & e " - 4
o 0fF -9 o - - o - o 5
g A ° o & o L A & v
o N —0—e—o_ L 4 ’ v
£ v—y. - v AR /.
T V4R S V/ ¥ .y
-10 N A -
. ¥ ¥ ~o. . w. /
(R \ g v-v N v
20 L 1 1 1 1 1 1 1
2023/11/6 2023/11/26 2023/12/16 2024/1/5 2024/1/25 2024/2/14 2024/3/5 2024/3/25
FIGURE 1
Soil and air temperature trends during seasonal freezing and thawing.
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TABLE 1 Abbreviations of each experimental treatment.

Salinity gradient = Irrigation method Irrigation amount

T, Low G, Flood irrigation W, 0
T, Medium G, Drip irrigation W, 120 mm
Ts High W; 240 mm

syringe and injected into an aluminum foil gas sampling bag
equipped with a single-metal valve. Subsequent gas samples were
collected at 10-minute intervals, for a total of six samples per event.
After each sampling event, all collected gas samples were promptly
brought back to the laboratory for analysis using a gas
chromatograph. The gas emission fluxes were calculated using
Equation 1.

273 Ac

F=ph ot &

1)

where F is the gas emission flux, mg-m>h’'; p is the gas density
under standard conditions, mg-m™; i is the chamber height, m; T'is
the average centigrade temperature inside the chamber; Ac/At is the
rate of change in gas concentration during the sampling period.

2.5 Division of the experimental period

Based on historical meteorological data from the Aral City of
Xinjiang, the pre-freezing period was defined as the interval from
the first occurrence of daily minimum temperatures falling below 0°
C to the point when daily maximum temperatures remained below
0°C (November 16 to December 12, 2023). The thawing period was
defined as the interval from the first occurrence of daily maximum
temperatures rising above 0°C to the complete thawing of the soil
(February 17 to April 1, 2024). The interval between the pre-
freezing period and the thawing period is referred to as the
freezing period (December 13, 2023 to February 16, 2024).
Continuous monitoring of gas emissions was conducted during
the pre-freezing period and the thawing period, with soil CO, flux
measured every three days. However, no measurements were
conducted during the freezing period.

2.6 Measurement and analysis

Soil moisture and temperature were measured during the entire
freeze—thaw period. At each measurement event, the mean soil
moisture and temperature within the top 20 cm of the soil profile
were measured using soil moisture and temperature sensors. The
soil moisture sensors are based on conductivity conversion. To
minimize the impact of soil salinity on measurement accuracy, the
sensors were calibrated in the laboratory before being installed at
the predetermined measurement sites. In addition, soil moisture
content was expressed as volumetric water content. Meteorological
data for the experimental area were provided by the Aral
Meteorological Bureau.
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2.7 Data processing and statistical analysis

Statistical significance was assessed using SPSS 26.0, and
differences among treatments were evaluated using the least
significant difference (LSD) method at a significance level of
P<0.05. Pearson correlation analysis was employed to examine
the relationships between cumulative CO, emission fluxes and
environmental factors. All figures were generated using
Origin 2022.

3 Results

3.1 Soil liquid water content during
seasonal freeze-thaw action

During seasonal freeze—thaw periods, soil water typically existed
in both liquid and frozen forms. In this study, the soil moisture
recorded by the sensors was more indicative of the liquid water
content within the soil, which did not exceed the actual soil moisture
content. The measurement results were shown in Figure 2. It should
be noted that during pre-freezing period, liquid water gradually
transformed into solid ice. As air temperature decreased and soil
freezing progressed, the liquid water content steadily declined. By the
freezing period, the soil water had largely transitioned into the frozen
state and the liquid water content dropped to a very low level.
Subsequently, as the air temperature rose, the frozen water gradually
melted, and the liquid water content increased progressively. By late
March to early April, the frozen soil had completely thawed, and the
liquid water content reached its maximum value. At this point, the
frozen soil water completely melted, converting into liquid water.
Overall, the measured liquid water content exhibited a trend
consistent with soil temperature fluctuations and was strongly
influenced by freeze-thaw processes.

3.2 Soil CO, emission variation under
different experimental conditions

3.2.1 The pre-freezing period

During the pre-freezing period, the CO, emission flux showed a
declining trend over time, with the rate of decline accelerating as
irrigation amount increased (Figure 3). The W, treatment
experienced the slowest decrease in CO, flux, requiring the
longest duration to reach the minimum emission level. The CO,
fluxes were strongly influenced by irrigation amount in the T, and
T; treatments, whereas this effect was relatively minor in the T,
treatment. However, under irrigation treatments, no significant
differences were observed in the CO, fluxes between different
irrigation methods or irrigation amounts. In addition, throughout
the entire pre-freezing period, the CO, flux in the T, treatment was
substantially higher than those in the T, and T; treatments.

The cumulative CO, emissions during the pre-freezing period were
shown in Figure 4. For the T, treatment, the cumulative CO, emissions
under the W, G;W,, G;W3, G,W, and G, W3 treatments were 799.2,
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FIGURE 2

Measured soil liquid water content during the freeze—thaw period. (a) G1Ty, (b) G1To, (€) G1Ts, (d) G,Ty, (€) G,To, (f) GoTs.

9245, 893.3, 924.5 and 893.3 kg~hm’2, respectively. Similarly, for the T,
treatment, the cumulative CO, emissions were 396.7, 224.5, 198.0,
205.9 and 138.9 kg-hm’z, respectively. For the T; treatment, the
cumulative CO, emissions were 341.8, 195.5, 216.9, 174.8 and 126.9
kg'hm™, respectively. The results indicated that CO, emissions
increased as soil salinity decreased, and that high salinity exerted a
strong suppressive effect on carbon emissions from farmland soils.
Moreover, for both T; and T, conditions, cumulative CO, emissions
were significantly reduced in W, and W3 compared to W, suggesting
that winter irrigation played a role in mitigating CO, release from the
farmland with high salinity. However, for the T; treatment, cumulative
CO, emissions did not differ significantly between irrigated and non-
irrigated plots, indicating that winter irrigation had no effect on CO,
emissions from the farmland with low salinity.

3.2.2 The thawing period

The Figure 3 illustrated the dynamic changes in CO, fluxes
throughout the freezing period. With increasing temperature and the
gradual thawing of the soil, CO, was gradually released from all
experimental plots. The onset time of CO, release under the T,
treatment was earlier than those under the other two treatments.
Consequently, in the initial phase of soil thawing, the CO, fluxes in
the T, treatment were higher than those in the T, and Tj treatments.
Once the CO, emissions began in the T, and T; plots, their emission
fluxes increased rapidly, narrowing the difference with the T treatment.
However, no notable differences in CO, fluxes were observed among the
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different irrigation amounts. This indicated that autumn irrigation did
not affect CO, fluxes from the farmland during the thawing period.
During the thawing period, CO, emissions increased significantly
as the soil thawed. Additionally, a close relationship was observed
between CO, emissions and soil salinity. Before early March, the CO,
emission flux from the T, treatment were higher than those from the
other two treatments. From early March to mid-March, the differences
in CO, emission flux across different salinity treatments were rapidly
diminishing. In the final stage of the freezing period, CO, fluxes across
the three soil salinity gradients showed only minor differences.
Furthermore, the cumulative CO, emissions throughout the thawing
period in the T treatment were much greater than those observed in
the T, and T treatments (Figure 5). However, there was no significant
difference in cumulative CO, emissions between T, and T,.
Considering the changes in CO, emission fluxes during the freezing
period, it was evident that the combined effects of freeze-thaw cycles
and soil salinity exerted a substantial influence on gas emission
processes. Additionally, neither the irrigation amount nor the
irrigation method significantly affected gas emissions during this stage.

3.3 Cumulative CO, emissions over the
entire soil freeze-thaw period

The cumulative CO, emissions over the entire soil freeze-thaw
period under different experimental conditions were shown in
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Figure 6. The results indicated that soil salinity significantly
influenced the cumulative CO, emissions over the freeze-thaw
period, while neither irrigation method nor irrigation amounts
had a significant impact. For the T treatment, cumulative CO,
emissions ranged from 1009.0 to 1203.1 kg-hm™ under different
irrigation methods and volumes. For T, cumulative CO, emissions
ranged from 1094.5 to 1340.5 kghm™. In comparison, the T,
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treatment showed the highest cumulative CO, emissions, ranging
from 2592.2 to 2845.7 kg-hm > under the same irrigation conditions.
The cumulative CO, emissions under the T, treatment were
approximately 2.5 times higher than those under the T, or T;
treatments. From T; to T,, CO, emissions decreased with
increasing soil salinity, whereas no significant difference was
observed between T, and Tj;. This observation suggests a
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Cumulative CO, emission over the entire soil freeze—thaw period. The different lowercase letters indicated significant differences at the p < 0.05 level.

potential threshold between T; and T,, but verification requires
experiments with more salinity gradients. Considering solely the
objective of carbon sequestration and emission mitigation over the
freeze-thaw period, high soil salinity was advantageous
for farmland.

As shown in Table 2, cumulative CO, emission fluxes were
positively correlated with soil liquid water content, with correlation
coefficients ranging from 0.035 to 0.852. A similar positive
correlation was observed between CO, emissions and soil liquid
water content, with coefficients ranging from 0.395 to 0.853. The
soil liquid water content was strongly influenced by freeze—thaw
processes, decreasing progressively as the soil froze and increasing
again as the soil thawed. Therefore, soil liquid water content and
soil temperature exhibited synchronous variations during the
freeze-thaw process. Their effects on CO, emission dynamics
were consistent, both contributing to the observed seasonal
pattern of CO, fluxes. Considering that soil temperature could
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serve as the driving factor for changes in soil liquid water content
and was more readily measurable, it might be regarded as the main
factor influencing CO, emission fluxes.

4 Discussions

4.1 Impact of winter irrigation on soil CO,
emissions

Soil water is an essential condition for microbial activity.
Irrigation amount and method significantly influence soil physical
properties, microbial community structure, and their physiological
activities by regulating soil moisture and thermal conditions
(Marton et al., 2012; Kontopoulou et al., 2015; Hou et al., 2019;
Yang et al., 2023a), thereby altering the soil CO, emission processes
(Skogland et al., 1988; Wang et al., 2019). During non-freeze—thaw

frontiersin.org


https://doi.org/10.3389/fpls.2025.1690189
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Luo et al.

TABLE 2 Correlation coefficients between soil CO, emissions and soil
temperature and soil liquid water content under different treatments.

Treatment Water content = Soil liquid water content

T, W, 0.852** 0.649**
T,G/W, 0.431% 0.675*
TiGiWs 0.769** 0.712%
TiG,W, 0.603* 0.719%
TG, W5 0.036 0.797+

T,W, 0.815% 0.556
TG/ W, 0.723** 0.448
T,G W, 0.657* 0.408
T,G, W, 0.572 0.636*
T,G,Ws 0.288 0.395

TsW, 0.035 0.777+
T5G W, 0.634* 0.729%
T:G/W, 0.682* 0.767+
T3G, W, 0.784* 0.853*
T5G, W, 0.208 0.803**

** indicates significance at the 0.01 level, and * indicates significance at the 0.05 level.

periods, increasing soil moisture through irrigation can promote
CO, emissions from the soil (Zou et al., 2014; Chi et al., 2017; Yang
et al, 2023c). Nevertheless, it is noteworthy that following winter
irrigation, ambient air temperature steadily declined, eventually
dropping below 0 °C. The surface of irrigated plots was more prone
to ice formation because their higher surface soil moisture,
compared to non-irrigated plots, promoted ice crystallization
(Boike et al., 1998; Wu et al, 2017). The developed ice crystals
tend to seal surface pores, restricting gas exchange. Furthermore,
during the freezing process, pure water in saline soil freezes first,
causing salts to concentrate in the remaining unfrozen liquid water
(Liu et al,, 2022a; Yu et al,, 2024). Although irrigation can leach
most surface salts into deeper soil layers, salt accumulation in the
unfrozen water still leads to the formation of high salinity zones in
the surface soil. The localized secondary salinization within soil can
reduce osmotic potential, inhibiting microbial growth and enzyme
activity, which in turn suppresses organic matter decomposition
and CO, emissions (Rath and Rousk, 2015; Yu et al., 2020; Haj-
Amor et al., 2022). Therefore, CO, emission fluxes in the irrigated
plots decreased to minimal levels more rapidly compared to the
non-irrigated plots (Figure 4). Overall, salt leaching through
irrigation reduced surface soil salinity and thereby promoted CO,
emissions; however, irrigation also intensified the freezing of surface
soil water, leading to localized secondary salinization that inhibited
CO, emissions. The combined effects of these two driving factors
determined the soil gas emissions in farmland during the pre-
freezing period. For the T, and T treatments, the inhibitory effect
of localized secondary salinization was dominant, resulting in
significantly lower CO, emissions in the irrigated plots compared
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to the non-irrigated controls. For the low-salinity T, treatment, the
promoting effect of salt leaching was counteracted by the inhibitory
effect of localized secondary salinization, resulting in no significant
difference in cumulative CO, emissions between the irrigated and
non-irrigated plots.

In this study, only a single irrigation event was conducted before
the freeze-thaw cycles, with no further irrigation applied thereafter.
The freeze-thaw cycles can facilitate the upward migration of soil
moisture and salts from deeper layers to the surface (Wang et al,
2023; Luo et al., 2024). The upward translocation of salts reduces
the effectiveness of irrigation-induced leaching. Consequently, the
irrigation did not have a significant effect on CO, emissions during
the thawing phase. Overall, irrigation affected soil CO, fluxes
markedly before full soil freezing, but showed a gradually
diminishing influence during soil thawing. The water volume
used in winter irrigation is substantially greater than the
irrigation quota for a single application in the growing season.
Despite the large differences in irrigation amounts applied in this
study, both treatments can be classified as excessive irrigation. Both
irrigation amounts elevate the soil moisture content within a certain
depth of the surface layer to near saturation. Therefore, during the
soil freezing process, the localized secondary salinization in the soil
exhibited minimal differences between the two irrigation amounts.
The irrigation amounts applied have no significant effect on CO,
emissions throughout the freeze—thaw process.

4.2 Soil CO, emission trends during the
freeze-thaw period

The influence of temperature changes within freeze-thaw periods
on soil CO, emissions is significant and warrants attention. Soil CO,
emissions primarily originate from soil respiration and microbial
decomposition processes (Lei et al., 2021). As temperatures rise, soil
respiration intensifies, resulting in a notable increase in cumulative
CO, emissions; conversely, lower temperatures restrict CO,
emissions. Correlation analysis in our study further confirmed a
positive relationship between soil temperature and cumulative CO,
emissions, indicating the key regulatory role of temperature in
regulating CO, fluxes dynamics, consistent with previous findings
(Ray et al.,, 2020; Kitamura et al., 2021).

During the freezing period, soil temperature reaches its
minimum, and the low temperatures restrict microbial activity
(Wu and Shen, 2010; Protti-Sanchez et al., 2025). As the soil
freezes, the decrease in liquid water content limits the water
available for microbial metabolism. Furthermore, ice formation
blocks soil pores and surface micro-fissures, thereby impeding gas
exchange. Together, these factors substantially reduce CO,
emissions (Tilston et al., 2010; Badewa et al., 2022; Francioni
et al., 2025). Across the full freeze-thaw cycle, CO, emissions in
the freezing period remained far lower than those observed during
the pre-freezing and thawing periods. Although CO, emissions in
the freezing period were excluded from the cumulative total, their
effect on the overall results is negligible.
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In this study, cumulative CO, emissions during the thawing
period were significantly higher than those observed during the pre-
freezing period, aligning with the findings of Wagner and Pfeiffer
(1997), who emphasized that the content and mineralization rate of
soil carbon and nitrogen substrates govern CO, emission intensity.
Moreover, Sharma et al. (2006) reported that freeze-thaw processes
can disrupt soil aggregates, releasing large amounts of labile organic
carbon for microbial utilization and accelerating organic matter
mineralization. Physical damage to frozen soils during the freezing
period can cause root cell rupture and death, providing a substantial
carbon source, which likely accounts for the higher CO, emissions
during thawing. Furthermore, Herrmann and Witter (2002)
demonstrated that freeze-thaw processes not only lead to
microbial cell death but also increase the availability of nutrients
such as carbon, supplying surviving microorganisms with abundant
substrates and thereby further promoting CO, emissions. As
observed in previous studies, cumulative soil CO, emission fluxes
remained low before soil freezing and exhibited a sharp increase
during the thawing period.

Freeze-thaw cycles modify the dynamics of water, salt, and heat
movement in soils (Qin et al., 2021; Wang et al., 2022; Li et al,
2025b), which can affect soil CO, emissions. This largely results in
CO, emission mechanisms that differ from those during non-
freeze—thaw periods. For instance, in the freezing phase, water
and salts migrate upward toward the freezing front, causing
surface salt accumulation and widening the high-salinity zone. In
the thawing phase, a secondary upward migration peak further
modifies the soil salinity distribution. In addition, soils with
different salinity levels also exhibited distinct behaviors during
freeze-thaw cycles. In treatments T, and T;, elevated soil salinity
resulted in a depressed freezing point and slower freezing rates
(Amankwah et al,, 2021). Nevertheless, salt exclusion from the
frozen zone was more pronounced, thereby increasing salinity in
the unfrozen soil (Baker and Osterkamp, 1989). As a result, the
differences in soil salinity profiles between these treatments and T,
became more pronounced. These disparities gradually decreased
during the soil thawing process. Furthermore, as temperature
increases, the sensitivity of CO, emissions to soil salinity
decreases (Yu et al., 2020). For this reason, the CO, fluxes in T,
and T; remained lower than those in T until complete soil thawing,
after which no significant differences in CO, fluxes were observed
among the salinity gradients. It is not appropriate to assess the
influences of temperature, soil moisture, and salinity on CO,
emissions independently during freeze-thaw periods. These
factors should be considered synergistically when assessing their
impact on CO, emissions.

Freeze-thaw cycles not only increase the complexity of CO,
emission mechanisms but also pose greater challenges for in situ
field monitoring. For example, existing measurement techniques are
not yet capable of accurately distinguishing between frozen and
unfrozen water in soils. This substantially constrains the analysis of
dynamic water and salt redistribution processes. The spatial
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heterogeneity of soil properties further increases the complexity
of CO, emission mechanisms and increases the difficulty of
analyzing results. Moreover, several inherent limitations of this
study should be acknowledged. First, the experiment was conducted
on a single soil texture, whereas soil texture is known to regulate
water and salt redistribution during irrigation leaching and freeze-
thaw processes, as well as microbial activity, all of which jointly
affect CO, emission dynamics. Future studies should therefore
consider multiple soil textures to evaluate their influence on CO,
fluxes. Second, the irrigation water used in this study was tap water,
while brackish or saline water is often applied in practice. Such
water quality differences may alter soil salinity dynamics and CO,
emissions. Future research should explicitly address this factor to
provide a more comprehensive understanding. Finally, the results
were derived from a single experimental year, and thus may not
capture interannual variability. Long-term or multi-year
monitoring is required to better characterize the variability and
trends of gas emissions from saline-alkali soils under freeze-
thaw conditions.

5 Conclusions

This study analyzed the characteristics of soil CO, emissions
from saline-alkaline farmland under different irrigation amounts
and methods during freeze-thaw action. The main conclusions are
as follows.

During the pre-freezing period, winter irrigation had an
influence on CO, emissions, especially in plots with high soil
salinity. The CO, emissions from irrigated plots with high salinity
were significantly lower than those from non-irrigated plots.
However, CO, emissions showed no significant relationship with
winter irrigation in low salinity plots. Once thawing began, the
differences in soil water and salinity conditions under different
irrigation treatments were minimal, resulting in no significant effect
of winter irrigation on CO, emissions. In addition, the influence of
soil salinity on CO, emissions persisted throughout most of the
freeze-thaw period, with CO, emissions under high salinity
significantly lower than those under low salinity. Following
freeze—thaw cycles, soil water and salt underwent redistribution,
resulting in a reduced effect of experimental treatments on CO,
fluxes during the later thawing phase. Based on the characteristics of
CO, flux and cumulative emissions, there appears to be a potential
salinity threshold between the T; and T, treatments.

This study found that under freeze-thaw conditions, winter
irrigation only reduced CO, emissions during the freezing period at
high salinity levels, and the reduction was limited. Over the full
freeze—thaw cycle, winter irrigation had no significant effect on
cumulative CO, emissions. Thus, from a carbon emission
perspective, winter irrigation has a relatively neutral impact on
CO, fluxes, with its primary benefits likely related to soil water—salt
regulation and improved cultivation conditions.
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