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Integrated metabolomic and
transcriptomic analyses reveal
that starch and sucrose
metabolism regulate maize
kernel hardness

Haiyu Zhou, Xiaodong Xie, Hexia Xie, Lanqgiu Qin, Yuxin Xie,
Xiang Yang, Bujin Zhou, Jingdan He, Bingwei Wang,
Chenggiao Shi, Juzhi Lv, Xianjie Tan, Jinguo Zhou,
Weidong Cheng* and Yufeng Jiang*

Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China

Maize kernel hardness, largely determined by the structural and compositional
characteristics of the endosperm, is a key trait affecting grain quality, milling
performance, and storage stability. Although vitreous and starchy endosperms
exhibit markedly different physical properties, the underlying metabolic and
transcriptional mechanisms—particularly the crosstalk between primary and
specialized metabolic pathways—remain insufficiently understood. In this study,
we conducted integrated metabolomic and transcriptomic analyses, along with
cytological observations, to investigate these mechanisms using two contrasting
maize inbred lines (D003, vitreous; DOOY, starchy) at three kernel developmental
stages (18, 25, and 32 days after pollination, DAP). Cytological examination revealed
that D003 endosperms comprise smaller, tightly packed cells containing polygonal
starch granules, whereas DO09 endosperms consist of larger, irregular cells with
loosely arranged spherical starch granules. Metabolomic profiling revealed
significantly higher levels of carotenoids—including carotenes (o-carotene, B-
carotene) and xanthophylls (zeaxanthin, lutein)—in D003 kernels across all stages,
implicating carotenoid biosynthesis in contributing to kernel hardness.
Transcriptomic analysis identified starch and sucrose metabolism as the most
significantly enriched pathway among differentially expressed genes (DEGs), with
qRT-PCR validation confirming the downregulation of a key sucrose synthase gene
(Zm00001eb313170). We propose a synergistic model in which transcriptional
regulation of starch and sucrose metabolism—particularly reduced sucrose
synthase activity—promotes the formation of a compact endosperm structure
characterized by polygonal starch granules, while enhanced carotenoid
accumulation reinforces cellular interfaces, collectively enhancing kernel hardness.
These findings offer novel molecular targets for breeding strategies aimed at
improving maize kernel quality.
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1 Introduction

Maize (Zea mays L.) is one of the most widely cultivated crops
worldwide. Its kernels serve as a major food source and constitute a
staple in the diets of millions across Latin America, Asia, and Africa
(West, 2002; Ranum et al., 2014). The mature maize kernel consists
of an embryo and a much larger endosperm, both encased by the
seed coat (Gibbon and Larkins, 2005). Kernel hardness,
predominantly governed by the structural and compositional
attributes of the endosperm, is a crucial trait affecting grain
quality, milling efficiency, and storage durability (Fox and
Manley, 2009). The endosperm comprises two distinct regions:
the vitreous (glassy) and the starchy endosperm (Gibbon and
Larkins, 2005; Wang et al., 2020). These regions differ markedly
in their physical properties, attributed to variations in protein
matrix continuity, starch granule compaction, and cell wall
architecture (Gerde et al,, 2017; Caballero-Rothar et al., 2019).
The vitreous endosperm, characterized by higher light
transmittance, elevated protein content, and densely packed
starch granules, imparts greater durability and resistance to
mechanical damage (Wang et al., 2012). However, the molecular
and metabolic bases of endosperm hardness remain incompletely
understood, particularly regarding the interactions between core
metabolic pathways that regulate this trait, and how their
coordinated actions at transcriptional and metabolic levels
determine the final kernel hardness.

Carotenoids, lipophilic pigments abundantly present in maize
kernels (Yin et al., 2024), serve essential roles as vitamin A
precursors, antioxidants, and immune modulators in human
nutrition (Eggersdorfer and Wyss, 2018; Watkins and Pogson,
2020). Notably, over 70% of kernel carotenoids accumulate in the
vitreous endosperm (Ndolo and Beta, 2013; Lozano-Alejo et al.,
2007), with distinct compositional profiles between vitreous (B-
branch: zeaxanthin, B-cryptoxanthin, -carotene) and starchy (o-
branch: lutein, o-cryptoxanthin, B-carotene) regions, influencing
both kernel flour color and texture (Kljak et al., 2014; Saenz et al.,
2020; Liand Van Eck, 2007; Saenz et al., 2021). Genetic studies have
linked carotenoid metabolism to kernel hardness regulation; for
example, Venl regulates B-carotene accumulation, which stabilizes
starch granule membranes and modulates protein-starch
interactions (Wang et al., 2020), while allelic variants of
ZmPTOX impact carotenoid biosynthesis (Yin et al., 2024).
Nonetheless, the interactions between carotenoid biosynthetic
pathways and primary carbon metabolism in determining kernel
hardness remain unexplored.

Starch and sucrose metabolism are central to maize kernel
development, providing carbon substrates essential for endosperm
filling. Starch biosynthesis involves a coordinated network of
enzymes, including ADP-glucose pyrophosphorylase (AGPase),
starch synthase (SS), and starch branching enzyme (SBE), all of
which influence endosperm structure (Jeon et al., 2010; Pfister and
Zeeman, 2016; Huang et al., 2021). Simultaneously, the cleavage of
sucrose by invertases and sucrose synthases yields hexoses that not
only serve as precursors for starch biosynthesis and specialized
metabolites but also act as signaling molecules regulating
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endosperm development (Yang et al.,, 2024, 2025). Recent studies
have partially elucidated the regulatory network underlying
endosperm filling, particularly the role of Opaque2, a central
transcription factor, in coordinating sugar signaling and abscisic
acid (ABA) pathways (Yang et al, 2021, 2022; Dai et al, 2021).
Furthermore, the interplay between sugar metabolism and other
pathways, such as carotenoid biosynthesis, is emerging as a key area
of interest (Villwock et al., 2024; Zhang et al., 2025). Despite this
progress, the contributions of dynamic starch and sucrose
metabolism to kernel development—especially their role in
determining endosperm hardness at both transcriptional and
metabolic levels and their potential crosstalk with specialized
metabolism like carotenoid biosynthesis—remain unclear.

Advancements in omics technologies now allow for
comprehensive analyses of complex plant traits (Lu et al., 2023;
Zeng et al., 2024). Metabolomics captures snapshots of metabolic
flux, while transcriptomics reveals the gene expression landscapes
associated with phenotypic variation (Xiao et al., 2024; Nie et al,
2024). While integrated multi-omics approaches have been
successfully applied to unravel regulatory networks in various
plant systems, few studies have focused on dissecting the
molecular basis of maize kernel hardness using such strategies,
particularly by simultaneously profiling transcriptional and
metabolic changes during key developmental stages. In this study,
we employed combined metabolomic and transcriptomic analyses
to investigate how starch and sucrose metabolism, along with
carotenoid accumulation, influence kernel hardness in maize. By
comparing two inbred lines (D003, vitreous; D009, starchy) across
key developmental stages, we identified differentially accumulated
metabolites (DAMs) and differentially expressed genes (DEGs)
associated with carbohydrate metabolism and carotenoid
biosynthesis. The primary objectives of this study were to 1)
characterize the cytological differences in endosperm structure
between vitreous and starchy kernels; 2) identify key metabolic
pathways, particularly starch and sucrose metabolism and
carotenoid biosynthesis, associated with kernel hardness through
integrated metabolomic and transcriptomic analyses; and 3)
validate the expression of candidate genes involved in these
pathways to elucidate their potential roles in regulating
endosperm texture. Our findings highlight key metabolic
pathways and regulatory genes involved in kernel texture,
providing valuable insights for the genetic enhancement of maize
grain quality through breeding and biotechnology.

2 Materials and methods
2.1 Plant materials

The maize inbred lines D003 and D009 were cultivated in the
field of the Maize Research Institute of Guangxi Academy of
Agricultural Sciences (22°61'N, 108°24’E) in 2024. The natural
cultivation environment of the field was used for conducting a
completely randomized block design with three replications. Each
row was 3 m long, and the distance between rows was 0.65 m. The
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planting density was approximately 71,800 plants per hectare (Zhou
etal., 2024). Fresh kernel samples were collected from 18, 25, and 32
days after pollination (DAP) for morphological tests, scanning
electron microscopy (SEM), paraffin sections, and physiological
and biochemical analyses. At the same time, samples from the same
period were rapidly frozen in liquid nitrogen for the next step of
metabolite and gene expression analysis.

2.2 Scanning electron microscopy

Fresh maize kernels were fixed in 2.5% glutaraldehyde,
vacuumed overnight, and stored at 4 °C for 3 days. The samples
were then dehydrated in a graded ethanol series: 30%, 50%, 70%,
80%, 90%, and 100%. Next, the samples were soaked in an isopentyl
acetate (C,H,40,):ethanol = 1:1 mixture for 10 min and then in
pure isopentyl acetate for 10 min. Then, they were dried at 37°C for
5 h, mounted on SEM stubs using conductive tape, sputter-coated
with 10-15 nm of gold layer, and imaged using a field-emission
SEM (FEI Quattro S) at 5 kV, based on a previously published
method (Xu et al., 2024).

2.3 Paraffin section

Fresh maize kernels were fixed in 2.5% glutaraldehyde,
vacuumed overnight, and stored at room temperature for 3 days.
A scalpel was used to smooth the target tissues in the fume hood,
and together with the corresponding label, the cut tissues were
placed into an embedding frame. The samples were then
dehydrated in an ethanol series: 75% alcohol for 4 h, 85% alcohol
for 2 h, 90% alcohol for 2 h, 95% alcohol for 1 h, and anhydrous
ethanol for 1 h. The samples were also dehydrated in alcohol
benzene for 10 min, cleared in xylene for 10 min, and infiltrated
in molten paraffin T at 65 °C for 1 h. Next, they were cooled in a —20
°C freezing platform. After the wax had solidified, the wax block was
removed from the embedding frame and repaired. The trimmed
wax block was placed into a paraffin slicer (LEICA RM2016) for
slicing with a thickness of 4 pm and imaged using a microscope
(ZEISS Scope.Al).

2.4 Targeted metabolomics analysis

Metabolite profiling was conducted through a targeted
metabolomic approach by Wuhan Metware Biotechnology Co.,
Ltd. (Wuhan, China) (http://www.metware.cn/). Freeze-dried
kernel samples were crushed using a Mixer Mill (MM 400,
Retsch) with a zirconia bead for 1.5 min at 30 Hz. Then, 50 mg
of the pulverized kernel powder was weighed and extracted with 0.5
mL of a mixed solution of n-hexane:acetone:ethanol (1:1:1, v/v/v).
The extract was vortexed for 20 min at room temperature.
Following centrifugation at 12,000 r/min for 5 min at 4°C, the
supernatants were collected. The residue was re-extracted under the
same conditions. The combined supernatant was evaporated to
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dryness and reconstituted in 100 pL of dichloromethane. The
solution was filtered through a 0.22-um pore size membrane
before being analyzed using an LC-MS/MS system (Melendez-
Martinez, 2019; Bartley and Scolnik, 1995; Inbaraj et al., 2008).

Two microliters of the sample was injected into a YMC C30
column (3 um, 100 mm X 2.0 mm i.d.) operating at 28 °C and a flow
rate of 0.8 mL/min. The mobile phases used were methanol:
acetonitrile (1:3, v/v) with 0.01% BHT and 0.1% formic acid
(phase A) and methyl tert-butyl ether with 0.01% BHT (phase B).
The compounds were separated using the following gradient:
started at 0% B (0-3 min), increased to 70% B (3-5 min), then
increased to 95% B (5-9 min), and finally ramped back to 0% B (10-
11 min). An ESI-triple quadrupole-linear ion trap (QTRAP) mass
spectrometer (QTRAP® 6500+, AB Sciex) equipped with an APCI
heated nebulizer was used, operating in positive ion mode and
controlled by Analyst 1.6.3 software (Sciex). The APCI source
operation parameters were as follows: source temperature set at
350°C and curtain gas (CUR) set at 25.0 psi. Carotenoids were
analyzed using scheduled multiple reaction monitoring (MRM).
Data acquisitions were performed using Analyst 1.6.3 software
(Sciex). Multiquant 3.0.3 software (Sciex) was used to quantify
all metabolites.

The hierarchical cluster analysis (HCA) results of the samples
and metabolites were presented as heatmaps with dendrograms.
HCA was carried out by the R package pheatmap. For HCA,
normalized signal intensities of metabolites (unit variance scaling)
were visualized as a color spectrum. Significantly regulated
metabolites between groups were determined by absolute Log,FC
(fold change). Identified metabolites were annotated using the
KEGG compound database (http://www.kegg.jp/kegg/compound/
), and annotated metabolites were then mapped to the KEGG
Pathway database (http://www.kegg.jp/kegg/pathway.html).
Pathways with significantly regulated metabolites mapped to
them were then fed into MSEA (metabolite sets enrichment
analysis), and their significance was determined by the
hypergeometric test’s P-values.

2.5 Transcriptomics analysis

Total RNA was extracted from fresh maize kernels using
ethanol precipitation and CTAB-PBIOZOL methods. RNA
quality was assessed using a Qubit fluorescence quantifier and a
Qsep400 high-throughput biofragment analyzer. The enriched
mRNA was fragmented and reverse-transcribed into cDNA using
the NEBNext Ultra RNA Library Prep Kit for Illumina. Purified
double-stranded cDNA fragments were end-repaired, and a base
was added and ligated to Illumina sequencing adaptors. The ligation
reaction was purified using AMPure XP Beads. The ligated
fragments were subjected to size selection and polymerase chain
reaction (PCR). The resulting cDNA library was sequenced on the
Mumina platform, yielding 150 bp paired-end reads.

High-quality reads were obtained after filtering the original
sequencing data using fastp, and the transcriptome was assembled
using StringTie. The reference genome and its annotation files were
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downloaded from https://download.maizegdb.org/Zm-B73-
REFERENCE-NAM-5.0/. HISAT was used to align clean reads to
the reference genome. Gene expression levels were quantified using
featureCounts, and FPKM values were calculated. DESeq2 was used
for differential gene expression analysis between two groups, and
the Benjamini-Hochberg correction was applied to P-values.
Corrected P-values and log2 fold change were used as thresholds
for significant differential expression. Enrichment analysis was
performed based on the hypergeometric test, with pathway-based
hypergeometric distribution testing for KEGG and GO term-based
analysis for GO. GATK was used for variant site analysis, and
ANNOVAR was used for variant annotation. GSEA was conducted
using the GSEA tool for gene set enrichment analysis.

2.6 Quantitative reverse transcription-
polymerase chain reaction analysis

The differential expression of eight structural genes involved in
starch and sucrose metabolism from the RNA-seq data was selected
for confirmation by quantitative reverse transcription (qQRT)-PCR.
The maize GADPH actin gene was used as a reference to normalize
gene expression in all experiments. Total RNA was extracted using
the FastPure Universal Plant Total RNA Isolation Kit (Vazyme
RC411), and ¢cDNA was synthesized from total RNA using the
HiScript IIT 1st Strand ¢cDNA Synthesis Kit (Vazyme R312). qRT-
PCR amplification was performed according to the ChamQ
Universal SYBR qPCR Master Mix (Vazyme Q711). Each
amplification system contained 10 puL of ChamQ Universal SYBR
qPCR Master Mix, 0.5 UL each of gene-specific primer (10 pmol
L™"), and 2 pL of diluted cDNA in a final volume of 20 uL made
with sterile-distilled water. The program of each reaction was 95°C
for 30 s followed by 40 cycles of 95°C for 10 s and 60°C for 30 s. The
relative expression level of each gene was calculated using the 274
method. Three biological replicates were analyzed for each sample.
The primers used for qRT-PCR are listed in Supplementary
Table S1.

2.7 Statistical analysis and graphing

The data obtained from the experiments were analyzed using
Microsoft Excel 2010. The results, presented as the mean + standard
deviation, were visualized using SPSS software version 25 (IBM,
Chicago, IL, USA). One-way analysis of variance and Duncan’s
multiple-range test were performed to analyze the significance of
differences between the groups, and ** in the figures indicates a
significant difference (P < 0.01). The graphics were illustrated using
GraphPad Prism 8 and Adobe Illustrator 2020.
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3 Results

3.1 Maize inbred lines DO03 and D009
display differences in endosperm
vitreousness

To identify the differences in kernel hardness among different
maize varieties, we selected the representative inbred lines D003 and
D009 in tropical and subtropical maize regions. In the mature
period, D003 kernels were red and hard in appearance, while D009
kernels were light yellow and soft (Figure 1A). On a light box, light
transmission was observed for D003 but not for D009 kernels
(Figure 1B). The kernel transverse sections show that D003 had an
almost entirely vitreous endosperm, while D009 had an almost
entirely starchy endosperm (Figures 1C, D). Scanning electron
microscopy (SEM) revealed that the region of D003 endosperm
contained starch granules embedded in a protein matrix, but this
matrix was not apparent in D009, which had loosely compacted
starch granules (Figures 1E, I). These results indicate that D003 and
D009 show significant differences in kernel hardness and especially
endosperm vitreousness.

3.2 Cytological analysis determined that
endosperm cells and starch granules
affected kernel hardness

To investigate the mechanisms of vitreous endosperm
formation, we collected kernels at 18, 25, and 32 DAP for further
analysis (Figures 1G, H, 2A-F). At 18 DAP, the starch granules
inside D003 endosperm cells began to develop (Figures 2G, M). At
25 DAP, the starch granules were developing rapidly and increased
substantially (Figures 2H, N). At 32 DAP, the endosperm cells were
tightly packed, and starch granules filled up the whole cells
(Figures 2I, O). In contrast, the endosperm cells and starch
granules in D009 behaved differently. Although D009 began to
develop at 18 DAP (Figures 2], P), there was no significant increase
in starch grain number at 25 and 32 DAP (Figures 2K, Q). At 32
DAP, the endosperm cells were large and irregularly arranged, and
the starch granules were loose inside the cells (Figures 2L, R). We
also observed the ultrastructure of the starch granules by SEM. In
D003, as the kernels continuously develop and mature, probably
due to tight compacting, the starch granules began to form a
polygonal shape (Figures 3A-C). However, in D009, the majority
of starch granules maintained their spherical morphology
(Figures 3D-F). These results demonstrated that smaller and
closely packed endosperm cells and polygonal shape starch
granules tend to facilitate the formation of vitreous endosperm.
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FIGURE 1
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D003-32DAP

D009-18DAP

D009-25DAP

D009-32DAP

D009

Phenotypic comparison of maize inbred lines DO03 and DO09. (A) Ear phenotypes of DO03 and D009. Scale bar, 1 cm. (B) Kernel vitreousness as
observed on the light box: D003 kernel is vitreous, and D009 kernel is opaque. Scale bar, 1 cm. (C, D) Kernel cross sections of D003 and D009.
Scale bar, 1 cm. The kernels were cut cross section in the middle with a Chinese herbal knife. (E) DO03 endosperm starch grain observed by SEM.
Scale bar, 20 um. (F) D009 endosperm starch grain observed by SEM. Scale bar, 20 um. (G) D003 kernel morphology at 18, 25, and 32 DAP. Scale
bar, 1 cm. (H) D009 kernel morphology at 18, 25, and 32 DAP. Scale bar, 1 cm.

3.3 Metabolomics analysis confirmed that
carotenoids were beneficial for increasing
endosperm hardness

To explore the correlation between carotenoid content and
maize kernel hardness, kernels from different developmental
stages (18, 25, and 32 DAP) of D003 and D009 were collected for
widely targeted metabolomics analysis. Three biological replicates
were used for each sample, resulting in 18 metabolomics data
points. Principal component analysis (PCA) showed a marked
similarity among the three biological replicates within each
treatment, indicating the reliability and reproducibility of the data
(Figure 4A). In total, 68 carotenoid metabolites were identified,
consisting of 7 carotenes and 61 xanthophylls (Supplementary
Table S2). The hierarchical cluster heatmap showed that there
were 38 carotenoid metabolites with differences between D003
and D009 (Supplementary Figure SI). Further analysis revealed
that the total carotenoid content of D003 was significantly higher
than that of D009 (Figure 5A). In the subclass of carotenoids, the
carotene and xanthophyll contents of D003 were also significantly
higher than those of D009 (Figures 5B, C). Among the metabolites
of carotene, (E/Z)-phytoene, a-carotene, [3-carotene, and lycopene
of D003 were significantly higher than those of D009 (Figure 5D).
Among the metabolites of xanthophyll, o-cryptoxanthin, -
cryptoxanthin, zeaxanthin, zeaxanthin palmitate, violaxanthin-
myristate-laurate, rubixanthin palmitate, and lutein of D003 were
significantly higher than those of D009 (Figure 5E). We constructed
a Venn diagram of the three comparative groups, revealing that
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there were 20 differential accumulation metabolites (DAMs) that
were specifically expressed during the three developmental stages in
the kernel (Figure 4B). The Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis indicated that these 20
DAMs were significantly enriched in five KEGG pathways
(Figures 4C-E). These results showed that higher carotenoid
content, especially carotene and xanthophyll, increased
endosperm hardness.

3.4 Transcriptomics analysis found that
starch and sucrose metabolism were
important regulated pathways

To explore the potential molecular regulatory network for kernel
hardness formation in maize, kernels from different developmental
stages (18, 25, and 32 DAP) of D003 and D009 were also collected for
RNA-seq. Three biological replicates were used for each sample,
resulting in 18 transcriptomic data points. PCA showed a marked
similarity among the three biological replicates within each treatment
(Figure 6A). In line with the PCA results, correlation analysis showed
a marked similarity among the three biological replicates within each
treatment, indicating the reliability and reproducibility of the data
(Supplementary Figure S2A). Then, differentially expressed genes
(DEGs) were analyzed in D003 and D009 to gain further insights into
the transcriptional changes. In the 18 DAP comparison group, a total
of 6,659 DEGs were identified, of which 3,123 were upregulated and
3,536 were downregulated (Figure 6C). In the 25 DAP comparison
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FIGURE 2

Comparison of D003 and D009 kernel transverse paraffin sections. (A—C) D003 kernel transverse section at 18, 25, and 32 DAP. Scale bar, 2 mm.
(D—F) D009 kernel transverse section at 18, 25, and 32 DAP. Scale bar, 2 mm. (G—I) D003 endosperm cells at 18, 25, and 32 DAP. Scale bar, 100 pm.
(J-L) D009 endosperm cells at 18, 25, and 32 DAP. Scale bar, 100 um. (M—0) D003 endosperm cells were enlarged at 18, 25, and 32 DAP. Scale bar,
30 um. (P—R) D009 endosperm cells were enlarged at 18, 25, and 32 DAP. Scale bar, 30 pm. Note: The red arrows highlight the starch granules.

group, a total of 6,390 DEGs were identified, of which 2,968 were
upregulated and 3,422 were downregulated (Figure 6D). In the 32
DAP comparison group, a total of 7,232 DEGs were identified, of
which 3,378 were upregulated and 3,854 were downregulated
(Figure 6E). There were a total of 3,636 shared DEGs in the three
comparative groups (Figure 6B). Then, we performed the KEGG
enrichment analysis on the 3,636 DEGs to identify the main regulated
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pathways (Figures 6F-H; Supplementary Figure S2B). The results
revealed that the “metabolic pathways” was the vital pathway
generated by KEGG enrichment analysis. In the biosynthesis of
secondary metabolite pathways, the “starch and sucrose
metabolism” were highly enriched in the D003-18DAP vs. D009-
18DAP, D003-25DAP vs. D009-25DAP, and D003-32DAP vs. D009-
32DAP comparison groups.
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D003

18 DAP B 25 DAP

FIGURE 3
SEM comparison of the endosperm from D003 and D009. (A—C) D003 endosperm cell starch granules at 18, 25, and 32 DAP. Scale bar, 20 um.
(D—F) D009 endosperm cell starch granules at 18, 25, and 32 DAP. Scale bar, 20 pm.
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Metabolite profiling of D003 and D0Q9. (A) PCA of metabolome data derived from D003 and D009 kernel during three developmental stages (18,
25, and 32 DAP). (B) Venn diagram of DAMs. (C) KEGG enrichment analysis of DAMs at 18 DAP. (D) KEGG enrichment analysis of DAMs at 25 DAP.
(E) KEGG enrichment analysis of DAMs at 32 DAP. The color of the circle denotes the P-value, and the size of the circle denotes the number of
DAMs in the pathway.
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FIGURE 5

Carotenoid metabolites with significant differences from D003 and D009 kernel during three developmental stages (18, 25, and 32 DAP). (A) Total
content of carotenoids. (B) Total content of carotenes. (C) Total content of xanthophylls. (D) Carotene metabolites with significant differences.

(E) Xanthophyll metabolites with significant differences. Data are presented as mean + SD from three biological replicates (n = 3). **represents a
significant difference at P < 0.01 using Student’s t-test; the exact P-values for the carotenoid metabolites are provided in Supplementary Table S3.

3.5 gRT-PCR validation of key genes in
starch and sucrose metabolism pathways

To experimentally validate the RNA-seq results implicating starch
and sucrose metabolism in endosperm hardness, we performed qRT-
PCR on eight candidate genes identified from this pathway
(Supplementary Figures S3-56). These genes—Zm00001eb199510,
Zm00001eb328120, Zm00001eb313170, Zm00001eb411380,
Zm00001eb334460, Zm00001eb364620, Zm00001eb260830, and
Zm00001eb230070—were selected based on their significant
differential expression across multiple developmental stages (18, 25,
and 32 DAP) in D003 vs. D009. The results confirmed a strong
concordance between RNA-seq and qRT-PCR data, and all eight genes
exhibited expression trends consistent with the transcriptome profiles
(Figure 7). Notably, Zm00001eb313170 (sucrose synthase) was
significantly downregulated in D003 at all stages, suggesting that
starch synthesis may be blocked and affect the hardness of the kernel
endosperm. These results robustly corroborate the RNA-seq findings
and underscore the pivotal role of starch and sucrose metabolism
genes, especially the candidate gene Zm00001eb313170, in modulating
endosperm hardness through regulation of starch granule formation.

4 Discussion

Maize kernel hardness, primarily determined by the structural
and compositional features of the endosperm, is a vital agronomic
trait affecting processing quality, nutritional value, and postharvest
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performance. While the morphological distinctions between
vitreous and starchy endosperms are well-documented (Gibbon
and Larkins, 2005; Wang et al., 2020), the metabolic and
transcriptional regulatory networks governing these differences
remain insufficiently characterized. In this study, we applied an
integrated multi-omics approach to dissect the molecular and
metabolic basis of kernel hardness in two contrasting maize
inbred lines (D003, vitreous; D009, starchy) across key
developmental stages. Our findings reveal a coordinated
regulation of starch and sucrose metabolism and carotenoid
accumulation, providing novel insights beyond previous studies
that often focused on single pathways or static
developmental stages.

Cytological analyses provided essential insights into the
structural foundations of kernel hardness. Both inbred lines began
starch accumulation approximately 18 DAP, but D003 exhibited a
more rapid and pronounced increase in starch grain size and
packing density, culminating in a tightly organized cellular
architecture by 32 DAP. In contrast, D009 showed less
progression toward compactness, suggesting limitations in
processes related to starch granule filling, shape refinement, and
protein matrix organization. D003 endosperms displayed small,
densely packed cells containing polygonal starch granules, whereas
D009 exhibited larger, irregularly arranged cells filled with loosely
packed, predominantly spherical granules. These structural
differences correspond with established associations between
vitreousness and the presence of tightly packed starch granules
embedded in a continuous protein matrix, which restricts light
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Transcriptomic analysis of DO03 and D009. (A) PCA of transcriptome data derived from D003 and D009 kernels during three developmental stages (18,
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scattering and fracture propagation, thereby enhancing hardness
and mechanical resilience (Wang et al., 2012; Clore et al., 19965
Wang et al., 2024).

Metabolomic profiling revealed a consistent and pronounced
difference in carotenoid accumulation between the two lines. D003
kernels exhibited significantly higher total carotenoid content
across all developmental stages, encompassing both carotenes [(E/
Z)-phytoene, o-carotene, -carotene, lycopene] and xanthophylls
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(o-cryptoxanthin, B-cryptoxanthin, zeaxanthin, zeaxanthin
palmitate, violaxanthin-myristate-laurate, rubixanthin palmitate,
lutein). The KEGG pathway enrichment analysis of DAMs
identified carotenoid biosynthesis as significantly enriched in
association with the vitreous phenotype. Although carotenoids are
widely recognized for their nutritional and pigmentary roles, their
involvement in modulating endosperm texture has received
comparatively little attention. Previous studies have suggested
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FIGURE 7

Expression profiles of eight candidate genes by qRT-PCR. Data are presented as mean + SD from three biological replicates (n

indicate standard errors.

such links—for example, Venl influences P-carotene levels and
affects starch granule membrane integrity and protein-starch
interactions (Wang et al,, 2020), while zeaxanthin tends to be
enriched in vitreous endosperm (Egesel et al., 2003). Our findings
strongly reinforce the positive correlation between carotenoid
accumulation—especially specific carotenes and xanthophylls—
and kernel hardness. We hypothesize that carotenoids, owing to
their lipophilic nature, may integrate into plastid membranes,
protein bodies, and starch granule surfaces, potentially
modulating membrane fluidity and stability as well as interactions
between the protein matrix and starch granules, thereby
contributing to the rigidity and dense architecture characteristic
of vitreous endosperm (Howitt and Pogson, 2006; Koul et al., 2016).

Transcriptomic analysis added a crucial dimension by revealing
transcriptional regulation of key metabolic pathways associated with
kernel hardness. The most prominent finding was the consistent
enrichment of the starch and sucrose metabolism pathway among the
DEGs shared across all stages and specific pairwise comparisons. This
pathway is central to kernel development, providing the carbon
skeletons and energy required for endosperm filling, while also
contributing sugar-derived signaling molecules (Huang et al., 2021;
Sekhon et al,, 2011). Eight candidate genes from this pathway were
selected for qRT-PCR validation, with particular attention to a
sucrose synthase gene (Zm00001eb313170), which was consistently
downregulated in D003 across all stages. Sucrose synthase (Susy)
plays a pivotal role in cleaving sucrose into UDP-glucose and
fructose, key substrates for starch biosynthesis and other metabolic
routes (Carlson et al., 2002; Li et al., 2013; Deng et al., 2020). Reduced
expression of Susy in D003 may indicate several possibilities: 1) a
reallocation of sucrose flux toward alternative metabolic or storage
sinks; or 2) a slower sucrose turnover rate, which may alter sugar
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signaling and, in turn, affect cellular growth, starch granule
morphogenesis, and storage compound deposition. This
phenomenon is associated with altered carbon flux and sugar
signaling, which may influence starch granule morphology and
packing density. However, the causal roles of these genes require
functional validation.

Integrating these findings, we propose a model in which starch
and sucrose metabolism serve as the principal drivers of endosperm
structure and hardness, modulated at the transcriptional level.
Enzymes such as sucrose synthase influence carbon allocation and
sugar signaling, affecting the biosynthesis, morphology (e.g.,
polygonal shape), and packing of starch granules. Simultaneously,
upregulation of carotenoid biosynthesis contributes synergistically
by reinforcing internal membrane systems and structural interfaces
within the developing endosperm (e.g., starch granule surfaces,
protein matrices), thereby supporting the compact organization
established by carbohydrate metabolic regulation. This dual
mechanism highlights the convergence of primary (starch and
sucrose) and specialized (carotenoid) metabolic pathways in
determining the physical attributes of maize kernels. Our
integrated analysis thus extends existing models by elucidating
how transcriptional and metabolic modules interact dynamically
across development to shape endosperm hardness. The potential
co-regulation of these pathways at the transcriptional level merits
further exploration. Despite the significant insights provided by this
study, some limitations must be acknowledged. Functional
validation of the candidate genes identified—particularly
Zm00001eb313170 and others involved in starch and sucrose
metabolism—using reverse genetics approaches (e.g., knockout
mutants, overexpression lines, and complementation studies) is
essential to establish causality in determining endosperm hardness.
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5 Conclusion

In conclusion, our integrated metabolomic and transcriptomic
investigation reveals that maize kernel hardness is jointly regulated
by transcriptional modulation of starch and sucrose metabolism and by
elevated carotenoid accumulation at the metabolic level. The vitreous
phenotype observed in D003 results from a developmental program
characterized by tightly packed endosperm cells with polygonal starch
granules embedded in a robust matrix. This phenotype is driven by
distinct transcriptional regulation of carbohydrate metabolism genes
(notably reduced Susy expression) and reinforced by the increased
presence of specific carotenoids. These findings provide promising
molecular targets for breeding and biotechnological strategies aimed at
optimizing maize kernel quality. Manipulating the expression of key
genes in starch and sucrose metabolism or enhancing carotenoid
biosynthetic flux may offer effective means of tailoring kernel
hardness to suit specific industrial or nutritional needs. Our study
not only advances the mechanistic understanding of kernel hardness
but also highlights the power of integrated omics approaches in
dissecting complex agronomic traits.
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