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Shrub plantations are a key strategy for combating desertification, yet the relative
effectiveness of different species remains poorly understood. This study
comprehensively evaluated the restoration effects of three dominant shrub
species—Caragana korshinskii (CK), Salix psammophila (SP) and Hedysarum
scoparium (HS)—on understory vegetation and soil properties in the Kubugi
Desert, using bare sand (BS) as the control. Shrub plantations significantly
improved herbaceous vegetation diversity and soil physicochemical properties
compared to BS. Specifically, CK plantations demonstrated the most pronounced
positive effects, supporting the highest understory vegetation cover, species
richness and soil nutrient accumulation. SP plantations were most effective in
improving the physical structure of soil, resulting in the highest total porosity.
Grey relational analysis weighted by principal component analysis was employed
to integrate multiple indicators and provide a comprehensive evaluation, which
ranked the overall restoration effectiveness as CK (0.8574) > SP (0.7790) > HS
(0.6883) > BS (0.5637). Additionally, the random forest model identified
biodiversity indices (particularly the Margalef index) and understory vegetation
cover as the most significant drivers influencing overall restoration effectiveness,
while soil available phosphorus was the only soil factor with a significant impact.
These findings underscore that species selection is critical for restoration
outcomes. C. korshinskii is recommended as a priority species for enhancing
ecosystem functions in this region.
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1 Introduction

Desertification, a form of land degradation driven by climate
variability and anthropogenic factors (Burrell et al., 2020; Ngabire
et al., 2023), has evolved into a global challenge demanding
coordinated international efforts (United Nations Convention to
Combat Desertification, U, 2017). Desertification directly affects the
production and lives of 250 million people in more than 110
countries worldwide. Threatened arid lands indirectly affect about
2 billion people and cover 40% of the global land area, in both
developed and developing countries (Caliskan and Boydak, 2017).
To mitigate these impacts, afforestation initiatives in arid regions
have gained global traction (Yildiz et al., 2022; Guo et al., 2024;
Wang et al., 2024). Scientifically designed plantation forests
demonstrate significant potential in combating desertification,
land degradation and climate change through systematic
management. Global plantation areas are expanding at an annual
rate of 3.2 million hectares and constituted 7% of global forest cover
in 2015; this proportion continues to increase (United Nations
Environment Programme, U, 2023).

China has experienced persistent land degradation for over six
decades (Hua and Squires, 2015), with desertification currently
affecting approximately 47.9 million farmers and pastoralists in the
country (Wang et al., 2023). To address this challenge to ecological
security and sustainable development, the Chinese government has
prioritised desertification control through large-scale ecological
projects (Zhang and Huisingh, 2018). For example, the Kubuqi
Desert lies along the banks of the Yellow River in a region typical of
northern China where agriculture and animal husbandry intersect.
Its ecological location is both critically important and highly
vulnerable. The management of the Kubuqi Desert directly
impacts the ecological security of the middle and lower reaches of
the Yellow River and the environmental quality of North China.
Due to intensive human activity, extreme aridity and a low
precipitation-evaporation ratio, this region has become an
ecologically fragile zone with severe desertification. Historically, it
was known as the ‘Sea of Death’ (Ma, 2022; UNESCO, I.C.f.C.a.S.D,
2023). Since the late 1950s, the Chinese government has designated
this area as a key construction zone for the ‘Three-North Shelterbelt
Forest Program’ and the ‘Beijing-Tianjin Sandstorm Source Control
Project’. Early afforestation efforts primarily employed adaptable
pioneer species like Artemisia ordosica and Populus simonii to
rapidly stabilise shifting sands and halt desert expansion.
However, many of the initially planted species exhibited low
survival rates due to their inability to adapt to the extremely arid
site conditions. More critically, specific deep-rooted, water-
intensive tree species significantly depleted scarce groundwater
resources, triggering the ecological risk arising from localised
groundwater level decline (Huang et al., 2023).

In the 21st century, the Kubuqi Desert ecological restoration
strategy shifted towards a more scientific and sustainable model.
Building on historical lessons, current restoration efforts emphasise
site-appropriate tree selection, focusing on native shrub species
including Caragana korshinskii, Salix psammophila and Hedysarum
scoparium. These shrubs exhibit superior drought tolerance, thrive
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in poor soils and consume relatively less water (Cheng et al., 2025;
Ma et al, 2025). These sand-fixing plantations have not only
improved ecological conditions but also fostered economic
development in this Yellow River-adjacent region of Inner
Mongolia. The desert’s successful rehabilitation earned it the
designation of a ‘Global Desert Ecological and Economic
Demonstration Area’ by the United Nations Environment
Programme (UNEP) in 2014 (XinHua-News-Agency, 2014; Chen
et al,, 2022).

During the growth and development of plantation forests,
understory vegetation has a significant influence on soil structure
and nutrient cycling (Normand et al., 2017; Gatica-Saavedra et al.,
2023). Studies have shown that the composition and diversity of
understory vegetation directly or indirectly lead to changes in soil
physicochemical properties (Ali et al, 2019; Han et al., 2024b).
Plants also change the structure and function of soil through root
distribution, canopy growth and the decomposition of apoplastic
materials (Lozanova et al., 2019). Soil, as the basis for plant growth
and survival, provides a location and medium for vegetation
growth, and plays an inescapable role in the structure and
function of plant communities (Kik et al, 2021; Sharma and
Kumar, 2023). This mechanism of mutual influence and
interaction between vegetation and soil is an essential link in
controlling ecological processes (van der Putten et al, 2016). In
arid and semi-arid regions, the development and restoration of
understory vegetation soil often indicate the effectiveness of
ecological reconstruction (Ayangbenro and Babalola, 2021).

Although many vegetation- and soil-related studies have been
conducted on plantation forests in arid areas, most of these studies
have focused on one aspect of vegetation or soil. These have
included studies on the impacts of sand-fixing measures on the
physical, chemical and biological properties of soil (Pérez-Corona
et al, 2021; Li et al., 2023a; Liang et al., 2023), or on the
composition, diversity and physiological characteristics of
vegetation (Khalilimoghadam and Bodaghabadi, 2020; He et al.,
2021; Qianwen et al.,, 2022). However, the combined benefits of
vegetation and soil for plantations in sandy areas are critical.
Although C. korshinskii, S. psammophila and H. scoparium have
been widely used in ecological restoration in the Kubuqi Desert, a
systematic quantitative comparison of their overall benefits to
ecosystem recovery is lacking, particularly regarding their relative
effectiveness in promoting understory vegetation development and
improving soil.

This study investigated the understory vegetation composition,
diversity, and soil physicochemical properties of three typical sand-
fixing shrub plantations (C. korshinskii, S. psammophila and H.
scoparium) in the Kubugi Desert along the Yellow River, using
adjacent bare sandy land as a control. The restoration effects were
quantitatively evaluated using Grey Relational Analysis (GRA), and
key influencing indicators were identified via random forest
modelling. Based on the distinct functional traits of the three
shrubs, we hypothesised that: 1) Their effects on understory
vegetation and soil would differ significantly. Specifically, the
legume C. korshinskii, with its dense canopy, was predicted to
most effectively promote understory vegetation recovery and soil
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nutrient accumulation, while S. psammophila, with its extensive
horizontal root system, would better improve shallow soil physical
structure. 2) Key biotic and abiotic factors would jointly drive
ecosystem restoration, with understory vegetation characteristics
being more critical than soil properties. The results are expected to
inform ecological restoration and plantation management in this
arid, fragile ecosystem.

2 Materials and methods
2.1 Description of the study area

The Kubugqi Desert is the seventh largest desert in China (107°
00’-111°30 E, 39°15°-40°45’ N), located at the southern edge of the
middle reaches of the Yellow River. The sampling site for this study
was the Kubuqi Desert Closed Reserve in Dalat County (Figure 1),
Ordos City (109°00’-110°45" E, 40°00’-40°30 N). The management
unit of this area is the Ordos Forestation General Farm. Established in
1978, it mainly operates in the east-central part of the Kubugi Desert,
which is one of the key construction units of the “Three Norths’
protection forests established by the Chinese government (Ordos-
Daily-News, 2024). The area has a temperate continental climate,
which is characterised by high winds, sand, dryness, and little rain.
The summers are hot and short, and the winters are cold and long,
with drastic temperature changes. The average annual precipitation is
240-360 mm, with most occurring in July-September, accounting for
about 61% of the annual total. The average number of sunshine hours
each year is 3,159.4 hours, and the average annual frost-free period is
130-140 days (Li et al., 2023b; Yongsheng et al., 2023; Baidu-Library,
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2024; Han et al,, 2024a). The main soil type in the sampling area is
gray desert soil. The vegetation is primarily composed of sand-
dwelling shrubs, subshrubs, and herbaceous plants, such as
Caragana korshinskii, Artemisia ordosica, and Agriophyllum
squarrosum. In recent years, the Chinese government has
increasingly focused on desertification control. Following the
launch of key ecological programs like the “Three-North Shelterbelt
Project’ and the Yellow River Basin conservation/development
strategy, extensive sand-fixing plantations have been installed in the
study area, resulting in substantial ecological restoration and
environmental improvement (XinHua-News-Agency, 2014; Li
et al,, 2023a; UNESCO, I.C.f.C.a.S.D, 2023).

2.2 Experimental design and site
description

The field survey and sample collection were carried out in
August 2024 at the Ordos Forestation General Farm in Dalat
County. A spatially nested sampling design was employed to
evaluate the three dominant sand-fixing shrub plantations
(C. korshinskii, CK; S. psammophila, SP; H. scoparium, HS)
against a bare sand (BS) control. Critically, prior to plantation
establishment, all selected plots were shifting bare sand areas with
no history of alternative land use, ensuring highly consistent initial
site conditions, including soil texture. For each of these four land
types, three independent replicate sites were established (e.g.,
named CK-1, CK-2 and CK-3 for C. korshinskii), resulting in a
total of 12 independent study sites (Table 1). The plantation areas
had consistent site conditions. The distances between different types
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Maps of the study area. Geospatial datasets were obtained from the Geospatial Data Cloud platform (http://www.gscloud.cn), maintained by the
Computer Network Information Centre of the Chinese Academy of Sciences.
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TABLE 1 Basic information for the sample plots.

10.3389/fpls.2025.1688154

Silvicultural density

Understory vegetation

Plot type Plot symbol Forest age (a) s coverage (%)
CK-1 28 1,600
Caragana korshinskii CK-2 28 1,600 349 +2.18
CK-3 28 1,600
SP-1 28 1,641
Salix psammophila SP-2 29 1,644 26.13 £ 1.71
SP-3 29 1,644
HS-1 26 1,689
Hedysarum scoparium HS-2 27 1,733 20.2 £ 1.26
HS-3 27 1,733
BS-1 - -
None (Bare sand) BS-2 - - 1127 £ 1.2
BS-3 - -

Data are mean + standard deviation.

of plots in the plantation area were less than 1 km, with relatively
flat terrain (slope < 2°), eliminating potential confounding effects of
slope and aspect on vegetation and soil characteristics. The density
(1600-1733 treesshm ™) and the age (26-29 a) of the plantations
were similar, and the understory plant communities had
naturally regenerated.

2.3 Vegetation and soil sampling

Within each of the 12 independent sites, a 30 m x 30 m plot was
established for intensive sampling. The understory vegetation
community was investigated using the quadrat method (1 x 1 m)
and the five-point sampling method. Within each quadrat,
vegetation coverage was quantitatively estimated using a 10 x 10
grid (100 squares), by counting the number of squares in which
vegetation was vertically projected. The plant species, height, cover
and frequency within the quadrat were recorded. For soil analysis,
three soil sampling points were evenly located along the diagonal of
each plot. At each point, soil was sampled using the profile method
to a depth of 60 cm, with samples collected at 20 cm intervals (0-20,
20-40, 40-60 cm). This design resulted in a total of 108 soil samples
(4 land types x 3 replicate sites x 3 sampling points x 3 depths =
108). From these, undisturbed soil cores were collected at each
depth interval using a 100 cm? core sampler to determine soil water
content, bulk density and porosity. Additional soil samples were
collected at each point and depth, placed in sealed bags, and
transported to the laboratory.

2.4 Laboratory analysis

In the laboratory, soil samples were air-dried in the dark and
sieved to remove plant residue and rocks. The soil particle size
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distribution was determined using a Fritsch Analysette 22
MicroTecPlus laser particle size analyser (Fritsch GmbH,
Germany). Nutrient analyses were performed as follows. Total
nitrogen, Kjeldahl digestion method using a H,SO,-HClO,
mixture; total phosphorus, H,SO4-HClO, digestion followed by
molybdenum-antimony colourimetry; total potassium, acid
digestion with flame photometric detection; available nitrogen,
alkali diffusion method; available phosphorus, (0.5 mol/L
NaHCO;-H,SO, extraction followed by molybdenum-antimony
colourimetry; available potassium (1 mol/L CH;COONH,
extraction and flame photometric analysis. These soil nutrient
determination methods were from the Soil Environmental
Protection Standard issued by the People’s Republic of China
(National-Forestry-and-Grassland-Administration, 1999).

2.5 Vegetation characteristic indicators

The importance value is used as an indicator of population
dominance (Mensah et al., 2020). This was used to understand the
distribution pattern and functional status of herbaceous vegetation
species under different plantations. Based on previous species
diversity research results (Kim et al., 2017; Mensah et al.,, 2020;
Haq et al, 2024), the Simpson, Shannon-Wiener, Pielou and
Margalef indexes were chosen to analyse the characteristics of
species diversity of the vegetation communities in different types
of sand-fixing plantations.

2.6 Comprehensive evaluation
2.6.1 Normalisation of indicators

To facilitate the comparison and weighting of indicators of
different units or magnitudes, the affiliation function (Equation 1)
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was used to normalise the vegetation and soil indicators (Hemati
et al., 2020; Guo et al., 2025).

F(x) = E/(1+ (X;/X,)") (1)

Here, E is the maximum membership degree of the evaluation
index with the value 1; X; is the value of each evaluation index; X, is
the average value of each evaluation index; i is the slope of the
equation, where the value -2.5 indicates that the index has a positive
effect, and 2.5 means that the index has a negative effect.

2.6.2 Principal component analysis assignment of
indicator weights

Principal component analysis (PCA) was performed using SPSS
26.0 to quantify the relative information contribution of each index.
Principal components with eigenvalues > 1 and a cumulative
contribution rate > 85% were retained. The data input for the
PCA was a matrix of site-level means. Specifically, all vegetation and
soil measurements from the sub-samples within each of the 12
independent sites were averaged to produce a single, composite
profile for that site. This approach ensured the statistical
independence of the data points used in the ordination. The
variance contribution rate of each variable from the PCA was
used to calculate its weight for the subsequent GRA, transforming
the evaluation from equally weighted to weighted-comprehensive.
Indicator weights were assigned based on their contributions to
the variance.

2.6.3 Grey relational analysis

Grey relational analysis (GRA) was used to quantitatively
evaluate the restoration effects of different types of plantations.
GRA is a method that determines the strength of the relationship
between evaluation objects and a reference object by calculating the
similarity (degree of association) of the geometric shapes between
data sequences. It is suitable for comprehensive evaluation and
factor analysis problems with small samples, multiple indicators
and limited information (Lu et al., 2023). This concept was
originally proposed by Deng Julong, a professor in the discipline
of control science and engineering (Julong, 1989). It primarily
constructs standardised data sequences and reference sequences,
calculates the grey relational coefficients and degrees of the
evaluated objects relative to the reference object, and ranks the
evaluated objects or analyses the importance of factors based on the
degrees of correlation, thereby providing a basis for decision-
making. The closer the evaluation sequence is to the reference
sequence, the higher its comprehensive ranking and the better the
evaluation object is (Chen, 2023). This process is described by
Equations 2-6.

1. Establishment of evaluation object sequence and
reference sequence

The reference object (Equation 2)

Xt = {Xt(l):Xt(z))’Xt(n)} (2)
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The sequence of evaluation objects (Equation 3)

X, = {X,(1),X,(2), ..., X,(n) } (3)

Here, p =1, 2,..., m.
2. The grey relation factor (Equation 4)

_ min, minh|Xt(h) - Xp(h)} + p max, max, |Xt(h) - Xp(h)|
T IX ) - X, (h) [+p max, max, | X, (h) - X, ()|

&,(h)

(4)

Xi(h)-Xy(h) | represents the absolute difference between
data sequences X, and X,, at a particular measurement point h; the

Here,

term min, miny, | Xt(h)—Xp(h)l represents the minimum absolute
difference corresponding to factor p = 1,2,...,m at the same point
h =1,2,..., which is called the second-order minimum difference;
max, maxy, |X0(h)—XP(h) | represents the second-order maximum
difference; and p is a resolution coefficient with a value between 0
and 1 that is usually set to 0.5.

(3) Grey relevance (Equations 5, 6)

1 n
=y 250 5)
R, = SEh) K, (6)

h=1

Here, ¥, is the equal weight relevance; n is the number of
evaluation indicators determined; R, is the weighted relevance; and
K, is the weight of the index.

2.7 Random forest modelling

The random forest model is a powerful ensemble machine
learning algorithm that constructs a multitude of decision trees
during training and outputs the mean prediction of the individual
trees for regression tasks (Rigatti, 2017; Charbuty and Abdulazeez,
2021). In this study, a random forest regression was employed to
predict the comprehensive restoration score (from GRA) and
identify the most influential drivers among the measured
vegetation and soil properties. All analyses were done in the R
4.4.2 environment, primarily using the randomForest package for
model construction, the caret package for parameter optimisation
and the dplyr package for data processing. The data were divided in
a 7:3 ratio, with 70% of the samples used as the training set for
model construction and 30% of the samples used as the
independent test set to verify the model performance. The model
parameter optimisation was achieved through five-fold cross-
validation. The key parameter mtry (the number of randomly
selected variables in each tree) was optimised within the range of
3 to 15 in random forests, and the optimal parameter combinations
were finally determined. To assess the statistical significance of
variable importance, a permutation test was applied wherein the
target variable (GRA) was randomly permuted 1000 times. For each
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permutation, the model was retrained, and the permutation
importance value was calculated. The p-value for each variable
was then determined based on the proportion of permutation
iterations where the permuted importance exceeded the original
importance. Significance levels were assigned as follows: *** for p <
0.001, ** for p < 0.01 and * for p < 0.05.

2.8 Data processing and analysis

Statistical analyses were performed using SPSS 26.0, with figures
and the study area map generated using OriginPro 2021 and
ArcGIS 10.6, respectively. Prior to modelling, the normality of
continuous variables was assessed using the Shapiro-Wilk test,
and homogeneity of variances was confirmed with Levene’s test.
For variables violating normality (P < 0.05), data transformations
(natural log, square root, or reciprocal) were applied. A generalised
linear mixed model was employed to assess the effects of shrub type
and soil depth (fixed effects) on vegetation and soil properties, with
‘Plot symbol’ (e.g., CK-1, CK-2, CK-3) as a random effect to account
for repeated measurements. Appropriate link functions and error
distributions were selected for continuous response variables. For
significant fixed effects (o0 = 0.05), post hoc pairwise comparisons
were conducted using the least significant difference (LSD) method.
All tests used Type IIT sums of squares, and results are presented as
mean * standard deviation.

3 Results
3.1 Understory vegetation characteristics

3.1.1 Vegetation species composition and
importance values

A total of 20 plant species belonging to seven families and 17
genera were found in the 60 vegetation quadrats within the 12
sample plots (Table 2). There were six species of Asteraceae,
accounting for 30% of the total species, of which Artemisia
accounted for 20% of the total species; four species each of
Fabaceae and Amaranthaceae, each accounting for 20% of the
total species; and three species of Poaceae, accounting for 15% of
the total species. There were 14 genera and 17 species in these four
families, accounting for 85% of the total species. The other plants
were from individual families, genera and species, indicating that
these four families played an important role in the sandy plantation
ecosystem along the Yellow River and had good adaptability to the
natural environment in the study area.

The total number of plant species and perennials in the different
sites was in the order CK > SP > HS > BS. There were four dominant
species in the CK plantations: Tribulus terrestris, Setaria viridis,
perennial Lespedeza bicolor and Artemisia desertorum. There were
three dominant species in the SP plantations: Salsola collina,
Euphorbia humifusa and perennial A. desertorum. The HS
plantation also had three dominant species: annual S. viridis and
Aster hispidus, and perennial A. desertorum. The average cover of
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vegetation under different plantations was in the order CK > SP >
HS > BS. There were more dominant species in the understory
vegetation of CK plantations compared to the other plantations.
The species composition of the SP and HS plantations was
relatively simple.

3.1.2 Vegetation species diversity characteristics

The Shannon-Winner, Simpson, Margalef and Pielou indexes
were in the order CK > SP > HS > BS (Table 3). There was no
significant difference in the Shannon-Winner index between the
plantation plots (p > 0.05), but there was a significant difference
between the plantation and BS plots (p < 0.05). There was no
significant difference in the Pielou index among all plots (p > 0.05).
The Simpson and Margalef indexes were significantly different
among all plots (p < 0.05).

3.2 Understory soil characteristics

3.2.1 Soil particle size characteristics

Different types of plantations had significant effects on the
particle composition of sandy soil (Table 4). Soil particles were
graded according to the US Department of Agriculture’s Soil
Texture Grading Criteria. Compared with BS, the soil clay
content increased by 0.05%-0.51%, the soil silt content increased
by 0.33%-0.71% and the soil sand content decreased by 0.41%-
1.16% in the different plantations. The clay, silt and very fine sand
content followed the order CK > SP > HS > BS, and the content of
fine sand, medium sand, coarse sand and very coarse sand followed
the order BS > HS > SP > CK. There were significant differences in
clay, silt and very fine sand content within the same soil layer (p <
0.05), no significant difference between medium sand and coarse
sand content between SP and HS (p > 0.05) and no significant
difference in very coarse sand content among different plots (p >
0.05). Except for fine sand, there were significant differences in all
soil particles among different soil layers (p < 0.05), and there was no
significant difference in fine sand in the 20-40 cm and 40-60 cm soil
layers of all sample plots (p > 0.05). In different soil layers, the clay,
silt and very fine sand content followed the order 0-20 cm > 20-40
cm > 40-60 cm, and the content of medium sand, coarse sand and
very coarse sand particles followed the order 0-20 cm < 20-40 cm <
40-60 cm.

3.2.2 Soil water content, bulk density and
porosity characteristics

The construction of plantations in sandy land significantly
reduced soil bulk density, and increased soil water content and
porosity (Figure 2). The soil water content followed the order BS <
HS < SP < CK, the soil bulk density was SP < CK < HS < BS, and the
soil total porosity was SP > CK > HS > BS. Soil water content and
bulk density in different soil depths followed the order 0-20 cm <
20-40 cm < 40-60 cm, and soil porosity was 0-20 cm > 20-40 cm >
40-60 cm. There was no significant difference in soil bulk density
and porosity between CK and HS at the same soil depth (p > 0.05).
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TABLE 2 Plant community composition and important values.

10.3389/fpls.2025.1688154

Sample plot

Species
SP
Asteraceae Artemisia Artemisia frigida 2.19 - - -
Asteraceae Artemisia Artemisia desertorum 12.98 17.54 28.5 20.26
Asteraceae Artemisia Artemisia capillaris 1.95 2.03 4.11 -
Asteraceae Artemisia Artemisia annua 3.1 - - -
Asteraceae Aster Aster hispidus - - 17.66 15.25
Asteraceae Ixeris Ixeris polephala - - 6.43 1.56
Fabaceae Lespedeza Lespedeza bicolor 17.6 8.12 3.88 6.82
Fabaceae Sophora Sophora alopecuroides 3.71 - - -
Fabaceae Astragalus Astragalus laxmannii 3.52 2.7 3.61 -
Fabaceae Oxytropis Oxytropis racemosa - 1.58 - -
Amaranthaceae Agriophyllum Aj}:::}; f;; l:::n 5.25 3.66 2 15.87
Amaranthaceae Bassia Bassia scoparia 3.39 - - -
Amaranthaceae Salsola Salsola collina 5.18 26.9 - -
Amaranthaceae Suaeda Suaeda glauca - 2.11 - -
Poaceae Setaria Setaria viridis 12.17 8.25 16.8 35.52
Poaceae Stipa Stipa caucasica subsp. 5.36 7.74 453 -
glareosa
Poaceae Agropyron Agropyron mongolicum 1.83 417 541 4.72
Zygophyllaceae Tribulus Tribulus terrestris 21.77 - 7.07 -
Euphorbiaceae Euphorbia Euphorbia humifusa - 12.35 - -
Bignoniaceae Incarvillea Incarvillea sinensis - 2.85 - -
Number of species 14 13 11 7
Number of annuals 5 5 4 4
Number of perennials 9 8 7 3
Average understory vegetation cover (%) 349 26.13 20.2 11.27

CK, Caragana korshinskii plantation; SP, Salix psammophila plantation; HS, Hedysarum scoparium plantation; BS, bare sand.

TABLE 3 Characteristics of community diversity in different sand
fixation plantations.

Sample plot
SP HS

Community diversity

indicators CK

Shannon-Winner index 087+ | 085+ | 084t 077
© er nde 001A | 00lA  001A  002B
N . 208+ | 219+ | 205+ 163+
tmpson index 004A | 006B | 002C 004D
piclon inde 087+ | 086+ | 085+ 084+

1 u 1 X
002A | 002A | 001A | 002A
237+ 225+ | 207+ @ 135+

Margalef ind

argaiel index 009A  001B | 003C 003D

Data are given as mean =+ standard deviation. Different capitalised letters indicate significant
differences between sample plots (p < 0.05).
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The above indicators showed significant differences between soil
layers in the same area (p < 0.05).

3.2.3 Soil nutrient characteristics

In general, the soil nutrient pattern followed the order CK > SP
> HS > BS (Figure 3). The construction of sand-fixing plantations
effectively improved the nutrient content of sandy soil. In the same
plot, the soil nutrient content of different soil layers followed the
order 0-20 cm > 20-40 cm > 40-60 cm, with the soil nutrients in
sandy soil mainly concentrated in the 0-20 cm layer. There were
significant differences in soil total nitrogen and available potassium
in different plots and at different soil depths (p < 0.05). There were
significant differences in soil total phosphorus, total potassium and
available nitrogen among different plots (p < 0.05), and there was no
significant difference in above indicators between the 20-40 cm and
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TABLE 4 Distribution of soil particles in different sand fixation plantations.

10.3389/fpls.2025.1688154

Soil depth (cm)

Soil particle size Sample plot
20-40
CK 0.63 + 0.05 Aa 0.48 + 0.02 Ab 0.21 + 0.03 Ac
sp 0.42 + 0.02 Ba 0.26 + 0.03 Bb 0.15 + 0.03 B
Clay
(< 0.02 mm) HS 0.31 +0.03 Ca 0.18 + 0.03 Cb 0.08 + 0.02 Ce
BS 0.12 + 0.03 Da 0.07 + 0.02 Db 0.03 + 0.02 Dc
CK 117 + 0.03 Aa 0.95 + 0.02 Ab 0.78 + 0.04 Ac
it sp 0.94 + 0.03 Ba 0.81 + 0.02 Bb 0.63 + 0.01 B
(0.02 mm ~ 0.05mm) HS 0.85 + 0.03 Ca 0.73 +0.03 Cb 0.55 % 0.02 Ce
BS 0.52 +0.02 Da 0.24 + 0.02 Db 0.19 + 0.02 Dc
CK 5.76 + 0.20 Aa 493 +0.20 Ab 3.73 +0.34 Ac
v sp 484 +0.13 Ba 3.76 + 029 Bb 2.68 + 0.20 Be
ery fine sand
(0.05 mm ~ 0.1 mm) HS 3.85 +0.16 Ca 3.01 + 0.14 Cb 213 +0.16 Ce
BS 2.04 +0.23 Da 151 + 0.20 Db 0.95 + 0.04 Dc
CK 73.17 £ 0.45 Ba 69.78 + 0.43 Bb 70.18 £ 0.58 Ab
4 sp 73.47 £ 0.51 Ba 69.87 + 0.48 Bb 7037 £ 0.39 Ab
Fine sand
(0.1 mm ~ 0.25 mm) HS 7453 + 0.45 Aa 7037 + 0.34 Ab 7040 + 0.29 Ab
BS 74.83 + 0.52 Aa 70.85 + 0.36 Ab 70.56 + 0.4 Ab
CK 16.64 + 021 Ce 19.72 + 0.38 Cb 2067 + 0.36 Ca
. sp 17.01 + 0.41 Be 20.82 + 0.27 Bb 2138 + 0.29 Ba
Medium sand
(0.25 mm ~ 0.5 mm) HS 17.11 + 0.44 Be 21.16 + 0.20 Bb 21.78 = 0.19 Ba
BS 18.65 + 0.47 Ac 22.08  0.37 Ab 2252+ 032 Aa
CK 212 +0.15 Ce 3.54 + 025 Cb 3.76 + 0.16 Ca
sp 2.79 + 0.17 Be 3.85 + 0.17 Bb 411 +0.19 Ba
Coarse sand
(0.5 mm ~ 1 mm) HS 2.81 + 0.18 Be 3.90 + 0.19 Bb 436+ 0.16 Ba
BS 326 +0.17 Ac 458 +0.32 Ab 5.03 + 0.16 Aa
CK 0.51 + 0.02 Ac 0.60 + 0.02 Ab 0.67 £ 0.05 Aa
Very coarse sp 0.53 + 0.02 Ac 0.63 + 0.01 Ab 0.68 + 0.02 Aa
sand
(1 mm ~ 2 mm) HS 0.54 + 0.02 Ac 0.65 + 0.02 Ab 0.70 + 0.02 Aa
BS 0.58 + 0.02 Ac 0.67 + 0.02 Ab 0.72 £ 0.02 Aa

Data are given as mean + standard deviation. Different capitalised letters in the same soil depth indicate significant differences between sample plots, while different lowercase letters in the same
sample plot indicate significant differences between different soil depths (P < 0.05). The same below.

40-60 cm soil layers of the SP and HS plantations (p > 0.05). There
was no significant difference in soil available phosphorus content
between the CK and SP plantations (p < 0.05), but these contained
significantly higher levels than HS and BS. In HS, there was no
significant difference in soil nutrients between the 20-40 cm and
40-60 cm soil layers (p > 0.05), whereas the available phosphorus
content in other plots was significantly different across all
soil layers.
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3.3 Grey relational analysis

In GRA, equal weights cannot objectively reflect comprehensive
evaluation results because they do not account for the varying degrees
of influence among indicators. Therefore, a weighted analysis
considering indicator weights is typically required. PCA was
performed on the normalised vegetation and soil system indicators
(Table 5), yielding two principal components with eigenvalues >1 and
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Soil physical propertiesin different sandfixation plantations. (a) Soil water content, (b) Soil bulk density, and (c) Soil total porosity.

a cumulative contribution rate of 88.123%. The indicator weights for
GRA were determined based on the variance contribution rate of
each indicator. The evaluation results of the equal weights and
weighted GRA (Table 6) followed the order CK > SP > HS > BS.

3.4 Random forest model

The random forest model was employed to analyse the impact
of vegetation and soil indicators on the GRA results (Figure 4). The
model exhibited high predictive accuracy and reliability, with an R?
of 0.8922 (p < 0.01, permutation test) and an RMSE of 0.0348.
Among the explanatory variables, biodiversity indicators were
identified as the most influential drivers of the GRA. Specifically,

the Margalef index (reflecting species richness) demonstrated the
highest variable importance (%IncMSE = 15.65), closely followed by
the number of perennial species (%IncMSE = 14.89) and understory
vegetation coverage (%IncMSE = 14.64). The Shannon-Wiener
index, Simpson index and total number of species also exhibited
substantial and statistically significant influences (p < 0.001). In
contrast, soil factors showed limited effects; only soil available
phosphorus (%IncMSE = 12.94) reached significance (p < 0.05),
while other soil properties were non-significant. These results
indicate that for ecological restoration in sandy regions, priority
should be given to selecting tree species that enhance understory
vegetation coverage and promote species diversity. Additionally,
future forest management practices should place greater emphasis
on soil available phosphorus.

[ 0-20 eI 20-40 cmfT0] 40-60 cm @ 04 I 0-20 e[ 20-40 e 40-60 cm (b) 45 [ 0-20 oI 2040 "] 40-60 cm ©
1.0
Aa 40
09 ~
~ g
Z P &35
0S| 20- ]
o7t ~ 030
- Ab Ba > S
g=>0 0.6 | g £2s
Sost Ca = k]
2 Bb 3 £
S04 & 2
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Z 03+ Ac Da 5 2
X o2l Be Cb z Z 10
L Db @ w
Ce
01k Dc 5
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FIGURE 3

Soil nutrient characteristics in different sand fixation plantations. (a—c) Total nitrogen, phosphorus, and potassium in the soil; (d—f) Available nitrogen,

phosphorus, and potassium in the soil.
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TABLE 5 Principal component analysis of grey relational analysis.

Principal
Indicator component  communality  Weight
PC-1 PC-2
Shannon-Winner
. 0.908 0.269 0.896 0.0508
index
Simpson index 0.921 0.355 0.975 0.0553
Pielou index 0.634 -0.091 0.41 0.0233
Margalef index 0.843 0.497 0.958 0.0544
Understory vegetation
0.893 0.368 0.933 0.0529
coverage
Number of species 0.895 0.423 0.98 0.0556
Dominant species
. -0.115 -0.751 0.578 0.0328
importance value
Number of perennial
. 0.888 0.431 0.975 0.0553
species
Clay 0.928 -0.257 0.927 0.0526
Silt 0.982 -0.047 0.967 0.0549
Sand -0.982 0.132 0.981 0.0557
Soil water content 0.044 0.984 0.97 0.0550
Soil bulk density -0.875 0.213 0.812 0.0461
Soil total porosity 0.844 -0.154 0.737 0.0418
Soil total nitrogen 0.894 -0.363 0.932 0.0529
Soil total phosphorus 0.949 -0.192 0.938 0.0532
Soil total potassium 0.967 -0.162 0.961 0.0545
Soil available nitrogen 0.799 -0.516 0.904 0.0513
il availabl
Soil available 092 | -0.001 0.846 0.0480
phosphorus
Soil available
. 0.892 -0.387 0.946 0.0537
potassium
Characteristic root 14.37 3.254 - -
Variance contribution
71.852 16.271 - -
rate (%)
Accumulated variance
71.852 88.123 - -

contribution rates (%)

TABLE 6 Grey relevance evaluation results.

Equal weight :
a 9 Weighted relevance
relevance
Relevance . .
: Ranking Relevance Ranking
ranking
CK 0.8539 1 0.8574 1
SP 0.7818 2 0.7790 2
HS 0.6982 3 0.6883 3
BS 0.5812 4 0.5637 4
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4 Discussion

4.1 The effects of desert area plantations
on vegetation and soil

Deserts are typically ecologically fragile areas. Vegetation
characteristics and soil physicochemical properties are indicators
of the development and evolution of the plantation vegetation soil
system. Numerous relevant studies have shown that vegetation and
soil can be effectively improved through scientific plantation
construction on degraded land, particularly in shrub forests.
These studies cover typical degraded areas in northwestern China,
as well as degraded lands in the Mediterranean region and
reclaimed desertified areas in Iran (Kooch and Noghre, 2020;
Cheng and Wang, 2022; Navarro-Perea et al.,, 2022). The present
study reaffirmed this conclusion and further quantified the positive
effects of sand-fixing plantations of C. korshinskii (CK),
S. psammophila (SP) and H. scoparium (HS) in the Kubugqi
Desert on vegetation diversity and soil properties.

Ecological reconstruction in nutrient-poor and moisture-
limited desert areas is a long and complex process. As plantations
grow, the understory vegetation community gradually changes. The
development of the root system, the decomposition of deadfall and
the redistribution of natural resources such as rainfall and sunlight
by the canopy change the temperature and microenvironment of
the soil, improve its water- and fertiliser-retention capacity, and
slow the evaporation of soil water and the decomposition of organic
matter (Li et al., 2024; Lyu et al,, 2025). This creates basic living
conditions for a wide range of herbaceous plants that would not
otherwise survive on bare sand, initiating the process of ecological
succession. The soil then feeds nutrients and water back to the
vegetation, forming a mutually reinforcing and inseparable
relationship between vegetation and soil (van der Putten et al,
2016). This study found that Artemisia plants are well adapted to
the study area, mainly because their physiological characteristics
effectively reduce transpirational water loss. Some species can also
become dormant during drought and resume growth when water
conditions improve. Artemisia also have a well-developed root
system and is generally highly tolerant of barrenness, enabling it
to survive and thrive in conditions of limited nutrients and water
(Pang et al., 2022; Atamian and Funk, 2023).

In this study, the analysis of the spatial distribution of soil
physicochemical properties in the 0-60 cm soil layer revealed that
all the plantations exhibited the highest content of fine particulate
matter and nutrients in the 0-20 cm soil layer. This was in
agreement with the findings of related studies by Li et al (Li et al.,
2017, 2022). This may have been because the branches and leaves of
the vegetation trapped fine dust particles in the air, which were then
replenished on the soil surface through rainfall. Soil fine particles
are the key sources of nutrient enrichment. None of the plantations
selected for the present study had a significant effect on the very
coarse sand content of the soil, probably because they were shrubs.
Shrub forests only reduce wind speed at a height of 0-2 m (Pan
et al., 2021) and have a limited inhibitory effect on the leapfrog
movement of very coarse sand. Winds mainly carry medium and
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FIGURE 4

Influence of vegetation and soil indicators on GRA. ***p < 0.001, *p < 0.05.

fine sands. The movement of very coarse sands requires wind
speeds in excess of those needed for common wind erosion,
making them difficult to redistribute via wind. Fine shrub roots
form root-soil complexes mainly with < 0.25 mm particles (Lai
et al., 2016), whereas very coarse sand is difficult to entangle by
roots or bind by secretions because of its large particle size.

4.2 Comprehensive evaluation of different
plantations

The evaluation results based on GRA indicated a clear hierarchy
of restoration effectiveness: CK > SP > HS. Previous studies in high-
cold desert areas and the severely soil-eroded Loess Plateau have
confirmed that CK promotes ecological restoration in arid and
semi-arid regions and exhibits extraordinary adaptability to
drought stress (Li et al., 2016; Zhao et al, 2021). The advantages
of CK may additionally stem from its ability to synergistically
improve the chemical and physical microhabitats of soil. As a
nitrogen-fixing legume, it directly enriches soil nitrogen,
promoting plant growth. Concurrently, its dense, multi-stemmed
canopy creates a favourable microclimate by reducing soil
evaporation and temperature while protecting understory plants
from wind. This dual action fosters higher understory biodiversity
and cover, which in turn enhance soil organic matter input and
stability, creating a self-reinforcing restoration cycle. The more
limited impact of HS, despite its nitrogen-fixing capacity, suggests
that this functional trait alone is insufficient for rapid ecosystem
recovery. It is speculated that the sparser canopy and litter quality of
HS may be less effective in modifying the microhabitat and building
soil organic matter compared to CK. Consequently, the positive
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feedback loop between plant growth and soil improvement
remained weaker. The root systems of CK and HS extend deeper
in the vertical direction, whereas the root system of SP is mainly
distributed within the 0-60 cm soil layer. Horizontally, it spreads
widely, and its extensive roots effectively combine sand particles and
improve soil porosity. However, the comparatively more open
canopy of SP may offer less microhabitat amelioration than CK,
resulting in a more modest promotion of understory vegetation and
soil nutrients.

The random forest model provided strong, data-driven
support for this mechanistic interpretation. The dominance of
biodiversity indicators—particularly the Margalef index, perennial
species richness and understory coverage—as primary predictors
(p < 0.001) of GRA aligned with ecological theory positing that
species richness and structural complexity enhance ecosystem
multifunctionality (Maestre et al., 2012a, b). Specifically, the
paramount role of the Margalef index underscores that taxonomic
diversity, rather than dominance metrics (e.g., Simpson index), is
critical for stabilising sandy ecosystems. This likely stems from
niche complementarity: diverse perennial species assemblages in
CK plantations maximise resource partitioning (e.g., water, light),
thereby amplifying understory development and soil amelioration
—consistent with the observed 209.67% cover increase under CK in
the present study. The significant but secondary role of soil available
phosphorus highlights its limiting nutrient status in arid soils.
Unlike nitrogen (often mitigated by leguminous CK nitrogen
fixation), phosphorus scarcity persists due to high fixation in
calcareous sands (Mahdi and Mouhamad, 2018; Wahba et al,
2019). Based on these findings, it is recommended that future
trials of CK x SP mixed plantations, which theoretically combine
the superior microhabitat moderation and nitrogen fixation of CK
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with the superior soil-structuring capacity of SP, offer a promising
strategy for achieving functional complementarity in sandy
area restoration.

4.3 Limitations and future perspectives

This study was primarily conducted in the middle reaches of the
Yellow River. Some other contemporary studies have also selected
representative artificial forests in the middle and upper reaches of
the Yellow River Basin for the comprehensive evaluation of their
soil properties. Zhu et al. found that mixed coniferous and broad-
leaved forests, larch forests, and mixed arbour and shrub forests also
exhibited sound soil improvement effects (Zhu et al., 2023). Li et al.
selected four typical mixed vegetation types in the sandy land of the
Yellow River—desert transition zone, with the results showing that
Populus alba var. pyramidalis x C. korshinskii was a suitable mixed
vegetation restoration type in this region (Li et al., 2022). Although
the dominance of shrubs is effective for rapid stabilisation, it may
accelerate soil water consumption and suppress herbaceous
biodiversity (Eldridge et al., 2011; Daryanto et al., 2019).
Currently, the Chinese government advocates for the afforestation
and management of planted forests based on the specific water
resource conditions of different regions, particularly in areas with
scant precipitation and severe water scarcity, thereby optimising the
allocation of limited water resources. Investigating the relationship
between water constraints and planted forest development will be a
key research focus in the future. While the results of the present
study demonstrate the effectiveness of shrub plantations (especially
C. korshinskii) in enhancing vegetation development and soil
quality, the need for adaptive management is emphasised. When
establishing plantations in ecologically fragile areas, careful density
control and mixed-species design are required to mitigate long-term
hydrological and biodiversity costs.

This study provides a snapshot of the ecological effects of shrub
plantations in the Kubuqi Desert. However, several limitations
should be considered when interpreting the results. The findings
are based on data from a single growing season. Given the dynamic
nature of arid ecosystems, the observed patterns—particularly
concerning soil moisture and nutrient dynamics—may not fully
represent long-term trends or the stability of these restored
ecosystems under inter-annual climate variability. Second, while
the nested sampling design with 12 independent sites provides a
robust baseline, the inherent heterogeneity of desert environments
means that a larger sample size or a multi-year monitoring program
could capture a broader range of ecological variation and strengthen
the generalisability of this study’s conclusions. The random forest
model effectively identified key drivers but primarily revealed
correlative relationships. The underlying mechanisms—such as
the specific plant-soil feedbacks, root exudate profiles or
microclimatic modifications by different shrub canopies that lead
to the superior performance of C. korshinskii—require further
elucidation through controlled experiments. Integrating soil
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biological properties (e.g., microbial community structure) with
the physicochemical measures taken here will be a critical next step
to unravel these mechanisms. Additionally, this study did not
involve arbour or mixed forests, and the selection of soil
indicators was primarily based on physical and chemical
properties. Research on biological characteristics still needs to be
supplemented. Meanwhile, these results must be considered within
the broader context of dryland restoration strategies. These
deficiencies remain the direction for future research efforts.

5 Conclusions

Asteraceae, Fabaceae, Amaranthaceae and Poaceae accounted
for 85% of the total plant species in the region. Asteraceae was the
most adapted to the region and accounted for 30% of the total
species, especially Artemisia, which accounted for 20% of the total
species. Compared with bare sand, the soil clay of plantations
increased by 1.67-6-fold, silt increased by 0.63-3.11-fold, water
content increased by 23%-40%, total porosity increased by 36%-
137%, total nutrient increased by 13%-369%, and available nutrient
increased by 6%-181%, while soil bulk density decreased by 8%-
13%. Soil fine particles and nutrients were mainly concentrated in
the 0-20 c¢m soil layer, and the plantations had no significant effect
on very coarse sand. In the 0-60 cm soil layer, soil nutrients and
porosity decreased with increasing soil depth, while water content
and bulk density showed the opposite change.

Caragana korshinskii plantations resulted in the highest
vegetation diversity index. C. korshinskii plantations could better
promote the accumulation of soil nutrients and fine particles,
resulting in 1.4-2.67-fold more clay, 1.17-1.42-fold more silt,
1.19-1.75-fold more very fine sand, 1.05-2.9-fold more soil total
nutrients and 1.01-2.4-fold more available nutrients than other
plantations. Salix psammophila plantations were more effective at
improving soil porosity structure and compactness in sandy areas,
resulting in a 0.95-0.97-fold change in soil bulk density and a 1.06-
1.18-fold increase in total porosity compared to other plantations.
The evaluation results of the weighted GRA were: C. korshinskii
(0.8574) > S. psammophila (0.7790) > H. scoparium (0.6883) > bare
sand (0.5637). Species diversity and understory vegetation cover
were the most critical factors affecting GRA. These findings
underscore the importance of species selection for restoration
outcomes. C. korshinskii is recommended as a priority species for
enhancing ecosystem functions in this region. Additionally, future
forest management practices should place greater emphasis on soil
available phosphorus.
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