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framework for early pine
wilt disease detection

Yongkang Hu and Fang Wang*

College of Electronic Engineering, Nanjing XiaoZhuang University, Nanjing, China

Pine wilt disease (PWD) poses a severe threat to forest ecosystems due to its high
infectivity and destructive nature. Early identification of PWD-infected pines is
critical to curbing disease spread and safeguarding forest resources. In order to
timely detect and prevent the spread of PWD and meet the requirements of
edge computing devices for real-time performance and computational
efficiency, this paper proposes a lightweight model LW-PWDNet. The
backbone network reconstructs HGNetV2 to achieve efficient feature
extraction. It decomposes traditional convolutions into more lightweight
feature generation and transformation operations, reducing computational
cost while retaining discriminative power. The feature fusion layer reconstructs
the path aggregation network based on RepBlock and multi-scale attention
mechanism, capturing fine-grained details of small lesions, so as to better
capture the detailed features of small targets. At the same time, this paper
designs a lightweight D-Sample down-sampling module in the feature fusion
layer to further improve the model's detection ability for multi-scale targets.
Finally, this paper designs a lightweight prediction layer LightShiftHead for this
model. By strengthening the local feature expression, the detection accuracy of
PWD in small targets is further improved. A large number of experimental results
show that LW-PWDNet maintains a high detection accuracy of mAP 89.7%, while
achieving low computational complexity of 5.6 GFLOPs and only 1.9M
parameters, as well as a high inference speed of 166 FPS when tested on an
NVIDIA RTX 4070 GPU with a 13th Gen Intel(R) Core(TM) i7-13700KF processor,
using PyTorch 2.0.1and CUDA 12.6, based on Python 3.9. This model can provide
an efficient and lightweight detection solution for PWD in resource-constrained
scenarios such as unmanned aerial vehicle inspections.
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1 Introduction

Pine wilt disease (PWD) is caused by a wood pathogen carried
by the pinewood nematode. The disease has a short incubation
period and is highly contagious. It only takes 40 days for a pine tree
to die after being infected. Can potentially destroy an entire pine
forest within 3-5 years under favorable conditions (Li et al., 2022a).
PWD has become one of the most destructive forest diseases in the
world. The disease was first discovered in North America in the
early 20th century and has since spread rapidly to Asia and Europe
(Back, 2020). In China, PWD was first discovered in 1982 in the
black forest of the Dr. Sun Yat-sen Mausoleum in Nanjing, and it
has spread to many regions across the country at an alarming rate,
increasing from a few hundred hectares in the 1980s to over 2
million hectares in 2024 (Hao et al., 2022).

PWD is characterized by rapid spread, high mortality, and costly
control, making early detection essential. Monitoring the early stages of
PWD is therefore crucial. According to a refined economic assessment
conducted at the subcompartment scale (Liu et al, 2023), PWD
resulted in a total loss of approximately USD 7.4 billion in China in
2020, including USD 1.11 billion in direct economic losses and USD
6.29 billion in ecosystem service losses. Recent work by Liu et al. (Liu et
al., 2024) also introduced the Clusterformer segmentation framework,
which demonstrated the potential of UAV-based deep models for
PWD-related tree identification, highlighting the necessity of
integrating lightweight segmentation and detection mechanisms. A
considerable portion of the direct costs originated from large-scale
quarantine logging, transportation, incineration, and reforestation
operations. Studies have shown that timely detection and removal of
infected trees during the early infection stage can reduce the number of
felled trees by over 40%, substantially alleviating the burden on forestry
resources and management budgets.

Ground surveys are labor-intensive and often miss early infections,
and frequently fail to detect early infections (Li et al., 2023). In addition,
the external manifestations of pine trees infected with PWD, such as
needle discoloration and canopy thinning, usually only appear after
irreversible damage has occurred (Shi et al., 2024).

In recent years, with the development of remote sensing
technology, it has the advantages of wide coverage, high temporal
resolution, short revisit period, and wide spatial coverage, providing a
solid technical foundation for the timely monitoring of PWD.
Currently, the monitoring of forest pests and diseases using remote
sensing technology mainly falls into two directions: one is through
satellite remote sensing monitoring, and the other is through
unmanned aerial vehicle (UAV) remote sensing monitoring (Li
et al.,, 2022b).

However, satellite remote sensing has many limitations in the
monitoring of PWD. Its spatial resolution is relatively low (usually 10—
30 meters), making it difficult to accurately identify individual trees in
the early stage of infection, especially in the stage when the symptoms
are not yet obvious (Cai et al,, 2023; Xie et al,, 2024). In addition,
satellite images are greatly affected by the fixed revisit cycle and weather
factors, and it is difficult to meet the needs of continuous and high-
frequency monitoring. Most satellites use vertical downward-looking
imaging, lacking side-looking angle information, making it difficult to
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extract key features such as needle discoloration or branch structure
(Ye et al, 2025). At the same time, the scale of satellite images is
relatively coarse, making it difficult to label diseased trees and conduct
ground verification, which is not conducive to constructing a high-
quality deep learning training dataset. In contrast, UAV remote sensing
has higher spatial resolution and greater deployment flexibility, and can
more effectively achieve early and fine-grained detection of PWD (Sun
et al, 2022; Ye et al,, 2023; Du et al,, 2024; Yao et al, 2024). In
particular, Yao et al. (Yao et al, 2024) proposed the Pine-YOLO
detection framework, which improved UAV-based monitoring
performance through task-specific architectural refinement, laying a
foundation for subsequent lightweight detection research.

At present, some studies on using UAV remote sensing monitoring
adopt traditional machine learning or feature classification strategies.
For example, Thapa et al (Thapa et al., 2024). constructed a multi-stage
classification structure based on deep metric learning, and improved
the recognition robustness through feature embedding, which has
certain prior dependence. A large number of studies use deep
learning models to identify diseased plants. For example, the joint
deep object detection model proposed by Wu et al (Wu et al., 2024), the
improvement of the YOLO model for the infection stage by Wu et al
(Wu et al,, 2023), the use of the YOLOV4 structure by Zhang et al
(Zhang et al., 2024), and the detection model combining GoogLeNet by
Zhu et al (Zhu et al,, 2023). In addition, multiple studies have begun
introducing attention mechanisms, ViT modules, and hybrid CNN-
Transformer structures for vegetation health monitoring. For instance,
Wang et al. (Wang et al., 2024a) proposed FireViTNet integrating ViT
and CNNs for forest fire segmentation, while Chen et al. (Chen et al,,
2024) developed TeaViTNet using multiscale attention fusion for pest
detection in tea leaves, both illustrating the transferability of such
architectures to forest pathology contexts. Similarly, Wang et al. (Wang
et al, 2024b) and Jin et al. (Jin et al., 2024) explored lightweight vision
frameworks (SWVR and Fire-in-Focus) for efficient forest fire
recognition, further validating the practical value of lightweight visual
perception in UAV environmental monitoring. These methods
perform well in terms of accuracy, but the network structure is
complex, the inference efficiency is low, and it is difficult to meet the
requirements of edge deployment. Recent work such as Li & Peng (Li &
Peng., 2024) and Lin, Xiao, & Lin (Lin, et al., 2025) also focused on
lightweight YOLOV8 optimization in industrial and agricultural
detection, respectively, suggesting a general trend toward efficient
inference networks. Similarly, the multi-scale channel adaptive
network designed by Ren et al (Ren et al, 2022), the local feature
extraction method based on Mask R-CNN by Wu and Jiang (Wu and
Jiang, 2023), the improved Mask R-CNN by Hu et al (Hu et al., 2022),
and the performance evaluation of deep networks such as ResNet and
DenseNet by Zhi et al (Zhi et al., 2024) all belong to non-lightweight
structures, which are suitable for scenarios where accuracy is prioritized
but not friendly to resource-constrained environments.

At the same time, in the face of the growing demand for lightweight
models in drone monitoring, in order to achieve both low
computational overhead and high recognition accuracy, some
research focuses on the integration of network structure
lightweighting and attention mechanisms. For example, in response to
the problems of high forest density and small target scale, Yu et al
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(Yu et al, 2023). proposed a shallow weighted feature enhancement
network (SPWFEN), which effectively improved the recall rate of small
target detection. Gu et al (Gu et al, 2025). developed DEMNet, a
lightweight detection framework designed for tea leaf blight in slightly
blurry UAV remote sensing images, demonstrating the importance of
specialized designs for small and visually indistinct targets. Similarly, Liu
et al (Liu et al,, 2024). proposed Clusterformer, a Transformer-based
segmentation framework tailored for pine tree disease identification in
UAV remote sensing images, which enhanced fine-grained feature
representation and showed strong adaptability to complex forest
backgrounds. Dong et al (Dong et al., 2024). introduced an attention
module and a multi-task loss function into YOLOvV5, Han et al (Han
et al,, 2022). proposed a network combining a Gaussian kernel and a
multi-scale spatial attention mechanism, Bai et al (Bai et al,, 2025).
constructed a detection structure suitable for complex scenes based on
the lightweight Mamba model and the attention module, Xu et al (Xu
et al., 2023). fused color features and spatial attention for the
identification of discolored diseased trees, and Zhang et al (Zhang
et al, 2023). optimized the YOLOV5 backbone network through the
attention mechanism, all achieving a good balance between model
performance and computational efficiency. Chen et al (Chen et al,
2024). Chen et al. (2025) innovatively integrated the visual Transformer
(ViT) and CNN to construct PWDViTNet, taking into account the
detection of weak-texture diseased plants at long distances and the
lightweight deployment of the network, showing good prospects.
Furthermore, recent studies have extended PWD detection to
multi-stage joint frameworks and fine-grained feature fusion. For
instance, Zhou et al. (Zhou et al., 2025) proposed a PWD-
lightweight and feature fusion network for multi-stage detection,
while Wang et al. (Wang et al, 2025) introduced a hierarchical
attention and feature enhancement network for multi-scale small
targets, both of which emphasize efficient spatial-semantic aggregation.

(a)

FIGURE 1

10.3389/fpls.2025.1687742

From a methodological perspective, the growing body of work by
Lin and collaborators (Lin & Tang, 2021a; Lin & Tang, 2021b; Lin et al,,
2022; Lin, Qian & Di, 2023a; Lin et al, 2023b) on intelligent
optimization, cloud-based detection, and lightweight design provides
a theoretical foundation for integrating multi-objective optimization
and feature extraction into UAV-based lightweight frameworks such as
LW-PWDNet.

In summary, although non-lightweight models have advantages in
detection accuracy, their deployment flexibility and resource
adaptability are poor. In contrast, the small target detection method
based on lightweight structures and attention mechanisms provides a
more feasible solution for the efficient, low-cost, and edge monitoring of
PWD, and it is also the key research direction for researchers at present.

Considering that in practical applications, the monitoring of PWD
relies on real-time detection and deployment by edge devices such as
drones. Therefore, the lightweighting of the model is crucial for reducing
computational costs, improving inference speed, and adapting to
resource-constrained devices. To meet this requirement, this study
proposes LW-PWDNet, a collaborative lightweight architecture built
upon the PWD-EFC, D-Sample, and LightShiftHead modules. This
design not only differs from conventional backbone-pruning strategies
seen in lightweight YOLO variants but also incorporates attention-
guided fusion and parameter-efficient optimization inspired by Lin et al.
(Lin et al,, 2025) and related works.

First, this paper proposes a lightweight detection model, LW-
PWDNet. Its core innovation lies in the collaborative lightweight
design of the PWD-EFC feature fusion module, the D-Sample
multi-scale down-sampling module, and the LightShiftHead
prediction layer. The organic combination of these three not only
effectively reduces the model's parameter quantity (Parameters
reduced to 1.9 M) and computational amount (GFLOPs reduced
to 5.6), but also enhances the feature extraction and localization

(b)

(©

(a) shows the location of Jiangsu Province in China, (b) shows the location of Liyang City in Jiangsu Province and satellite images of Liyang City,

and (c) shows images of field surveys by UAVs.
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capabilities for small PWD targets in the early stage. This is
significantly different from the single optimization idea of existing
lightweight YOLO frameworks that only rely on backbone cropping
or operator replacement.

Secondly, a dataset containing 8,000 PWD pine tree images in
different scenarios was constructed, and comparative experiments were
carried out on this dataset with various lightweight baseline models
such as YOLOv5n and YOLOv1On. The results show that LW-
PWDNet has a 2.8% improvement in the mAP indicator compared
to mainstream lightweight detection frameworks, verifying the
performance advantage of the proposed collaborative lightweight
design in the PWD small target detection task.

Finally, this paper further verifies the adaptability of LW-PWDNet
on UAV edge devices, and completes practical deployment and
detection experiments. It shows that this model not only has academic
method innovation, but can also provide a practical technical support for
large-scale and real-time monitoring of forestry PWD.

2 Materials and methods
2.1 Study area

Jiangsu Province (latitude 30°45'-35°20'N, longitude 116°18'-
121°57’E) is located in the eastern coastal area of China, at the lower
reaches of the Yangtze River and on the shore of the Yellow Sea
(Figure 1). Jiangsu has a gently sloping terrain from southwest to
northeast. The landform is mainly plain, with hills and low
mountains. The Taihu Lake Basin in the south and the hilly areas
in the west are relatively rich in forestry resources. The forest
coverage rate of the whole province is about 24.03%, and the area of
coniferous forest accounts for 26.17% of the total forest area of the
province. The forest distribution in Jiangsu is mainly concentrated
in the hilly areas of southern Jiangsu, the Ningzhen Mountains and
the areas along the rivers and lakes.

Different heights

140m

Different times

Morning

FIGURE 2
UAV images acquisition.
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The study area is Liyang City (latitude 31°21-31°43" N, longitude
119°05’-119°29" E), located in the southern part of Jiangsu Province
and the southwestern part of Changzhou City, at the northern foot of
the Tianmu Mountains in the hilly area. The terrain of Liyang City
generally slopes from the southwest to the northeast. It belongs to the
transitional landform of low mountains, hills and plains, and has
typical southern forest ecological characteristics. The vegetation types
are diverse, covering coniferous forests, evergreen broad-leaved forests,
deciduous broad-leaved forests and artificial mixed forests, with a
complex forest structure. The forest land area of the whole city is about
2,200 square kilometers, and the forest coverage rate exceeds 40%.
Among them, coniferous forests are widely distributed in mountainous
and gentle slope areas. Liyang is one of the key epidemic areas of PWD
in Jiangsu Province. In recent years, the infection pressure has
persisted. It is representative, typical and has the value of continuous
monitoring. It is an ideal area for carrying out long-term monitoring
and model optimization research of PWD.

2.2 Data collection

We acquired images with a DJI Mavic 3 UAV and the UAV
configuration is shown in Table 1.

During the image acquisition process, manually selected the flight
range and take pictures at equal-distance intervals to ensure the

TABLE 1 UAV configuration.

Parameter name Parameter value

Name of UAV DJI Mavic 3
Aerial Camera Hasselblad L2D-20c

Sensor Size 17.3mmx13.0mm (4/3 CMOS sensor)

Lens focal length

24mm (equivalent)

60m

Evening
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uniformity and comprehensiveness of data collection. In order to adapt
to the complex terrain undulations and diverse vegetation densities in
forest areas, this study adopted a planar route planning to effectively
cover the entire acquisition area while minimizing flight path overlap.

To enrich the diversity and comprehensiveness of the PWD
dataset, this chapter collected PWD images at different time periods
(morning, noon, and dusk), different shooting heights (140 meters,
80 meters, and 60 meters above the ground), and different infection
levels, ensuring that the dataset contains PWD information under
various environmental conditions. After more than 30 flight
shootings, a total of 11,126 PWD images were obtained in this
chapter. Some example image data are shown in Figure 2:

This paper uses a DJI drone for image acquisition. The resolution
of the acquired images is 4032x3024. High-resolution images will
occupy a large amount of storage space and computing resources
during training, increasing processing time and hardware burden. In
addition, although high-resolution images can provide rich detail
information, they may also contain redundant and invalid
information irrelevant to the detection task of PWD-infected trees.
For example, the images may include a large amount of background,
irrelevant trees, distant objects, or detailed textures. These contents not
only increase the computational burden but may also cause noise
interference to the target detection algorithm, affecting the detection
accuracy of the algorithm.

Therefore, in order to improve the efficiency of data processing
and reduce the consumption of computing resources, this paper
evenly divides the original images at a ratio of 3x3. The image
resolution is reduced to 1333x1000, which not only retains the
necessary detail information but also significantly reduces the
amount of data, thus reducing the computational burden of
model training. Figure 3 shows the segmented sample images.

2.3 Dataset production

Based on the clinical manifestations and image visual
characteristics of PWD, this paper divides the infection stages of

split

3x3

FIGURE 3
Image segmentation.
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PWD into four stages: early stage, middle stage, late stage, and dead
tree, as shown in Figure 4. In the early infection stage, it is usually
manifested as sporadic yellowing of needles, which generally starts
from the top of the crown or a certain part and gradually spreads
around. In the middle infection stage, the needles of the pine tree
begin to wither on a large scale, and the infected parts usually turn
yellowish-brown or grayish-yellow. In the late infection stage, the
needles of the entire pine tree show obvious yellowing and
withering, the vitality of the pine tree gradually declines, and the
trunk completely loses its green color, usually showing dark brown.
In the dead tree stage, the pine tree almost completely loses its
needles and branches, showing obvious rot or death, and the color
of the trunk changes to gray or dark brown.

To improve the quality of the dataset, this study screened the
cut images, removed redundant images, and finally retained 8000
valid data, and annotated them. After screening redundant images
and validating annotation quality, we finally retained 8,000 valid
samples, with the number of labeled samples for each PWD
infection stage (Early, Middle, Late, Dead) detailed in Table 2.
The dataset was split into training, validation, and test sets at an
8:1:1 ratio, ensuring the independence of each subset for reliable
model evaluation.

The dataset uses the Labellmg tool to accurately annotate the
targets in the RGB images captured by the drone. First, use a
rectangular box to frame the specific location of the diseased area.
Each rectangular box annotation represents a target in the image. The
four vertices of the annotation box are clearly specified by coordinate

TABLE 2 The number of labels samples in the dataset.

Dataset Split PWD-E PWD-M  PWD-L PWD-D
Train 7215 1892 3798 2681
Test ‘ 2397 615 ‘ 1289 857
Val ‘ 2438 629 ‘ 1312 876
Total ‘ 12050 3136 ‘ 6399 4413
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PWD-L PWD-D
FIGURE 4
The 4 stages of PWD.
RE-Block SimAM  ——
PWD-EFC
I D-Sample
UpSample 1
[ PWD-EFC
RE-Block I 1
I RE-Block ——— SimAM ———
PWD-EFC |
I D-Sample
UpSample 1
PWD-EFC
RE-Block — SimAM ——

FIGURE 5
LW-PWDNet model structure.
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values, thus accurately describing the position and size of the target in
the image. Then, assign a corresponding category label to each
rectangular box annotation. Pine trees with early-stage lesions are
labeled as PWD-E (Early), those with mid-stage lesions are labeled as
PWD-M (Middle), those with late-stage lesions are labeled as PWD-L
(Late), and dead pine trees are labeled as PWD-D (Dead).

2.4 LW-PWDNet model construction

The structure of the lightweight PWD detection network LW-
. The model
mainly consists of a backbone network layer, a feature fusion layer,

5

PWDNet proposed in this paper is shown in Figure
and a prediction layer. In order to meet the resource limitations of
edge devices and achieve efficient and accurate detection of small-
target PWDs, a lightweight backbone network GH-Backbone was
designed, and the HGNetV2 network structure was reconstructed.
While reducing the computational complexity, the perception ability
of the PWD disease area was improved. For the feature fusion layer,
based on enhancing the inter-layer feature correlation, a lightweight
feature fusion module PWD Enhanced Inter-Layer Feature
Correlation (PWD-EFC) was designed to improve the feature

10.3389/fpls.2025.1687742

expression ability and detection accuracy. In addition, a D-Sample
downsampling module with a dual-branch structure was designed to
reduce information loss and further improve the detection accuracy
of small-target PWDs. Finally, at the prediction layer, an ultra-
lightweight detection head LightShiftHead was constructed based
on depthwise separable convolution (DWConv) and sparse
convolution (SPConv) to reduce redundant calculations, further
optimize the overall efficiency of the model, and ensure the
accurate detection of small-target PWDs.

2.5 Backbone network

Lightweight backbone network design should, on the basis of
ensuring accuracy, effectively improve the model's inference
efficiency, reduce resource consumption, and thus better meet the
real-time detection requirements on edge devices. In order to meet

these requirements, this paper draws on the structure of the
backbone network HGNetV2 of RT-DETR deep learning model
(Zhao et al., 2024), constructs GHBackbone as the backbone
network of LW-PWDNet model, and optimizes it with
GhostConv (Han et al., 2020).

%u

HGS DWConv GH DWConv GH GH GH DWConv GH SPPF
FIGURE 6
GH-backbone framework
Input
|
! ] |
GhostConv | Conv 1 X1
GhostConv / ESE

GhostConv
FIGURE 7
GH modular structural framework.
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GH-Backbone consists of High-Resolution group Stem(HGS),
GhostHGB(GH), DWConv (Zhang et al., 2023) and SPPF (Li et al,
2024) modules, and its architecture is shown in Figure 6.

In the GH-Backbone, the size of the input image is 640x640. The
HGS module first preprocesses the images of PWD-infected trees
captured by drones at high altitude, The HGS module preprocesses
the images, converting them into low-level feature maps for the
subsequent network to perform deeper feature extraction. On this
basis, in the GH-Backbone structure, this paper adopts an alternating
stacking of GH and depthwise separable convolutions to improve
the model's feature extraction ability and computational efficiency.
The features processed by HGS first undergo preliminary feature
enhancement through GH, and then enter the DWConv to reduce
the computational complexity and further improve the feature
representation ability. The alternating action of GH and DWConv
enables the network to efficiently extract and fuse information at
different scales, gradually enhancing the detection ability for small
targets of PWD. The GH structure uses residual connections to
connect multiple GhostConvs to enhance the fluidity of PWD
features, improve gradient transmission, alleviate the problem of
gradient vanishing in the training of deep networks, and at the same
time improve the model's detection ability for PWD disease targets of
different scales. Its structure is shown in Figure 7.

The Spatial Pyramid Pooling-Fast (SPPF) module at the end of the
backbone network expands the receptive field with low computational
cost by introducing multiple pooling operations at different scales,
reducing the computational burden while maintaining detection
accuracy. Compared with the traditional Spatial Pyramid Pooling
(SPP) module, SPPF uses fewer convolutional calculations,
improving the inference efficiency of the model on edge devices. In
addition, SPPF can effectively integrate deep-feature information,
enhancing the model's perception ability of the target area of PWD,
thus improving the robustness and accuracy of small-target detection.

RE-Block

I

— PWD-EFC

I D-Sample
UpSample l
PWD-EFC
RE-]];lock I l
I RE-Block ——
——— PWD-EFC |
I D-Sample
UpSample l
i PWD-EFC
l
RE-Block ———

FIGURE 8
Structural framework of feature fusion layer.
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2.6 Feature fusion layer

In the LW-PWDNet, the feature fusion layer adopts a PAN-
based structure to fully integrate the features of PWD targets at
multiple scales, improving the model's perception ability for disease
regions of different scales. In traditional feature pyramids, such as
FPN, the fusion of multi-scale features mainly uses a top-down
approach, in which deep-layer semantic features gradually enhance
the spatial detail information of shallow layers (Li et al., 2024). PAN
further introduces a bottom-up path enhancement mechanism,
enabling shallow-layer features to also influence deep-layer
features in the reverse direction, thus improving the detection
model's representation capability for targets of different scales,
especially the recognition of small targets. Compared with other
alternatives such as BiFPN, PAN was selected for its superior
balance between detection accuracy and computational efficiency
in small-target detection tasks. In addition, considering the
challenges of small-target feature loss in PWD detection,
insufficient feature representation of multi-scale disease regions,
limited computing resources, and high inference speed
requirements, this study further optimizes computational
efficiency while ensuring that the feature fusion layer maintains
effective information interaction, making it suitable for edge
computing devices.

The architecture of the feature fusion layer of the LW-PWDNet
model is shown in Figure 8. Specifically, in this paper, a RE-Block is
constructed based on the RepBlock and the multi-scale attention
mechanism Efficient Multi-scale Attention (EMA) (Ouyang et al,
2023) to improve the efficiency of multi-scale information
interaction. Among them, the RepBlock adopts a re-parameterizable
structure. In the inference stage, the convolutional branches can be
merged, reducing the computational complexity and improving the
inference speed of the model, which is suitable for edge computing
deployment. The EMA mechanism can adaptively adjust the feature
weights at different scales, enabling the model to pay more attention to
the fine-grained features of the PWD area while effectively suppressing
the interference of background noise. In addition, a lightweight feature
fusion module, the PWD-EFC module, is designed in the feature fusion
layer to enhance the feature correlation between different layers. In
order to further optimize the computational cost and eftectively
improve the feature representation ability, this paper designs and
constructs a D-Sample down-sampling module to optimize the
information transfer between feature layers.

2.7 Module

2.7.1 RE-block module

The core design of RE-Block is the ReAttention module, which
consists of RepBlock and EMA. Its structure is shown in Figure 9.
During the training phase, RepBlock adopts a dual-branch
DWConv structure to improve the feature extraction ability and
enhance the model's expressive power. During the inference phase,
in order to reduce the computational cost and improve the
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RE-block structural framework.

inference efficiency, the method of structural re-parameterization is
adopted to merge the two parallel DWConv branches in the
training phase into an equivalent single DWConv. Specifically,
this merging operation is based on the method of convolutional
weight fusion, that is, the weights calculated by the two DWConvs
are weighted and merged, so that only one DWConv operation
needs to be performed during inference, without the need for
additional multi-branch calculations. This not only reduces the
amount of calculation but also retains the effective features learned
by the multi-branch structure during the training phase, ensuring
that LW-PWDNet still has a strong feature extraction ability.
DWConv decouples the convolution into depthwise and
pointwise operations. Channel-wise convolution independently
performs spatial convolution operations on each input channel,
retains fine-grained local spatial information, and reduces
computational redundancy. Subsequently, point-wise convolution
performs information interaction between channels on the output
of channel-wise convolution, enhances the expressive power of
features, and ensures that the target information of PWD at
different scales can be effectively integrated.

Although the RepBlock effectively reduces the computational
cost and streamlines the parameter count of the LW-PWDNet
model, relying solely on this module will inevitably lead to a loss in
PWD detection accuracy. Especially in the task of detecting small
targets of PWD, fine-grained feature representation is crucial for
high-precision target recognition. To compensate for the loss in
detection accuracy, this paper introduces the EMA attention
mechanism. The EMA module is ingeniously designed to utilize a
grouping structure that does not require dimensionality reduction,
combined with cross-space learning techniques, effectively
capturing both short-term and long-term dependencies in the
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image. By grouping the channel dimension into multiple sub-
features, the EMA module can enhance the uniform distribution
of spatial semantic information in the feature map while ensuring
the retention of information in each channel. This design enables
effective aggregation of features at different scales, improving the
detection accuracy of small PWD targets.

Suppose the arbitrary input feature map is:

X e RCXHXW (1)

Among them, C, H, and W represent the number of channels,
height, and width of the input feature map, respectively. EMA
learns different semantic information by dividing the feature map
into G sub-features in the cross-channel dimension. The group style
represented by each sub-feature can be defined as:

X = [Xp X, .. .. Xo] @)

In order to effectively capture the interdependencies between
channels and reduce computational overhead, EMA performs
global average pooling operations along H and W respectively in
the 1x1 branch, thereby encoding the channel features. Specifically,
two one-dimensional global average pooling operations are
employed to enhance the inter-channel correlation. In the 3x3
branch, multi-scale features are captured by stacking a single 3x3
convolutional kernel. Subsequently, before the channel feature joint
activation mechanism, the one-dimensional feature encoding vector
obtained through global average pooling is reshaped and adjusted in
shape to ensure its suitability for subsequent processing. This
process can be represented by the formula:

R;XC//G « RICXC//G (3)
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PWD-EFC structural framework.

On this basis, a second spatial attention map that retains precise
spatial location information was further derived. Subsequently, the
output feature maps within each group were combined with the two
generated spatial attention weight values. The Sigmoid function was
used to capture the pairwise relationships at the pixel level and
strengthen the global context information of all pixels.

2.7.2 PWD-EFC

To improve the feature fusion ability of LW-PWDNet in small
object detection, this paper designs a lightweight feature fusion
module called PWD-EFC, whose structure is shown in Figure 10.
PWD-EFC is used to strengthen the context connection and
semantic consistency among feature maps at different levels, and
effectively improve the detection performance of small objects
without significantly increasing the number of parameters. This
module can achieve faster inference speed and lower energy
consumption while ensuring accuracy, and improve the
recognition accuracy and efficiency of early PWD.

The PWD-EFC consists of two main components: the Grouped
Feature Focus (GFF) unit and the Multi-level Feature Reconstruction
(MFR) module. The GFF module aims to enhance the contextual
correlation among feature maps of different scales. Its main idea is to
simulate a process similar to the attention mechanism, extracting key
information regions through spatial focusing, channel grouping, and
spatial normalization operations. The MFR separates strong and
weak spatial information and uses lightweight convolutional
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modules to achieve precise feature transformation. This approach
reduces the extraction of irrelevant information while preserving the
key details of small objects in deep networks.

The design concept of the PWD-EFC module is mainly reflected
in three aspects: feature compression, feature recombination, and
feature fusion. The first part is the grouped feature attention
mechanism. Its core idea is to improve the correlation between
features at different levels by enhancing spatial attention and
channel context information. At the input end, the PWD-EFC
module receives two feature maps from different layers, denoted as
x € RO W and x, € ROH*W In order to unify the dimensions
and enhance the representation ability, a 1x1 convolution and batch
normalization are first applied to both of them, and an attention
weight map is generated through the Sigmoid function:

w; = 0BN(Conv,(x;)), w, = 6BN(Conv,(x,)) (4)

The above operation can be regarded as an explicit spatial
attention mechanism for capturing the importance of key region
positions. After obtaining the two weighted feature maps, the PWD-
EFC module performs channel-level fusion to generate a global
feature representation:

Xglobul = COl’lV1 (XI) + CODVZ (XZ) (5)

Subsequently, in order to explore more fine-grained channel
context relationships, PWD-EFC divides the global feature map
into g groups (g denotes the number of groups, empirically set to 4

10 frontiersin.org


https://doi.org/10.3389/fpls.2025.1687742
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Hu and Wang

in this study) along the channel dimension, that is, Xgpe =
{X(l),X(z),...,X(g)}. A lightweight convolutional operation is
applied to each group of features to obtain the intra-group
context interaction features. By normalizing each group of
features X and using Softmax to generate normalized attention
weights:

YO = X . Softmax( ﬁ,‘f;), 1% = mean(X?) (6)

This process is similar to the ‘query-key” interaction operation
of the self-attention mechanism, but it models the relative
importance among features in a more compact and grouped
manner. After the interaction calculation of all group features,
they are concatenated in the channel dimension to restore the
original size.

To further improve the feature stability and representational
ability, PWD-EFC normalizes the concatenated feature map so that
its mean is zero and its standard deviation is one, and introduces
learnable parameters to enhance flexibility:

N X-u
X_y0'+6

+B ™

Among them, yand [ are trainable parameters, and € is a small
constant to prevent division by zero. The normalized output feature
X will be jointly processed with subsequent modules to improve
global feature consistency. Then, the PWD-EFC module introduces
a multi-level feature reconstruction mechanism, aiming to alleviate
the problem of inconsistent expression between deep semantic
features and shallow detail features. In this process, the module
first estimates the importance weights of different channels
according to the previously generated feature maps. Specifically,
the global average pooling and the Sigmoid activation function are
used to generate the channel attention map:

10.3389/fpls.2025.1687742

Using this weight, the fused features are divided into strong
semantic features (strong features) and weak semantic features
(weak features):

Xstrong =W, XXypeak = (1 - WC) X )

Next, to enhance the detailed expression ability of strong
features, use a 1x1 convolution to perform feature transformation
on them:

Xstrong = Conv1 x1 (Xstnmg) (10)

At the same time, depthwise separable convolution is applied to
weak features, aiming to enhance their semantic richness and
reduce parameter overhead.

X DWConv(X,ear) (11)

weak =

After improving the expressive ability of strong and weak

features through the above methods respectively, the module uses

element-wise addition for fusion, and finally outputs the enhanced
feature map.

XL = Xstrong + Xweak +X (12)

Where X is the aforementioned global semantic compensation
term after standardization, which is used to improve the global
consistency of the fusion result. This fusion strategy ensures the
integrity of semantic expression while retaining detailed information,
thus significantly enhancing the detection performance of small
targets in complex backgrounds.

2.7.3 D-sample down-sampling module

The main role of down-sampling is to reduce the spatial
resolution of the feature map, thereby reducing the computational
cost, and at the same time, extracting more robust high-level

w, = 0(AvgPool(X)) (8)  semantic information. In order to optimize the down-sampling
Input Input
| I
[ l
Conv2d Conv Conv
1 k=3,5=2,d=3 k=1,5=1
BatchNorm2d l l l
l MaxPool AvgPool
SiLU
Conv FKH¥ l D-Sample

FIGURE 11
D-sample structural framework.
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strategy and enhance the feature representation ability, this paper
designs a down-sampling module called D-Sample, whose structure
is shown in Figure 11. Standard convolutional down-sampling
achieves the down-sampling of the feature map following the
order of convolution, normalization, and then activation function.
However, D-Sample adopts a dual-branch structure, which further
enriches the combination of feature maps and reduces the loss of
tiny features.

By combining various convolutional and pooling operations, D-
Sample achieves efficient information extraction and feature
transformation. It aims to improve the detection accuracy of
small targets of PWD while reducing computational overhead.
The core idea of this module is to retain key feature information
during down-sampling and enhance the model's perception ability
for targets of different scales. Specifically, the module contains two
main convolutional layers. Among them, the convolutional layer
Convl uses a large kernel convolution with a stride of 2 to achieve
spatial down-sampling and directly extract global features. The
convolutional layer Conv2 uses a 1x1 convolutional kernel to
perform channel transformation while maintaining the spatial
size of the input feature map unchanged, so as to adapt to the
subsequent feature fusion process. In addition, D-Sample also
integrates pooling operations to further enrich the feature
representation ability and improve the modeling ability for PWD
targets of different scales, thereby enhancing the target detection
performance of the model in complex forest environments. The
input X first passes through Convl1 to obtain X1. Then, after passing
through Conv2, X is divided into two parts along the channel
dimension, and max-pooling and average-pooling operations are
performed respectively to obtain X2 and X3. Finally, the three
feature maps X1, X2, and X3 are concatenated through Concat to
obtain the output of D-Sample. The operation process is as follows:

X; = Conv;,3,(X;C;, C) (13)

10.3389/fpls.2025.1687742

X, = Maxpools s »(Xa; 1) (14)
X3 = Avgp0013x3’2(X/3; 1) (15)
Output = Concat(X;,X,, X3) (16)

Among them, Conv3x3,2 represents a convolution with a
kernel size of 3x3 and a stride of 2; Maxpools.3, and
Avgpools.;, respectively represent the maximum pooling and
average pooling operations with a kernel size of 3x3 and a stride
of 2; X, first-order derivative and X; first-order derivative
respectively represent the two parts after the output mapping
of Conv,.

The D-Sample down-sampling module designed in this paper
can reduce the spatial size of the feature map while retaining and
enhancing features of different scales and types, improving the
model's ability to recognize small targets of PWD. In addition, the
design of the D-Sample module takes into account both
computational efficiency and detection accuracy, which helps to
optimize the feature extraction ability of the lightweight LW-
PWDNet model, making it more suitable for UAV edge
computing devices with limited computational resources.

2.8 Prediction layer

This paper constructs an ultra-lightweight prediction layer,
LightShiftHead, to reduce the computational complexity and
improve the efficiency of PWD detection. This prediction layer
introduces a parameter-free simple attention mechanism, SimAM
(Yang et al,, 2021), as well as DWConv and SPConv to optimize the
allocation of computing resources and the model's inference speed.

— Conv3x3 — SPConv — Conv3x3 — Conv2d —
— 80x80 — SimAM — — Loss
‘— DWConv — > Conv3x3 —— Conv2d —
— Conv3x3 — SPConv — Conv3x3 — Conv2d —
— 40x40 — SimAM — — Loss
— DWConv — C(Conv3x3 — Conv2d —
Conv3x3 — SPConv — Conv3x3 — Conv2d
— 2020 — SimAM Loss
DWConv —  Conv3x3 — Conv2d

FIGURE 12
D-sample structure.
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Specifically, SImAM is inserted at the front-end of the three
prediction branches to enhance the feature expression ability while
avoiding introducing additional computational burden. In the
classification branch, DWConv is adopted to reduce the amount
of computation, and in the regression branch, SPConv is introduced
to further improve the efficiency of feature extraction. The structure
of LightShiftHead is shown in Figure 12.

2.9 LW-PWDNet design of the model loss
function

To address the diverse scenarios and high-precision
requirements in PWD detection, the LW-PWDNet model adopts
a composite loss function, which combines classification loss,
bounding box loss, and confidence loss.

2.9.1 Classification loss

General loss functions may bring certain computational burden,
while cross-entropy loss is more concise in calculation and can
achieve more efficient training. It is especially suitable for
lightweight designs that require simplifying the calculation process
and reducing the model's resource consumption. Therefore, the LW-
PWDNet model in this paper adopts cross-entropy loss as the
classification loss, and its calculation formula is as follows:

N 4 .
Lclass == 2 Eyi,clog(pi,c)

i—1c=1

17)

Among them, N is the number of detected targets in the current
batch. Suppose the category numbers c of the four infection stages of
the target of PWD are 1-4 respectively. Then in the formula, y; . is the
true label of the i-th target in the c-th category, and p;. is the
probability that the model predicts whether this sample belongs to
category c.

2.9.2 Bounding box loss

In order to improve the recognition ability of the detection model
for small targets and enhance the matching accuracy between the
prediction box and the ground truth box while maintaining the light
weight of the model, the LW-PWDNet model adopts Scale-based
Dynamic Loss (SDIoU Loss) (Su et al, 2024) in the design of the
bounding box regression loss. SDIoU can dynamically adjust the impact
factors of scale and position loss according to the target scale, and can
better adapt to the detection of targets of different scales. Especially, it
has higher sensitivity to the detection of small target PWD.

SDIoU improves the target box matching effect by
comprehensively considering the Intersection over Union (IoU),
aspect ratio loss, and center point offset loss. First, the loss function
calculates the aspect ratio difference between the prediction box and
the ground truth box, and uses the arctangent function to smooth it
to form the aspect ratio loss term v. Subsequently, a proportional
factor o is introduced to dynamically adjust the contribution of the
aspect ratio loss at different IoU levels. In addition, SDIoU combines
the area information of the target box, uses the scale factor 8 and the
weight term 3 to weight the loss of small targets to prevent small
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targets from being ignored during the optimization process. At the
same time, in order to further improve the positioning accuracy of the
target box, the loss function also adds the center point offset loss term
p2/c2, where c is the diagonal length of the smallest enclosing
rectangle of the two boxes, ensuring that the center of the
prediction box has minimal deviation from the center of the
ground truth box, thus enhancing detection robustness. The
calculation formula of the SDIoU loss function is as follows:

v="14 (tan‘1 - tan™! 2’—;)2 (18)

S i () (19)

B =gt (20)

5 e

Loy = 8- B+ (1 -8+ B)IoU —va) - (1+ 5 - P& (22)

Among them, wj, h; and w,, h, represent the widths and
heights of the ground truth box and the predicted box
respectively. € is a very small positive number to prevent the
denominator from being zero. p® represents the square of the
Euclidean distance between the center points of the predicted box
and the ground truth box, and c* represents the square of the
diagonal length of the minimum bounding rectangle of the
predicted box and the ground truth box.

In summary, the calculation formula of the loss function of the
LW-PWDNet model is as follows:

Liw = M Laass + Ao Lpce + ALsprou (23)

For the proposed composite loss function, the weights A, A,,
and A3 are empirically assigned according to the relative importance
of classification, confidence, and bounding box regression. In this
study, A; = 0.5, A, = 0.3, and A3 = 0.2, which were determined based
on preliminary experiments to balance detection accuracy and
convergence stability.

3 Experimental results
3.1 Experimental details

The hardware and software configurations, model training
parameters, and experimental environment are as follows. The
hardware setup includes an NVIDIA RTX 4070 GPU and a 13th
Gen Intel(R) Core(TM) i7-13700KF processor. The software
environment is based on Python 3.9, PyTorch 2.0.1, and CUDA
12.6 for GPU acceleration. For model training, the initial learning
rate was set to 0.001 with cosine annealing adjustment, the
optimizer was SGD, and the batch size was 16. All models were
trained and validated on the same PWD dataset to ensure the
reliability and comparability of results.
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TABLE 3 Performance comparison among different lightweight models.

Evaluation indicators

Backbone Rt mAP501 GFLOPs| Parameters]
FPSt

(VA (©)] (M)
PWD-E 60.5 56.2 63.2
PWD-M 70.2 65.4 72.1

SSD MobileNetv2 PWD-L 70.3 72.8 74.3 186.7 1.1 5.4
PWD-D 72.4 69.7 72.8
ALL 68.4 66.0 70.6
PWD-E 68.9 59.3 75.6
PWD-M 78.6 75.4 82.6

EfficientDet EfficientNet-D1 PWD-L 79.2 78.6 88.1 493 6.3 6.6
PWD-D 773 79.3 82.4
ALL 76.0 73.1 822
PWD-E 712 78.9 80.1
PWD-M 80.1 77.6 88.6

YOLOV5n CSPResNet PWD-L 85.3 89.8 90.3 183.4 4.7 1.9
PWD-D 76.3 88.5 88.4
ALL 78.2 83.7 86.9
PWD-E 73.4 81.4 81.2
PWD-M 81.8 752 80.6

YOLOv10n EfficientFormerV2 PWD-L 86.1 87.6 92.1 169.2 8.1 3.1
PWD-D 77.6 87.9 88.2
ALL 79.7 83.0 85.5
PWD-E 733 81.7 83.4
PWD-M 88.4 88.7 91.8

LW-PWDNet GH-Backbone PWD-L 87.6 89.4 93.6 166.8 56 1.9
PWD-D 78.6 90.1 90.1
ALL 82.0 87.5 89.7

Bold values indicate the best results for each metric among the compared models.

3.2 Comparison of experimenta[ results 1. In terms of detection accuracy, compared with other
and analysis lightweight models, LW-PWDNet demonstrates superior
sensitivity to PWD lesions. Its mAP index reaches 89.7%,

In order to comprehensively evaluate the performance of the and the detection accuracy for the early-stage infection
lightweight model LW-PWDNet proposed in this paper in the reaches 83.4%. The detection accuracies for the mid-stage,
detection task of PWD, this paper selects some mainstream late-stage, and dead-tree infection stages all exceed 90%.
lightweight object detection networks for comparative experiments, Among the YOLO series of models, YOLOv10n has a better
including the SSD model using MobileNetv2 as the backbone network, perception ability for early-stage PWD than YOLOV5n, but
EfficientDet with an efficient feature fusion mechanism, as well as the its overall mAP is 1.4% lower than that of YOLOv5n. This
lightweight versions YOLOv5n and YOLOv10n in the YOLO series. may be attributed to YOLOvIOn's focus on speed
The results of the comparative experiments are shown in Table 3. optimization, which involves more aggressive pruning of
Based on the data in Table 3, the following observations can network parameters or simplification of feature extraction

be made: modules. These trade-offs slightly compromise the model's
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ability to capture complex contextual information, thereby
leading to a marginally inferior global detection
performance compared with YOLOv5n. The EfficientDet
model generally has a good detection accuracy, but its
detection accuracy for early-stage small-target PWD is
still low, with an mAP of only 75.6%. SSD performs
poorly in the detection tasks of each PWD infection
stage, especially for the early-stage infection, with an
mAP of only 63.2%, indicating limited sensitivity to
PWD symptoms.

. In terms of recall rate, the overall recall rate of LW-
PWDNet reaches 87.5%, which is 3.8% and 4.5% higher
than the relatively well-performing YOLOv5n (83.7%) and
YOLOV10n (83.0%) models respectively. This indicates that
LW-PWDNet has a lower missed-detection rate in the
PWD detection task and performs more stably in the
PWD target detection task. Especially in the early-stage
infection, its recall rate reaches 81.7%, which has more
advantages than other models and helps to improve the
effectiveness of early-stage PWD prevention and control.

3. In terms of model computational complexity and inference
speed, the GFLOPs of the LW-PWDNet model is 5.6G,
which is much lower than that of YOLOv1On (8.1G),
slightly higher than that of YOLOv5n (4.7G), and
comparable to that of EfficientDet (6.3G). However, LW-
PWDNet performs relatively well in inference speed, with
an FPS of 166.8, only slightly lower than that of YOLOv10n
(169.2). The EfficientDet model is limited by its large
computational complexity (GFLOPs of 6.3G) and deep
network structure, with an FPS of only 49.3, making it
difficult to meet the requirements of real-time detection.

. In terms of model parameter quantity, the parameter
quantity of the LW-PWDNet model is only 1.9M, the
same as that of YOLOv5n. In contrast, the parameter
quantities of YOLOv10n, EfficientDet, and SSD are all
higher than 1.9M. Especially, due to the adoption of a
more complex backbone network, the parameter quantity
of EfficientDet increases significantly, resulting in a
decrease in inference speed. While maintaining high
detection performance, LW-PWDNet effectively controls
the parameter scale of the model, further improving its
applicability in resource-constrained environments.

Comprehensive analysis shows that LW-PWDNet achieves
high detection accuracy and recall rate in different infection
stages, especially in the mid-stage and late-stage infection stages,
its detection performance is significantly better than that of the
comparison models. At the same time, LW-PWDNet maintains a
computational complexity comparable to that of YOLOv10n and
performs outstandingly in parameter quantity control, with only
1.9M, making it suitable for edge-computing devices. Although its
inference speed is slightly lower than that of YOLOv5n, it has
obvious advantages in detection performance.

In order to visually compare the performance of each model in
the PWD detection task, this paper selects 4 representative images

Frontiers in Plant Science

15

10.3389/fpls.2025.1687742

from the constructed PWD dataset and conducts a visual analysis of
the detection results of each model. The detection effects of each
model are shown in the Figure 13. These 4 images cover different
infection stages (early, mid, late, dead tree), complex background
environments (dense forest areas, sparse forest areas, mountainous
environments), and different shooting angles (vertical overhead
shooting and oblique view) to comprehensively evaluate the
detection effects of each model. Among them, Figure 13 (I) and
(IT) are vertical overhead shooting images obtained by the drone at
the same flight altitude in different forest areas. Figure 13 (III) and
(II) are vertical overhead shooting images at different flight altitudes
in the same forest area, and Figure 13 (IV) and (II) are oblique-view
images at the same height and different angles.

From the detection results in Figure 13, it can be seen that LW-
PWDNet and YOLOv10n perform excellently in the PWD target
detection task. They can not only accurately detect all infected
targets, but also have a strong ability to distinguish different
infection stages, demonstrating high detection accuracy and
stability. In contrast, YOLOv5n has a certain degree of missed
detection when detecting early PWD small targets. A total of 3
missed detections occurred in the test samples, and its sensitivity to
the early infection stage is relatively low. SSD and EfficientDet
perform relatively poorly in the PWD detection task, with relatively
prominent problems of missed detection and false detection.
Among them, SSD had a total of 16 missed detections and 5 false
detections. It is particularly vulnerable to interference in complex
background environments, resulting in some withered broad-leaved
trees being misidentified as infected areas. Although the overall
detection accuracy of EfficientDet is better than that of SSD, it still
has 5 missed detections and 3 false detections, and there are still
deficiencies in its detection ability for small PWD targets. Overall,
LW-PWDNet shows high detection reliability and robustness in
complex forest environments and different stages of PWD infection.

3.3 Results and analysis of ablation
experiments

To verify the impact of each key module of LW-PWDNet on the
detection performance of small-target PWD, this paper designs
multiple groups of ablation experiments, and analyzes them from
four aspects: mAP, GFLOPs, Parameters, and FPS. The experiments
successively evaluate the contributions of RE-Block, PWD-EFC and
D-Sample in the feature fusion layer, and LightShiftHead in the
prediction layer to the model performance. Among them, Model 1
serves as the baseline model, using only the GH-Backbone
backbone network without including all the above modules. The
results of the ablation experiments are shown in Table 4.

According to the quantitative results of the ablation
experiments in Table 4, the following conclusions can be drawn:

1. RE-Block can effectively enhance the feature extraction
ability while reducing the computational cost, and
improve the detection ability of the lightweight model for
small-target PWD. After introducing RE-Block, the
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FIGURE 13

Detection effects of different models on the small target PWD dataset. (a) Original image, (b) Ground Truth, (c) SSD, (d) EfficientDet, (e) YOLOV5n,
(f) YOLOV10n, (g) LW-PWDNet.

GFLOPs of the model decreased from 6.4G to 5.7G, and the
number of parameters decreased by 0.2M, indicating that
both the computational complexity and storage
requirements were optimized. At the same time, the
detection accuracy of the model at each infection stage
was significantly improved, especially in the early infection
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stage (mAP increased from 78.4% to 80.2%), and the overall
mAP increased by 2.4%.

. The PWD-EFC designed in this paper improves the

correlation between features at different levels by
enhancing spatial attention and channel context
information, and further enhances the model's detection

frontiersin.org


https://doi.org/10.3389/fpls.2025.1687742
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Hu and Wang 10.3389/fpls.2025.1687742

TABLE 4 Results of the ablation experiments of the LW-PWDNet model.

Evaluation indicators

GFLOPs| Parameters|

Model RE-block PWD-EFC D-sample LightShiftHead Stage = mAP501

(%) (€) (M)
PWD-E 78.4
PWD-M 83.6

1 PWD-L 88.7 173 6.4 2.3
PWD-D 86.3
ALL 84.3
PWD-E 80.2
PWD-M 87.3

2 v PWD-L 91.6 160 5.7 2.1
PWD-D 87.6
ALL 86.7
PWD-E 81.4
PWD-M 89.6

3 v v PWD-L 91.8 175 5.7 22
PWD-D 87.9
ALL 87.7
PWD-E 82.5
PWD-M 90.7

4 v v v PWD-L 92.8 172 5.6 2.0
PWD-D 88.3
ALL 88.6
PWD-E 83.4
PWD-M 91.8

5 v v v v PWD-L 93.6 166 5.6 1.9
PWD-D 90.1
ALL 89.7

ability for PWD targets of different scales. After adding 3. The innovatively designed D-Sample in this paper can more

PWD-EFC, the model inference speed was significantly
improved (FPS increased from 160 to 175), while the
GFLOPs and the number of parameters remained
basically unchanged. However, the detection accuracy was
further improved, especially in the early (+1.2%) and
middle (+2.3%) infection stages, and the overall mAP
increased to 87.7%. Although the introduction of the
PWD-EFC module results in a negligible parameter
increase (only 0.1M), the computational complexity
(GFLOPs) remains unchanged, while the detection
accuracy improves by 1.0%. This indicates that PWD-
EFC maintains a lightweight design while achieving
significant performance gains.

Frontiers in Plant Science

effectively aggregate multi-scale information during the
feature fusion process, improve the detection ability for
PWD targets, especially for early-infected targets, and
further compress the model scale, making it more suitable
for the edge-computing environment. After adding the D-
Sample down-sampling module proposed in this paper, the
number of parameters of the model decreased from 2.2M to
2.0M, and the GFLOPs decreased to 5.6G, indicating that D-
Sample optimized the model structure while reducing the
computational cost. At the same time, the detection accuracy
at each stage was improved to varying degrees, with the mAP
in the early infection stage increasing to 82.5% and the
overall mAP reaching 88.6%.
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FIGURE 14

Comparison chart of ablation experiments. (1) GH-Backbone. (2) GH-Backbone +RE-Block. (3) GH-Backbone+RE-Block+PWD-EFC. (4) GH-
Backbone+RE-Block+PWD-EFC+D-Sample. (5) GH-Backbone+RE-Block+PWD-EFC+D-Sample+LightShiftHead.

4. After introducing the lightweight self-attention mechanism
LightShiftHead, the GFLOPs and the number of
parameters of the model remained unchanged, but the
overall detection accuracy was further improved (mAP
increased from 88.6% to 89.7%). Especially, the detection
accuracy in the early infection stage increased to 83.4%, and
the mAP in the middle, late, and dead-tree infection stages
increased by 1.1%, 0.8%, and 1.8% respectively.
Although LightShiftHead slightly decreased the inference
speed (FPS decreased from 172 to 166), it can effectively
enhance the feature representation ability, improve the
model's discrimination ability for PWD targets in
complex forest environments, and further reduce the
missed-detection rate.
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The results of the ablation experiment are shown in
the Figure 14.

According to the visual analysis of the detection results in the
Figure 14, in the test set, there are a total of 9 undetected samples in
Model 1, and all of them are PWD individuals in the early stage.
This phenomenon is mainly attributed to the small target size and
unclear texture features of early PWD trees in the images, which
increases the detection difficulty. In contrast, the number of
undetected samples in Model 2 is reduced to 8, and the detection
accuracy is significantly improved compared with Model 1. The
number of undetected samples in Model 3 and Model 4 further
decreases to only 2, and there is also a certain increase in detection
accuracy. Finally, Model 5 is superior to the previous models in
terms of both the undetected rate and detection accuracy, showing a
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significant performance improvement compared with Model 1.
This result indicates that LW-PWDNet has higher accuracy and
stronger stability in the early PWD detection task, especially in
dealing with small-target detection scenarios.

In conclusion, the LW-PWDNet model designed in this paper,
through a variety of lightweight structures and strategies to enhance
feature extraction, improves the detection ability for small-target
PWD while ensuring real-time detection. It is suitable for resource-
constrained edge-computing environments and can provide an
efficient and reliable solution for the early monitoring of PWD.

3.4 Cross-regional generalization analysis

To evaluate the robustness and transferability of the proposed
lightweight model LW-PWDNet in practical deployment scenarios,
a cross-regional validation experiment was designed. Specifically,
UAV-acquired images from two regions with distinct geographical
and ecological characteristics were utilized: Liyang City (Jiangsu
Province) and Qianshan City (Anhui Province). These regions
differ in forest composition, canopy density, terrain morphology,
and lighting conditions. The two regions exhibit distinct ecological
and environmental characteristics, introducing natural variability
that challenges model generalization. Region A is characterized by a
diverse vegetation composition, including coniferous forests,
evergreen broadleaf forests, deciduous broadleaf forests, and
artificial mixed plantations. The forest structure is relatively
complex, with heterogeneous canopy layers and moderate
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variability in canopy density. The terrain is dominated by gently
undulating hills, while lighting conditions are generally stable due to
relatively open topography and fewer terrain-induced shadows.
In contrast, Region B is characterized by mixed natural forests
with high species diversity, where PWD-susceptible pines are
interspersed among other tree species. The canopy is highly
heterogeneous and denser in patches, and the mountainous
terrain leads to complex shading effects. Moreover, lighting
conditions in Region B are less stable, with frequent shadow
occlusion and strong variability in illumination angles caused by
rugged terrain and slope orientation. These differences in forest
composition, canopy density, terrain morphology, and lighting
introduce domain shifts that may significantly affect the
robustness of PWD detection models.

The dataset from Region A contained 11,126 UAV images with
8,500 annotated pine trees. Among them, early-stage PWD trees
(PWD-E) accounted for 44.7%, followed by middle-stage (PWD-M,
27.1%), late-stage (PWD-L, 16.5%), and dead trees (PWD-D,
11.7%). The dataset from Region B included 8,420 UAV images
with 7,200 annotated pine trees, of which early-stage PWD trees
made up 44.4%, while PWD-M, PWD-L, and PWD-D accounted
for 27.8%, 16.7%, and 11.1%, respectively. The relatively high
proportion of early-stage infections in both datasets ensured a
robust evaluation of the proposed model’s ability to detect small
targets under cross-regional conditions.

In this experiment, models were trained using data from Region
A and tested on data from Region B, thereby simulating deployment
under domain shift conditions. For comparative analysis, the same

Region A
89.7
855 86.4

78.6
75.6

YOLOv10n LW-PWDNet

Model

FIGURE 15
Cross-region verification mAP comparison chart.
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five lightweight detection models as employed in the comparative
experiments were selected as controls, including SSD with
MobileNetV2 backbone, EfficientDet with EfficientNet-D1
backbone, YOLOv5n with CSPResNet backbone, YOLOv10n with
EfficientFormerV2 backbone, and the proposed LW-PWDNet. The
evaluation metric adopted was mAP, and statistical analyses were
performed on the detection performance of each model on both the
source domain test set and the target domain test set, respectively.
/The results, as shown in the Figure 15, indicate that although all
models experienced a certain degree of performance decline when
migrating from the source region to the target region, there are
significant differences in the extent of the decline. The mAP of the
SSD model decreased from 70.6% to 64.7%, a drop of 5.9 percentage
points; EfficientDet decreased from 82.4% to 75.2%, a drop of 7.2
percentage points; YOLOv5n decreased from 88.9% to 76.4%, a drop of
12.5 percentage points; YOLOv10n decreased from 86.6% to 80.1%, a
drop of 6.5 percentage points. In contrast, the LW-PWDNet model
decreased from 91.8% to 88.6%, with a decline of only 3.2%. It is not
only the model with the smallest decline among the five models but
also the model with the highest absolute accuracy in the target region.
This result fully demonstrates that LW-PWDNet exhibits
remarkable stability and generalization ability when facing cross-
regional forest environmental differences. A smaller decline in
accuracy means that this model has a stronger adaptability to
changes in forest stand structure, lighting conditions, and
background interference, which is of great significance for building a
cross-regional and long-term operating PWD monitoring system.

4 Discussion

The PWD is characterized by rapid spread and high lethality. It
only takes dozens of days for an infected tree to die. Therefore,

—
—
PWD Detection System detection
System main page
b
L
FIGURE 16
Architecture of pine wilt disease detection system.
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early, accurate, and low-cost monitoring methods are crucial for
curbing the spread of the epidemic. Traditional ground survey
methods are inefficient and difficult to meet the needs of large-scale
real-time monitoring. Satellite remote sensing is very difficult to
monitor small targets of PWD. In recent years, with the
development of UAV remote sensing and object detection
algorithms, researchers have gradually applied deep learning
technology to the automatic identification of diseased trees. In
particular, lightweight small object detection methods have
become a key direction for achieving accurate monitoring of
PWD. For the above reasons, the lightweight small object PWD
detection model LW-PWDNet proposed in this paper demonstrates
excellent recognition accuracy in the early monitoring of PWD.
This paper proposes a lightweight small-target PWD detection
model, LW-PWDNet, aiming to reduce the model's computational
complexity while enhancing the detection ability of small-target
PWD diseases. First, in this chapter, a lightweight backbone
network, GH-Backbone, is designed in the backbone network
layer, and the HGNetV2 network structure is reconstructed. This
not only reduces the computational complexity but also improves
the perception ability of the PWD disease area. Second, in the
feature fusion layer, this chapter designs the RE-Block. Under the
premise of ensuring the effective fusion of PWD target information
at different scales, the computational complexity is reduced. At the
same time, a lightweight feature fusion module, PWD-EFC, is
designed in the feature fusion layer to improve the correlation
between features at different levels. Moreover, a lightweight down-
sampling module, D-Sample, is designed to effectively enhance the
model's feature expression ability for multi-scale PWD targets. In
addition, this chapter constructs an ultra-lightweight prediction
layer, LightShiftHead, to further improve the detection accuracy of
small-target PWD. The effectiveness of LW-PWDNet is evaluated
through ablation experiments and comparative experiments. The
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experimental results show that compared with the benchmark
model, the method in this chapter significantly improves the
detection accuracy of PWD targets while maintaining a high
inference speed, especially in the detection ability of small targets
in the early infection stage. In addition, visual analysis further
validates the robustness of LW-PWDNet in the complex forest area
background, demonstrating its potential in practical applications.

To further validate the practicality of the proposed LW-
PWDNet, we implemented a lightweight graphical detection
system based on PyQt5, integrating both static image detection
and real-time video stream tracking modules. The system provides a
user-friendly interface, supports adaptive parameter adjustment,
and enables real-time visualization of detection and tracking results.
The overall architecture of the system is shown in Figure 16.

The system interface is mainly composed of two parts: the
function setting area and the detection display area. In the function
setting area, users can perform model selection, input method
setting, and parameter adjustment. The system provides a model
selection function, supporting the loading of different detection
models, including object detection models and tracking and
counting models, to meet the detection requirements of PWD-
infected wood in different scenarios. Users can click the input
selection button to choose to upload pictures for detection, or
click the video detection button for object tracking and counting. In
addition, the system provides a parameter adjustment function,
including the adjustment of the IoU threshold and confidence
threshold. Users can adjust according to the actual detection
environment to optimize the detection accuracy and object

% PWD detection system
Functional area configuration
Weight selection
Video stream selection

Picture selection

Confidence threshold: 0.25

10U threshold: 0.45

Start detection

Stop detection

FIGURE 17
Schematic diagram of tracking count test results.
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tracking effect. In the detection display area, the system will
present the detection results in real-time, including the detected
target categories of PWD, location information, and confidence
scores, and display the object detection boxes and tracking paths in
a visual way. For the tracking and counting of PWD in the death
stage, the system uses an object tracking algorithm to ensure
accurate identification of PWD in the death stage and calculate
the number of targets in the death stage to assist the forestry
department in scientific evaluation and the formulation of
prevention and control measures. After users open the main
interface of the PWD system, they select the weight files in the
function area configuration, including object detection weights and
tracking and counting weights. When clicking the video stream
selection button, select the video stream to be detected, and click the
start detection button to start the video stream tracking and
counting. The visual tracking and counting results will be
displayed on the right side of the interface. The detection results
are shown in Figure 17.

LW-PWDNet has been successfully deployed on edge devices
onboard UAV platforms, where real-time inference and
visualization were achieved without compromising detection
accuracy. This demonstrates that the proposed model is not only
theoretically effective but also practically deployable in UAV-based
forest health monitoring scenarios.

Despite the strong performance of the proposed LW-PWDNet
model across various stages of PWD infection, several challenges
remain when deployed in real-world forest environments. In
particular, occlusions, shadow interference, and uneven
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illumination caused by complex forest structures significantly affect
the accurate identification of early-stage infected trees. In dense
forests or conifer-dominated canopies, infected branches are often
partially or fully blocked by upper foliage layers or affected by
limited imaging angles, leading to reduced detection accuracy and a
higher rate of missed detections. Furthermore, due to the subtle
differences in color and texture between early-infected and healthy
trees in the spatial domain, RGB imagery alone is highly susceptible
to environmental variations, limiting its effectiveness in capturing
the weak visual signals of early infections.

To address these limitations, multimodal sensing and deep
feature fusion strategies have emerged as promising solutions for
enhancing model robustness. On one hand, multispectral imagery
(e.g., red-edge, near-infrared, and shortwave infrared bands) offers
rich spectral cues that reflect subtle physiological and biochemical
changes in tree tissues, enabling more discriminative identification
of early infections. On the other hand, thermal infrared imagery and
LiDAR data can provide complementary information, such as heat
stress response and structural geometry, which is especially
beneficial for detecting occluded or partially visible infected trees
and reconstructing detailed canopy structures.

With the advancement of cross-modal deep learning models, such
as those leveraging attention mechanisms and multi-scale Transformer
architectures, multimodal neural networks are increasingly capable of
learning synergistic representations and aligning semantics across
heterogeneous data sources. This enables more effective detection in
complex forest environments. To integrate these multimodal data into
the existing LW-PWDNet framework, future work will focus on
developing cross-modal attention mechanisms: specifically, RGB,
multispectral, and LiDAR data will be fed into modality-specific
lightweight encoders (extended from the GH-Backbone) to extract
modality-aware features, which will then be fused via a cross-modal
attention module. This module will dynamically weight the
contributions of each modality based on contextual relevance (e.g.
emphasizing LIDAR-derived structural features in occluded regions or
multispectral signals for early-stage spectral anomalies), while
maintaining the model's lightweight design to suit edge
computing scenarios.

In summary, the integration of multimodal data acquisition and
cross-domain feature fusion mechanisms is essential to improving the
accuracy and generalization capability of early PWD detection under
real-world occlusions and illumination variability. Future work should
focus on developing UAV-based multisource data collection
frameworks, efficient modality alignment algorithms, and lightweight
multimodal fusion networks, thereby enabling stable, real-time, and
high-precision detection of infected trees in complex forested areas.

5 Conclusion

In order to meet the real-time detection requirements in the
forest resource-constrained environment and improve the detection
ability of small target PWD disease areas, this paper proposes a
lightweight small target PWD detection model, LW-PWDNet. The
experimental results show that LW-PWDNet achieves the highest
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detection accuracy (mAP 89.7%) while maintaining a low
computational complexity (GFLOPs 5.6G, parameter quantity
1.9M) and a high inference speed (FPS 166). Specifically, the
detection accuracy in the early infection stage reaches 83.4%, in
the middle infection stage reaches 91.8%, in the late infection stage
reaches 93.6%, and in the dead tree stage reaches 90.1%. It can
provide an efficient and lightweight detection solution for PWD in
resource-constrained scenarios such as UAV inspections.
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