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LW-PWDNet: a lightweight
and cross-terrain adaptive
framework for early pine
wilt disease detection
Yongkang Hu and Fang Wang*

College of Electronic Engineering, Nanjing XiaoZhuang University, Nanjing, China
Pine wilt disease (PWD) poses a severe threat to forest ecosystems due to its high

infectivity and destructive nature. Early identification of PWD-infected pines is

critical to curbing disease spread and safeguarding forest resources. In order to

timely detect and prevent the spread of PWD and meet the requirements of

edge computing devices for real-time performance and computational

efficiency, this paper proposes a lightweight model LW-PWDNet. The

backbone network reconstructs HGNetV2 to achieve efficient feature

extraction. It decomposes traditional convolutions into more lightweight

feature generation and transformation operations, reducing computational

cost while retaining discriminative power. The feature fusion layer reconstructs

the path aggregation network based on RepBlock and multi-scale attention

mechanism, capturing fine-grained details of small lesions, so as to better

capture the detailed features of small targets. At the same time, this paper

designs a lightweight D-Sample down-sampling module in the feature fusion

layer to further improve the model's detection ability for multi-scale targets.

Finally, this paper designs a lightweight prediction layer LightShiftHead for this

model. By strengthening the local feature expression, the detection accuracy of

PWD in small targets is further improved. A large number of experimental results

show that LW-PWDNet maintains a high detection accuracy of mAP 89.7%, while

achieving low computational complexity of 5.6 GFLOPs and only 1.9M

parameters, as well as a high inference speed of 166 FPS when tested on an

NVIDIA RTX 4070 GPU with a 13th Gen Intel(R) Core(TM) i7-13700KF processor,

using PyTorch 2.0.1 and CUDA 12.6, based on Python 3.9. This model can provide

an efficient and lightweight detection solution for PWD in resource-constrained

scenarios such as unmanned aerial vehicle inspections.
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1 Introduction

Pine wilt disease (PWD) is caused by a wood pathogen carried

by the pinewood nematode. The disease has a short incubation

period and is highly contagious. It only takes 40 days for a pine tree

to die after being infected. Can potentially destroy an entire pine

forest within 3–5 years under favorable conditions (Li et al., 2022a).

PWD has become one of the most destructive forest diseases in the

world. The disease was first discovered in North America in the

early 20th century and has since spread rapidly to Asia and Europe

(Back, 2020). In China, PWD was first discovered in 1982 in the

black forest of the Dr. Sun Yat-sen Mausoleum in Nanjing, and it

has spread to many regions across the country at an alarming rate,

increasing from a few hundred hectares in the 1980s to over 2

million hectares in 2024 (Hao et al., 2022).

PWD is characterized by rapid spread, high mortality, and costly

control, making early detection essential. Monitoring the early stages of

PWD is therefore crucial. According to a refined economic assessment

conducted at the subcompartment scale (Liu et al., 2023), PWD

resulted in a total loss of approximately USD 7.4 billion in China in

2020, including USD 1.11 billion in direct economic losses and USD

6.29 billion in ecosystem service losses. Recent work by Liu et al. (Liu et

al., 2024) also introduced the Clusterformer segmentation framework,

which demonstrated the potential of UAV-based deep models for

PWD-related tree identification, highlighting the necessity of

integrating lightweight segmentation and detection mechanisms. A

considerable portion of the direct costs originated from large-scale

quarantine logging, transportation, incineration, and reforestation

operations. Studies have shown that timely detection and removal of

infected trees during the early infection stage can reduce the number of

felled trees by over 40%, substantially alleviating the burden on forestry

resources and management budgets.

Ground surveys are labor-intensive and often miss early infections,

and frequently fail to detect early infections (Li et al., 2023). In addition,

the external manifestations of pine trees infected with PWD, such as

needle discoloration and canopy thinning, usually only appear after

irreversible damage has occurred (Shi et al., 2024).

In recent years, with the development of remote sensing

technology, it has the advantages of wide coverage, high temporal

resolution, short revisit period, and wide spatial coverage, providing a

solid technical foundation for the timely monitoring of PWD.

Currently, the monitoring of forest pests and diseases using remote

sensing technology mainly falls into two directions: one is through

satellite remote sensing monitoring, and the other is through

unmanned aerial vehicle (UAV) remote sensing monitoring (Li

et al., 2022b).

However, satellite remote sensing has many limitations in the

monitoring of PWD. Its spatial resolution is relatively low (usually 10–

30 meters), making it difficult to accurately identify individual trees in

the early stage of infection, especially in the stage when the symptoms

are not yet obvious (Cai et al., 2023; Xie et al., 2024). In addition,

satellite images are greatly affected by the fixed revisit cycle and weather

factors, and it is difficult to meet the needs of continuous and high-

frequency monitoring. Most satellites use vertical downward-looking

imaging, lacking side-looking angle information, making it difficult to
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extract key features such as needle discoloration or branch structure

(Ye et al., 2025). At the same time, the scale of satellite images is

relatively coarse, making it difficult to label diseased trees and conduct

ground verification, which is not conducive to constructing a high-

quality deep learning training dataset. In contrast, UAV remote sensing

has higher spatial resolution and greater deployment flexibility, and can

more effectively achieve early and fine-grained detection of PWD (Sun

et al., 2022; Ye et al., 2023; Du et al., 2024; Yao et al., 2024). In

particular, Yao et al. (Yao et al., 2024) proposed the Pine-YOLO

detection framework, which improved UAV-based monitoring

performance through task-specific architectural refinement, laying a

foundation for subsequent lightweight detection research.

At present, some studies on using UAV remote sensingmonitoring

adopt traditional machine learning or feature classification strategies.

For example, Thapa et al (Thapa et al., 2024). constructed a multi-stage

classification structure based on deep metric learning, and improved

the recognition robustness through feature embedding, which has

certain prior dependence. A large number of studies use deep

learning models to identify diseased plants. For example, the joint

deep object detectionmodel proposed byWu et al (Wu et al., 2024), the

improvement of the YOLO model for the infection stage by Wu et al

(Wu et al., 2023), the use of the YOLOv4 structure by Zhang et al

(Zhang et al., 2024), and the detectionmodel combining GoogLeNet by

Zhu et al (Zhu et al., 2023). In addition, multiple studies have begun

introducing attention mechanisms, ViT modules, and hybrid CNN–

Transformer structures for vegetation health monitoring. For instance,

Wang et al. (Wang et al., 2024a) proposed FireViTNet integrating ViT

and CNNs for forest fire segmentation, while Chen et al. (Chen et al.,

2024) developed TeaViTNet using multiscale attention fusion for pest

detection in tea leaves, both illustrating the transferability of such

architectures to forest pathology contexts. Similarly, Wang et al. (Wang

et al., 2024b) and Jin et al. (Jin et al., 2024) explored lightweight vision

frameworks (SWVR and Fire-in-Focus) for efficient forest fire

recognition, further validating the practical value of lightweight visual

perception in UAV environmental monitoring. These methods

perform well in terms of accuracy, but the network structure is

complex, the inference efficiency is low, and it is difficult to meet the

requirements of edge deployment. Recent work such as Li & Peng (Li &

Peng., 2024) and Lin, Xiao, & Lin (Lin, et al., 2025) also focused on

lightweight YOLOv8 optimization in industrial and agricultural

detection, respectively, suggesting a general trend toward efficient

inference networks. Similarly, the multi-scale channel adaptive

network designed by Ren et al (Ren et al., 2022), the local feature

extraction method based on Mask R-CNN by Wu and Jiang (Wu and

Jiang, 2023), the improved Mask R-CNN by Hu et al (Hu et al., 2022),

and the performance evaluation of deep networks such as ResNet and

DenseNet by Zhi et al (Zhi et al., 2024) all belong to non-lightweight

structures, which are suitable for scenarios where accuracy is prioritized

but not friendly to resource-constrained environments.

At the same time, in the face of the growing demand for lightweight

models in drone monitoring, in order to achieve both low

computational overhead and high recognition accuracy, some

research focuses on the integration of network structure

lightweighting and attention mechanisms. For example, in response to

the problems of high forest density and small target scale, Yu et al
frontiersin.org
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(Yu et al., 2023). proposed a shallow weighted feature enhancement

network (SPWFEN), which effectively improved the recall rate of small

target detection. Gu et al (Gu et al., 2025). developed DEMNet, a

lightweight detection framework designed for tea leaf blight in slightly

blurry UAV remote sensing images, demonstrating the importance of

specialized designs for small and visually indistinct targets. Similarly, Liu

et al (Liu et al., 2024). proposed Clusterformer, a Transformer-based

segmentation framework tailored for pine tree disease identification in

UAV remote sensing images, which enhanced fine-grained feature

representation and showed strong adaptability to complex forest

backgrounds. Dong et al (Dong et al., 2024). introduced an attention

module and a multi-task loss function into YOLOv5, Han et al (Han

et al., 2022). proposed a network combining a Gaussian kernel and a

multi-scale spatial attention mechanism, Bai et al (Bai et al., 2025).

constructed a detection structure suitable for complex scenes based on

the lightweight Mamba model and the attention module, Xu et al (Xu

et al., 2023). fused color features and spatial attention for the

identification of discolored diseased trees, and Zhang et al (Zhang

et al., 2023). optimized the YOLOv5 backbone network through the

attention mechanism, all achieving a good balance between model

performance and computational efficiency. Chen et al (Chen et al.,

2024). Chen et al. (2025) innovatively integrated the visual Transformer

(ViT) and CNN to construct PWDViTNet, taking into account the

detection of weak-texture diseased plants at long distances and the

lightweight deployment of the network, showing good prospects.

Furthermore, recent studies have extended PWD detection to

multi-stage joint frameworks and fine-grained feature fusion. For

instance, Zhou et al. (Zhou et al., 2025) proposed a PWD-

lightweight and feature fusion network for multi-stage detection,

while Wang et al. (Wang et al., 2025) introduced a hierarchical

attention and feature enhancement network for multi-scale small

targets, both of which emphasize efficient spatial-semantic aggregation.
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From a methodological perspective, the growing body of work by

Lin and collaborators (Lin & Tang, 2021a; Lin & Tang, 2021b; Lin et al.,

2022; Lin, Qian & Di, 2023a; Lin et al., 2023b) on intelligent

optimization, cloud-based detection, and lightweight design provides

a theoretical foundation for integrating multi-objective optimization

and feature extraction into UAV-based lightweight frameworks such as

LW-PWDNet.

In summary, although non-lightweight models have advantages in

detection accuracy, their deployment flexibility and resource

adaptability are poor. In contrast, the small target detection method

based on lightweight structures and attention mechanisms provides a

more feasible solution for the efficient, low-cost, and edge monitoring of

PWD, and it is also the key research direction for researchers at present.

Considering that in practical applications, the monitoring of PWD

relies on real-time detection and deployment by edge devices such as

drones. Therefore, the lightweighting of themodel is crucial for reducing

computational costs, improving inference speed, and adapting to

resource-constrained devices. To meet this requirement, this study

proposes LW-PWDNet, a collaborative lightweight architecture built

upon the PWD-EFC, D-Sample, and LightShiftHead modules. This

design not only differs from conventional backbone-pruning strategies

seen in lightweight YOLO variants but also incorporates attention-

guided fusion and parameter-efficient optimization inspired by Lin et al.

(Lin et al., 2025) and related works.

First, this paper proposes a lightweight detection model, LW-

PWDNet. Its core innovation lies in the collaborative lightweight

design of the PWD-EFC feature fusion module, the D-Sample

multi-scale down-sampling module, and the LightShiftHead

prediction layer. The organic combination of these three not only

effectively reduces the model's parameter quantity (Parameters

reduced to 1.9 M) and computational amount (GFLOPs reduced

to 5.6), but also enhances the feature extraction and localization
FIGURE 1

(a) shows the location of Jiangsu Province in China, (b) shows the location of Liyang City in Jiangsu Province and satellite images of Liyang City,
and (c) shows images of field surveys by UAVs.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1687742
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu and Wang 10.3389/fpls.2025.1687742
capabilities for small PWD targets in the early stage. This is

significantly different from the single optimization idea of existing

lightweight YOLO frameworks that only rely on backbone cropping

or operator replacement.

Secondly, a dataset containing 8,000 PWD pine tree images in

different scenarios was constructed, and comparative experiments were

carried out on this dataset with various lightweight baseline models

such as YOLOv5n and YOLOv10n. The results show that LW-

PWDNet has a 2.8% improvement in the mAP indicator compared

to mainstream lightweight detection frameworks, verifying the

performance advantage of the proposed collaborative lightweight

design in the PWD small target detection task.

Finally, this paper further verifies the adaptability of LW-PWDNet

on UAV edge devices, and completes practical deployment and

detection experiments. It shows that this model not only has academic

method innovation, but canalsoprovide apractical technical support for

large-scale and real-time monitoring of forestry PWD.
2 Materials and methods

2.1 Study area

Jiangsu Province (latitude 30°45′-35°20′N, longitude 116°18′-
121°57′E) is located in the eastern coastal area of China, at the lower

reaches of the Yangtze River and on the shore of the Yellow Sea

(Figure 1). Jiangsu has a gently sloping terrain from southwest to

northeast. The landform is mainly plain, with hills and low

mountains. The Taihu Lake Basin in the south and the hilly areas

in the west are relatively rich in forestry resources. The forest

coverage rate of the whole province is about 24.03%, and the area of

coniferous forest accounts for 26.17% of the total forest area of the

province. The forest distribution in Jiangsu is mainly concentrated

in the hilly areas of southern Jiangsu, the Ningzhen Mountains and

the areas along the rivers and lakes.
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The study area is Liyang City (latitude 31°21′-31°43′ N, longitude
119°05′-119°29′ E), located in the southern part of Jiangsu Province

and the southwestern part of Changzhou City, at the northern foot of

the Tianmu Mountains in the hilly area. The terrain of Liyang City

generally slopes from the southwest to the northeast. It belongs to the

transitional landform of low mountains, hills and plains, and has

typical southern forest ecological characteristics. The vegetation types

are diverse, covering coniferous forests, evergreen broad-leaved forests,

deciduous broad-leaved forests and artificial mixed forests, with a

complex forest structure. The forest land area of the whole city is about

2,200 square kilometers, and the forest coverage rate exceeds 40%.

Among them, coniferous forests are widely distributed in mountainous

and gentle slope areas. Liyang is one of the key epidemic areas of PWD

in Jiangsu Province. In recent years, the infection pressure has

persisted. It is representative, typical and has the value of continuous

monitoring. It is an ideal area for carrying out long-term monitoring

and model optimization research of PWD.
2.2 Data collection

We acquired images with a DJI Mavic 3 UAV and the UAV

configuration is shown in Table 1.

During the image acquisition process, manually selected the flight

range and take pictures at equal-distance intervals to ensure the
TABLE 1 UAV configuration.

Parameter name Parameter value

Name of UAV DJI Mavic 3

Aerial Camera Hasselblad L2D-20c

Sensor Size 17.3mm×13.0mm (4/3 CMOS sensor)

Lens focal length 24mm (equivalent)
FIGURE 2

UAV images acquisition.
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uniformity and comprehensiveness of data collection. In order to adapt

to the complex terrain undulations and diverse vegetation densities in

forest areas, this study adopted a planar route planning to effectively

cover the entire acquisition area while minimizing flight path overlap.

To enrich the diversity and comprehensiveness of the PWD

dataset, this chapter collected PWD images at different time periods

(morning, noon, and dusk), different shooting heights (140 meters,

80 meters, and 60 meters above the ground), and different infection

levels, ensuring that the dataset contains PWD information under

various environmental conditions. After more than 30 flight

shootings, a total of 11,126 PWD images were obtained in this

chapter. Some example image data are shown in Figure 2:

This paper uses a DJI drone for image acquisition. The resolution

of the acquired images is 4032×3024. High-resolution images will

occupy a large amount of storage space and computing resources

during training, increasing processing time and hardware burden. In

addition, although high-resolution images can provide rich detail

information, they may also contain redundant and invalid

information irrelevant to the detection task of PWD-infected trees.

For example, the images may include a large amount of background,

irrelevant trees, distant objects, or detailed textures. These contents not

only increase the computational burden but may also cause noise

interference to the target detection algorithm, affecting the detection

accuracy of the algorithm.

Therefore, in order to improve the efficiency of data processing

and reduce the consumption of computing resources, this paper

evenly divides the original images at a ratio of 3×3. The image

resolution is reduced to 1333×1000, which not only retains the

necessary detail information but also significantly reduces the

amount of data, thus reducing the computational burden of

model training. Figure 3 shows the segmented sample images.
2.3 Dataset production

Based on the clinical manifestations and image visual

characteristics of PWD, this paper divides the infection stages of
Frontiers in Plant Science 05
PWD into four stages: early stage, middle stage, late stage, and dead

tree, as shown in Figure 4. In the early infection stage, it is usually

manifested as sporadic yellowing of needles, which generally starts

from the top of the crown or a certain part and gradually spreads

around. In the middle infection stage, the needles of the pine tree

begin to wither on a large scale, and the infected parts usually turn

yellowish-brown or grayish-yellow. In the late infection stage, the

needles of the entire pine tree show obvious yellowing and

withering, the vitality of the pine tree gradually declines, and the

trunk completely loses its green color, usually showing dark brown.

In the dead tree stage, the pine tree almost completely loses its

needles and branches, showing obvious rot or death, and the color

of the trunk changes to gray or dark brown.

To improve the quality of the dataset, this study screened the

cut images, removed redundant images, and finally retained 8000

valid data, and annotated them. After screening redundant images

and validating annotation quality, we finally retained 8,000 valid

samples, with the number of labeled samples for each PWD

infection stage (Early, Middle, Late, Dead) detailed in Table 2.

The dataset was split into training, validation, and test sets at an

8:1:1 ratio, ensuring the independence of each subset for reliable

model evaluation.

The dataset uses the LabelImg tool to accurately annotate the

targets in the RGB images captured by the drone. First, use a

rectangular box to frame the specific location of the diseased area.

Each rectangular box annotation represents a target in the image. The

four vertices of the annotation box are clearly specified by coordinate
FIGURE 3

Image segmentation.
TABLE 2 The number of labels samples in the dataset.

Dataset Split PWD-E PWD-M PWD-L PWD-D

Train 7215 1892 3798 2681

Test 2397 615 1289 857

Val 2438 629 1312 876

Total 12050 3136 6399 4413
fr
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FIGURE 5

LW-PWDNet model structure.
FIGURE 4

The 4 stages of PWD.
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values, thus accurately describing the position and size of the target in

the image. Then, assign a corresponding category label to each

rectangular box annotation. Pine trees with early-stage lesions are

labeled as PWD-E (Early), those with mid-stage lesions are labeled as

PWD-M (Middle), those with late-stage lesions are labeled as PWD-L

(Late), and dead pine trees are labeled as PWD-D (Dead).
2.4 LW-PWDNet model construction

The structure of the lightweight PWD detection network LW-

PWDNet proposed in this paper is shown in Figure 5. The model

mainly consists of a backbone network layer, a feature fusion layer,

and a prediction layer. In order to meet the resource limitations of

edge devices and achieve efficient and accurate detection of small-

target PWDs, a lightweight backbone network GH-Backbone was

designed, and the HGNetV2 network structure was reconstructed.

While reducing the computational complexity, the perception ability

of the PWD disease area was improved. For the feature fusion layer,

based on enhancing the inter-layer feature correlation, a lightweight

feature fusion module PWD Enhanced Inter-Layer Feature

Correlation (PWD-EFC) was designed to improve the feature
Frontiers in Plant Science 07
expression ability and detection accuracy. In addition, a D-Sample

downsampling module with a dual-branch structure was designed to

reduce information loss and further improve the detection accuracy

of small-target PWDs. Finally, at the prediction layer, an ultra-

lightweight detection head LightShiftHead was constructed based

on depthwise separable convolution (DWConv) and sparse

convolution (SPConv) to reduce redundant calculations, further

optimize the overall efficiency of the model, and ensure the

accurate detection of small-target PWDs.
2.5 Backbone network

Lightweight backbone network design should, on the basis of

ensuring accuracy, effectively improve the model's inference

efficiency, reduce resource consumption, and thus better meet the

real-time detection requirements on edge devices. In order to meet

these requirements, this paper draws on the structure of the

backbone network HGNetV2 of RT-DETR deep learning model

(Zhao et al., 2024), constructs GHBackbone as the backbone

network of LW-PWDNet model, and optimizes it with

GhostConv (Han et al., 2020).
FIGURE 6

GH-backbone framework.
FIGURE 7

GH modular structural framework.
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GH-Backbone consists of High-Resolution group Stem(HGS),

GhostHGB(GH), DWConv (Zhang et al., 2023) and SPPF (Li et al,

2024) modules, and its architecture is shown in Figure 6.

In the GH-Backbone, the size of the input image is 640×640. The

HGS module first preprocesses the images of PWD-infected trees

captured by drones at high altitude, The HGS module preprocesses

the images, converting them into low-level feature maps for the

subsequent network to perform deeper feature extraction. On this

basis, in the GH-Backbone structure, this paper adopts an alternating

stacking of GH and depthwise separable convolutions to improve

the model's feature extraction ability and computational efficiency.

The features processed by HGS first undergo preliminary feature

enhancement through GH, and then enter the DWConv to reduce

the computational complexity and further improve the feature

representation ability. The alternating action of GH and DWConv

enables the network to efficiently extract and fuse information at

different scales, gradually enhancing the detection ability for small

targets of PWD. The GH structure uses residual connections to

connect multiple GhostConvs to enhance the fluidity of PWD

features, improve gradient transmission, alleviate the problem of

gradient vanishing in the training of deep networks, and at the same

time improve the model's detection ability for PWD disease targets of

different scales. Its structure is shown in Figure 7.

The Spatial Pyramid Pooling-Fast (SPPF) module at the end of the

backbone network expands the receptive field with low computational

cost by introducing multiple pooling operations at different scales,

reducing the computational burden while maintaining detection

accuracy. Compared with the traditional Spatial Pyramid Pooling

(SPP) module, SPPF uses fewer convolutional calculations,

improving the inference efficiency of the model on edge devices. In

addition, SPPF can effectively integrate deep-feature information,

enhancing the model's perception ability of the target area of PWD,

thus improving the robustness and accuracy of small-target detection.
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2.6 Feature fusion layer

In the LW-PWDNet, the feature fusion layer adopts a PAN-

based structure to fully integrate the features of PWD targets at

multiple scales, improving the model's perception ability for disease

regions of different scales. In traditional feature pyramids, such as

FPN, the fusion of multi-scale features mainly uses a top-down

approach, in which deep-layer semantic features gradually enhance

the spatial detail information of shallow layers (Li et al., 2024). PAN

further introduces a bottom-up path enhancement mechanism,

enabling shallow-layer features to also influence deep-layer

features in the reverse direction, thus improving the detection

model's representation capability for targets of different scales,

especially the recognition of small targets. Compared with other

alternatives such as BiFPN, PAN was selected for its superior

balance between detection accuracy and computational efficiency

in small-target detection tasks. In addition, considering the

challenges of small-target feature loss in PWD detection,

insufficient feature representation of multi-scale disease regions,

limited computing resources, and high inference speed

requirements, this study further optimizes computational

efficiency while ensuring that the feature fusion layer maintains

effective information interaction, making it suitable for edge

computing devices.

The architecture of the feature fusion layer of the LW-PWDNet

model is shown in Figure 8. Specifically, in this paper, a RE-Block is

constructed based on the RepBlock and the multi-scale attention

mechanism Efficient Multi-scale Attention (EMA) (Ouyang et al.,

2023) to improve the efficiency of multi-scale information

interaction. Among them, the RepBlock adopts a re-parameterizable

structure. In the inference stage, the convolutional branches can be

merged, reducing the computational complexity and improving the

inference speed of the model, which is suitable for edge computing

deployment. The EMA mechanism can adaptively adjust the feature

weights at different scales, enabling the model to pay more attention to

the fine-grained features of the PWD area while effectively suppressing

the interference of background noise. In addition, a lightweight feature

fusionmodule, the PWD-EFCmodule, is designed in the feature fusion

layer to enhance the feature correlation between different layers. In

order to further optimize the computational cost and effectively

improve the feature representation ability, this paper designs and

constructs a D-Sample down-sampling module to optimize the

information transfer between feature layers.
2.7 Module

2.7.1 RE-block module
The core design of RE-Block is the ReAttention module, which

consists of RepBlock and EMA. Its structure is shown in Figure 9.

During the training phase, RepBlock adopts a dual-branch

DWConv structure to improve the feature extraction ability and

enhance the model's expressive power. During the inference phase,

in order to reduce the computational cost and improve the
FIGURE 8

Structural framework of feature fusion layer.
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inference efficiency, the method of structural re-parameterization is

adopted to merge the two parallel DWConv branches in the

training phase into an equivalent single DWConv. Specifically,

this merging operation is based on the method of convolutional

weight fusion, that is, the weights calculated by the two DWConvs

are weighted and merged, so that only one DWConv operation

needs to be performed during inference, without the need for

additional multi-branch calculations. This not only reduces the

amount of calculation but also retains the effective features learned

by the multi-branch structure during the training phase, ensuring

that LW-PWDNet still has a strong feature extraction ability.

DWConv decouples the convolution into depthwise and

pointwise operations. Channel-wise convolution independently

performs spatial convolution operations on each input channel,

retains fine-grained local spatial information, and reduces

computational redundancy. Subsequently, point-wise convolution

performs information interaction between channels on the output

of channel-wise convolution, enhances the expressive power of

features, and ensures that the target information of PWD at

different scales can be effectively integrated.

Although the RepBlock effectively reduces the computational

cost and streamlines the parameter count of the LW-PWDNet

model, relying solely on this module will inevitably lead to a loss in

PWD detection accuracy. Especially in the task of detecting small

targets of PWD, fine-grained feature representation is crucial for

high-precision target recognition. To compensate for the loss in

detection accuracy, this paper introduces the EMA attention

mechanism. The EMA module is ingeniously designed to utilize a

grouping structure that does not require dimensionality reduction,

combined with cross-space learning techniques, effectively

capturing both short-term and long-term dependencies in the
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image. By grouping the channel dimension into multiple sub-

features, the EMA module can enhance the uniform distribution

of spatial semantic information in the feature map while ensuring

the retention of information in each channel. This design enables

effective aggregation of features at different scales, improving the

detection accuracy of small PWD targets.

Suppose the arbitrary input feature map is:

X ∈ RC�H�W (1)

Among them, C, H, and W represent the number of channels,

height, and width of the input feature map, respectively. EMA

learns different semantic information by dividing the feature map

into G sub-features in the cross-channel dimension. The group style

represented by each sub-feature can be defined as:

X = ½X0, X1 ……XG−1� (2)

In order to effectively capture the interdependencies between

channels and reduce computational overhead, EMA performs

global average pooling operations along H and W respectively in

the 1×1 branch, thereby encoding the channel features. Specifically,

two one-dimensional global average pooling operations are

employed to enhance the inter-channel correlation. In the 3×3

branch, multi-scale features are captured by stacking a single 3×3

convolutional kernel. Subsequently, before the channel feature joint

activation mechanism, the one-dimensional feature encoding vector

obtained through global average pooling is reshaped and adjusted in

shape to ensure its suitability for subsequent processing. This

process can be represented by the formula:

R1�C==G
3 � RC�C==G

1
(3)
FIGURE 9

RE-block structural framework.
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On this basis, a second spatial attention map that retains precise

spatial location information was further derived. Subsequently, the

output feature maps within each group were combined with the two

generated spatial attention weight values. The Sigmoid function was

used to capture the pairwise relationships at the pixel level and

strengthen the global context information of all pixels.
2.7.2 PWD-EFC
To improve the feature fusion ability of LW-PWDNet in small

object detection, this paper designs a lightweight feature fusion

module called PWD-EFC, whose structure is shown in Figure 10.

PWD-EFC is used to strengthen the context connection and

semantic consistency among feature maps at different levels, and

effectively improve the detection performance of small objects

without significantly increasing the number of parameters. This

module can achieve faster inference speed and lower energy

consumption while ensuring accuracy, and improve the

recognition accuracy and efficiency of early PWD.

The PWD-EFC consists of two main components: the Grouped

Feature Focus (GFF) unit and the Multi-level Feature Reconstruction

(MFR) module. The GFF module aims to enhance the contextual

correlation among feature maps of different scales. Its main idea is to

simulate a process similar to the attention mechanism, extracting key

information regions through spatial focusing, channel grouping, and

spatial normalization operations. The MFR separates strong and

weak spatial information and uses lightweight convolutional
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modules to achieve precise feature transformation. This approach

reduces the extraction of irrelevant information while preserving the

key details of small objects in deep networks.

The design concept of the PWD-EFCmodule is mainly reflected

in three aspects: feature compression, feature recombination, and

feature fusion. The first part is the grouped feature attention

mechanism. Its core idea is to improve the correlation between

features at different levels by enhancing spatial attention and

channel context information. At the input end, the PWD-EFC

module receives two feature maps from different layers, denoted as

x1 ∈ RC�H�W and x2 ∈ RC�H�W . In order to unify the dimensions

and enhance the representation ability, a 1×1 convolution and batch

normalization are first applied to both of them, and an attention

weight map is generated through the Sigmoid function:

w1 = sBN(Conv1(x1));  w2 = sBN(Conv2(x2)) (4)

The above operation can be regarded as an explicit spatial

attention mechanism for capturing the importance of key region

positions. After obtaining the two weighted feature maps, the PWD-

EFC module performs channel-level fusion to generate a global

feature representation:

Xglobal = Conv1ðx1Þ + Conv2ðx2Þ (5)

Subsequently, in order to explore more fine-grained channel

context relationships, PWD-EFC divides the global feature map

into g groups (g denotes the number of groups, empirically set to 4
FIGURE 10

PWD-EFC structural framework.
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in this study) along the channel dimension, that is, Xglobal =

X(1), X(2),…, X(g)
� �

. A lightweight convolutional operation is

applied to each group of features to obtain the intra-group

context interaction features. By normalizing each group of

features X(i) and using Softmax to generate normalized attention

weights:

Y(i) = X(i) · Softmaxð X(i)

m(i) Þ,  m(i) = meanðX(i)Þ (6)

This process is similar to the ‘query-key’ interaction operation

of the self-attention mechanism, but it models the relative

importance among features in a more compact and grouped

manner. After the interaction calculation of all group features,

they are concatenated in the channel dimension to restore the

original size.

To further improve the feature stability and representational

ability, PWD-EFC normalizes the concatenated feature map so that

its mean is zero and its standard deviation is one, and introduces

learnable parameters to enhance flexibility:

X̂ = g
X − m
s+ ∈

+ b (7)

Among them, g and b are trainable parameters, and ∈ is a small

constant to prevent division by zero. The normalized output feature

X̂ will be jointly processed with subsequent modules to improve

global feature consistency. Then, the PWD-EFC module introduces

a multi-level feature reconstruction mechanism, aiming to alleviate

the problem of inconsistent expression between deep semantic

features and shallow detail features. In this process, the module

first estimates the importance weights of different channels

according to the previously generated feature maps. Specifically,

the global average pooling and the Sigmoid activation function are

used to generate the channel attention map:

wc = s(AvgPoolðXÞ ) (8)
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Using this weight, the fused features are divided into strong

semantic features (strong features) and weak semantic features

(weak features):

Xstrong = wc · X,Xweak = 1 − wcð Þ · X (9)

Next, to enhance the detailed expression ability of strong

features, use a 1×1 convolution to perform feature transformation

on them:

X
0
strong = Conv1�1ðXstrongÞ (10)

At the same time, depthwise separable convolution is applied to

weak features, aiming to enhance their semantic richness and

reduce parameter overhead.

X
0
weak = DWConvðXweakÞ (11)

After improving the expressive ability of strong and weak

features through the above methods respectively, the module uses

element-wise addition for fusion, and finally outputs the enhanced

feature map.

XL = X
0
strong + X

0
weak + X̂ (12)

Where X̂ is the aforementioned global semantic compensation

term after standardization, which is used to improve the global

consistency of the fusion result. This fusion strategy ensures the

integrity of semantic expression while retaining detailed information,

thus significantly enhancing the detection performance of small

targets in complex backgrounds.

2.7.3 D-sample down-sampling module
The main role of down-sampling is to reduce the spatial

resolution of the feature map, thereby reducing the computational

cost, and at the same time, extracting more robust high-level

semantic information. In order to optimize the down-sampling
FIGURE 11

D-sample structural framework.
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strategy and enhance the feature representation ability, this paper

designs a down-sampling module called D-Sample, whose structure

is shown in Figure 11. Standard convolutional down-sampling

achieves the down-sampling of the feature map following the

order of convolution, normalization, and then activation function.

However, D-Sample adopts a dual-branch structure, which further

enriches the combination of feature maps and reduces the loss of

tiny features.

By combining various convolutional and pooling operations, D-

Sample achieves efficient information extraction and feature

transformation. It aims to improve the detection accuracy of

small targets of PWD while reducing computational overhead.

The core idea of this module is to retain key feature information

during down-sampling and enhance the model's perception ability

for targets of different scales. Specifically, the module contains two

main convolutional layers. Among them, the convolutional layer

Conv1 uses a large kernel convolution with a stride of 2 to achieve

spatial down-sampling and directly extract global features. The

convolutional layer Conv2 uses a 1×1 convolutional kernel to

perform channel transformation while maintaining the spatial

size of the input feature map unchanged, so as to adapt to the

subsequent feature fusion process. In addition, D-Sample also

integrates pooling operations to further enrich the feature

representation ability and improve the modeling ability for PWD

targets of different scales, thereby enhancing the target detection

performance of the model in complex forest environments. The

input X first passes through Conv1 to obtain X1. Then, after passing

through Conv2, X is divided into two parts along the channel

dimension, and max-pooling and average-pooling operations are

performed respectively to obtain X2 and X3. Finally, the three

feature maps X1, X2, and X3 are concatenated through Concat to

obtain the output of D-Sample. The operation process is as follows:

X1 = Conv3�3,2(X; C1, C) (13)
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X2 = Maxpool3�3,2(X
0
2; 1) (14)

X3 = Avgpool3�3,2(X
0
3; 1) (15)

Output = Concat(X1, X2, X3) (16)

Among them, Conv3×3,2 represents a convolution with a

kernel size of 3×3 and a stride of 2; Maxpool3×3,2 and

Avgpool3×3,2 respectively represent the maximum pooling and

average pooling operations with a kernel size of 3×3 and a stride

of 2; X
0
2 first-order derivative and X

0
3 first-order derivative

respectively represent the two parts after the output mapping

of Conv2.

The D-Sample down-sampling module designed in this paper

can reduce the spatial size of the feature map while retaining and

enhancing features of different scales and types, improving the

model's ability to recognize small targets of PWD. In addition, the

design of the D-Sample module takes into account both

computational efficiency and detection accuracy, which helps to

optimize the feature extraction ability of the lightweight LW-

PWDNet model, making it more suitable for UAV edge

computing devices with limited computational resources.
2.8 Prediction layer

This paper constructs an ultra-lightweight prediction layer,

LightShiftHead, to reduce the computational complexity and

improve the efficiency of PWD detection. This prediction layer

introduces a parameter-free simple attention mechanism, SimAM

(Yang et al., 2021), as well as DWConv and SPConv to optimize the

allocation of computing resources and the model's inference speed.
FIGURE 12

D-sample structure.
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Specifically, SimAM is inserted at the front-end of the three

prediction branches to enhance the feature expression ability while

avoiding introducing additional computational burden. In the

classification branch, DWConv is adopted to reduce the amount

of computation, and in the regression branch, SPConv is introduced

to further improve the efficiency of feature extraction. The structure

of LightShiftHead is shown in Figure 12.
2.9 LW-PWDNet design of the model loss
function

To address the diverse scenarios and high-precision

requirements in PWD detection, the LW-PWDNet model adopts

a composite loss function, which combines classification loss,

bounding box loss, and confidence loss.

2.9.1 Classification loss
General loss functions may bring certain computational burden,

while cross-entropy loss is more concise in calculation and can

achieve more efficient training. It is especially suitable for

lightweight designs that require simplifying the calculation process

and reducing the model's resource consumption. Therefore, the LW-

PWDNet model in this paper adopts cross-entropy loss as the

classification loss, and its calculation formula is as follows:

Lclass = −o
N

i� 1
o
4

c=1
yi,clog(cpi,c) (17)

Among them, N is the number of detected targets in the current

batch. Suppose the category numbers c of the four infection stages of

the target of PWD are 1–4 respectively. Then in the formula, yi,c is the

true label of the i-th target in the c-th category, and p̂i,c is the

probability that the model predicts whether this sample belongs to

category c.

2.9.2 Bounding box loss
In order to improve the recognition ability of the detection model

for small targets and enhance the matching accuracy between the

prediction box and the ground truth box while maintaining the light

weight of the model, the LW-PWDNet model adopts Scale-based

Dynamic Loss (SDIoU Loss) (Su et al., 2024) in the design of the

bounding box regression loss. SDIoU can dynamically adjust the impact

factors of scale and position loss according to the target scale, and can

better adapt to the detection of targets of different scales. Especially, it

has higher sensitivity to the detection of small target PWD.

SDIoU improves the target box matching effect by

comprehensively considering the Intersection over Union (IoU),

aspect ratio loss, and center point offset loss. First, the loss function

calculates the aspect ratio difference between the prediction box and

the ground truth box, and uses the arctangent function to smooth it

to form the aspect ratio loss term v. Subsequently, a proportional

factor a is introduced to dynamically adjust the contribution of the

aspect ratio loss at different IoU levels. In addition, SDIoU combines

the area information of the target box, uses the scale factor d and the

weight term b to weight the loss of small targets to prevent small
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targets from being ignored during the optimization process. At the

same time, in order to further improve the positioning accuracy of the

target box, the loss function also adds the center point offset loss term

r2/c2, where c is the diagonal length of the smallest enclosing

rectangle of the two boxes, ensuring that the center of the

prediction box has minimal deviation from the center of the

ground truth box, thus enhancing detection robustness. The

calculation formula of the SDIoU loss function is as follows:

v = 4
p2 tan−1 w2

h2
− tan−1 w1

h1

� �2
(18)

a = v
v − IoU  + (1 +  є ) (19)

b = w2h2d
81

(20)

b =
d ,     if   b > d

b ,     otherwise

(
(21)

LSDIoU = d − b + (1 − d + b)(IoU − va) − (1 + d − b) r
2

c2
(22)

Among them, w1, h1 and w2, h2 represent the widths and

heights of the ground truth box and the predicted box

respectively. ∈ is a very small positive number to prevent the

denominator from being zero. r2 represents the square of the

Euclidean distance between the center points of the predicted box

and the ground truth box, and c2 represents the square of the

diagonal length of the minimum bounding rectangle of the

predicted box and the ground truth box.

In summary, the calculation formula of the loss function of the

LW-PWDNet model is as follows:

LLW = l1Lclass + l2LBCE + l3LSDIoU (23)

For the proposed composite loss function, the weights l1, l2,
and l3 are empirically assigned according to the relative importance

of classification, confidence, and bounding box regression. In this

study, l1 = 0.5, l2 = 0.3, and l3 = 0.2, which were determined based

on preliminary experiments to balance detection accuracy and

convergence stability.
3 Experimental results

3.1 Experimental details

The hardware and software configurations, model training

parameters, and experimental environment are as follows. The

hardware setup includes an NVIDIA RTX 4070 GPU and a 13th

Gen Intel(R) Core(TM) i7-13700KF processor. The software

environment is based on Python 3.9, PyTorch 2.0.1, and CUDA

12.6 for GPU acceleration. For model training, the initial learning

rate was set to 0.001 with cosine annealing adjustment, the

optimizer was SGD, and the batch size was 16. All models were

trained and validated on the same PWD dataset to ensure the

reliability and comparability of results.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1687742
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu and Wang 10.3389/fpls.2025.1687742
3.2 Comparison of experimental results
and analysis

In order to comprehensively evaluate the performance of the

lightweight model LW-PWDNet proposed in this paper in the

detection task of PWD, this paper selects some mainstream

lightweight object detection networks for comparative experiments,

including the SSD model using MobileNetv2 as the backbone network,

EfficientDet with an efficient feature fusion mechanism, as well as the

lightweight versions YOLOv5n and YOLOv10n in the YOLO series.

The results of the comparative experiments are shown in Table 3.

Based on the data in Table 3, the following observations can

be made:
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1. In terms of detection accuracy, compared with other

lightweight models, LW-PWDNet demonstrates superior

sensitivity to PWD lesions. Its mAP index reaches 89.7%,

and the detection accuracy for the early-stage infection

reaches 83.4%. The detection accuracies for the mid-stage,

late-stage, and dead-tree infection stages all exceed 90%.

Among the YOLO series of models, YOLOv10n has a better

perception ability for early-stage PWD than YOLOv5n, but

its overall mAP is 1.4% lower than that of YOLOv5n. This

may be attributed to YOLOv10n's focus on speed

optimization, which involves more aggressive pruning of

network parameters or simplification of feature extraction

modules. These trade-offs slightly compromise the model's
TABLE 3 Performance comparison among different lightweight models.

Model Backbone Stage

Evaluation indicators

P↑ R↑ mAP50↑
FPS↑

GFLOPs↓ Parameters↓

(%) (%) (%) (G) (M)

SSD MobileNetv2

PWD-E 60.5 56.2 63.2

186.7 1.1 5.4

PWD-M 70.2 65.4 72.1

PWD-L 70.3 72.8 74.3

PWD-D 72.4 69.7 72.8

ALL 68.4 66.0 70.6

EfficientDet EfficientNet-D1

PWD-E 68.9 59.3 75.6

49.3 6.3 6.6

PWD-M 78.6 75.4 82.6

PWD-L 79.2 78.6 88.1

PWD-D 77.3 79.3 82.4

ALL 76.0 73.1 82.2

YOLOv5n CSPResNet

PWD-E 71.2 78.9 80.1

183.4 4.7 1.9

PWD-M 80.1 77.6 88.6

PWD-L 85.3 89.8 90.3

PWD-D 76.3 88.5 88.4

ALL 78.2 83.7 86.9

YOLOv10n EfficientFormerV2

PWD-E 73.4 81.4 81.2

169.2 8.1 3.1

PWD-M 81.8 75.2 80.6

PWD-L 86.1 87.6 92.1

PWD-D 77.6 87.9 88.2

ALL 79.7 83.0 85.5

LW-PWDNet GH-Backbone

PWD-E 73.3 81.7 83.4

166.8 5.6 1.9

PWD-M 88.4 88.7 91.8

PWD-L 87.6 89.4 93.6

PWD-D 78.6 90.1 90.1

ALL 82.0 87.5 89.7
Bold values indicate the best results for each metric among the compared models.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1687742
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu and Wang 10.3389/fpls.2025.1687742

Fron
ability to capture complex contextual information, thereby

leading to a marginally inferior global detection

performance compared with YOLOv5n. The EfficientDet

model generally has a good detection accuracy, but its

detection accuracy for early-stage small-target PWD is

still low, with an mAP of only 75.6%. SSD performs

poorly in the detection tasks of each PWD infection

stage, especially for the early-stage infection, with an

mAP of only 63.2%, indicating limited sensitivity to

PWD symptoms.

2. In terms of recall rate, the overall recall rate of LW-

PWDNet reaches 87.5%, which is 3.8% and 4.5% higher

than the relatively well-performing YOLOv5n (83.7%) and

YOLOv10n (83.0%) models respectively. This indicates that

LW-PWDNet has a lower missed-detection rate in the

PWD detection task and performs more stably in the

PWD target detection task. Especially in the early-stage

infection, its recall rate reaches 81.7%, which has more

advantages than other models and helps to improve the

effectiveness of early-stage PWD prevention and control.

3. In terms of model computational complexity and inference

speed, the GFLOPs of the LW-PWDNet model is 5.6G,

which is much lower than that of YOLOv10n (8.1G),

slightly higher than that of YOLOv5n (4.7G), and

comparable to that of EfficientDet (6.3G). However, LW-

PWDNet performs relatively well in inference speed, with

an FPS of 166.8, only slightly lower than that of YOLOv10n

(169.2). The EfficientDet model is limited by its large

computational complexity (GFLOPs of 6.3G) and deep

network structure, with an FPS of only 49.3, making it

difficult to meet the requirements of real-time detection.

4. In terms of model parameter quantity, the parameter

quantity of the LW-PWDNet model is only 1.9M, the

same as that of YOLOv5n. In contrast, the parameter

quantities of YOLOv10n, EfficientDet, and SSD are all

higher than 1.9M. Especially, due to the adoption of a

more complex backbone network, the parameter quantity

of EfficientDet increases significantly, resulting in a

decrease in inference speed. While maintaining high

detection performance, LW-PWDNet effectively controls

the parameter scale of the model, further improving its

applicability in resource-constrained environments.
Comprehensive analysis shows that LW-PWDNet achieves

high detection accuracy and recall rate in different infection

stages, especially in the mid-stage and late-stage infection stages,

its detection performance is significantly better than that of the

comparison models. At the same time, LW-PWDNet maintains a

computational complexity comparable to that of YOLOv10n and

performs outstandingly in parameter quantity control, with only

1.9M, making it suitable for edge-computing devices. Although its

inference speed is slightly lower than that of YOLOv5n, it has

obvious advantages in detection performance.

In order to visually compare the performance of each model in

the PWD detection task, this paper selects 4 representative images
tiers in Plant Science 15
from the constructed PWD dataset and conducts a visual analysis of

the detection results of each model. The detection effects of each

model are shown in the Figure 13. These 4 images cover different

infection stages (early, mid, late, dead tree), complex background

environments (dense forest areas, sparse forest areas, mountainous

environments), and different shooting angles (vertical overhead

shooting and oblique view) to comprehensively evaluate the

detection effects of each model. Among them, Figure 13 (I) and

(II) are vertical overhead shooting images obtained by the drone at

the same flight altitude in different forest areas. Figure 13 (III) and

(II) are vertical overhead shooting images at different flight altitudes

in the same forest area, and Figure 13 (IV) and (II) are oblique-view

images at the same height and different angles.

From the detection results in Figure 13, it can be seen that LW-

PWDNet and YOLOv10n perform excellently in the PWD target

detection task. They can not only accurately detect all infected

targets, but also have a strong ability to distinguish different

infection stages, demonstrating high detection accuracy and

stability. In contrast, YOLOv5n has a certain degree of missed

detection when detecting early PWD small targets. A total of 3

missed detections occurred in the test samples, and its sensitivity to

the early infection stage is relatively low. SSD and EfficientDet

perform relatively poorly in the PWD detection task, with relatively

prominent problems of missed detection and false detection.

Among them, SSD had a total of 16 missed detections and 5 false

detections. It is particularly vulnerable to interference in complex

background environments, resulting in some withered broad-leaved

trees being misidentified as infected areas. Although the overall

detection accuracy of EfficientDet is better than that of SSD, it still

has 5 missed detections and 3 false detections, and there are still

deficiencies in its detection ability for small PWD targets. Overall,

LW-PWDNet shows high detection reliability and robustness in

complex forest environments and different stages of PWD infection.
3.3 Results and analysis of ablation
experiments

To verify the impact of each key module of LW-PWDNet on the

detection performance of small-target PWD, this paper designs

multiple groups of ablation experiments, and analyzes them from

four aspects: mAP, GFLOPs, Parameters, and FPS. The experiments

successively evaluate the contributions of RE-Block, PWD-EFC and

D-Sample in the feature fusion layer, and LightShiftHead in the

prediction layer to the model performance. Among them, Model 1

serves as the baseline model, using only the GH-Backbone

backbone network without including all the above modules. The

results of the ablation experiments are shown in Table 4.

According to the quantitative results of the ablation

experiments in Table 4, the following conclusions can be drawn:
1. RE-Block can effectively enhance the feature extraction

ability while reducing the computational cost, and

improve the detection ability of the lightweight model for

small-target PWD. After introducing RE-Block, the
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GFLOPs of the model decreased from 6.4G to 5.7G, and the

number of parameters decreased by 0.2M, indicating that

both the computational complexity and storage

requirements were optimized. At the same time, the

detection accuracy of the model at each infection stage

was significantly improved, especially in the early infection
tiers in Plant Science 16
stage (mAP increased from 78.4% to 80.2%), and the overall

mAP increased by 2.4%.

2. The PWD-EFC designed in this paper improves the

correlation between features at different levels by

enhancing spatial attention and channel context

information, and further enhances the model's detection
FIGURE 13

Detection effects of different models on the small target PWD dataset. (a) Original image, (b) Ground Truth, (c) SSD, (d) EfficientDet, (e) YOLOv5n,
(f) YOLOv10n, (g) LW-PWDNet.
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ability for PWD targets of different scales. After adding

PWD-EFC, the model inference speed was significantly

improved (FPS increased from 160 to 175), while the

GFLOPs and the number of parameters remained

basically unchanged. However, the detection accuracy was

further improved, especially in the early (+1.2%) and

middle (+2.3%) infection stages, and the overall mAP

increased to 87.7%. Although the introduction of the

PWD-EFC module results in a negligible parameter

increase (only 0.1M), the computational complexity

(GFLOPs) remains unchanged, while the detection

accuracy improves by 1.0%. This indicates that PWD-

EFC maintains a lightweight design while achieving

significant performance gains.
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3. The innovatively designed D-Sample in this paper can more

effectively aggregate multi-scale information during the

feature fusion process, improve the detection ability for

PWD targets, especially for early-infected targets, and

further compress the model scale, making it more suitable

for the edge-computing environment. After adding the D-

Sample down-sampling module proposed in this paper, the

number of parameters of the model decreased from 2.2M to

2.0M, and the GFLOPs decreased to 5.6G, indicating that D-

Sample optimized the model structure while reducing the

computational cost. At the same time, the detection accuracy

at each stage was improved to varying degrees, with the mAP

in the early infection stage increasing to 82.5% and the

overall mAP reaching 88.6%.
TABLE 4 Results of the ablation experiments of the LW-PWDNet model.

Model RE-block PWD-EFC D-sample LightShiftHead Stage

Evaluation indicators

mAP50↑
FPS↑

GFLOPs↓ Parameters↓

(%) (G) (M)

1

PWD-E 78.4

173 6.4 2.3

PWD-M 83.6

PWD-L 88.7

PWD-D 86.3

ALL 84.3

2 ✓

PWD-E 80.2

160 5.7 2.1

PWD-M 87.3

PWD-L 91.6

PWD-D 87.6

ALL 86.7

3 ✓ ✓

PWD-E 81.4

175 5.7 2.2

PWD-M 89.6

PWD-L 91.8

PWD-D 87.9

ALL 87.7

4 ✓ ✓ ✓

PWD-E 82.5

172 5.6 2.0

PWD-M 90.7

PWD-L 92.8

PWD-D 88.3

ALL 88.6

5 ✓ ✓ ✓ ✓

PWD-E 83.4

166 5.6 1.9

PWD-M 91.8

PWD-L 93.6

PWD-D 90.1

ALL 89.7
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4. After introducing the lightweight self-attention mechanism

LightShiftHead, the GFLOPs and the number of

parameters of the model remained unchanged, but the

overall detection accuracy was further improved (mAP

increased from 88.6% to 89.7%). Especially, the detection

accuracy in the early infection stage increased to 83.4%, and

the mAP in the middle, late, and dead-tree infection stages

increased by 1.1%, 0.8%, and 1.8% respectively.

Although LightShiftHead slightly decreased the inference

speed (FPS decreased from 172 to 166), it can effectively

enhance the feature representation ability, improve the

model's discrimination ability for PWD targets in

complex forest environments, and further reduce the

missed-detection rate.
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The results of the ablation experiment are shown in

the Figure 14.

According to the visual analysis of the detection results in the

Figure 14, in the test set, there are a total of 9 undetected samples in

Model 1, and all of them are PWD individuals in the early stage.

This phenomenon is mainly attributed to the small target size and

unclear texture features of early PWD trees in the images, which

increases the detection difficulty. In contrast, the number of

undetected samples in Model 2 is reduced to 8, and the detection

accuracy is significantly improved compared with Model 1. The

number of undetected samples in Model 3 and Model 4 further

decreases to only 2, and there is also a certain increase in detection

accuracy. Finally, Model 5 is superior to the previous models in

terms of both the undetected rate and detection accuracy, showing a
FIGURE 14

Comparison chart of ablation experiments. (1) GH-Backbone. (2) GH-Backbone +RE-Block. (3) GH-Backbone+RE-Block+PWD-EFC. (4) GH-
Backbone+RE-Block+PWD-EFC+D-Sample. (5) GH-Backbone+RE-Block+PWD-EFC+D-Sample+LightShiftHead.
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significant performance improvement compared with Model 1.

This result indicates that LW-PWDNet has higher accuracy and

stronger stability in the early PWD detection task, especially in

dealing with small-target detection scenarios.

In conclusion, the LW-PWDNet model designed in this paper,

through a variety of lightweight structures and strategies to enhance

feature extraction, improves the detection ability for small-target

PWD while ensuring real-time detection. It is suitable for resource-

constrained edge-computing environments and can provide an

efficient and reliable solution for the early monitoring of PWD.
3.4 Cross-regional generalization analysis

To evaluate the robustness and transferability of the proposed

lightweight model LW-PWDNet in practical deployment scenarios,

a cross-regional validation experiment was designed. Specifically,

UAV-acquired images from two regions with distinct geographical

and ecological characteristics were utilized: Liyang City (Jiangsu

Province) and Qianshan City (Anhui Province). These regions

differ in forest composition, canopy density, terrain morphology,

and lighting conditions. The two regions exhibit distinct ecological

and environmental characteristics, introducing natural variability

that challenges model generalization. Region A is characterized by a

diverse vegetation composition, including coniferous forests,

evergreen broadleaf forests, deciduous broadleaf forests, and

artificial mixed plantations. The forest structure is relatively

complex, with heterogeneous canopy layers and moderate
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variability in canopy density. The terrain is dominated by gently

undulating hills, while lighting conditions are generally stable due to

relatively open topography and fewer terrain-induced shadows.

In contrast, Region B is characterized by mixed natural forests

with high species diversity, where PWD-susceptible pines are

interspersed among other tree species. The canopy is highly

heterogeneous and denser in patches, and the mountainous

terrain leads to complex shading effects. Moreover, lighting

conditions in Region B are less stable, with frequent shadow

occlusion and strong variability in illumination angles caused by

rugged terrain and slope orientation. These differences in forest

composition, canopy density, terrain morphology, and lighting

introduce domain shifts that may significantly affect the

robustness of PWD detection models.

The dataset from Region A contained 11,126 UAV images with

8,500 annotated pine trees. Among them, early-stage PWD trees

(PWD-E) accounted for 44.7%, followed by middle-stage (PWD-M,

27.1%), late-stage (PWD-L, 16.5%), and dead trees (PWD-D,

11.7%). The dataset from Region B included 8,420 UAV images

with 7,200 annotated pine trees, of which early-stage PWD trees

made up 44.4%, while PWD-M, PWD-L, and PWD-D accounted

for 27.8%, 16.7%, and 11.1%, respectively. The relatively high

proportion of early-stage infections in both datasets ensured a

robust evaluation of the proposed model’s ability to detect small

targets under cross-regional conditions.

In this experiment, models were trained using data from Region

A and tested on data from Region B, thereby simulating deployment

under domain shift conditions. For comparative analysis, the same
FIGURE 15

Cross-region verification mAP comparison chart.
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five lightweight detection models as employed in the comparative

experiments were selected as controls, including SSD with

MobileNetV2 backbone, EfficientDet with EfficientNet-D1

backbone, YOLOv5n with CSPResNet backbone, YOLOv10n with

EfficientFormerV2 backbone, and the proposed LW-PWDNet. The

evaluation metric adopted was mAP, and statistical analyses were

performed on the detection performance of each model on both the

source domain test set and the target domain test set, respectively.

/The results, as shown in the Figure 15, indicate that although all

models experienced a certain degree of performance decline when

migrating from the source region to the target region, there are

significant differences in the extent of the decline. The mAP of the

SSD model decreased from 70.6% to 64.7%, a drop of 5.9 percentage

points; EfficientDet decreased from 82.4% to 75.2%, a drop of 7.2

percentage points; YOLOv5n decreased from 88.9% to 76.4%, a drop of

12.5 percentage points; YOLOv10n decreased from 86.6% to 80.1%, a

drop of 6.5 percentage points. In contrast, the LW-PWDNet model

decreased from 91.8% to 88.6%, with a decline of only 3.2%. It is not

only the model with the smallest decline among the five models but

also the model with the highest absolute accuracy in the target region.

This result fully demonstrates that LW-PWDNet exhibits

remarkable stability and generalization ability when facing cross-

regional forest environmental differences. A smaller decline in

accuracy means that this model has a stronger adaptability to

changes in forest stand structure, lighting conditions, and

background interference, which is of great significance for building a

cross-regional and long-term operating PWD monitoring system.
4 Discussion

The PWD is characterized by rapid spread and high lethality. It

only takes dozens of days for an infected tree to die. Therefore,
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early, accurate, and low-cost monitoring methods are crucial for

curbing the spread of the epidemic. Traditional ground survey

methods are inefficient and difficult to meet the needs of large-scale

real-time monitoring. Satellite remote sensing is very difficult to

monitor small targets of PWD. In recent years, with the

development of UAV remote sensing and object detection

algorithms, researchers have gradually applied deep learning

technology to the automatic identification of diseased trees. In

particular, lightweight small object detection methods have

become a key direction for achieving accurate monitoring of

PWD. For the above reasons, the lightweight small object PWD

detection model LW-PWDNet proposed in this paper demonstrates

excellent recognition accuracy in the early monitoring of PWD.

This paper proposes a lightweight small-target PWD detection

model, LW-PWDNet, aiming to reduce the model's computational

complexity while enhancing the detection ability of small-target

PWD diseases. First, in this chapter, a lightweight backbone

network, GH-Backbone, is designed in the backbone network

layer, and the HGNetV2 network structure is reconstructed. This

not only reduces the computational complexity but also improves

the perception ability of the PWD disease area. Second, in the

feature fusion layer, this chapter designs the RE-Block. Under the

premise of ensuring the effective fusion of PWD target information

at different scales, the computational complexity is reduced. At the

same time, a lightweight feature fusion module, PWD-EFC, is

designed in the feature fusion layer to improve the correlation

between features at different levels. Moreover, a lightweight down-

sampling module, D-Sample, is designed to effectively enhance the

model's feature expression ability for multi-scale PWD targets. In

addition, this chapter constructs an ultra-lightweight prediction

layer, LightShiftHead, to further improve the detection accuracy of

small-target PWD. The effectiveness of LW-PWDNet is evaluated

through ablation experiments and comparative experiments. The
FIGURE 16

Architecture of pine wilt disease detection system.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1687742
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu and Wang 10.3389/fpls.2025.1687742
experimental results show that compared with the benchmark

model, the method in this chapter significantly improves the

detection accuracy of PWD targets while maintaining a high

inference speed, especially in the detection ability of small targets

in the early infection stage. In addition, visual analysis further

validates the robustness of LW-PWDNet in the complex forest area

background, demonstrating its potential in practical applications.

To further validate the practicality of the proposed LW-

PWDNet, we implemented a lightweight graphical detection

system based on PyQt5, integrating both static image detection

and real-time video stream tracking modules. The system provides a

user-friendly interface, supports adaptive parameter adjustment,

and enables real-time visualization of detection and tracking results.

The overall architecture of the system is shown in Figure 16.

The system interface is mainly composed of two parts: the

function setting area and the detection display area. In the function

setting area, users can perform model selection, input method

setting, and parameter adjustment. The system provides a model

selection function, supporting the loading of different detection

models, including object detection models and tracking and

counting models, to meet the detection requirements of PWD-

infected wood in different scenarios. Users can click the input

selection button to choose to upload pictures for detection, or

click the video detection button for object tracking and counting. In

addition, the system provides a parameter adjustment function,

including the adjustment of the IoU threshold and confidence

threshold. Users can adjust according to the actual detection

environment to optimize the detection accuracy and object
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tracking effect. In the detection display area, the system will

present the detection results in real-time, including the detected

target categories of PWD, location information, and confidence

scores, and display the object detection boxes and tracking paths in

a visual way. For the tracking and counting of PWD in the death

stage, the system uses an object tracking algorithm to ensure

accurate identification of PWD in the death stage and calculate

the number of targets in the death stage to assist the forestry

department in scientific evaluation and the formulation of

prevention and control measures. After users open the main

interface of the PWD system, they select the weight files in the

function area configuration, including object detection weights and

tracking and counting weights. When clicking the video stream

selection button, select the video stream to be detected, and click the

start detection button to start the video stream tracking and

counting. The visual tracking and counting results will be

displayed on the right side of the interface. The detection results

are shown in Figure 17.

LW-PWDNet has been successfully deployed on edge devices

onboard UAV platforms, where real-time inference and

visualization were achieved without compromising detection

accuracy. This demonstrates that the proposed model is not only

theoretically effective but also practically deployable in UAV-based

forest health monitoring scenarios.

Despite the strong performance of the proposed LW-PWDNet

model across various stages of PWD infection, several challenges

remain when deployed in real-world forest environments. In

particular, occlusions, shadow interference, and uneven
FIGURE 17

Schematic diagram of tracking count test results.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1687742
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu and Wang 10.3389/fpls.2025.1687742
illumination caused by complex forest structures significantly affect

the accurate identification of early-stage infected trees. In dense

forests or conifer-dominated canopies, infected branches are often

partially or fully blocked by upper foliage layers or affected by

limited imaging angles, leading to reduced detection accuracy and a

higher rate of missed detections. Furthermore, due to the subtle

differences in color and texture between early-infected and healthy

trees in the spatial domain, RGB imagery alone is highly susceptible

to environmental variations, limiting its effectiveness in capturing

the weak visual signals of early infections.

To address these limitations, multimodal sensing and deep

feature fusion strategies have emerged as promising solutions for

enhancing model robustness. On one hand, multispectral imagery

(e.g., red-edge, near-infrared, and shortwave infrared bands) offers

rich spectral cues that reflect subtle physiological and biochemical

changes in tree tissues, enabling more discriminative identification

of early infections. On the other hand, thermal infrared imagery and

LiDAR data can provide complementary information, such as heat

stress response and structural geometry, which is especially

beneficial for detecting occluded or partially visible infected trees

and reconstructing detailed canopy structures.

With the advancement of cross-modal deep learning models, such

as those leveraging attention mechanisms and multi-scale Transformer

architectures, multimodal neural networks are increasingly capable of

learning synergistic representations and aligning semantics across

heterogeneous data sources. This enables more effective detection in

complex forest environments. To integrate these multimodal data into

the existing LW-PWDNet framework, future work will focus on

developing cross-modal attention mechanisms: specifically, RGB,

multispectral, and LiDAR data will be fed into modality-specific

lightweight encoders (extended from the GH-Backbone) to extract

modality-aware features, which will then be fused via a cross-modal

attention module. This module will dynamically weight the

contributions of each modality based on contextual relevance (e.g.,

emphasizing LiDAR-derived structural features in occluded regions or

multispectral signals for early-stage spectral anomalies), while

maintaining the model's lightweight design to suit edge

computing scenarios.

In summary, the integration of multimodal data acquisition and

cross-domain feature fusion mechanisms is essential to improving the

accuracy and generalization capability of early PWD detection under

real-world occlusions and illumination variability. Future work should

focus on developing UAV-based multisource data collection

frameworks, efficient modality alignment algorithms, and lightweight

multimodal fusion networks, thereby enabling stable, real-time, and

high-precision detection of infected trees in complex forested areas.
5 Conclusion

In order to meet the real-time detection requirements in the

forest resource-constrained environment and improve the detection

ability of small target PWD disease areas, this paper proposes a

lightweight small target PWD detection model, LW-PWDNet. The

experimental results show that LW-PWDNet achieves the highest
Frontiers in Plant Science 22
detection accuracy (mAP 89.7%) while maintaining a low

computational complexity (GFLOPs 5.6G, parameter quantity

1.9M) and a high inference speed (FPS 166). Specifically, the

detection accuracy in the early infection stage reaches 83.4%, in

the middle infection stage reaches 91.8%, in the late infection stage

reaches 93.6%, and in the dead tree stage reaches 90.1%. It can

provide an efficient and lightweight detection solution for PWD in

resource-constrained scenarios such as UAV inspections.
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