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Comparative transcriptomics
reveals key regulatory networks
underlying cold stress adaptation
in oil palm (Elaeis guineensis)
Qiufei Wu †, Xuanwen Yang †, Qifeng Huang, Rui Li ,
Xianhai Zeng, Qihong Li, Zongming Li, Dengqiang Fu,
Hongxing Cao, Xinyu Li, Xiaoyu Liu and Lixia Zhou*

State Key Laboratory of Tropical Crop Breeding, Coconut Research Institute, Chinese Academy of
Tropical Agricultural Sciences, Sanya/Wenchang, Hainan, China
Introduction: Climate change has exacerbated cold stress, which severely

impairs plant development. Oil palm (Elaeis guineensis), a tropical crop highly

sensitive to low temperatures, exhibits stunted growth and yield reductions

under such conditions.

Methods: To investigate its cold stress response, oil palm seedlings were subjected

to cold treatments, and their physiological and genetic adaptations were

analyzed using fresh leaf samples. Key parameters, including antioxidant

enzyme activity, reactive oxygen species (ROS) levels, photosynthetic pigment

ratios, photosynthetic efficiency, and gene expression, were evaluated across

exposure durations. Sequencing of the samples was performed using Illumina

NovaSeq X Plus platform. Raw reads were processed using fastp (v0.18.0) to

remove adapter-containing reads, exclude reads with >10% unidentified

nucleotides (N), and eliminate reads where >50% of bases had Phred scores ≤20.

The genome reference version is GCF_000442705.2 (https://www.ncbi.nlm.nih.

gov/datasets/genome/GCF_000442705.2/).

Results and discussion: Under cold stress, seedlings displayed a significant

increase in superoxide dismutase (SOD, 546.08 U/g min FW) and peroxidase

(POD, 153.27 U/g min FW) activities within 4 h compared with the control.

Prolonged exposure (8 h) further elevated soluble sugar content (406.27 mg/g
FW), malondialdehyde (MDA, 80.22 nmol/g), relative electrical conductivity

(109.71%), and the carotenoid-to-chlorophyll ratio, indicating oxidative damage

and membrane instability. RNA-seq analysis identified 144, 392, and 6,585

differentially expressed genes (DEGs) after 1, 4, and 8 h of cold exposure,

respectively. KEGG pathway enrichment highlighted predominant associations

with plant–pathogen interaction, plant hormone signal transduction, and the

mitogen-activated protein kinase (MAPK) signaling pathway. Functional analysis

revealed DEGs involved in four major hormone signaling pathways (auxin (AUX/
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IAA), jasmonic acid (JA), abscisic acid (ABA), and brassinosteroid (BR)), which also

interact with the MAPK cascade to collectively regulate oil palm cold stress

adaptation and growth adjustments. This study provides comprehensive insights

into the genetic and molecular mechanisms underlying cold tolerance in oil

palm, offering a basis for breeding cold-resistant cultivars.
KEYWORDS

oil palm, cold stress, transcriptome, differentially expressed genes (DEGs),
signaling pathway
1 Introduction

Elaeis guineensis Jacq., commonly referred to as oil palm, is a

long-lived woody monocot in the Arecaceae family. Recognized as

the most productive oil crop worldwide, it plays a major role in the

global vegetable oil industry. Palm oil, extracted from its fruit, is the

most widely consumed edible oil, contributing nearly 35% to total

global vegetable oil production, which surpassed 70 million metric

tons in 2023 (Abubakar and Ishak, 2024; VanderWilde et al., 2023).

The oil palm industry forms a high-value agricultural supply chain

encompassing cultivation, oil extraction, and downstream

processing for applications in food, cosmetics, biofuels, and other

sectors (Al-Madani et al., 2023; Yılmaz and Ağagündüz, 2022;

Chaparro et al., 2023). Malaysia and Indonesia dominate global

production, jointly contributing over 85% of palm oil output

(Danylo et al., 2021). Beyond economic significance, oil palm

plantations support livelihoods for millions across Southeast Asia,

Africa, and Latin America (Lai et al., 2022). Currently, the domestic

cultivation of oil palm in China has not yet developed into a large-

scale industry, with a total planting area of approximately 667

hectares scattered across regions such as Hainan, Yunnan,

Guangdong, Guangxi, and Fujian. Expanding oil palm cultivation

could significantly increase China’s self-sufficiency rate in edible

oils, thereby enhancing national food security. It would also

improve the efficiency of land resource utilization, boost farmers’

incomes, and promote regional economic development. Moreover,

the growth of the oil palm industry could drive progress in related

sectors such as agricultural technology, seed breeding, oil

processing, and bio-new energy applications (John Martin et al.,

2022). In China, oil palm cultivation is limited to tropical regions,

and commercial expansion has been constrained by climatic

limitations (particularly cold sensitivity) and suboptimal yields,

necessitating heavy reliance on imports (Sarkar et al., 2020; Zhou

et al., 2022).

Cold stress significantly hinders crop growth, development, and

productivity and induces complex physiological responses. It

suppresses growth processes, impairing seed germination, seedling

establishment, flowering, and fruit set, ultimately leading to reduced

germination rates, stunted seedling growth, and diminished seed set

(Shahan, 2020). These adverse effects are especially detrimental to
02
crops in tropical and subtropical regions, often causing substantial

yield losses and declines in quality (Matsukura et al., 2024). At the

cellular level, cold stress promotes the excessive accumulation of

ROS, including superoxide (O2
–), hydrogen peroxide (H2O2), and

hydroxyl radicals (•OH), which induce membrane lipid

peroxidation and damage to proteins and DNA (Xiang et al.,

2025). To counteract oxidative stress, plants activate antioxidant

defenses involving key enzymes such as Superoxide Dismutase

(SOD), peroxidase (POD), and catalase (CAT) (Amini et al.,

2021). Notably, at low concentrations, ROS act as signaling

molecules that activate pathways such as MAPK and calcium

(Ca2+) signaling cascades to regulate cold-responsive gene

expression (Zhang et al., 2023).

Cold temperatures also disrupt the balance between plant

growth and stress tolerance by activating a complex hormonal

signaling network. Key hormones such as ABA, BR, and auxin

(IAA) play pivotal roles in regulating these adaptive responses

(Waadt et al., 2022). This hormonal coordination facilitates

defense mechanisms through interconnected ROS–hormone

networks, including the ABA–ROS–CBF signaling axis.

Deciphering cold signal perception and multi-hormone crosstalk

is essential for uncovering novel targets to engineer stress-resilient

crops (Li et al., 2022; Shi and Chan, 2014).

Transcriptome sequencing has emerged as a pivotal tool in

plant science, providing comprehensive insights into gene

expression dynamics across developmental stages, environmental

stresses, and treatments (Liu et al., 2022). In oil palm, this

technology has advanced genetic improvement by enabling the

discovery of genes associated with fatty acid biosynthesis, cold stress

responses, and complex metabolic pathways (Lei et al., 2014; Xiao

et al., 2014; Li et al., 2020, 2022; Saand et al., 2022; Apriyanto and

Ajambang, 2022; Lee et al., 2024);. Despite progress in high-

throughput sequencing, the molecular mechanisms underlying

cold adaptation remain incompletely characterized in oil palm,

and the identification and functional analysis of cold-tolerance

markers and pathways are still limited. This gap impedes

molecular breeding for high-yielding, cold-resilient varieties.

Here, we employ high-throughput transcriptome sequencing to

dissect gene regulatory networks in oil palm under cold stress and

identify key molecular components governing stress adaptation,
frontiersin.org
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with the goal of establishing a molecular framework for genetic

enhancement of this crop.
2 Materials and methods

2.1 Experimental material and cold
exposure

Six-month-old African oil palm (Elaeis guineensis var. pisifera)

seedlings were obtained from Wenchang, Hainan Province, China

(19.63° N, 110.94° E) and acclimatized under nursery conditions.

Oil palm seeds were initially germinated in a growth chamber under

controlled conditions: a constant temperature of 29°C, 85% relative

humidity, and a 12-hour photoperiod. Following germination, the

sprouts were moved to a pre-nursery stage and placed in small

polyethylene pots filled with a sterile peat–perlite mixture (3:1 v/v).

At the two-leaf stage, the seedlings were transplanted into larger bags

(35 cm × 50 cm) in the main nursery. The nursery environment was

maintained at an average temperature of 28–32°C under natural

sunlight. Seedlings received daily watering and were fertilized every

two weeks using a balanced N-P-K fertilizer (mass ratio: 15-15-15).

The bags were arranged in a triangular pattern with 90 cm spacing

between them to ensure sufficient air circulation and light exposure.

Twenty-four uniformly healthy seedlings were randomly divided

into two experimental groups (n = 12 per group): (1) a control

group maintained at 26°C with a 16 h light/8 h dark photoperiod, and

(2) a treatment group exposed to 8°C for 1, 4, or 8 h under identical

light (250 µmol/m2 s) and relative humidity (72-75%) conditions. The

plant growth chamber (Baowen YL1, Shanghai, China) is equipped

with built-in fluorescent lamps, whose light intensity is monitored in

real time using a quantum sensor and automatically adjusted by the

control system through regulating the lamp output. The chamber

also incorporates humidification and dehumidification systems,

which dynamically modulate relative humidity based on real-time

feedback from high-precision humidity sensors, maintaining it

within the range of 72–75%. Cold stress was induced in oil palm

seedlings by exposing them to an artificial climate chamber pre-set

to 8°C. All treatments were done at the same time of day to control

the circadian effects. Each group had three biological replicates

(one seedlings per replicate). Immediately following treatment,

spear leaves were collected from both control and cold-treated

seedlings, flash-frozen in liquid nitrogen, and stored at –80°C for

RNA isolation and transcriptomic analysis.
2.2 Physiological and biochemical analyses

To evaluate cold stress responses, leaf samples were collected from

the treated and control plants at 0, 1, 4, and 8 h post-exposure.

Antioxidant enzyme activities, including SOD and POD, were

determined using commercial assay kits (Micro SOD/POD Activity

Assay Kits, Sangon Biotech, Shanghai, China). Photosynthetic

parameters, including chlorophyll a/b ratio, carotenoid/chlorophyll

ratio, net photosynthetic rate (Pn), intercellular CO2 concentration
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(Ci), and stomatal conductance (Gs), were measured according to

established protocols (Wang et al., 2015; Porra, 2002). Stress-related

metabolites were quantified as follows: soluble sugars (Teixeira et al.,

2012), MDA (Micro MDA Assay Kit, Sangon Biotech), and relative

electrical conductivity (REC) (He et al., 2018). To estimate leaf cell

membrane damage, REC was measured using an electric conductivity

meter EC215 (Hanna Instruments Romania Srl, Nusfalau, Romania)

(Niu et al., 2016). REC (%) was calculated the following equation, REC

(%) = (S1/S2) × 100, where S1 and S2 refer to electric conductivity of

live leaf sections and boiled leaf sections, respectively.
2.3 RNA extraction and transcriptome
analysis

Total RNA was extracted using TRIzol Reagent (Invitrogen,

Carlsbad, CA, USA) according to the manufacturer’s protocol. RNA

quality was evaluated by RNase-free agarose gel electrophoresis and

quantified using an Agilent 2100 Bioanalyzer (Agilent

Technologies, Palo Alto, CA, USA). Poly(A)+ mRNA was

enriched using mRNA capture beads and fragmented at elevated

temperature. First-strand cDNA was synthesized using reverse

transcriptase, followed by second-strand synthesis with end repair

and A-tailing. Adapters were ligated to the cDNA fragments, which

were then size-selected using Hieff NGS DNA Selection Beads. The

final library was prepared by PCR amplification and sequenced on

the Illumina NovaSeq X Plus platform. Raw reads were processed

using fastp (v0.18.0) to remove adapter-containing reads, exclude

reads with >10% unidentified nucleotides (N), and eliminate reads

where >50% of bases had Phred scores ≤20. HISAT2 was used

before StringTie assembly. To validate the consistency and

reproducibility among biological replicates, we conducted a

principal component analysis (PCA) of all samples.

Transcript quantification used a reference-based approach, with

mapped reads from each sample assembled via StringTie (v1.3.1).

Expression levels were quantified as FPKM (Fragments Per Kilobase

of transcript per Million mapped reads) using RSEM, enabling

standardized comparison of transcript abundance across samples.

The FPKM calculation is: FPKM = (106 × C)/(N × L/103). where C

is the number of fragments aligned to gene i, N is the total number

of fragments mapped to all reference genes, and L is the length of

gene i (bp). Differential expression analysis used DESeq2.

Transcripts meeting false discovery rate (FDR) < 0.05 and |log2

fold change| ≥ 1 (linear fold change ≥ 2) were classified as DEGs.

Gene Ontology (GO) enrichment DEGs were mapped to GO terms

(http://www.geneontology.org/), and enrichment was evaluated

using the hypergeometric test with FDR correction (FDR ≤ 0.05).
2.4 KEGG pathway enrichment

KEGG enrichment used the same hypergeometric framework as

GO, with FDR correction (FDR ≤ 0.05). Protein–protein interaction

(PPI) analysis was conducted using STRING v12.0 (https://string-

db.org/) with an interaction confidence cutoff ≥ 0.700.
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2.5 Expression profiles of DEGs by qRT-
PCR

Eight randomly selected DEGs associated with cold stress

(primers in Supplementary Table 1) were validated by qRT-PCR.

Total RNA was extracted using TRIzol (Invitrogen), and first-strand

cDNA was synthesized from 1 µg of RNA using MightyScript First

Strand cDNA Synthesis Master Mix (Sangon Biotech) with oligo(dT)

18 primers. qRT-PCR was performed in 10 µL reactions using 2 ×

SYBRGreen qPCR ProMix (low ROX) on aMastercycler ep realplex4

system under the following conditions: 95°C for 5 s, 55°C for 15 s,

and 68°C for 20 s, followed by a melt curve from 60°C to 95°C over

20 min. All reactions were run in triplicate at both biological and

technical levels. The expression levels of genes were normalized to

those of ELF, which was previously found to be a stable reference

gene under abiotic stress (Xia et al., 2014). Gene expression changes

were calculated using the 2–DDCt method (Livak et al., 2001), with final

Ct values representing the means of nine measurements. Statistical

significance (p < 0.05) under cold treatments was assessed by one-

way ANOVA with LSD post hoc tests (SPSS).
Frontiers in Plant Science 04
3 Results

3.1 Cold stress alters physiological and
biochemical parameters in oil palm

Plants were subjected to cold treatment for 0, 1, 4, and 8 h. Key

physiological and biochemical parameters were analyzed, including

antioxidant enzyme activities, ROS-related damage (MDA), soluble

sugars, pigment content (chlorophyll and carotenoids), and gas

exchange traits. SOD and POD activities increased during cold

exposure, peaking at 4 h and decreasing by 8 h (Figures 1A, B).

MDA content, soluble sugars, and REC increased progressively

(Figures 1C–E). Conversely, chlorophyll content, Ci, Gs, and Pn

declined (Figures 1F–I). Carotenoid/chlorophyll ratios were higher at

4 h relative to the control (Figure 1J). The phenotype of oil palm

seedlings exhibited minimal change compared to the 0-hour baseline

following one hour of cold stress. After four hours, however, brown

spots emerged on the leaves, suggesting the onset of chilling injury.

Within eight hours, brown spots had spread across nearly the entire

leaf surface, indicating severe cold damage (Figure 1P).
FIGURE 1

Effects of cold stress on the growth phenotype and physiological indices of oil palm seedlings. (A–J) Assessment of physiological and biochemical
parameters in oil palm subjected to control and cold stress conditions at 0, 1, 4, and 8 hours of exposure. Data are presented as mean ± SD (n = 3).
(K–N) FPKM value of SOD, POD, SPS, SuS, and HEMA genes under cold stress conditions. Asterisks represent significant difference at p ≤ 0.05(*) and
p ≤ 0.01(**). (P) Growth phenotypes of seedlings from different treatment groups after the stress period. 1–3 means three biological replicates.
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3.2 Cold stress induces differential
transcriptional reprogramming in oil palm

Libraries generated 42.03–46.14 million high-quality paired-

end reads (2 × 150 bp) per sample (~6.26 GB per replicate) with an

average Q30 of 94.54% and a clean-reads percentage of 88.49%

(Supplementary Table 2). The length of the DNA insertion

fragment is 200–300 bp. The genome reference version is

GCF_000442705.2 (https://www.ncbi.nlm.nih.gov/datasets/

genome/GCF_000442705.2/). Employing thresholds of FDR <

0.05 and |fold change| ≥ 2, we identified DEGs across three

pairwise comparisons (CK 1 h vs Cold 1 h, CK 4 h vs Cold 4 h,

and CK 8 h vs Cold 8 h). The number of DEGs increased

progressively with the duration of cold exposure, reaching a

maximum of 6,585 DEGs in the CK 8 h vs Cold 8 h comparison

(Figures 2A, B), reflecting a time-dependent expansion of

transcriptional reprogramming. Venn analysis uncover both time-

point-specific and shared DEGs, among which 68 were consistently

regulated across all cold treatments, suggesting their role as

potential core cold-response regulators (Figure 2C). Principal

component analysis (PCA) showed clear separation among
Frontiers in Plant Science 05
treatment groups, with PC1 and PC2 accounting for 90.3% and

4.0% of the total variance, respectively (Figure 2D).
3.3 Functional annotation of cold-
responsive DEGs

GO enrichment identified 35 significantly enriched terms (FDR <

0.05) at 8 h: 20 biological process (BP), 12 molecular function (MF),

and 3 cellular component (CC) terms. Stress-response-related

categories dominated BP, while oxidoreductase activity was

prominent in MF. MF terms included binding, catalytic activity,

transporter activity, transcription regulator activity, ATP-dependent

activity, and antioxidant activity. BP terms included cellular

processes, metabolic processes, biological regulation, response to

stimulus, and localization. CC terms included cellular anatomical

structures and protein-containing complexes (Figures 3A–C)

(Supplementary Table 3). These results suggest coordinated

adjustments at biological, cellular, and molecular levels (Figure 4).

The comparison between CK 8 h and cold 8 h revealed significant

biological characteristics. DEGs were primarily enriched in metabolic
FIGURE 2

Transcriptional reprogramming in oil palm during cold stress. (A) Temporal dynamics of significantly upregulated (red) and downregulated (blue)
differentially expressed genes (DEGs; FDR < 0.05, |fold change| ≥ 2). (B) Volcano plot of DEGs (8 h cold vs. control; red: upregulated, yellow:
downregulated). (C) Venn diagram of DEG overlaps across time points; 68 genes consistently responded at all durations. (D) Principal Component
Analysis (PCA) showing transcriptome separation by treatment time (PC1: 90.3%, PC2: 4.0% of variance).
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processes, cellular processes, and response to stimulus (Figure 4A),

suggesting that cold stress may activate energy metabolism and

secondary metabolite synthesis pathways as adaptive mechanisms.

These DEGs likely participate in cell cycle regulation and cold stress

responses, including oxidative damage mitigation and hormone-

related signaling, highlighting cold stress’s disruptive effects on

cellular equilibrium. In the MF category, most DEGs were strongly

associated with catalytic activity and binding (Figure 4B), indicating

potential alterations in enzymatic functions and molecular

interactions during cold exposure. For the CC category, enriched
Frontiers in Plant Science 06
terms were primarily related to cellular anatomical structures and

protein complexes (Figure 4C), suggesting cold-induced

modifications in cellular architecture and protein organization.

Functional prediction and GO enrichment analysis underscored the

critical involvement of diverse biological processes, molecular

functions and cellular components in oil palm’s cold stress

response. Notably, genes associated with metabolic pathways,

enzymatic activities, and cellular structures emerged as key players

in cold tolerance, likely contributing to cellular stability maintenance

and enhanced stress resistance under cold conditions.
FIGURE 3

GO analysis analysis of DEGs. (A) ck 1 vs Cold 1, (B) ck 4 vs Cold 4, (C) ck 8 vs Cold 8.
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3.4 KEGG pathway enrichment and
functional annotation

Significantly enriched KEGG pathways (Q < 0.05) were

classified into organismal systems, cellular processes,

environmental information processing, genetic information

processing, and metabolism (Figure 5), comprising 19
Frontiers in Plant Science 07
subcategories. Both up- and downregulated DEGs accumulated

with prolonged cold exposure, with the highest numbers at 8 h

(Supplementary Table 4).

Metabolic pathways dominated the transcriptome changes,

including carbohydrate metabolism, secondary metabolite

biosynthesis, and amino acid metabolism. Genetic information

processing showed predominant upregulation. Environmental
FIGURE 4

GO enrichment analysis of oil palm under cold stress. (A) Biological Process (BP), (B) Molecular Function (MF), and (C) Cellular Component (CC).
FIGURE 5

Comparative KEGG pathway enrichment analysis of DEGs in oil palm under cold stress was performed at 1 h (CK 1 h vs Cold 1 h), 4h (CK 4 h vs Cold
4 h), and 8 h (CK 8 h vs Cold 8 h).
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information processing, especially plant hormone signaling, the

MAPK pathway, the phosphatidylinositol signaling system, and

ABC transporters, was consistently downregulated. Cellular

processes displayed initial downregulation (1 h) followed by

increased upregulation (4–8 h), whereas organismal systems

(environmental adaptation) were consistently downregulated

(Figure 5). Across all times, the top 20 enriched pathways

included MAPK signaling, plant–pathogen interaction, and

phenylpropanoid biosynthesis (Figures 6A–C); secondary

metabolite biosynthesis showed minimal expression changes at 8 h.
3.5 Cold-induced DEGs in plant hormone
signaling

Cold stress significantly altered expression of 45 genes in

hormone signaling pathways (ABA, JA, auxin, BR, and SA)

(Supplementary Table 5). The ABA pathway showed the

strongest response (11 upregulated, 7 downregulated); auxin

followed (8 up, 5 down); JA displayed moderate changes (3 up, 5

down); BR showed balanced regulation (2 up, 2 down); SA was

minimally affected (1 up, 1 down). Overall, ABA, auxin, and JA

pathways contained the most downregulated genes, with ABA also

showing the greatest upregulation (Figure 7). Expression peaked at

4 h for representative proteins, whereas the largest number of DEGs

occurred at 8 h, suggesting early regulation may involve post-

translational mechanisms and later responses rely more on

transcriptional modulation.

Cold stress initially induces a large-scale transcriptional

suppression in oil palm seedlings, suggesting a conservative

“niche adaptation” strategy that reduces overall metabolic activity

to conserve energy and promote survival, rather than broadly

activating defense pathways. This study reveals that low-

temperature stress triggers a complex and coordinated
Frontiers in Plant Science 08
reprogramming of hormone signaling. The central adaptive

mechanism involves an “energy-saving defense” mode, rather

than a global upregulation of gene expression. During later stress

stages (8 h), transcriptomic reprogramming is characterized by a

widespread downregulation of multiple signaling pathways,

including auxin and jasmonic acid, likely to minimize metabolic

expenditure and extend survival time. Conversely, the ABA

pathway is specifically and strongly activated under low

temperatures, functioning as a core regulatory hub for cold

defense and mediating physiological responses such as stomatal

closure. This marked contrast between the suppression of growth-

related pathways (e.g., auxin, JA) and the activation of defense-

related ABA signaling underscores a strategic ecological trade-off,

sacrificing growth to ensure survival. The cold response also

displays a temporal hierarchy, with early-stage (4 h) mechanisms

relying on rapid post-translational protein modifications, and later-

stage (8 h) adaptations driven by systematic transcriptional

changes. Collectively, these results demonstrate that cold stress

predominantly suppresses transcriptomic expression in oil palm

seedlings, rather than enhancing individual gene expression.
3.6 Cold-regulated genes in the MAPK
pathway

Cold stress can induce the MAPK signaling cascade, which is

involved in regulating cell division, differentiation, programmed cell

death, and stress responses. We identified 15 cold-responsive DEGs

associated with hormone signaling, stress defense, and pathogen

resistance, including nine linked to ABA signaling (7 up, 2 down),

four to plant–pathogen interaction (2 up, 2 down), and two to

phytohormone signaling (both down) (Figure 8; Supplementary

Table 6). These findings suggest that cold stress induces MAPK to

coordinate downstream adaptive responses, These responses may
FIGURE 6

Top 20 enriched KEGG pathways: (A) 1 h, (B) 4 h, (C) 8 h cold stress. Each bubble represents a pathway, with its size indicating the number of
enriched genes, while the color of the bubble reflects the significance level of the corresponding pathway.
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include the enhancement of ABA-dependent stress resistance, the

recruitment of pathogen defense mechanisms, and the suppression

of certain hormone signaling pathways, potentially contributing to

more efficient energy allocation.
3.7 Protein–protein interactions under cold
stress

PPI analysis identified 15 core interacting proteins (EgIAA4,

EgGH3, EgARF1, EgTIFY9, EgLFY, EgNP, EgTIFY3, EgCRC,

EgSEP2, EgPP2C24/68/75, EgARF1, EgAUX22D, and EgSAPK10)

constituting a potential cold-responsive regulatory module

(Figure 9). The prevalence of PP2C family members highlights

their roles in ABA signaling as negative regulators. The presence of

auxin-associated proteins (EgIAA4, EgGH3, EgARF1) implies

crosstalk between auxin and stress-responsive pathways (e.g.,

EgSAPK10). Collectively, these proteins may form an integrated
Frontiers in Plant Science 09
network that coordinates hormonal and stress responses, with

EgARF1 and PP2Cs as potential key nodes.
3.8 qRT-PCR validation

The eight differentially expressed genes (DEGs) selected for

qRT-PCR validation were chosen based on specific and

representative criteria, not randomly, to ensure a rigorous

assessment of RNA-Seq reliability. These genes were intentionally

selected to span a broad spectrum of fold-change values, in order to

evaluate the accuracy of the transcriptome data across varying

expression levels. As shown in Figure 10, the qRT-PCR results

demonstrated high consistency with the RNA-Seq expression

trends, strongly supporting the validity of our sequencing data.

We are therefore confident that this strategically chosen gene set

effectively represents the overall DEG profile and provides robust

validation for the RNA-Seq findings.
FIGURE 7

Differential expression of hormone signaling-related genes in oil palm under cold stress. Heatmaps display expression patterns of differentially
expressed genes (DEGs) associated with abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), auxin, and brassinosteroid (BR) signaling pathways
at three time points: (A) 1 hour (CK 1 h vs. Cold 1 h), (B) 4 hours (CK 4 h vs. Cold 4 h), and (C) 8 hours (CK 8 h vs. Cold 8 h) of cold exposure. Red:
Upregulated genes (log2FC > 1, FDR < 0.05). Green: Downregulated genes (log2FC < −1, FDR < 0.05).
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3.9 Hormone signaling and cold adaptation

The regulatory network governing plant responses to cold stress

involves a tightly coordinated interplay between gene expression

control, hormonal signaling, and environmental perception. These

interconnected mechanisms collectively enable plants to adapt to

cold conditions. Phytohormones serve as key mediators, playing a

central role in orchestrating physiological and molecular responses

to cold stress. In Arabidopsis, cold exposure disrupts auxin

distribution by impairing the intracellular trafficking of auxin

efflux transporters (Shibasaki et al., 2009). Similarly, in tea plants,

three R2R3-MYB transcription factors (CsMYB45, CsMYB46, and

CsMYB105) respond to cold stress by activating the JA signaling

pathway (Han et al., 2022). Additionally, the plasma membrane-

localized protein AtCor413pm1 in Arabidopsis functions as an

ABA-responsive regulator, facilitating cold adaptation through

ABA signal transduction (Hu et al., 2021). Further integrating

immune and cold responses, the key transcription factor ICE1 in

Arabidopsis interacts with the SA signaling pathway to modulate

plant immunity during cold stress (Li et al., 2024). In wheat, the SA

methyltransferase TaSAMT1 was recently identified, revealing a

novel regulatory mechanism where the brassinosteroid (BR)

signaling master regulator TaBZR1 epigenetically modulates SA

metabolism (Chu et al., 2024). These findings illustrate the

complexity of plant cold stress responses, which integrate

hormonal crosstalk, transcriptional regulation, and epigenetic

modifications to enhance cold tolerance. Such insights provide a

valuable foundation for improving crop cold resistance through

genetic engineering or targeted breeding strategies. Specifically, we
FIGURE 8

Expression patterns of cold-responsive DEGs in hormone signaling
and stomatal development pathways mediated by MAPK cascade.
Heatmaps display expression patterns of differentially expressed
genes (DEGs) associated with ABA signaling, pathogen defense, and
phytohormone signaling pathways at three time points: (A) 1 hour
(CK 1 h vs. Cold 1 h), (B) 4 hours (CK 4 h vs. Cold 4 h), and (C) 8
hours (CK 8 h vs. Cold 8 h) of cold exposure. Red: Upregulated
genes (log2FC > 1, FDR < 0.05). Green: Downregulated genes
(log2FC < −1, FDR < 0.05).
FIGURE 9

Analysis of protein-protein interaction (PPI) networks in oil palm under cold stress.
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observed a simultaneous and dramatic induction of ICE1

(LOC105051080) (12.33-fold), MYB (LOC105052782) (11.08-fold),

and CBF (LOC105054150) (3.76-fold) homologs under cold stress

condition for 8 h, highlighting the potential conservation and

activation of this key pathway in a tropical woody oil crop. Our

finding showed that the MAPK homolog (LOC140856367) was

highly upregulated (8.24-fold) presents an intriguing new angle

for oil palm cold tolerance (Figure 11). We hypothesize that this

induced MAPK may serve as a critical upstream regulator that

regulate the ICE1-MYB-CBF cascade in oil palm, potentially

through post-translational modification. This represents a novel

and species-specific regulatory layer atop the conserved
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transcriptional circuit. Therefore, our work not only confirms the

activation of universal cold-responsive players in oil palm but also

delineates a potential species-specific regulatory hierarchy, with

MAPK acting as a putative master switch. This discovery provides

valuable candidate genes (particularly MAPK and ICE1) for genetic

engineering strategies aimed at enhancing cold tolerance in this

critically important, yet cold-sensitive, tropical crop.

3.9.1 Auxin
Core components (TIR1/AFB–Aux/IAA–ARF) integrate auxin

with ABA and ROS under cold (Rahman, 2013; Yu et al., 2017;

Sharma et al., 2021; Du et al., 2022). We identified AUX1
FIGURE 10

Expression analysis of selected genes under cold stress. Blue dots represent CK, red dots represent Cold 1, orange dots represent Cold 4, and black
dots represent Cold 8, data represent mean values ± SD.
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(LOC1050536306), TIR1 (LOC105038693), IAA (LOC105042181,

LOC105042180) , ARF (LOC105047880 , LOC105035543 ,

LOC105038157), GH3 (LOC105055859, LOC105040112), and

SAUR (LOC105047357 , LOC105046556 , LOC105051940)

(Figure 12). Downregulation of AUX1/TIR1 suggests reduced

transport/perception; SAUR genes were upregulated, whereas

AUX1, TIR1, IAA, ARF, and GH3 were downregulated, indicating

auxin pathway suppression to conserve energy.

3.9.2 Jasmonic acid
JA signaling (JAR1–COI1–JAZ–MYC2) coordinates stress

responses (Carvalhais et al., 2017; Hu et al., 2017; Huang et al.,

2024). Under cold, JAR1 (LOC105037481) was upregulated, COI1

(LOC105041953, LOC105042036, and LOC105048226)

downregulated, and JAZ genes were differentially expressed

(Figure 12), suggesting possible COI1-independent activation.

Downregulation of MYC2 may release repression on stress-

responsive genes (e.g., ORCA3), promoting adaptation.
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3.9.3 Abscisic acid
PYR/PYL/RCAR receptors bind ABA to inhibit PP2Cs,

releasing SnRK2s, which activate ABF transcription factors (Chen

et al., 2020; Kou et al., 2024). Under cold, upregulation of PYL/PYR

(LOC105040114) and downregulation of PP2C (LOC105035966)

activate SnRK2 (LOC105043050, LOC105053585) and amplify ABA

signaling, increasing ABF (LOC105033636, LOC105035562, and

LOC105056896) activity and ABA-responsive gene expression

(Figure 12), aligning with the classical model (Li et al., 2011).

These results identify that oil palm responds to cold stress via a

conserved ABA-dependent mechanism. The findings provide

molecular evidence for ABA signaling in tropical crops like oil

palm and highlight potential targets for cold-tolerance breeding.

3.9.4 Brassinosteroids
BRI1–BAK1 receptor activation initiates signaling through BSK–

BSU1–BIN2–BZR1/2, with TCH4 and CYCD3 as effectors (Hafeez

et al., 2021; Han et al., 2023; Kim and Russinova, 2020). Increased
FIGURE 11

FPKM value of ICE1, MYB, CBF and MAPK genes under cold stress conditions. Asterisks represent significant difference at p ≤ 0.05(*) and p ≤ 0.01(**).
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expression of BRI1 (LOC105046249), BSK (LOC105049192), BSU1

(LOC105059841, LOC105034029), and CYCD3 (LOC105032467), and

decreased BAK1 (LOC105032594), BKI1 (LOC105049690), BIN2

(LOC105054741), and TCH4 (LOC105061486) support BR pathway

activation with nuanced regulation. BZR1/2-related genes showed

mixed regulation, suggesting paralog-specific responses (Figure 12).

3.9.5 Salicylic acid
NPR1–TGA–PR1 is central to SA signaling (Chen et al., 2019;

Ding et al., 2018). Reduced expression of NPR1 (LOC105033626),

TGA (LOC105050014), and PR1 (LOC105033853) suggests that SA-

dependent SAR may not be triggered under cold (Figure 12).
3.10 MAPK pathway–mediated cold
tolerance

Key cold-responsive genes in the MAPK cascade participate in

pathogen defense and ABA/ethylene/JA responses (Iqbal et al., 2022).

In pathogen signaling, FLS2 (LOC105049067) was downregulated;

BAK1 genes (LOC105058366, LOC105056517, LOC105041665) were

upregulated; MEKK1 (LOC105052054) and MKK1/2 (LOC105061166)

were upregulated, while MKK4/5 (LOC105061545), MPK4

(LOC105059999), and MPK3/6 (LOC105052113) were downregulated,

indicating activation of the MEKK1–MKK1/2 branch and suppression

of the MEKK2–MKK4/5–MPK3/6/4 branch (Figure 13). Ethylene

biosynthesis (ACS6; LOC105049327) was upregulated. VIP1

(LOC105048846) was upregulated, whereas WRKY22/29

(LOC105050724, LOC105046637) and PR1 (LOC105053324) were
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downregulated; FRK1 (LOC105051058) and PAD3 (LOC105037726,

LOC105037358) were upregulated, suggesting prioritization of JA/ET-

mediated rapid defenses over SA-dependent long-term resistance. In

ABA signaling, PYL/PYR (e.g., LOC105040114) was upregulated, PP2C

(LOC105035966) downregulated, SnRK2 (LOC105043050,

LOC105053585) upregulated, and MAPK17/18 (LOC105047258)

upregulated. Selective downregulation of MKK3 (LOC105056896) and

MHK10 (LOC105059744) suggests pathway-specific modulation. In

ethylene signaling, upregulation of ETR/ERS (LOC105040872), RAN1

(LOC105037481), EIN3/EIL (LOC105049190), ERF1 (LOC105051940),

PDF1.2 (LOC105058257), and ChiB (LOC105053062), along with

downregulation of RTE1 (LOC105055031) and EBF1/2

(LOC105049227), indicates activation of canonical and MAPK-linked

branches, with post-transcriptional regulation (XRN4; LOC105050710).

In JA signaling, increased MKK3, MPK6, MYC2, and VSP2 suggest

MAPK-mediated JA activation and JA–ethylene co-regulation via ERF1

and PDF1.2. MYC2 and MPK6 emerge as targets for improving cold

resilience, consistent with SlMYC2–SlCBF1/2 regulation in tomato (Li

et al., 2025).
4 Discussion

4.1 Integration of physiological and
transcriptomic responses reveals a
coordinated cold defense strategy

Cold exposure induces ROS accumulation, causing membrane

destabilization and energy dysregulation (Xing et al., 2022). Plants
FIGURE 12

Heatmap visualization of gene expression dynamics in plant hormone signal transduction. Red and green hues denote up- and down-regulated
DEGs, respectively, based on FPKM values.
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activate antioxidant systems (SOD, POD) to restore redox

homeostasis and mitigate damage (Figures 1A, B) (Liu et al.,

2023; Foyer and Noctor, 2005). Transcriptome results indicated

that the expression levels of the oil palm SOD gene (LOC105059069)

and POD gene (LOC105040036) were up-regulated after 4 hours of

cold stress (Figures 1K, L). The FPKM values were 5.32-fold and

7.03-fold higher than those in the control group, respectively. The

observed increase in antioxidant enzyme activities is underpinned

by the transcriptional activation of their corresponding genes,

demonstrating a multi-level strategy to combat oxidative burst.

Soluble sugars (e.g., sucrose, glucose, fructose) accumulate as

compatible osmolytes to stabilize osmotic potential (Figure 1D).

The expression levels of key sugar-synthesis-related genes, Sucrose

Phosphate Synthase (SPS, LOC105036668) and Sucrose Synthase

(SuS, LOC105050124), were significantly up-regulated after 4 hours

of cold stress, with FPKM values 3.88-fold and 6.27-fold higher than

those in the control group, respectively (Figures 1M, N). The

massive accumulation of soluble sugars is not merely a passive

consequence but an active process, facilitated by the transcriptional

reprogramming of both biosynthetic and transport machinery. Cold

increases membrane permeability, accelerates unsaturated fatty acid

degradation, promotes lipid peroxidation, elevates MDA, and

increases REC (Figures 1C, E). Low temperatures suppress key

enzymes in chlorophyll biosynthesis, impair chloroplast

development, and reduce chlorophyll a/b (Figures 1F–J).

Transcriptome analysis revealed that the expression of Glutamyl-

tRNA reductase (HEMA, LOC105054529) was down-regulated,

with an FPKM value 0.21-fold that of the control group
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(Figure 1O). The cold-induced chlorophyll degradation results

from a concerted transcriptional suppression of anabolic

pathways and induction of catabolic pathways, effectively

dismantling the photosynthetic apparatus to conserve resources

and mitigate photo-oxidative damage. CO2 assimilation declines as

electron transport is disrupted and lower stomatal conductance

limits gas exchange (Li et al., 2020), while respiratory ATP

production is hindered (Kang et al., 2023), collectively inhibiting

growth. The cold-induced chlorophyll degradation results from a

concerted transcriptional suppression of anabolic pathways and

induction of catabolic pathways, effectively dismantling the

photosynthetic apparatus to conserve resources and mitigate

photo-oxidative damage.
4.2 Transcriptomic signatures of cold
stress

The number of differentially expressed genes (DEGs) increased

over the course of treatment, peaking at 8 hours post-cold exposure

with 6,585 DEGs identified in the CK 8 h vs Cold 8 h comparison

(Figures 2A, B). Notably, at this time point, the number of down-

regulated genes exceeded that of up-regulated genes. This result

suggested that this pattern as a central adaptive mechanism

employed by plants under low-temperature stress, attributable

largely to energy reallocation and extensive transcriptional

reprogramming: i) In response to stress, plants suppress a range

of energy-demanding basal biological processes, including
FIGURE 13

Heatmap visualization of different genes in MAPK signaling pathway. Red and green hues denote up- and downregulated DEGs, respectively, based
on FPKM values.
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photosynthesis, cell division, and ribosome biogenesis, to reallocate

finite resources toward stress adaptation and survival mechanisms

(Liu et al., 2022; Zhang et al., 2020). Consequently, genes associated

with these pathways are broadly down-regulated. Our results are

consistent with this phenomenon, showing pronounced enrichment

and suppression of genes related to photosynthetic and ribosomal

pathways. ii) In order to response cold stress, a select set of

functionally important genes is up-regulated to enact protective

responses, such as the production of osmoregulators (e.g., proline,

soluble sugars), antioxidant enzymes (e.g., SOD, POD) (Zhou et al.,

2022, 2025). This characteristic transcriptomic profile, marked by

widespread down-regulation alongside targeted up-regulation, is

well-documented in studies of plant abiotic stress. In conclusion,

the prevalence of down-regulated genes at 8h should not be

interpreted as a diminished stress response; rather, it reflects a

strategic and efficient shift from a growth-oriented state to a

defense-oriented state at the transcriptional level. These insights

provide valuable temporal resolution for understanding molecular

mechanisms underlying cold tolerance in oil palm.

RNA-seq profiling across 0–8 h cold exposure revealed DEGs in

abiotic stress adaptation, developmental plasticity, and pathogen

defense crosstalk, aligning with findings in other species (Li et al.,

2024; Zhang et al., 2023; Peng et al., 2023). Enriched BP terms

included cellular activity, metabolism, biological regulation,

regulation of biological processes, and localization (Figure 3),

indicating reorganization of energy distribution, activation of

regulatory networks (e.g., transcription factors), and maintenance

of cellular structures (Zhu, 2016; He et al., 2024; Kim et al., 2024).

At 8 h, BP terms “metabolic process”, “cellular process”, and

“response to stimulus” were prominent (Figure 4A), consistent

with metabolic reprogramming, secondary metabolite synthesis,

and homeostatic regulation (Wu et al., 2023; Hotamisligil and

Davis, 2016). MF terms (catalytic activity, binding) reflected roles

for enzymes and binding proteins (e.g., calmodulin, transcription

factors) in stress adaptation (Jan et al., 2023), while CC terms

implicated structural remodeling (Hu et al., 2024). KEGG analysis

highlighted activation of plant–pathogen interactions, MAPK

signaling, and hormone signaling (Figure 6). Under cold, MAPK

components (e.g., MPK3/6) regulate transcription factors (ICE1,

MYB/CBF) to modulate cold-responsive genes (Wen et al., 2023).

ABA biosynthesis/signaling (PYR/PYL–PP2C–SnRK2) induces

stomatal closure and stress gene expression (Li et al., 2023);

ethylene via EIN3/EIL affects cell elongation and antifreeze

proteins (Su et al., 2024); JA and SA bridge cold and immune

signaling (Wang et al., 2020; Wu et al., 2019); auxin shifts reflect

growth–defense trade-offs (Liu et al., 2024).

This study reveals, for the first time in oil palm, a differential

regulatory phenomenon within the MAPK cascade, marked by

pronounced activation of the MEKK1–MKK1/2 branch and

concurrent suppression of the MEKK2–MKK4/5–MPK3/6/4

branch (Zhou et al., 2023). This branch-specific pattern may

underlie a key cold adaptation strategy in oil palm as a tropical

crop (Ye et al., 2017). Transcriptomic analyses further demonstrate

that oil palm downregulates salicylic acid (SA) pathway markers
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(WRKY22/29, PR1) while upregulating jasmonic acid/ethylene (JA/

ET)-mediated defense markers (FRK1, PAD3, PDF1.2), indicating a

distinct preference in defense signaling compared to model plants

(Bi et al., 2021; Kovács et al., 2025). This reprogramming may reflect

a specialized mechanism for coping with low-temperature stress.

The study further delineates key nodes of crosstalk between MAPK

and hormone signaling pathways, including: i) The central role of

the MPK6–MYC2 module in activating JA signaling. ii) The specific

involvement of MAPK17/18 in ABA signal transduction. iii) A

post-transcriptional regulatory mechanism mediated by the EIN3–

EBF1 node within ethylene signaling. Together, these findings

construct a unique MAPK–hormone regulatory network in oil

palm. It is confirmed that MYC2 and MPK6 occupy central

positions in this network, exhibiting both evolutionary

conservation and species-specific features when compared to the

SlMYC2–SlCBF1/2 regulatory axis in tomato. These results provide

concrete targets for molecular breeding aimed at enhancing cold

resilience in oil palm. These insights not only clarify the architecture

of cold stress signaling in oil palm but also offer novel theoretical

foundations and genetic resources for improving cold adaptation in

tropical crops.
4.3 Prospects for molecular breeding

The findings elucidate the precise molecular mechanisms

underlying oil palm’s response to cold stress, providing a clear

roadmap for molecular breeding and biotechnological intervention.

In this context, the widespread downregulation of genes in growth-

promoting pathways (e.g., auxin, brassinosteroid) is not a passive

impairment but an active, energy-saving strategy. By shutting down

non-essential metabolic processes, the plant reallocates precious

resources to activate and sustain critical defense responses,

primarily orchestrated by ABA. This reprogramming ensures

survival at the expense of temporary growth arrest. Our data,

showing coordinated downregulation across multiple pathways,

provide a comprehensive transcriptomic portrait of this conserved

ecological trade-off phenomenon. The genes we identified as

downregulated in auxin, JA, and BR pathways represent prime

candidates for knockdown or CRISPR/Cas-mediated gene silencing

in crops (Maharajan et al., 2022). Creating alleles with reduced

expression of these genes could genetically predispose plants to a

“primed” state, constitutively allocating more resources and thus

enhancing hardness (Ma et al., 2024). The development of

molecular markers associated with key genes significantly related

to cold resistance, such as the superior allelic variations of

LOC105059069 (SOD) and LOC105040036 (POD), can be used to

screen breeding materials with enhanced ROS-scavenging capacity

(Wang et al., 2025). Constructing expression vectors containing

SOD or POD genes driven by stress-inducible promoters and

transforming them into oil palm enables targeted and efficient

ROS clearance, avoiding potential growth penalties associated

with constitutive overexpression. Overexpressing core positive

regulators in the JA signaling pathway, or using gene editing
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technologies (e.g., CRISPR/Cas9) to knock out negative regulators

in the ABA pathway, can remodel the hormone network to favor

cold resistance activation. Enhancing the expression or activity of

positive regulatory branches in the MAPK cascade amplifies the

cold warning signal, prompting earlier and stronger activation of

downstream defense mechanisms. These strategies break the

limitations of the natural gene pool, creating novel or rare

superior alleles that enable leapfrog improvements in cold

tolerance. Given that cold tolerance is a complex trait controlled

by multiple genes, the effect of modifying a single gene may be

limited. These findings suggest a strategy for synergistic multi-

gene manipulation.

Compared to advances in cold tolerance research on tropical

crops like cassava and banana, oil palm research can benefit from

establishing a well-defined evaluation framework based on

physiological indicators, antioxidant profiles, and osmolyte

accumulation to enable precise assessment of cold tolerance

across diverse germplasms (Santanoo et al., 2022; Wei et al.,

2022). Both cassava and banana boast large germplasm

collections, with core sets of cold-tolerant accessions already

identified. Likewise, a systematic screening of oil palm genetic

resources should be carried out to build a curated cold-tolerant

core collection, serving as a critical source of parental material for

conventional hybrid breeding. Moreover, a comparative biology

strategy should be actively employed (Xu et al., 2022; Li et al., 2022).

Oil palm research can efficiently target and adapt key pathways,

substantially reducing redundant exploratory work and accelerating

progress. Together, these approaches will deliver a robust scientific

foundation for developing new cold-resilient oil palm varieties and

strengthening agricultural sustainability.
5 Conclusions

Cold stress triggers significant physiological and molecular

responses in oil palm, including enhanced antioxidant activity and

the accumulation of soluble sugars and MDA. Transcriptomic

analysis revealed time-dependent regulation of DEGs, with notable

enrichment in hormone signaling (IAA, JA, ABA, BR) and the

MAPK cascade. Together, these pathways orchestrate cold

adaptation through extensive transcriptional reprogramming,

predominantly characterized by the downregulation of energy-

costly processes, coupled with the upregulation of specific

protective mechanisms. These findings, and especially the

identification of key genes within these regulated pathways, offer a

foundation for targeted breeding and genetic engineering strategies

aimed at enhancing oil palm resilience.
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