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The whitefly (Bemisia tabaci) is a globally distributed agricultural pest. While
accurate monitoring of this species is crucial for early warning systems and
efficient pest control, traditional manual monitoring methods suffer from
subjectivity, low accuracy with large populations, and arduous data traceability.
To surmount these challenges, this paper proposes an automatic counting
method for whitefly adults and late-instar nymphs, based on whitefly images
acquired using augmented reality (AR) glasses and a segmentation-then-
detection approach. Acquired by the surveyors wearing AR glasses, the images
of whiteflies on the undersides of crop leaves are transmitted to a server via Wi-
Fi/5G. The system enables the automatic whitefly counting model to enumerate
the adult and late-instar nymph populations, and the results can be viewed on
both the AR glasses and mobile devices. The study utilizes Mask2Former-Leaf to
segment the foreground primary leaf in pursuit of the minimal influence of non-
primary leaf areas and background noise in the images, and detects tiny whitefly
adults and late-instar nymphs in high-resolution images by involving the
YOLOvV11-Whitefly detection model. This model integrates Slicing Aided Hyper
Inference (SAHI) capability, and can enormously amplify the feature
representation of tiny objects by slicing large images through overlapping
windows for both training and inference. Furthermore, DyCM-C3K2 is
introduced into the YOLOv1l backbone network, which enhances the
detection capability for small whitefly targets by dynamically generating input-
dependent convolutional kernels, and injecting global contextual information
into local convolution operations. Also, a Multi-Branch Channel Re-Weighted
Feature Pyramid Network (MCRFPN) is designed to replace the original neck
network, optimizing the fusion between superficial and deep features. In contrast
to mainstream detection models such as YOLO, RTMDet, Cascade-CNN, DETR,
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and DINO, YOLOv11-Whitefly demonstrates superior performance—attaining an
average recall rate of 86.20%, an average precision of 84.25%, and an mAPsq of
91.60% for whitefly adults and late-instar nymphs. With the purpose of visualizing
the whitefly infestation data, this paper developed an intelligent whitefly survey
system that provides on-site visualization of whitefly images integrated with their
adult and late-instar nymph counting results. This facilitates surveyors in
understanding pest populations and formulating scientific control decisions.

whitefly, AR glasses, image segmentation, object detection, automatic counting

1 Introduction

The whitefly (Bemisia tabaci) refers to a globally distributed
agricultural pest incurring substantial economic losses in
agriculture. It poses formidable challenges to integrated pest
management based on the following factors: a broad host range,
the habit of damaging the undersides of crop leaves, diverse
transmission pathways, rapid generation turnover, and strong
pesticide resistance (Chu and Zhang, 2018). Timely and accurate
assessment of whitefly population density in the field is a
prerequisite for efficient pest control. According to the national
technical standard NY/T 2950-2016 (2016) in China, whitefly
nymphs are classified into two groups: low-instar nymphs (Ist
and 2nd instars) and late-instar nymphs (3rd, 4th, and pseudo-
pupae). These standards dictate that only adults and late-instar
nymphs are to be used as survey targets and statistical metrics.
Currently, two primary methods are employed for whitefly surveys.
The first is manual field surveying, where investigators physically
enter fields, quickly turn over leaves, and visually estimate and
manually record the number of adult and late-instar nymph
whiteflies on the leaf’s underside. The second is the yellow sticky
trap method, which involves using traps to attract and manually
count flying adults. However, due to the tiny size of the insect, both
manual identification and counting methods endure inefficient
survey, myriad estimation errors (especially during peak periods),
and impedance in data traceability.

At the current stage, automatic counting of tiny insect pests
using yellow sticky traps is emerging as a principal research
direction for bolstering the intelligence and accuracy of pest
monitoring. Traditional machine vision methods for pest
counting primarily lean on handcrafted features combined with
machine learning classifiers for identification. For instance, (Deqin
et al, 2018) developed a whitefly counting method for vegetable
pests by engaging a structured random forest-based image
segmentation algorithm, an irregular structural feature extraction
algorithm, and sub-algorithms for interference target removal and
detection. Similarly, (Zhong et al, 2018) leveraged manually
extracted global features such as shape, texture, and color, in
conjunction with HOG local features and Support Vector
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Machines. The target was to identify and classify images of yellow
sticky traps containing six types of pests, including whiteflies and
thrips. Despite their abilities to guarantee high recognition accuracy
under specific conditions, the reliance of these methods on manual
feature engineering suppresses their adaptability to intricate and
variable field circumstances, resulting in poor capabilities of
generalization. Thanks to the successful application of deep
learning in image recognition and object detection, researchers
commence with employing improved object detection models for
pest identification and counting on yellow sticky traps. For example,
to detect whiteflies and thrips on yellow sticky traps, (Li et al., 2021)
proposed the TPest-RCNN model, marking an improvement based
on Faster R-CNN. (Bai et al, 2024) put forth a multi-insect
recognition framework termed MS-P2P in light of point
regression by integrating YOLOv7-tiny, LAHead, and the
Hungarian matching algorithm. The average F1 score for whitefly
detection in their self-built cotton field yellow sticky board dataset
was 80.9%. Nevertheless, the yellow sticky trap method attracts
merely flying pests and is non-applicable to surveying the number
of nymphs. Besides, during periods of high pest populations, the
saturated sticky surface exacerbates counting accuracy, and the
sticky traps compel regular replacement.

Although methods based on yellow sticky traps and computer
vision have accomplished progress in the automatic counting of
specific flying pests, an immense portion of pest surveys still entail
manual field surveys. (de Castro Pereira et al., 2022) presented an
improved YOLOv4 deep learning strategy for images of soybean
leaf whiteflies captured in a laboratory setting. The strategy starts
with training the model weights using cropped images, followed by
image stitching to merge detection results. The model harvested an
average F1 score of 0.87 for detecting whiteflies of different instars.
Unfortunately, the dataset in the paper was collected under
controlled laboratory conditions using single leaf images, and the
model’s performance in natural field conditions still needs
validation. (Bereciartua-Péerez et al, 2022) described a density
map estimation method for counting whiteflies on eggplant leaves
collected from Spanish greenhouses. They formulated a fully FCRN
and a tailored GSP strategy to plot Gaussian density maps for
precise insect localization. According to experiments, this method
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achieved a coefficient of determination R* of 0.97 for whitefly
counting, and the model was deployed to a mobile application,
providing an efficient tool for precise pest management. (Feng et al.,
2024) collected whitefly images on cotton leaves. To modify a
YOLOv8s-based model, they replaced its C2F module with a
Swin-Transformer, then introduced a P2 branch structure in the
detection head, and carried out Slicing Aided Hyper Inference
(SAHI) for image preprocessing. This augmented model derived a
mAPs, of 92.00% for whitefly identification, and was ultimately
integrated into a Raspberry Pi edge computing terminal, offering a
feasible solution for real-time field pest monitoring. Most of the
aforementioned methods construct counting models based on
whitefly adults on single crop leaves photographed in controlled
or relatively simple scenarios. These approaches confront a
confined image background that hinders the models from
performing whitefly detection tasks on various crop leaves in
convoluted field environments—not to mention they are normally
unable to detect smaller whitefly late-instar nymphs.

To address the low efficiency and high error rates of manual
field surveys, as well as the inability of yellow sticky traps to monitor
nymphs, this paper proposes an automatic whitefly counting
method based on augmented reality (AR) glasses and a
segmentation-then-detection approach. The system leverages the
advantages of AR glasses, including hands-free operation, real-time
visual display, and voice control functionalities, which enables
surveyors to efficiently and conveniently acquire high-resolution
whitefly images in complex field environments. To prevent false
positives from non-primary leaves and the influence of complex
backgrounds, we utilize Mask2Former-Leaf to achieve the precise
extraction of foreground primary leaves. Moreover, to achieve high-
precision detection of tiny whitefly adults and late-instar nymphs in
images, we designed the YOLOv11-Whitefly detection model. This
model integrates SAHI capability to amplify the feature
representation of tiny whiteflies by slicing large images through
overlapping windows. Furthermore, the DyCM-C3K2 module and
MCRFPN are introduced to enhance the model’s detection
capabilities for small whitefly targets. Finally, we developed an

10.3389/fpls.2025.1687282

intelligent whitefly survey system based on these core
technologies. This system realizes efficient image acquisition,
high-precision whitefly detection and counting, on-site result
display, and data traceability. It ultimately provides surveyors
with valuable insights into pest populations, thereby facilitating
the formulation of scientific control decisions.

2 Materials and methods

2.1 Intelligent monitoring and survey
method for whitefly

With the intent of enhancing the intelligence and precision of
whitefly monitoring and surveying, surveyors wear AR glasses to
quickly capture high-definition whitefly images via voice control.
These images are then transmitted to a server via Wi-Fi/5G, which
activates a segmentation-then-detection model to detect the
whitefly adults and late-instar nymphs in the images. Finally, the
detection and counting results are transmitted back and displayed
on the AR glasses as well as the Web and APP terminals of the
intelligent survey system for visualization and subsequent data
management. The architecture of the intelligent survey method
for whitefly monitoring and surveying is illustrated in Figure 1.

2.2 Image acquisition and dataset
construction

This study selected the SUPERHEXA AR glasses from
Superhexa Century Technology as the image acquisition device,
intending to precisely capture high-definition images of tiny
whiteflies on the undersides of crop leaves in the field and adapt
to varying outdoor lighting conditions. The device features a 50-
megapixel high-definition camera, a 3000-nits peak brightness
optical display, and fast autofocus capabilities, ensuring image
quality in intricate environments. Furthermore, its voice control
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FIGURE 1

Intelligent monitoring and survey method for whitefly.
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function notably underpins the collection efficiency during
field operations.

During the high-incidence seasons for whiteflies from May to
October 2023 and May to October 2024, image collection was
conducted in strict accordance with whitefly survey standards at the
Jiangsu Academy of Agricultural Sciences and the Jinan Vegetable
Research Science and Technology Park in Shandong Province. As
depicted in Figure 2, with AR glasses, surveyors captured images
using voice commands, while gently flipping and flattening the
leaves with both hands. Across various times of day and weather
conditions, a total of 5124 images of whiteflies were finally garnered
on the undersides of five different crops (i.e. pepper, cotton,
cucumber, eggplant and tomato), all of which were 4080x3072
pixels and included the whiteflies in both adult and late-instar
nymph stages. The detailed data information is listed in Table 1.
The per-image counts for these pest stages were characterized by a
mean of 15.50 for adults and 5.46 for late-instar nymphs, with
corresponding standard deviations of 29.15 and 24.31. The number
of adults ranged from 0 to 380 per image, while the number of late-
instar nymphs varied from 0 to 514. This wide range in pest density,
including instances of extremely low and high populations, reflects
the diverse and complex nature of whitefly distribution in
field environments.

To reduce interference from complex field backgrounds and
non-primary leaf whiteflies, accurate extraction is essential for the
foreground primary leaf. First, we randomly sampled a portion of
images from each of the five collected crops. We then used the SAM
(Kirillov et al.,
manual correction with the Labelme tool. The annotated data was

2023) for auxiliary annotation and performed

saved in JSON format, and subsequently used to construct a
primary leaf semantic segmentation dataset. Subsequently, for the
whitefly object detection task, we used the Labellmg tool to
annotate the categories and location information of whitefly
adults and late-instar nymphs on all image data from the five

10.3389/fpls.2025.1687282

crops, saving the data as XML files. Both the segmentation and
detection datasets were then split into training, validation, and test
sets with an 8:1:1 ratio, respectively.

2.3 Whitefly counting model

In natural field environments, images of whiteflies captured using
AR glasses often contain more than a single leaf, so directly applying a
detection model to the entire image would detect and count the
whiteflies on other non-primary leaves. This contradicts the standard
on agricultural whitefly pest forecasting, which specifies that the pests
should be quantified on a single leaf. To address the flaw, this paper
proposes a segmentation-then-detection whitefly automatic counting
method. More precisely, the Mask2Former-Leaf foreground primary
leaf segmentation model was established in the first stage, which
extracts the foreground primary leaf from the image, and discards
other non-primary leaves and irrelevant backgrounds to prevent false
positive whitefly detection. The second stage relies on an object
detection method to create the YOLOv11-Whitefly detection model
that detects and counts the adult and late-instar nymph whiteflies
specifically on the segmented foreground primary leaf.

2.3.1 Mask2Former-leaf model

In this study, semantic segmentation is employed as a prerequisite
step for our core task of whitefly detection, specifically for precisely
extracting the foreground primary leaf region in convoluted field
environments. The model classifies image pixels as primary leaf or
background, filtering out non-primary leaves and irrelevant
background interference, thus providing premium target input
images for subsequent detection. Mainstream semantic segmentation
models were involved for experimentation in conjunction with post-
processing optimization to achieve foreground primary leaf
segmentation at minimal cost.

FIGURE 2

Whitefly Adults

Ug;

p

Whiteﬂy Late-Instar Nymphs

An example of whitefly image acquisition. (A) Surveyors wearing AR glasses and capturing whitefly images; (B) Image of adult and late-instar nymph

whiteflies on leaf underside.
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TABLE 1 Whitefly pest information on the undersides of five crop leaves.

Number of whiteflies

Crop species Number of images
Adult Late-instar nymph
Pepper
Cotton 1057 23353 1964
Cucumber 856 16856 5060
Eggplant 617 19888 8099
Tomato 687 3858 785

To build our foreground primary leaf segmentation model, the  architecture, feature fusion, and computational efficiency. It
study ultimately chose Mask2Former (Cheng et al., 2022). Its highly ~ incorporates the C3K2 module that combines depth-wise
versatile architecture, which leverages a mask attention mechanism  separable convolutions with residual connections, relieving
and an efficient multi-scale feature fusion strategy, is particularly =~ computational load, and optimizing small object detection; the
well-suited for our segmentation task. To further reinforce the  SPFF module dynamically weights and fuses multi-scale features,
foreground primary leaf segmentation masks, a mask post-  dramatically strengthening feature extraction capabilities in
processing optimizer was developed that encompasses connected ~ complicated scenarios; and the dynamic inference strategy
component analysis, morphological operations, and edge  adaptively chooses pathways based on image complexity, fostering
enhancement techniques to alleviate noise and rough boundaries.  a balance between inference speed and accuracy.

This three-stage process commences by performing connected To better suit the whitefly detection task, this study tuned the
component analysis to filter out small noisy regions based on a ~ YOLOvlls object detection model to launch the YOLOvI11-
predefined area threshold, so that the main leaf body can retained; ~ Whitefly detection model. First, whiteflies are less than 1 mm in
afterwards, it applies a morphological opening operation with a  length, and the images in the dataset are all 4080x3072 pixels. This
fixed-size structural element to smooth mask edges, aimed at  implies an extremely small proportion of pixels occupied by the
removing irregularities and filling small holes for a more regular ~ whitefly adults and late-instar nymphs, incurring insufficiency in
contour; finally, bilateral filtering is used to internally smooth non-  feature information. To conquer this problem, SAHI was integrated
edge regions and enormously raise edge clarity between the primary  into both the training and inference stages of YOLOv11. The
leaf and background. This yields a highly refined segmentation with ~ method divides the large images into overlapping sub-images
accurate boundaries, as depicted in Figure 3. using a sliding window, performs inference on each sub-image,

and combines the results to obtain the final detection for the
2.3.2Y0 LOvll-whitefly model original high-resolution image. Second, given the dense and often

YOLOv11 (Khanam and Hussain, 2024), the latest iteration in  overlapping distribution of whiteflies on leaves, coupled with
the YOLO series, marks a number of innovations across its model  interference from non-target pests such as dead whiteflies,
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FIGURE 3

Structure of the foreground primary leaf mask post-processing optimizer.

DyCM-Conv was proposed to intensify YOLOv11’s backbone
network by modifying its C3K2 module. Such a module
dynamically generates convolution kernels adapting to input
features, significantly underpinning the model’s ability to extract
traits from tiny whiteflies. Its context-aware mixing mechanism
captures long-range dependencies within images, boosting
detection robustness for dense and overlapping targets, while also
suppressing interference from elements like dead insects. Finally,
because whitefly sizes vary drastically across images of different
crop leaves, this study introduced the MCRFPN to replace the
original neck network, which tailors the fusion of different scale

features through its SCRF and ACRF modules, mitigating the issue
of insufficient receptive fields for small objects and reinforcing the
model’s multi-scale feature extraction and fusion capabilities. The
structure of the YOLOv11-Whitefly model is visualized in Figure 4.

2.3.2.1 SAHI

As per the standard on MS COCO classification, objects are
categorized by absolute pixel area into the small objects less than
32x32 pixels, the medium objects between 32x32 and 96x96 pixels,
and the large objects greater than 96x96 pixels. A statistical analysis
of the whitefly dataset, based on these criteria, reveals that the
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FIGURE 4
The structure of the YOLOv11-Whitefly model.
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median width and height are 24x25 pixels for whitefly adults, and
19x19 pixels for late-instar nymphs. Critically, small objects
account for 72.01% and 74.21% of adult and late-instar nymphs,
respectively. Given a resolution of 4080x3072 pixels for all the
images, this dataset is characteristic of a high-resolution, small
object detection task. The distribution of object scales and width-
height distributions for each category is shown in Figure 5.

SAHI (Akyon et al,, 2022) is an enhancement strategy
specifically designed for high-resolution small object detection,
whose core philosophy is to divide large images into smaller sub-
images via overlapping sliding windows. Each sub-image is then
independently analyzed, with the results merged. This process
intends to upgrade the model’s sensitivity to small targets by
expanding the relative size of objects within each sub-image. The
execution flow is as follows:

1. Image slicing: The input image is decomposed into multiple
sub-images of fixed size SxS. To preclude edge targets from
being cropped, adjacent sub-images retain a certain overlap
area, with the overlap ratio controlled by an overlap ratio o.

2. Sub-image detection: Each sub-image undergoes
independent inference through the detection model. For
every sub-image, a set of local object detection bounding
boxes, class labels, and confidence scores are generated.

3. Result merging: After mapping the sub-image detection
boxes from their local coordinates to the global coordinates
of the original image, the application of NMS ensues to
eliminate redundant detection boxes originated from the
same target in overlapping areas, while preserving the
prediction results with the highest confidence.

SAHI employs a divide and conquer strategy to transform tiny
objects in high-resolution images into prominent targets in sub-
images, which evidently mitigates the issue of feature loss provoked
by extremely small object sizes. In this study, the sub-image size is
640x640 pixels, with an overlap rate o of 0.2. During the phase of
model training, images were sliced according to these parameters,
and any sub-images without targets were discarded as invalid. For

Number of small, medium and large objects of each class
64985

10.3389/fpls.2025.1687282

the inference phase, the same parameters were adopted to slice the
sub-images—each detected individually, and the eventual detection
outcomes were obtained by merging with NMS. The workflow is
shown in Figure 6.

2.3.2.2 DyCM-C3K2

Confronting the drawbacks of the C3K2 module in
conventional YOLOvVI1I, such as poor adaptability of static
convolution kernels, confined receptive fields, and paucity of
feature selectivity, this paper enhances the backbone network by
replacing the standard convolutional layer in the bottleneck of the
C3K2 module with Dynamic Context-Mixed Convolution (DyCM-
Conv). While retaining the cross-stage residual connections,
DyCM-Conv dynamically gives rise to convolution kernels,
allowing the model to fuse multi-scale contextual information and
model long-range dependencies while preserving the inductive bias
of traditional convolutions. Figure 7 unveils its structure and how it
captures long-range dependencies during the convolution process.
Its essential concept lies in computing the correlation between each
spatial position of a feature map and multiple global region centers,
which engenders a relevance matrix that designates the strength of
inter-position correlations. The matrix is then learnably
transformed into a dynamic convolution kernel, injecting global
contextual information directly into the convolution kernel. The
key implementation steps are elucidated as follows:

1. Formation of the Relevance Matrix: In computer vision tasks,
tokens are often generalized as feature units with independent
semantic or contextual associations. Given an input feature
map X = ROV each spatial point is treated as a token. A
1x1 convolution spawns a query (Q) that preserves spatial
information. Concurrently, SxS region center adaptive average
pooling and another 1x1 convolution create a key (K) that
aggregates global information, followed by the channel-wise
division of both Q and K into G groups. Within each group, a
matrix multiplication is performed to compute a relevance
matrix Rg = Qg Kg € RIWXSS \vhere the i-th row indicates

the correlation between the i-th pixel and all region centers.
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FIGURE 5

Distribution of object scale counts and aspect ratios for each class.
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Input Image

FIGURE 6
SAHI workflow in the whitefly dataset.

2. Generation of the Dynamic Convolution Kernels: Each

token’s relevance matrix row is processed by a linear
layer to integrate weights from an array of region centers.
This output is then split to represent the properties of
predefined Kj,,, and K, convolution kernels. Thereafter,
relevance values are aggregated and normalized by a direct
projection which includes a learnable linear layer and a
softmax function. In the end, these weighted rows are
reshaped into dynamic convolution kernels of sizes Ko, X

Klarge and Kman X Ksmair-

Output Image

3. Context-Mixed Dynamic Convolution Workflow: This

module operates by virtue of a grouped parallel
processing approach. Each group arouses one large and
one small dynamic convolution kernels, which are both
shared across the channels within that group. Afterwards,
the generated large and small kernels perform convolution
operations on the input feature map independently. As a
result, another branch processes the same original input
feature map using a DWConv. Finally, the module’s final
output is formed by merging the output feature maps from

D
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FIGURE 7

(A) A schematic diagram of DyCM-Conv; (B) DyCM-Conv's ability to capture long-range dependencies and maintain inductive bias.
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the large dynamic convolution kernel branch, the small
dynamic convolution kernel branch, and the
DWConv branch.

2.3.2.3 MCRFPN

YOLOvV11 enhances multi-scale feature fusion via top-down
and bottom-up pathways. However, its original neck network’s
focus on high-level semantic features and simple, fixed-weight
fusion mechanism often leads to insufficient integration of high-
resolution features from superficial layers, causing a significant loss
of crucial details for small objects. To address this, this paper
proposes Multi-Branch Channel Re-Weighted Feature Pyramid
Network (MCRFPN) as an alternative to the original neck
network. The MCREPN architecture can be seen in the neck
portion of the YOLOv11-Whitefly model in Figure 4. The
MCRFPN merges the superficial re-weighted fusion (SCRF) and
the advanced re-weighted fusion (ACRF), and embeds the channel
re-weighted (CRW) strategy to optimize feature fusion. Figure 8
shows the structures of SCRF, ACRF, and CRW.

The SCRF module is embedded at the superficial connection
point between the backbone and neck of the network. It enhances
feature representation by fusing outputs from the same level of the
backbone P, with superficial feature outputs P, , and deeper
outputs from the neck P’,,H. Embedded deeper within the Neck,
the ACRF module improves multi-scale gradient information
interaction by fusing superficial P;,_l, mid-level P’,,, deep P;,H
from the earlier part of the neck and superficial feature output
P/,,/_l from the end of the neck. These operations of SCRF and ACRF

10.3389/fpls.2025.1687282

are expressed in (Equations 1 and 2).

P, = CRW(Concat(Down(P,_,), P,, Up(P.1))) (1)

P, = CRW(Concat(Down(P,_,), P,, Up(P,.,), Down(P,_))) (2)

Here, P, P/,, and P;’ represent the n level feature outputs from
the backbone network, the first half of the neck, and the second half
of the neck, respectively; Up( -) signifies an upsampling operation;
Down( -) denotes a downsampling operation; Concat( - ) refers to
concatenation along the channel dimension; and CRW( - ) serves as
a channel re-weighting strategy.

In a feature map with a few parameters, Channel Re-Weighting
(CRW) is a feature fusion optimization method to adaptively adjust the
importance of different channels, with the purpose of boosting the
semantic representation capabilities of multi-scale feature fusion. To
commence its implementation, GMP and GAP are used on the input
feature map to capture channel-level global contextual information.
The pooled results are then concatenated and fed into a lightweight
fully connected network. Including two fully connected layers and an
activation function layer, the network outputs a normalized weight
vector that quantifies each channel’s semantic importance. Finally, this
weight vector is multiplied element-wise with the original feature map
to enhance the contribution of crucial channels. These operations of
CRW are expressed in (Equation 3).

Xow = Xin ® (0(W, - 6(W, - Concat(GMP(X;,), GAP(X;,))))) (3)

Here, X;, means the input feature map; X,,,, denotes the output
feature map; GMP(-) and GAP(-) represent global max pooling
and global average pooling respectively; W, € R¥** and W, € R4
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SCRF, ACRF, and CRW structures.
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are learnable parameters; J signifies an ReLU activation function;
and o refers to a Sigmoid function.

2.4 Experimental configuration

The computational framework for all experiments in this study
was built on an Intel Core i9-13900 processor with a base frequency
of 3.0 GHz, 128 GB of RAM, and two NVIDIA GeForce RTX 4090
GPUs. The software environment comprised the Ubuntu 24.04.2
operating system, PyTorch 2.2.0 as the deep learning framework,
CUDA 11.8, and Python 3.8.17.

The semantic segmentation models were trained for 50,000
iterations with a batch size of 4, and an input image size of 2048 x
1536 pixels. The target detection models were trained for 200
epochs with momentum set to 0.937, weight decay set to 0.0005,
and a batch size of 16. The initial learning rate was 0.01, using the
SGD algorithm. All models were trained from scratch on our
custom dataset without the use of pretrained weights from
external sources.

2.5 Performance evaluation

To provide a robust and objective evaluation of our foreground
primary leaf segmentation model’s performance, we utilize a
comprehensive set of widely-adopted metrics in semantic
segmentation. These metrics include Pixel Accuracy (PA),
Intersection over Union (IoU), and the Dice coefficient (F1-
score), with their formulas defined as in (Equations 4-6),

respectively.
— __TP+IN
PA = oy mpn @)
_ lang
IoU = m (5)
_ 2anB|
Fr = Tamm ©

Pixel Accuracy (PA) provides a fundamental measure of overall
classification performance by calculating the ratio of correctly
classified pixels to the total number of pixels. The IoU measures
the accuracy of the segmentation algorithm by calculating the ratio
of the intersection area between the ground truth and the
segmentation result to their union area. When the Fl-score
assesses the segmentation precision of the algorithm, the area of
overlap between the segmentation result and the ground truth are
computed twice, then divided by the sum of their individual areas.

With the target of objectively evaluating the detection
performance of the whitefly detection model, Precision (P), Recall
(R), Average Precision (AP), and mean Average Precision (mAP)
were engaged as evaluation indicators, and the formulas are
expressed as (Equations 7-10), respectively.

TP,

Py = TP, +FP,

%
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TP,

R = TP, +EN, (8)

1
APk 2/) Pk(Rk)de (9)
mAP = 2kt (10)

Precision (P) indicates the proportion of correctly identified
targets among all samples identified as that target. Recall (R)
represents the proportion of correctly identified targets among all
actually existing targets of that class. Average Precision (AP)
evaluates model performance by integrating both precision and
recall, specifically by computing the area under the precision-recall
curve at various thresholds. Mean Average Precision (mAP) means
the average of the AP values across all classes, serving as a crucial
metric for comprehensively assessing model performance in multi-
class tasks. A higher mAP suggests better detection performance
across multiple categories. In this study, n signifies the total quantity
of whitefly adult and late-instar nymph classes, where n = 2.
Additionally, to provide a more direct assessment of the model’s
counting performance, the Root Mean Square Error (RMSE) was
adopted as a supplementary metric. RMSE quantifies the average
magnitude of the discrepancy between the predicted counts and the
true counts, offering a clear measure of the model’s counting
accuracy. The formula for RMSE is given by (Equation 11), where
¥ " and ¥ represent the predicted and ground truth counts for the
i-th image, respectively, and N is the total number of images in the

_ Efi (y{]rud*}’?t)z
RMSE = | 2= 2

2.6 Intelligent monitoring and survey
system for whitefly

dataset.

(11)

In pursuit of automation, precision, and digital management of
whitefly surveys, an intelligent survey system was developed for
whitefly monitoring and surveying. This system uses a Browser/
Server architecture that supports mobile applications—all
established on a front-end/back-end separation design. The front-
end interaction layer is developed via Vue for the web interface and
Android for the mobile app, enabling functions like batch image
uploads, visualization of detection results, and statistical analysis of
detection data. The back-end service layer, built with the SpringBoot
framework, is responsible for handling requests from both the web
and mobile fronts, calling model inference interfaces, and performing
data analysis. For data storage, MySQL is applied for model detection
results, whereas Object Storage Service (OSS) saves original pest
images and result images. Finally, the algorithm model service layer
is developed based on the Flask framework to provide an automated
whitefly counting interface, and is deployed to a dedicated algorithm
server by virtue of Docker containerization technology.
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3 Results

3.1 Comparison of foreground leaf
segmentation models

To assess the performance of the Mask2Former-Leaf for
foreground primary leaf segmentation, comparative experiments
were conducted against mainstream semantic segmentation models,
such as Fast-SCNN (Poudel et al., 2019), PSPNet (Zhao et al., 2017),
DPT (Ranftl et al., 2021), Mask2Former (Cheng et al., 2022) and
DeepLabv3+ (Chen et al,, 2018). All models were trained and tested
under identical experimental conditions. Specifically, Mask2Former
was implemented with a ResNet-18 backbone, while DeepLabv3+
and PSPNet utilized a ResNetV1c-18 backbone. Fast-SCNN was
implemented with its native customized backbone, and DPT
employed a Vision Transformer backbone. As summarized by
Table 2, the Mask2Former-Leaf model attained the best
performance, with mIoU of 97.34%, mFscores of 98.65% and PA
of 98.69%, respectively. This remarkably outperforms the other
models, affirming its effectiveness in foreground primary
leaf segmentation.

3.2 Ablation experiment of the detection
model

In order to ascertain the effectiveness of the three improved
strategies in the YOLOv11-Whitefly model, this paper tested each of
them using the same test set and compared the Precision (P), Recall
(R), Average Precision (AP), and the mAPs,. Table 3 summarizes
the results of this ablation study, where “V” implies the applied
improvement strategy; “Adult” refers to whitefly adults; and
“Nymph” means whitefly late-instar nymphs.

As listed in Table 3, the original YOLOv11s model performed
poorly in detecting whiteflies in high-resolution images, with recall
rates of just 55.6% for adults and 51.3% for late-instar nymphs, and
an mAPs5, of 56.8%. While SAHI is a general-purpose, architecture-
agnostic strategy, it serves as an indispensable baseline for our high-
resolution imagery. Integrating SAHI into the YOLOv1ls model
prominently upgraded performance, with recall rates for adults and
late-instar nymphs jumped to 91.6% and 71.3%, respectively, while

TABLE 2 Model comparison experiment for foreground leaf
segmentation task.

PA

mloU mFscore

Hlogel (%) (%) % e
Fast-SCNN 77.51 87.33 87.60 4.01
PSPNet 83.29 90.89 90.23 5.85
DeepLabv3+ 87.38 93.26 93.39 3.70
DPT 90.74 95.14 95.17 1.32
Mask2Former 93.23 96.50 96.57 2.14
Mask2Former-Leaf 97.34 98.65 98.69 1.88
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precision ascended to 92.7% and 75.1%. The AP for adults and late-
instar nymphs rose to 97.2% and 80.2%, arousing an overall mAPs,
of 88.7%. This demonstrates that, by slicing large images into sub-
images, SAHI augmented the pixel proportion and morphological
features of whiteflies, allowing the model to grasp richer feature
representations during both training and inference. To further
demonstrate the independent contribution and synergistic effect
of our internal modules, we conducted additional experiments.
Introducing DyCM-Conv into the backbone network to underpin
the feature extraction module further boosted performance,
particularly for the smaller late-instar nymphs. The late-instar
nymph recall improved to 75.6%; precision grew by 1.5%; and AP
rose to 84.0%—these results confirm that DyCM-Conv dynamically
generates convolution kernels that adapt to input context, and this
enhances feature extraction and captures long-range dependencies,
so that small object detection can be fostered. Concurrently,
replacing YOLOvV11’s original neck network with the MCRFPN
also demonstrated a significant performance boost, intensifying the
average precision for whitefly adults and late-instar nymphs to
97.1% and 83.5%, respectively, spawning an mAP of 90.3%. This
experiment corroborates that MCRFPN’s multi-scale feature fusion
of superficial and deep features strengthens feature information
interaction, and enhances the model’s ability to detect whiteflies of
varying scales on different crop leaves. The full integration of all
three strategies yielded the highest performance, achieving an
mAPs5, of 91.6%.

3.3 Comparison of different detection
models

In this paper, to evaluate the detection performance of the
YOLOv11-Whitefly, comparative experiments were carried out
against several prominent detection models, which involved the
one-stage models YOLOv10 (Wang et al., 2024) and RTMDet (Lyu
et al, 2022), the two-stage model Cascade R-CNN (Cai and
Vasconcelos, 2018), and the Transformer-based end-to-end object
detection models DETR (Carion et al,, 2020) and DINO (Zhang
et al., 2022). Specifically, we chose ResNet-50 as the backbone for
Cascade R-CNN, DETR, and DINO, while YOLOv10 and RTMDet
utilized their native backbone architectures. For a fair comparison,
all models were trained and tested on identical datasets using the
same parameter settings. Given the difficulty of detecting tiny
targets in our dataset, all models were also implemented with
SAHL. The results of this evaluation are exhibited in Table 4.

It can be seen from Table 4 that the YOLOv11-Whitefly model
attained the highest mAPs,, surpassing RTMDet, YOLOvV10s,
Cascade R-CNN, DETR, and DINO by 5.45%, 4.68%, 10.35%,
8.56%, and 8.92%, respectively. For a more intuitive comparison,
Figure 9 displays localized magnified views of the whitefly detection
results on various crop leaves generated by the aforementioned
models. As shown in Figure 9B-D), traditional single-stage and two-
stage detection models exhibit subpar performance in detecting
whitefly late-instar nymphs, instigating noticeable missed detection.
Concurrently, Figure 9E, F reflect that Transformer-based end-to-
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TABLE 3 Performance of three improvement strategies in the YOLOv11-Whitefly model for whitefly detection.

Precision (%) Recall (%) AP(%)
SAHI DyCM-C3K2 MCRFPN MAPs5q (%)
Adult Nymph Adult Nymph Adult Nymph
v - - 92.7 75.1 91.6 71.3 97.2 80.2 88.7
v v - 92.9 76.6 93.7 75.6 97.4 84.0 90.7
v - v 92.2 75.2 93.5 77.1 97.1 83.5 90.3
v v v 92.2 76.3 94.8 77.6 97.8 85.4 91.6

end object detection models generate numerous redundant
prediction boxes, provoking a pronounced elevation in false
positive rates. In contrast, the YOLOv11-Whitefly model
proposed in this paper demonstrates superior robustness and
stronger detection capabilities in intricate backgrounds, and
lessens both missed detection and false positives.

To provide a more practical evaluation of the models’ final
counting performance in real-world applications, we used the
aforementioned detection models to count whiteflies on the
original large images from the test set. For this experiment, all
models were inferred with a confidence threshold of 0.3 and an IoU
threshold of 0.5, and the SAHI method was applied to all
predictions. The RMSE was calculated by comparing the results
against the ground truth annotations. The RMSE for RTMDet,
YOLOV10s, Cascade R-CNN, DETR, and DINO were 7.32, 7.07,
12.58, 9.74, and 10.51, respectively. Our model demonstrated
superior counting accuracy, achieving the lowest overall RMSE of
4.49. A more granular analysis reveals that this high precision holds
for both adult and late-instar nymph stages, achieving an RMSE of
3.99 for adult whiteflies and 1.39 for late-instar nymphs. This
substantiates that our method’s high detection performance
directly translates to a minimal counting error, which is a critical
advantage for practical pest population surveys.

3.4 YOLOv11-whitefly model generalization
experiment

To assess the cross-crop generalization capability of the YOLOv11-
Whitefly model, a leave-out crop strategy was employed. Specifically,

for this experiment, the model was trained exclusively on whitefly
images from pepper, eggplant, and cucumber, ensuring that all images
of cotton and tomato were strictly excluded from the training set.
Subsequently, the model was evaluated on a complete test set
comprising all five crops, with the test results summarized in Table
5. The model performed exceptionally on the crops it was trained on,
and the mAPs, scores were 92.4% for pepper, 90.5% for eggplant, and
93.2% for cucumber. Crucially, the model also demonstrated a
commendable detection ability on cotton and tomato, which was
completely unexposed during the training stage. The model achieved
86.1% and 88.7% mAPs, on cotton and tomato crops, respectively.
These results substantiate that the YOLOv11-Whitefly detection model
is able to transfer its learning, and reliably detect whiteflies on unknown
crop leaves, showcasing advantageous performance for cross-
crop generalization.

3.5 Visualization of the intelligent survey
system for whitefly

The functionalities of the intelligent survey system for whitefly
pests designed in this study are illustrated in Figure 10, which
encompass batch image upload for detection, image list display, and
data analysis. Users may upload whitefly images in batches via the
Web or mobile APP client interface. A whitefly counting interface
call is sent by the backend server to the algorithm model, which
sequentially processes the images through the Mask2Former-Leaf
and YOLOv11-Whitefly models. The results are then returned to
the back-end to undergo data persistence and encapsulation before
being sent back to the front-end for final display.

TABLE 4 Performance comparison between YOLOv11-Whitefly and other detection models.

Models Precision (%) Recall (%) mMAPs5 (%) #Param (M) GFLOPs
RTMDet-1 79.84 80.16 86.15 32.81 49.3 55.1
YOLOvV10s 79.60 81.59 86.92 8.07 24.8 72.33
Cascade RCNN 74.30 78.01 81.25 69.16 239.0 15.42
DETR 75.61 80.13 83.04 41.58 86.0 357
DINO 76.08 78.68 82.68 47.70 269.0 11.25
YOLOvV11-Whitefly(Ours) 84.25 86.20 91.60 23.84 56.8 43.16
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FIGURE 9
Examples of whitefly detection results on crop leaves using different models. (A) Manual annotation; (B) RTMDet; (C) YOLOv10s; (D) Cascade-RCNN;
(E) DETR; (F) DINO; (G) YOLOvV11-Whitefly (the proposed); Red and blue boxes indicate whitefly adults and late-instar nymphs, respectively; Purple
and orange dashed boxes designate model misses and misdetects, respectively.

4 Discussion

Benefited from the broadly permeated adoption of high-resolution
image acquisition devices, the surging advancements in deep learning
algorithms, and the bolstered accessibility and cost-effectiveness of
computational resources, this paper focuses on the task of whitefly

Frontiers in Plant Science 13

survey on crop leaves in natural field environments. An automatic
whitefly counting method is put forth based on a segmentation-then-
detection approach, utilizing AR glasses to acquire images from five
types of crop leaves. Hence, an appropriate intelligent survey system
has been developed, delivering a smart, efficient, and precise solution
for monitoring and surveying the agricultural pest.
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TABLE 5 Performance of the YOLOv11-Whitefly model for detecting leaf whitefly in five different crops.

Pepper Eggplant Cucumber Cotton Tomato
Adult Nymph Adult Nymph Adult Nymph Adult Nymph Adult Nymph
Precision(%) 93.4 76.9 91.9 ‘ 78.5 90.5 80.4 97.0 73.0 90.3 80.9
Recall(%) 92.0 82.0 94.1 ‘ 70.9 95.7 82.6 87.7 70.4 92.0 75.2
APso(%) 97.2 87.6 97.8 ‘ 83.2 97.1 89.3 97.7 74.5 96.5 80.9
mAP5o(%) 92.4 90.5 93.2 86.1 88.7

High-quality image data underlies the deep learning algorithms.
From fixed cameras (Gao et al., 2025), smartphones (Xu et al., 2024), to
professional cameras (Li et al., 2022; Ciampi et al., 2023), and custom-
built pole-mounted photographic devices (Du et al, 2022; Li et al,
2023), a variety of portable, high-resolution image acquisition devices
have been prevailing across numerous fields such as agricultural pest
and disease detection. However, these machines confront some
drawbacks. While fixed cameras save labor, their monitoring
capabilities are confined to specific areas. Handheld devices (e.g.
smartphones and cameras) offer solutions for manual field surveys,
but are often perplexed by factors like strong illumination, fluctuating
resolutions, and the necessity for manual operation. In contrast, AR
glasses have been successfully applied to agricultural pest and disease
image acquisition in studies by (Sheng et al,, 2024; Chen et al,, 2025; Ye
et al, 2025), thanks to their hands-free operation, real-time visual
display, and voice control functionalities. Therefore, this paper opted
for the SUPERHEXA monocular AR glasses from Superhexa Century
Technology for image acquisition, which is designed with a 50-
megapixel main camera and a 3000-nits peak brightness optical

display, and supports rapid autofocus and voice-controlled
photography. By wearing these AR glasses, surveyors can utilize both
hands to gently turn over and flatten leaves, which ensures a clear and
stable view of the whiteflies for subsequent image capture. They also
enable surveyors to view and adjust the content in real-time on the
optical display, and directly trigger image capture via voice commands,
so that the operational efficiency can be considerably enhanced. The
AR glasses selected in this study are distinguished by powerful image
acquisition capabilities and high imaging quality, capable of fulfilling
the demands for automated counting of tiny whiteflies. Nevertheless,
their detection accuracy for late-instar nymphs still compels
improvement, which necessitates future work involving the AR
glasses equipped with higher-resolution cameras. Another flaw lies in
the AR glasses’ relatively small optical screen which could be replaced
by a larger, higher-resolution display to ensure easier capturing of high-
quality images.

Given that the whitefly agricultural pest monitoring standard
NY/T 2950-2016 (2016) requires the counting of pests on single
leaves, yet the images garnered by AR glasses in natural field
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Interfaces of intelligent survey system for whitefly. (A) Intelligent survey interface in APP; (B) Results display interface in APP; (C) Image query

interface in Web; (D) Whitefly data analysis interface in Web.
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environments often contain more than one leaf, thus precise
extraction of the foreground primary leaf from the image implies
immense importance for accurate whitefly enumeration. In recent
years, semantic segmentation methods have demonstrated
prominent merits in the field of crop disease detection. For
instance, (Wang et al, 2021) utilized DeepLabV3+ and U-Net
models for segmenting diseased areas on cucumber leaves in
complex backgrounds; (Zhang et al., 2023) proposed the Locally
Reversible Transformer model for grape leaf disease segmentation
in natural scenes; and (Ye et al, 2025) introduced the DeepLab-
Leafminer model for segmenting leafminer damage regions.
Inspired by these accomplishments, this paper harnesses the
Mask2Former model combined with a mask post-processing
optimizer to precisely segment the foreground primary leaf from
whitefly images across various crop types in natural environments.
This initial segmentation stage effectively attenuates interference
from intricate backgrounds, and minimizes false positives arising
from whiteflies not located on the primary leaf, so that a cleaner and
more focused region for subsequent detection is provided.

In the domain of tiny agricultural pest detection, several
advanced object detection models marking notable progress have
been presented in existing research, as exemplified by YOLO-Pest
(Xiang et al., 2023), DRB (Jiao et al,, 2022), MDM (Wang et al.,
2020), and Cascade-RCNN-PH (Sheng et al., 2024). To enable
precise detection of tiny whitefly adults and late-instar nymphs in
the foreground primary leaf, this paper introduces the DyCM-C3K2
module based on the YOLOv11l model, so as to construct the
YOLOv11-Whitefly model by reinforcing the backbone network,
substituting the original neck network with MCRFPN, and merging
SAHI capabilities. Notwithstanding that the segmentation-then-
detection method for whitefly counting realizes high-accuracy
detection on various crop leaves, the sequential execution of two
independent deep learning models inevitably deteriorates the
model’s computational load and inference time. To address this,
future efforts could be invested in a more comprehensive
exploration of model lightweighting strategies. In addition to
model pruning (Sun et al, 2023) and knowledge distillation
(Hsieh et al., 2023), techniques such as model quantization could
be employed to reduce the computational complexity and accelerate
inference speed without compromising the high level of feature
extraction and detection performance. Furthermore, a crucial step
for improving throughput would be to deploy the model directly
onto edge devices, such as the AR glasses themselves, thereby
eliminating network latency and ensuring a more responsive
system for on-site applications.

Despite the fruits harvested in whitefly detection in this study, a
number of defects perpetuate. Our dataset reflects a class imbalance
with adults being more prevalent than late-instar nymphs, which is a
direct consequence of the inherent challenges of professional field data
acquisition where pest populations naturally exhibit a non-uniform
and imbalanced distribution. This also resulted in substantial variability
in pest density, as reflected by high standard deviations and a wide
range of counts, from low-density scenarios to high-density clusters. To
mitigate these issues and further enhance model performance, a key
focus for future endeavors will be on data expansion. This involves
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collecting a more balanced dataset with additional nymph-rich images
and employing more systematic sampling protocols to ensure a more
uniform representation of pest populations across various densities.
Furthermore, we will incorporate images from a wider variety of host
crops to improve the model’s generalization capabilities. While the
present study focuses exclusively on whitefly (Bemisia tabaci), a
dominant species in our data collection areas, agricultural practices
indicate that greenhouse whitefly (Trialeurodes vaporariorum) is also
an important pest that frequently co-occurs in other regions. The
morphological similarity presents a significant challenge for machine
vision-based discrimination. Accordingly, a crucial direction for future
work is to develop a robust model capable of differentiating between
these two species, which will substantially enhance the model’s practical
utility in regions where they co-exist.

5 Conclusions

Aimed at efficiently surveying whitefly populations on crop leaves
in natural field environments, this study proposes an automatic
whitefly counting method based on AR glasses and a segmentation-
then-detection model. Acquired by the voice-control of the surveyors
wearing AR glasses, the images of whiteflies on the undersides of crop
leaves are transmitted to a server that activates an automatic whitefly
detection model to count the insect population. In pursuit of the
minimal interference from non-primary leaf areas and intricate field
backgrounds, Mask2Former-Leaf is engaged to segment the
foreground primary leaf in the images. For the sake of accurately
detecting tiny whitefly adults and late-instar nymphs in the images,
SAHI was integrated into the YOLOvI1 model, and enhanced by
incorporating DyCM-C3K2 and MCRFPN. The final model attained
an average precision of 84.25% and an average recall rate of 86.20% for
whitefly detection, apart from an mAPs5, of 91.60%. Furthermore, the
Web/APP client of the intelligent survey system for whitefly
monitoring and surveying can synchronously display whitefly images
and their counts. Its data analysis features help surveyors understand
whitefly occurrences and elaborate feasible prevention and control
strategies. The proposed method presented can also be extended to
forecast and survey cotton aphid, thrips and other agricultural pests in
natural fields, thereby advancing the intelligent development of
agricultural pest surveys.
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