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The whitefly (Bemisia tabaci) is a globally distributed agricultural pest. While

accurate monitoring of this species is crucial for early warning systems and

efficient pest control, traditional manual monitoring methods suffer from

subjectivity, low accuracy with large populations, and arduous data traceability.

To surmount these challenges, this paper proposes an automatic counting

method for whitefly adults and late-instar nymphs, based on whitefly images

acquired using augmented reality (AR) glasses and a segmentation-then-

detection approach. Acquired by the surveyors wearing AR glasses, the images

of whiteflies on the undersides of crop leaves are transmitted to a server via Wi-

Fi/5G. The system enables the automatic whitefly counting model to enumerate

the adult and late-instar nymph populations, and the results can be viewed on

both the AR glasses and mobile devices. The study utilizes Mask2Former-Leaf to

segment the foreground primary leaf in pursuit of the minimal influence of non-

primary leaf areas and background noise in the images, and detects tiny whitefly

adults and late-instar nymphs in high-resolution images by involving the

YOLOv11-Whitefly detection model. This model integrates Slicing Aided Hyper

Inference (SAHI) capability, and can enormously amplify the feature

representation of tiny objects by slicing large images through overlapping

windows for both training and inference. Furthermore, DyCM-C3K2 is

introduced into the YOLOv11 backbone network, which enhances the

detection capability for small whitefly targets by dynamically generating input-

dependent convolutional kernels, and injecting global contextual information

into local convolution operations. Also, a Multi-Branch Channel Re-Weighted

Feature Pyramid Network (MCRFPN) is designed to replace the original neck

network, optimizing the fusion between superficial and deep features. In contrast

to mainstream detection models such as YOLO, RTMDet, Cascade-CNN, DETR,
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and DINO, YOLOv11-Whitefly demonstrates superior performance—attaining an

average recall rate of 86.20%, an average precision of 84.25%, and an mAP50 of

91.60% for whitefly adults and late-instar nymphs. With the purpose of visualizing

the whitefly infestation data, this paper developed an intelligent whitefly survey

system that provides on-site visualization of whitefly images integrated with their

adult and late-instar nymph counting results. This facilitates surveyors in

understanding pest populations and formulating scientific control decisions.
KEYWORDS
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1 Introduction

The whitefly (Bemisia tabaci) refers to a globally distributed

agricultural pest incurring substantial economic losses in

agriculture. It poses formidable challenges to integrated pest

management based on the following factors: a broad host range,

the habit of damaging the undersides of crop leaves, diverse

transmission pathways, rapid generation turnover, and strong

pesticide resistance (Chu and Zhang, 2018). Timely and accurate

assessment of whitefly population density in the field is a

prerequisite for efficient pest control. According to the national

technical standard NY/T 2950-2016 (2016) in China, whitefly

nymphs are classified into two groups: low-instar nymphs (1st

and 2nd instars) and late-instar nymphs (3rd, 4th, and pseudo-

pupae). These standards dictate that only adults and late-instar

nymphs are to be used as survey targets and statistical metrics.

Currently, two primary methods are employed for whitefly surveys.

The first is manual field surveying, where investigators physically

enter fields, quickly turn over leaves, and visually estimate and

manually record the number of adult and late-instar nymph

whiteflies on the leaf’s underside. The second is the yellow sticky

trap method, which involves using traps to attract and manually

count flying adults. However, due to the tiny size of the insect, both

manual identification and counting methods endure inefficient

survey, myriad estimation errors (especially during peak periods),

and impedance in data traceability.

At the current stage, automatic counting of tiny insect pests

using yellow sticky traps is emerging as a principal research

direction for bolstering the intelligence and accuracy of pest

monitoring. Traditional machine vision methods for pest

counting primarily lean on handcrafted features combined with

machine learning classifiers for identification. For instance, (Deqin

et al., 2018) developed a whitefly counting method for vegetable

pests by engaging a structured random forest-based image

segmentation algorithm, an irregular structural feature extraction

algorithm, and sub-algorithms for interference target removal and

detection. Similarly, (Zhong et al., 2018) leveraged manually

extracted global features such as shape, texture, and color, in

conjunction with HOG local features and Support Vector
02
Machines. The target was to identify and classify images of yellow

sticky traps containing six types of pests, including whiteflies and

thrips. Despite their abilities to guarantee high recognition accuracy

under specific conditions, the reliance of these methods on manual

feature engineering suppresses their adaptability to intricate and

variable field circumstances, resulting in poor capabilities of

generalization. Thanks to the successful application of deep

learning in image recognition and object detection, researchers

commence with employing improved object detection models for

pest identification and counting on yellow sticky traps. For example,

to detect whiteflies and thrips on yellow sticky traps, (Li et al., 2021)

proposed the TPest-RCNN model, marking an improvement based

on Faster R-CNN. (Bai et al., 2024) put forth a multi-insect

recognition framework termed MS-P2P in light of point

regression by integrating YOLOv7-tiny, LAHead, and the

Hungarian matching algorithm. The average F1 score for whitefly

detection in their self-built cotton field yellow sticky board dataset

was 80.9%. Nevertheless, the yellow sticky trap method attracts

merely flying pests and is non-applicable to surveying the number

of nymphs. Besides, during periods of high pest populations, the

saturated sticky surface exacerbates counting accuracy, and the

sticky traps compel regular replacement.

Although methods based on yellow sticky traps and computer

vision have accomplished progress in the automatic counting of

specific flying pests, an immense portion of pest surveys still entail

manual field surveys. (de Castro Pereira et al., 2022) presented an

improved YOLOv4 deep learning strategy for images of soybean

leaf whiteflies captured in a laboratory setting. The strategy starts

with training the model weights using cropped images, followed by

image stitching to merge detection results. The model harvested an

average F1 score of 0.87 for detecting whiteflies of different instars.

Unfortunately, the dataset in the paper was collected under

controlled laboratory conditions using single leaf images, and the

model’s performance in natural field conditions still needs

validation. (Bereciartua-Pérez et al., 2022) described a density

map estimation method for counting whiteflies on eggplant leaves

collected from Spanish greenhouses. They formulated a fully FCRN

and a tailored GSP strategy to plot Gaussian density maps for

precise insect localization. According to experiments, this method
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https://doi.org/10.3389/fpls.2025.1687282
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhao et al. 10.3389/fpls.2025.1687282
achieved a coefficient of determination R² of 0.97 for whitefly

counting, and the model was deployed to a mobile application,

providing an efficient tool for precise pest management. (Feng et al.,

2024) collected whitefly images on cotton leaves. To modify a

YOLOv8s-based model, they replaced its C2F module with a

Swin-Transformer, then introduced a P2 branch structure in the

detection head, and carried out Slicing Aided Hyper Inference

(SAHI) for image preprocessing. This augmented model derived a

mAP50 of 92.00% for whitefly identification, and was ultimately

integrated into a Raspberry Pi edge computing terminal, offering a

feasible solution for real-time field pest monitoring. Most of the

aforementioned methods construct counting models based on

whitefly adults on single crop leaves photographed in controlled

or relatively simple scenarios. These approaches confront a

confined image background that hinders the models from

performing whitefly detection tasks on various crop leaves in

convoluted field environments—not to mention they are normally

unable to detect smaller whitefly late-instar nymphs.

To address the low efficiency and high error rates of manual

field surveys, as well as the inability of yellow sticky traps to monitor

nymphs, this paper proposes an automatic whitefly counting

method based on augmented reality (AR) glasses and a

segmentation-then-detection approach. The system leverages the

advantages of AR glasses, including hands-free operation, real-time

visual display, and voice control functionalities, which enables

surveyors to efficiently and conveniently acquire high-resolution

whitefly images in complex field environments. To prevent false

positives from non-primary leaves and the influence of complex

backgrounds, we utilize Mask2Former-Leaf to achieve the precise

extraction of foreground primary leaves. Moreover, to achieve high-

precision detection of tiny whitefly adults and late-instar nymphs in

images, we designed the YOLOv11-Whitefly detection model. This

model integrates SAHI capability to amplify the feature

representation of tiny whiteflies by slicing large images through

overlapping windows. Furthermore, the DyCM-C3K2 module and

MCRFPN are introduced to enhance the model’s detection

capabilities for small whitefly targets. Finally, we developed an
Frontiers in Plant Science 03
intelligent whitefly survey system based on these core

technologies. This system realizes efficient image acquisition,

high-precision whitefly detection and counting, on-site result

display, and data traceability. It ultimately provides surveyors

with valuable insights into pest populations, thereby facilitating

the formulation of scientific control decisions.
2 Materials and methods

2.1 Intelligent monitoring and survey
method for whitefly

With the intent of enhancing the intelligence and precision of

whitefly monitoring and surveying, surveyors wear AR glasses to

quickly capture high-definition whitefly images via voice control.

These images are then transmitted to a server via Wi-Fi/5G, which

activates a segmentation-then-detection model to detect the

whitefly adults and late-instar nymphs in the images. Finally, the

detection and counting results are transmitted back and displayed

on the AR glasses as well as the Web and APP terminals of the

intelligent survey system for visualization and subsequent data

management. The architecture of the intelligent survey method

for whitefly monitoring and surveying is illustrated in Figure 1.
2.2 Image acquisition and dataset
construction

This study selected the SUPERHEXA AR glasses from

Superhexa Century Technology as the image acquisition device,

intending to precisely capture high-definition images of tiny

whiteflies on the undersides of crop leaves in the field and adapt

to varying outdoor lighting conditions. The device features a 50-

megapixel high-definition camera, a 3000-nits peak brightness

optical display, and fast autofocus capabilities, ensuring image

quality in intricate environments. Furthermore, its voice control
FIGURE 1

Intelligent monitoring and survey method for whitefly.
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function notably underpins the collection efficiency during

field operations.

During the high-incidence seasons for whiteflies from May to

October 2023 and May to October 2024, image collection was

conducted in strict accordance with whitefly survey standards at the

Jiangsu Academy of Agricultural Sciences and the Jinan Vegetable

Research Science and Technology Park in Shandong Province. As

depicted in Figure 2, with AR glasses, surveyors captured images

using voice commands, while gently flipping and flattening the

leaves with both hands. Across various times of day and weather

conditions, a total of 5124 images of whiteflies were finally garnered

on the undersides of five different crops (i.e. pepper, cotton,

cucumber, eggplant and tomato), all of which were 4080×3072

pixels and included the whiteflies in both adult and late-instar

nymph stages. The detailed data information is listed in Table 1.

The per-image counts for these pest stages were characterized by a

mean of 15.50 for adults and 5.46 for late-instar nymphs, with

corresponding standard deviations of 29.15 and 24.31. The number

of adults ranged from 0 to 380 per image, while the number of late-

instar nymphs varied from 0 to 514. This wide range in pest density,

including instances of extremely low and high populations, reflects

the diverse and complex nature of whitefly distribution in

field environments.

To reduce interference from complex field backgrounds and

non-primary leaf whiteflies, accurate extraction is essential for the

foreground primary leaf. First, we randomly sampled a portion of

images from each of the five collected crops. We then used the SAM

(Kirillov et al., 2023) for auxiliary annotation and performed

manual correction with the Labelme tool. The annotated data was

saved in JSON format, and subsequently used to construct a

primary leaf semantic segmentation dataset. Subsequently, for the

whitefly object detection task, we used the LabelImg tool to

annotate the categories and location information of whitefly

adults and late-instar nymphs on all image data from the five
Frontiers in Plant Science 04
crops, saving the data as XML files. Both the segmentation and

detection datasets were then split into training, validation, and test

sets with an 8:1:1 ratio, respectively.
2.3 Whitefly counting model

In natural field environments, images of whiteflies captured using

AR glasses often contain more than a single leaf, so directly applying a

detection model to the entire image would detect and count the

whiteflies on other non-primary leaves. This contradicts the standard

on agricultural whitefly pest forecasting, which specifies that the pests

should be quantified on a single leaf. To address the flaw, this paper

proposes a segmentation-then-detection whitefly automatic counting

method. More precisely, the Mask2Former-Leaf foreground primary

leaf segmentation model was established in the first stage, which

extracts the foreground primary leaf from the image, and discards

other non-primary leaves and irrelevant backgrounds to prevent false

positive whitefly detection. The second stage relies on an object

detection method to create the YOLOv11-Whitefly detection model

that detects and counts the adult and late-instar nymph whiteflies

specifically on the segmented foreground primary leaf.

2.3.1 Mask2Former-leaf model
In this study, semantic segmentation is employed as a prerequisite

step for our core task of whitefly detection, specifically for precisely

extracting the foreground primary leaf region in convoluted field

environments. The model classifies image pixels as primary leaf or

background, filtering out non-primary leaves and irrelevant

background interference, thus providing premium target input

images for subsequent detection. Mainstream semantic segmentation

models were involved for experimentation in conjunction with post-

processing optimization to achieve foreground primary leaf

segmentation at minimal cost.
FIGURE 2

An example of whitefly image acquisition. (A) Surveyors wearing AR glasses and capturing whitefly images; (B) Image of adult and late-instar nymph
whiteflies on leaf underside.
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To build our foreground primary leaf segmentation model, the

study ultimately chose Mask2Former (Cheng et al., 2022). Its highly

versatile architecture, which leverages a mask attention mechanism

and an efficient multi-scale feature fusion strategy, is particularly

well-suited for our segmentation task. To further reinforce the

foreground primary leaf segmentation masks, a mask post-

processing optimizer was developed that encompasses connected

component analysis, morphological operations, and edge

enhancement techniques to alleviate noise and rough boundaries.

This three-stage process commences by performing connected

component analysis to filter out small noisy regions based on a

predefined area threshold, so that the main leaf body can retained;

afterwards, it applies a morphological opening operation with a

fixed-size structural element to smooth mask edges, aimed at

removing irregularities and filling small holes for a more regular

contour; finally, bilateral filtering is used to internally smooth non-

edge regions and enormously raise edge clarity between the primary

leaf and background. This yields a highly refined segmentation with

accurate boundaries, as depicted in Figure 3.

2.3.2 YOLOv11-whitefly model
YOLOv11 (Khanam and Hussain, 2024), the latest iteration in

the YOLO series, marks a number of innovations across its model
Frontiers in Plant Science 05
architecture, feature fusion, and computational efficiency. It

incorporates the C3K2 module that combines depth-wise

separable convolutions with residual connections, relieving

computational load, and optimizing small object detection; the

SPFF module dynamically weights and fuses multi-scale features,

dramatically strengthening feature extraction capabilities in

complicated scenarios; and the dynamic inference strategy

adaptively chooses pathways based on image complexity, fostering

a balance between inference speed and accuracy.

To better suit the whitefly detection task, this study tuned the

YOLOv11s object detection model to launch the YOLOv11-

Whitefly detection model. First, whiteflies are less than 1 mm in

length, and the images in the dataset are all 4080×3072 pixels. This

implies an extremely small proportion of pixels occupied by the

whitefly adults and late-instar nymphs, incurring insufficiency in

feature information. To conquer this problem, SAHI was integrated

into both the training and inference stages of YOLOv11. The

method divides the large images into overlapping sub-images

using a sliding window, performs inference on each sub-image,

and combines the results to obtain the final detection for the

original high-resolution image. Second, given the dense and often

overlapping distribution of whiteflies on leaves, coupled with

interference from non-target pests such as dead whiteflies,
TABLE 1 Whitefly pest information on the undersides of five crop leaves.

Crop species Images Number of images
Number of whiteflies

Adult Late-instar nymph

Pepper 1907 15487 12096

Cotton 1057 23353 1964

Cucumber 856 16856 5060

Eggplant 617 19888 8099

Tomato 687 3858 785
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DyCM-Conv was proposed to intensify YOLOv11’s backbone

network by modifying its C3K2 module. Such a module

dynamically generates convolution kernels adapting to input

features, significantly underpinning the model’s ability to extract

traits from tiny whiteflies. Its context-aware mixing mechanism

captures long-range dependencies within images, boosting

detection robustness for dense and overlapping targets, while also

suppressing interference from elements like dead insects. Finally,

because whitefly sizes vary drastically across images of different

crop leaves, this study introduced the MCRFPN to replace the

original neck network, which tailors the fusion of different scale
Frontiers in Plant Science 06
features through its SCRF and ACRF modules, mitigating the issue

of insufficient receptive fields for small objects and reinforcing the

model’s multi-scale feature extraction and fusion capabilities. The

structure of the YOLOv11-Whitefly model is visualized in Figure 4.

2.3.2.1 SAHI

As per the standard on MS COCO classification, objects are

categorized by absolute pixel area into the small objects less than

32×32 pixels, the medium objects between 32×32 and 96x96 pixels,

and the large objects greater than 96×96 pixels. A statistical analysis

of the whitefly dataset, based on these criteria, reveals that the
FIGURE 4

The structure of the YOLOv11-Whitefly model.
FIGURE 3

Structure of the foreground primary leaf mask post-processing optimizer.
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median width and height are 24×25 pixels for whitefly adults, and

19×19 pixels for late-instar nymphs. Critically, small objects

account for 72.01% and 74.21% of adult and late-instar nymphs,

respectively. Given a resolution of 4080×3072 pixels for all the

images, this dataset is characteristic of a high-resolution, small

object detection task. The distribution of object scales and width-

height distributions for each category is shown in Figure 5.

SAHI (Akyon et al., 2022) is an enhancement strategy

specifically designed for high-resolution small object detection,

whose core philosophy is to divide large images into smaller sub-

images via overlapping sliding windows. Each sub-image is then

independently analyzed, with the results merged. This process

intends to upgrade the model’s sensitivity to small targets by

expanding the relative size of objects within each sub-image. The

execution flow is as follows:
Fron
1. Image slicing: The input image is decomposed into multiple

sub-images of fixed size S×S. To preclude edge targets from

being cropped, adjacent sub-images retain a certain overlap

area, with the overlap ratio controlled by an overlap ratio a.
2. Sub-image detection: Each sub-image undergoes

independent inference through the detection model. For

every sub-image, a set of local object detection bounding

boxes, class labels, and confidence scores are generated.

3. Result merging: After mapping the sub-image detection

boxes from their local coordinates to the global coordinates

of the original image, the application of NMS ensues to

eliminate redundant detection boxes originated from the

same target in overlapping areas, while preserving the

prediction results with the highest confidence.
SAHI employs a divide and conquer strategy to transform tiny

objects in high-resolution images into prominent targets in sub-

images, which evidently mitigates the issue of feature loss provoked

by extremely small object sizes. In this study, the sub-image size is

640×640 pixels, with an overlap rate a of 0.2. During the phase of

model training, images were sliced according to these parameters,

and any sub-images without targets were discarded as invalid. For
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the inference phase, the same parameters were adopted to slice the

sub-images—each detected individually, and the eventual detection

outcomes were obtained by merging with NMS. The workflow is

shown in Figure 6.

2.3.2.2 DyCM-C3K2

Confronting the drawbacks of the C3K2 module in

conventional YOLOv11, such as poor adaptability of static

convolution kernels, confined receptive fields, and paucity of

feature selectivity, this paper enhances the backbone network by

replacing the standard convolutional layer in the bottleneck of the

C3K2 module with Dynamic Context-Mixed Convolution (DyCM-

Conv). While retaining the cross-stage residual connections,

DyCM-Conv dynamically gives rise to convolution kernels,

allowing the model to fuse multi-scale contextual information and

model long-range dependencies while preserving the inductive bias

of traditional convolutions. Figure 7 unveils its structure and how it

captures long-range dependencies during the convolution process.

Its essential concept lies in computing the correlation between each

spatial position of a feature map and multiple global region centers,

which engenders a relevance matrix that designates the strength of

inter-position correlations. The matrix is then learnably

transformed into a dynamic convolution kernel, injecting global

contextual information directly into the convolution kernel. The

key implementation steps are elucidated as follows:
1. Formation of the Relevance Matrix: In computer vision tasks,

tokens are often generalized as feature units with independent

semantic or contextual associations. Given an input feature

map X = RC�H�W , each spatial point is treated as a token. A

1x1 convolution spawns a query (Q) that preserves spatial

information. Concurrently, S×S region center adaptive average

pooling and another 1x1 convolution create a key (K) that

aggregates global information, followed by the channel-wise

division of both Q and K into G groups. Within each group, a

matrix multiplication is performed to compute a relevance

matrix Rg = QT
g Kg ∈ RHW�SS, where the i-th row indicates

the correlation between the i-th pixel and all region centers.
FIGURE 5

Distribution of object scale counts and aspect ratios for each class.
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Fron
2. Generation of the Dynamic Convolution Kernels: Each

token’s relevance matrix row is processed by a linear

layer to integrate weights from an array of region centers.

This output is then split to represent the properties of

predefined Klarge and Ksmall convolution kernels. Thereafter,

relevance values are aggregated and normalized by a direct

projection which includes a learnable linear layer and a

softmax function. In the end, these weighted rows are

reshaped into dynamic convolution kernels of sizes Klarge �
Klarge and Ksmall � Ksmall .
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3. Context-Mixed Dynamic Convolution Workflow: This

module operates by virtue of a grouped parallel

processing approach. Each group arouses one large and

one small dynamic convolution kernels, which are both

shared across the channels within that group. Afterwards,

the generated large and small kernels perform convolution

operations on the input feature map independently. As a

result, another branch processes the same original input

feature map using a DWConv. Finally, the module’s final

output is formed by merging the output feature maps from
FIGURE 7

(A) A schematic diagram of DyCM-Conv; (B) DyCM-Conv’s ability to capture long-range dependencies and maintain inductive bias.
FIGURE 6

SAHI workflow in the whitefly dataset.
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Fron
the large dynamic convolution kernel branch, the small

dynamic convo lut ion kerne l branch, and the

DWConv branch.
2.3.2.3 MCRFPN

YOLOv11 enhances multi-scale feature fusion via top-down

and bottom-up pathways. However, its original neck network’s

focus on high-level semantic features and simple, fixed-weight

fusion mechanism often leads to insufficient integration of high-

resolution features from superficial layers, causing a significant loss

of crucial details for small objects. To address this, this paper

proposes Multi-Branch Channel Re-Weighted Feature Pyramid

Network (MCRFPN) as an alternative to the original neck

network. The MCRFPN architecture can be seen in the neck

portion of the YOLOv11-Whitefly model in Figure 4. The

MCRFPN merges the superficial re-weighted fusion (SCRF) and

the advanced re-weighted fusion (ACRF), and embeds the channel

re-weighted (CRW) strategy to optimize feature fusion. Figure 8

shows the structures of SCRF, ACRF, and CRW.

The SCRF module is embedded at the superficial connection

point between the backbone and neck of the network. It enhances

feature representation by fusing outputs from the same level of the

backbone Pn with superficial feature outputs Pn−1 and deeper

outputs from the neck P
0
n+1. Embedded deeper within the Neck,

the ACRF module improves multi-scale gradient information

interaction by fusing superficial P
0
n−1, mid-level P

0
n, deep P

0
n+1

from the earlier part of the neck and superficial feature output

P
0 0
n−1 from the end of the neck. These operations of SCRF and ACRF
tiers in Plant Science 09
are expressed in (Equations 1 and 2).

P‘
n = CRW(Concat(Down(Pn−1),   Pn,  Up(P

0
n+1))) (1)

P
0 0
n = CRW(Concat(Down(P

0
n−1),   P

0
n,  Up(P

0
n+1),  Down(P

0 0
n−1))) (2)

Here, Pn, P
0
n and P

0 0
n represent the n level feature outputs from

the backbone network, the first half of the neck, and the second half

of the neck, respectively; Up( · ) signifies an upsampling operation;

Down( · ) denotes a downsampling operation; Concat( · ) refers to

concatenation along the channel dimension; and CRW( · ) serves as

a channel re-weighting strategy.

In a feature map with a few parameters, Channel Re-Weighting

(CRW) is a feature fusion optimization method to adaptively adjust the

importance of different channels, with the purpose of boosting the

semantic representation capabilities of multi-scale feature fusion. To

commence its implementation, GMP and GAP are used on the input

feature map to capture channel-level global contextual information.

The pooled results are then concatenated and fed into a lightweight

fully connected network. Including two fully connected layers and an

activation function layer, the network outputs a normalized weight

vector that quantifies each channel’s semantic importance. Finally, this

weight vector is multiplied element-wise with the original feature map

to enhance the contribution of crucial channels. These operations of

CRW are expressed in (Equation 3).

Xout = Xin ⊗ (s (W2 · d (W1 · Concat(GMP(Xin),  GAP(Xin))))) (3)

Here, Xin means the input feature map; Xout denotes the output

feature map; GMP( · ) and GAP( · ) represent global max pooling

and global average pooling respectively;W1 ∈ R
c
4�2c andW2 ∈ Rc� c

4

FIGURE 8

SCRF, ACRF, and CRW structures.
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are learnable parameters; d signifies an ReLU activation function;

and s refers to a Sigmoid function.
2.4 Experimental configuration

The computational framework for all experiments in this study

was built on an Intel Core i9–13900 processor with a base frequency

of 3.0 GHz, 128 GB of RAM, and two NVIDIA GeForce RTX 4090

GPUs. The software environment comprised the Ubuntu 24.04.2

operating system, PyTorch 2.2.0 as the deep learning framework,

CUDA 11.8, and Python 3.8.17.

The semantic segmentation models were trained for 50,000

iterations with a batch size of 4, and an input image size of 2048 x

1536 pixels. The target detection models were trained for 200

epochs with momentum set to 0.937, weight decay set to 0.0005,

and a batch size of 16. The initial learning rate was 0.01, using the

SGD algorithm. All models were trained from scratch on our

custom dataset without the use of pretrained weights from

external sources.
2.5 Performance evaluation

To provide a robust and objective evaluation of our foreground

primary leaf segmentation model’s performance, we utilize a

comprehensive set of widely-adopted metrics in semantic

segmentation. These metrics include Pixel Accuracy (PA),

Intersection over Union (IoU), and the Dice coefficient (F1-

score), with their formulas defined as in (Equations 4-6),

respectively.

PA = TP+TN
TP+TN+FP+FN (4)

IoU = A∩Bj j
A∪Bj j (5)

F1 =
2 A∩Bj j
Aj j+ Bj j (6)

Pixel Accuracy (PA) provides a fundamental measure of overall

classification performance by calculating the ratio of correctly

classified pixels to the total number of pixels. The IoU measures

the accuracy of the segmentation algorithm by calculating the ratio

of the intersection area between the ground truth and the

segmentation result to their union area. When the F1-score

assesses the segmentation precision of the algorithm, the area of

overlap between the segmentation result and the ground truth are

computed twice, then divided by the sum of their individual areas.

With the target of objectively evaluating the detection

performance of the whitefly detection model, Precision (P), Recall

(R), Average Precision (AP), and mean Average Precision (mAP)

were engaged as evaluation indicators, and the formulas are

expressed as (Equations 7-10), respectively.

Pk =
TPk

TPk+FPk
(7)
Frontiers in Plant Science 10
Rk =
TPk

TPk+FNk
(8)

APk =
Z 1

0
Pk(Rk)dRk (9)

mAP = on
k=1

APk
n

(10)

Precision (P) indicates the proportion of correctly identified

targets among all samples identified as that target. Recall (R)

represents the proportion of correctly identified targets among all

actually existing targets of that class. Average Precision (AP)

evaluates model performance by integrating both precision and

recall, specifically by computing the area under the precision-recall

curve at various thresholds. Mean Average Precision (mAP) means

the average of the AP values across all classes, serving as a crucial

metric for comprehensively assessing model performance in multi-

class tasks. A higher mAP suggests better detection performance

across multiple categories. In this study, n signifies the total quantity

of whitefly adult and late-instar nymph classes, where n = 2.

Additionally, to provide a more direct assessment of the model’s

counting performance, the Root Mean Square Error (RMSE) was

adopted as a supplementary metric. RMSE quantifies the average

magnitude of the discrepancy between the predicted counts and the

true counts, offering a clear measure of the model’s counting

accuracy. The formula for RMSE is given by (Equation 11), where

ypredi and ygti represent the predicted and ground truth counts for the

i-th image, respectively, and N is the total number of images in the

dataset.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1
(ypredi −ygti )

2

N

r
(11)
2.6 Intelligent monitoring and survey
system for whitefly

In pursuit of automation, precision, and digital management of

whitefly surveys, an intelligent survey system was developed for

whitefly monitoring and surveying. This system uses a Browser/

Server architecture that supports mobile applications—all

established on a front-end/back-end separation design. The front-

end interaction layer is developed via Vue for the web interface and

Android for the mobile app, enabling functions like batch image

uploads, visualization of detection results, and statistical analysis of

detection data. The back-end service layer, built with the SpringBoot

framework, is responsible for handling requests from both the web

and mobile fronts, calling model inference interfaces, and performing

data analysis. For data storage, MySQL is applied for model detection

results, whereas Object Storage Service (OSS) saves original pest

images and result images. Finally, the algorithm model service layer

is developed based on the Flask framework to provide an automated

whitefly counting interface, and is deployed to a dedicated algorithm

server by virtue of Docker containerization technology.
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3 Results

3.1 Comparison of foreground leaf
segmentation models

To assess the performance of the Mask2Former-Leaf for

foreground primary leaf segmentation, comparative experiments

were conducted against mainstream semantic segmentation models,

such as Fast-SCNN (Poudel et al., 2019), PSPNet (Zhao et al., 2017),

DPT (Ranftl et al., 2021), Mask2Former (Cheng et al., 2022) and

DeepLabv3+ (Chen et al., 2018). All models were trained and tested

under identical experimental conditions. Specifically, Mask2Former

was implemented with a ResNet-18 backbone, while DeepLabv3+

and PSPNet utilized a ResNetV1c-18 backbone. Fast-SCNN was

implemented with its native customized backbone, and DPT

employed a Vision Transformer backbone. As summarized by

Table 2, the Mask2Former-Leaf model attained the best

performance, with mIoU of 97.34%, mFscores of 98.65% and PA

of 98.69%, respectively. This remarkably outperforms the other

models, affirming its effectiveness in foreground primary

leaf segmentation.
3.2 Ablation experiment of the detection
model

In order to ascertain the effectiveness of the three improved

strategies in the YOLOv11-Whitefly model, this paper tested each of

them using the same test set and compared the Precision (P), Recall

(R), Average Precision (AP), and the mAP50. Table 3 summarizes

the results of this ablation study, where “√” implies the applied

improvement strategy; “Adult” refers to whitefly adults; and

“Nymph” means whitefly late-instar nymphs.

As listed in Table 3, the original YOLOv11s model performed

poorly in detecting whiteflies in high-resolution images, with recall

rates of just 55.6% for adults and 51.3% for late-instar nymphs, and

an mAP50 of 56.8%. While SAHI is a general-purpose, architecture-

agnostic strategy, it serves as an indispensable baseline for our high-

resolution imagery. Integrating SAHI into the YOLOv11s model

prominently upgraded performance, with recall rates for adults and

late-instar nymphs jumped to 91.6% and 71.3%, respectively, while
Frontiers in Plant Science 11
precision ascended to 92.7% and 75.1%. The AP for adults and late-

instar nymphs rose to 97.2% and 80.2%, arousing an overall mAP50
of 88.7%. This demonstrates that, by slicing large images into sub-

images, SAHI augmented the pixel proportion and morphological

features of whiteflies, allowing the model to grasp richer feature

representations during both training and inference. To further

demonstrate the independent contribution and synergistic effect

of our internal modules, we conducted additional experiments.

Introducing DyCM-Conv into the backbone network to underpin

the feature extraction module further boosted performance,

particularly for the smaller late-instar nymphs. The late-instar

nymph recall improved to 75.6%; precision grew by 1.5%; and AP

rose to 84.0%—these results confirm that DyCM-Conv dynamically

generates convolution kernels that adapt to input context, and this

enhances feature extraction and captures long-range dependencies,

so that small object detection can be fostered. Concurrently,

replacing YOLOv11’s original neck network with the MCRFPN

also demonstrated a significant performance boost, intensifying the

average precision for whitefly adults and late-instar nymphs to

97.1% and 83.5%, respectively, spawning an mAP of 90.3%. This

experiment corroborates that MCRFPN’s multi-scale feature fusion

of superficial and deep features strengthens feature information

interaction, and enhances the model’s ability to detect whiteflies of

varying scales on different crop leaves. The full integration of all

three strategies yielded the highest performance, achieving an

mAP50 of 91.6%.
3.3 Comparison of different detection
models

In this paper, to evaluate the detection performance of the

YOLOv11-Whitefly, comparative experiments were carried out

against several prominent detection models, which involved the

one-stage models YOLOv10 (Wang et al., 2024) and RTMDet (Lyu

et al., 2022), the two-stage model Cascade R-CNN (Cai and

Vasconcelos, 2018), and the Transformer-based end-to-end object

detection models DETR (Carion et al., 2020) and DINO (Zhang

et al., 2022). Specifically, we chose ResNet-50 as the backbone for

Cascade R-CNN, DETR, and DINO, while YOLOv10 and RTMDet

utilized their native backbone architectures. For a fair comparison,

all models were trained and tested on identical datasets using the

same parameter settings. Given the difficulty of detecting tiny

targets in our dataset, all models were also implemented with

SAHI. The results of this evaluation are exhibited in Table 4.

It can be seen from Table 4 that the YOLOv11-Whitefly model

attained the highest mAP50, surpassing RTMDet, YOLOv10s,

Cascade R-CNN, DETR, and DINO by 5.45%, 4.68%, 10.35%,

8.56%, and 8.92%, respectively. For a more intuitive comparison,

Figure 9 displays localized magnified views of the whitefly detection

results on various crop leaves generated by the aforementioned

models. As shown in Figure 9B-D), traditional single-stage and two-

stage detection models exhibit subpar performance in detecting

whitefly late-instar nymphs, instigating noticeable missed detection.

Concurrently, Figure 9E, F reflect that Transformer-based end-to-
TABLE 2 Model comparison experiment for foreground leaf
segmentation task.

Model
mIoU
(%)

mFscore
(%)

PA
(%)

FPS

Fast-SCNN 77.51 87.33 87.60 4.01

PSPNet 83.29 90.89 90.23 5.85

DeepLabv3+ 87.38 93.26 93.39 3.70

DPT 90.74 95.14 95.17 1.32

Mask2Former 93.23 96.50 96.57 2.14

Mask2Former-Leaf 97.34 98.65 98.69 1.88
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end object detection models generate numerous redundant

prediction boxes, provoking a pronounced elevation in false

positive rates. In contrast, the YOLOv11-Whitefly model

proposed in this paper demonstrates superior robustness and

stronger detection capabilities in intricate backgrounds, and

lessens both missed detection and false positives.

To provide a more practical evaluation of the models’ final

counting performance in real-world applications, we used the

aforementioned detection models to count whiteflies on the

original large images from the test set. For this experiment, all

models were inferred with a confidence threshold of 0.3 and an IoU

threshold of 0.5, and the SAHI method was applied to all

predictions. The RMSE was calculated by comparing the results

against the ground truth annotations. The RMSE for RTMDet,

YOLOv10s, Cascade R-CNN, DETR, and DINO were 7.32, 7.07,

12.58, 9.74, and 10.51, respectively. Our model demonstrated

superior counting accuracy, achieving the lowest overall RMSE of

4.49. A more granular analysis reveals that this high precision holds

for both adult and late-instar nymph stages, achieving an RMSE of

3.99 for adult whiteflies and 1.39 for late-instar nymphs. This

substantiates that our method’s high detection performance

directly translates to a minimal counting error, which is a critical

advantage for practical pest population surveys.
3.4 YOLOv11-whitefly model generalization
experiment

To assess the cross-crop generalization capability of the YOLOv11-

Whitefly model, a leave-out crop strategy was employed. Specifically,
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for this experiment, the model was trained exclusively on whitefly

images from pepper, eggplant, and cucumber, ensuring that all images

of cotton and tomato were strictly excluded from the training set.

Subsequently, the model was evaluated on a complete test set

comprising all five crops, with the test results summarized in Table

5. The model performed exceptionally on the crops it was trained on,

and the mAP50 scores were 92.4% for pepper, 90.5% for eggplant, and

93.2% for cucumber. Crucially, the model also demonstrated a

commendable detection ability on cotton and tomato, which was

completely unexposed during the training stage. The model achieved

86.1% and 88.7% mAP50 on cotton and tomato crops, respectively.

These results substantiate that the YOLOv11-Whitefly detection model

is able to transfer its learning, and reliably detect whiteflies on unknown

crop leaves, showcasing advantageous performance for cross-

crop generalization.
3.5 Visualization of the intelligent survey
system for whitefly

The functionalities of the intelligent survey system for whitefly

pests designed in this study are illustrated in Figure 10, which

encompass batch image upload for detection, image list display, and

data analysis. Users may upload whitefly images in batches via the

Web or mobile APP client interface. A whitefly counting interface

call is sent by the backend server to the algorithm model, which

sequentially processes the images through the Mask2Former-Leaf

and YOLOv11-Whitefly models. The results are then returned to

the back-end to undergo data persistence and encapsulation before

being sent back to the front-end for final display.
TABLE 3 Performance of three improvement strategies in the YOLOv11-Whitefly model for whitefly detection.

SAHI DyCM-C3K2 MCRFPN
Precision (%) Recall (%) AP(%)

mAP50 (%)
Adult Nymph Adult Nymph Adult Nymph

– – – 83.2 39.9 55.6 51.3 70.7 42.8 56.8

✓ – – 92.7 75.1 91.6 71.3 97.2 80.2 88.7

✓ ✓ – 92.9 76.6 93.7 75.6 97.4 84.0 90.7

✓ – ✓ 92.2 75.2 93.5 77.1 97.1 83.5 90.3

✓ ✓ ✓ 92.2 76.3 94.8 77.6 97.8 85.4 91.6
TABLE 4 Performance comparison between YOLOv11-Whitefly and other detection models.

Models Precision (%) Recall (%) mAP50 (%) #Param (M) GFLOPs FPS

RTMDet-l 79.84 80.16 86.15 32.81 49.3 55.1

YOLOv10s 79.60 81.59 86.92 8.07 24.8 72.33

Cascade RCNN 74.30 78.01 81.25 69.16 239.0 15.42

DETR 75.61 80.13 83.04 41.58 86.0 35.7

DINO 76.08 78.68 82.68 47.70 269.0 11.25

YOLOv11-Whitefly(Ours) 84.25 86.20 91.60 23.84 56.8 43.16
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4 Discussion

Benefited from the broadly permeated adoption of high-resolution

image acquisition devices, the surging advancements in deep learning

algorithms, and the bolstered accessibility and cost-effectiveness of

computational resources, this paper focuses on the task of whitefly
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survey on crop leaves in natural field environments. An automatic

whitefly counting method is put forth based on a segmentation-then-

detection approach, utilizing AR glasses to acquire images from five

types of crop leaves. Hence, an appropriate intelligent survey system

has been developed, delivering a smart, efficient, and precise solution

for monitoring and surveying the agricultural pest.
FIGURE 9

Examples of whitefly detection results on crop leaves using different models. (A) Manual annotation; (B) RTMDet; (C) YOLOv10s; (D) Cascade-RCNN;
(E) DETR; (F) DINO; (G) YOLOv11-Whitefly (the proposed); Red and blue boxes indicate whitefly adults and late-instar nymphs, respectively; Purple
and orange dashed boxes designate model misses and misdetects, respectively.
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High-quality image data underlies the deep learning algorithms.

From fixed cameras (Gao et al., 2025), smartphones (Xu et al., 2024), to

professional cameras (Li et al., 2022; Ciampi et al., 2023), and custom-

built pole-mounted photographic devices (Du et al., 2022; Li et al.,

2023), a variety of portable, high-resolution image acquisition devices

have been prevailing across numerous fields such as agricultural pest

and disease detection. However, these machines confront some

drawbacks. While fixed cameras save labor, their monitoring

capabilities are confined to specific areas. Handheld devices (e.g.

smartphones and cameras) offer solutions for manual field surveys,

but are often perplexed by factors like strong illumination, fluctuating

resolutions, and the necessity for manual operation. In contrast, AR

glasses have been successfully applied to agricultural pest and disease

image acquisition in studies by (Sheng et al., 2024; Chen et al., 2025; Ye

et al., 2025), thanks to their hands-free operation, real-time visual

display, and voice control functionalities. Therefore, this paper opted

for the SUPERHEXA monocular AR glasses from Superhexa Century

Technology for image acquisition, which is designed with a 50-

megapixel main camera and a 3000-nits peak brightness optical
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display, and supports rapid autofocus and voice-controlled

photography. By wearing these AR glasses, surveyors can utilize both

hands to gently turn over and flatten leaves, which ensures a clear and

stable view of the whiteflies for subsequent image capture. They also

enable surveyors to view and adjust the content in real-time on the

optical display, and directly trigger image capture via voice commands,

so that the operational efficiency can be considerably enhanced. The

AR glasses selected in this study are distinguished by powerful image

acquisition capabilities and high imaging quality, capable of fulfilling

the demands for automated counting of tiny whiteflies. Nevertheless,

their detection accuracy for late-instar nymphs still compels

improvement, which necessitates future work involving the AR

glasses equipped with higher-resolution cameras. Another flaw lies in

the AR glasses’ relatively small optical screen which could be replaced

by a larger, higher-resolution display to ensure easier capturing of high-

quality images.

Given that the whitefly agricultural pest monitoring standard

NY/T 2950-2016 (2016) requires the counting of pests on single

leaves, yet the images garnered by AR glasses in natural field
TABLE 5 Performance of the YOLOv11-Whitefly model for detecting leaf whitefly in five different crops.

Metric
Pepper Eggplant Cucumber Cotton Tomato

Adult Nymph Adult Nymph Adult Nymph Adult Nymph Adult Nymph

Precision(%) 93.4 76.9 91.9 78.5 90.5 80.4 97.0 73.0 90.3 80.9

Recall(%) 92.0 82.0 94.1 70.9 95.7 82.6 87.7 70.4 92.0 75.2

AP50(%) 97.2 87.6 97.8 83.2 97.1 89.3 97.7 74.5 96.5 80.9

mAP50(%) 92.4 90.5 93.2 86.1 88.7
fr
FIGURE 10

Interfaces of intelligent survey system for whitefly. (A) Intelligent survey interface in APP; (B) Results display interface in APP; (C) Image query
interface in Web; (D) Whitefly data analysis interface in Web.
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environments often contain more than one leaf, thus precise

extraction of the foreground primary leaf from the image implies

immense importance for accurate whitefly enumeration. In recent

years, semantic segmentation methods have demonstrated

prominent merits in the field of crop disease detection. For

instance, (Wang et al., 2021) utilized DeepLabV3+ and U-Net

models for segmenting diseased areas on cucumber leaves in

complex backgrounds; (Zhang et al., 2023) proposed the Locally

Reversible Transformer model for grape leaf disease segmentation

in natural scenes; and (Ye et al., 2025) introduced the DeepLab-

Leafminer model for segmenting leafminer damage regions.

Inspired by these accomplishments, this paper harnesses the

Mask2Former model combined with a mask post-processing

optimizer to precisely segment the foreground primary leaf from

whitefly images across various crop types in natural environments.

This initial segmentation stage effectively attenuates interference

from intricate backgrounds, and minimizes false positives arising

from whiteflies not located on the primary leaf, so that a cleaner and

more focused region for subsequent detection is provided.

In the domain of tiny agricultural pest detection, several

advanced object detection models marking notable progress have

been presented in existing research, as exemplified by YOLO-Pest

(Xiang et al., 2023), DRB (Jiao et al., 2022), MDM (Wang et al.,

2020), and Cascade-RCNN-PH (Sheng et al., 2024). To enable

precise detection of tiny whitefly adults and late-instar nymphs in

the foreground primary leaf, this paper introduces the DyCM-C3K2

module based on the YOLOv11 model, so as to construct the

YOLOv11-Whitefly model by reinforcing the backbone network,

substituting the original neck network with MCRFPN, and merging

SAHI capabilities. Notwithstanding that the segmentation-then-

detection method for whitefly counting realizes high-accuracy

detection on various crop leaves, the sequential execution of two

independent deep learning models inevitably deteriorates the

model’s computational load and inference time. To address this,

future efforts could be invested in a more comprehensive

exploration of model lightweighting strategies. In addition to

model pruning (Sun et al., 2023) and knowledge distillation

(Hsieh et al., 2023), techniques such as model quantization could

be employed to reduce the computational complexity and accelerate

inference speed without compromising the high level of feature

extraction and detection performance. Furthermore, a crucial step

for improving throughput would be to deploy the model directly

onto edge devices, such as the AR glasses themselves, thereby

eliminating network latency and ensuring a more responsive

system for on-site applications.

Despite the fruits harvested in whitefly detection in this study, a

number of defects perpetuate. Our dataset reflects a class imbalance

with adults being more prevalent than late-instar nymphs, which is a

direct consequence of the inherent challenges of professional field data

acquisition where pest populations naturally exhibit a non-uniform

and imbalanced distribution. This also resulted in substantial variability

in pest density, as reflected by high standard deviations and a wide

range of counts, from low-density scenarios to high-density clusters. To

mitigate these issues and further enhance model performance, a key

focus for future endeavors will be on data expansion. This involves
Frontiers in Plant Science 15
collecting a more balanced dataset with additional nymph-rich images

and employing more systematic sampling protocols to ensure a more

uniform representation of pest populations across various densities.

Furthermore, we will incorporate images from a wider variety of host

crops to improve the model’s generalization capabilities. While the

present study focuses exclusively on whitefly (Bemisia tabaci), a

dominant species in our data collection areas, agricultural practices

indicate that greenhouse whitefly (Trialeurodes vaporariorum) is also

an important pest that frequently co-occurs in other regions. The

morphological similarity presents a significant challenge for machine

vision-based discrimination. Accordingly, a crucial direction for future

work is to develop a robust model capable of differentiating between

these two species, which will substantially enhance themodel’s practical

utility in regions where they co-exist.
5 Conclusions

Aimed at efficiently surveying whitefly populations on crop leaves

in natural field environments, this study proposes an automatic

whitefly counting method based on AR glasses and a segmentation-

then-detection model. Acquired by the voice-control of the surveyors

wearing AR glasses, the images of whiteflies on the undersides of crop

leaves are transmitted to a server that activates an automatic whitefly

detection model to count the insect population. In pursuit of the

minimal interference from non-primary leaf areas and intricate field

backgrounds, Mask2Former-Leaf is engaged to segment the

foreground primary leaf in the images. For the sake of accurately

detecting tiny whitefly adults and late-instar nymphs in the images,

SAHI was integrated into the YOLOv11 model, and enhanced by

incorporating DyCM-C3K2 and MCRFPN. The final model attained

an average precision of 84.25% and an average recall rate of 86.20% for

whitefly detection, apart from an mAP50 of 91.60%. Furthermore, the

Web/APP client of the intelligent survey system for whitefly

monitoring and surveying can synchronously display whitefly images

and their counts. Its data analysis features help surveyors understand

whitefly occurrences and elaborate feasible prevention and control

strategies. The proposed method presented can also be extended to

forecast and survey cotton aphid, thrips and other agricultural pests in

natural fields, thereby advancing the intelligent development of

agricultural pest surveys.
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