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Crop phenology is one of the most critical physiological attributes of agricultural

crops, serving as a direct indicator of growth status throughout the

developmental cycle. With the advancement of phenological research, satellite

remote sensing has emerged as a primary monitoring tool due to its large spatial

coverage and convenient data acquisition. However, high-resolution remote

sensing satellites, which are essential for precise phenological observations,

often have long revisit intervals. Additionally, adverse atmospheric conditions

such as cloud cover frequently compromise the usability of images on multiple

dates. As a result, high-resolution time-series data for crop phenology

monitoring are typically sparse, limiting the ability to capture rapid

phenological changes during the growing season.To address this challenge,

this study focuses on paddy and dryland fields as experimental sites and

proposes a novel method for filling temporal gaps in remote sensing data

using generative image processing techniques. Specifically, a lightweight

super-resolution Generative Adversarial Network (GAN) is developed for image

reconstruction. Using the reconstructed dataset, dense time-series monitoring

and phenological metric extraction were conducted throughout the crop

growing season.(1) The proposed super-resolution reconstruction method

achieves structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR)

values of 0.834 and 28.69, respectively, outperforming mainstream approaches

in reconstructing heterogeneous remote sensing data.(2) Following temporal

reconstruction, the revisit intervals of remote sensing imagery for the two test

sites improved from 6.40 and 6.63 days to 5.70 and 5.88 days, respectively. To

further analyze phenological metrics, four smoothing techniques were applied,

among which Savitzky–Golay filtering yielded the most accurate and robust

results. Although discrepancies were observed between the results obtained

using the reconstructed data and those based on the original datasets, the

proposed method demonstrated smaller deviations from benchmark datasets.

Compared with conventional interpolation-based gap-filling approaches, the

framework demonstrated marked improvements in the accuracy of phenological

extraction, while also delivering superior spatial resolution and robustness
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relative to the Harmonized Landsat and Sentinel (HLS) dataset. Experimental

results confirm that the proposed approach effectively fills temporal gaps in

satellite imagery, enhances data continuity, accurately captures key phenological

turning points, and enables precise crop phenology monitoring at high spatial

and temporal resolution.
KEYWORDS

phenology extraction, satellite remote sensing, super-resolution reconstruction, crop
phenology, generative adversarial network
1 Introduction

Phenology refers to the periodic biological events in organisms

that have evolved in response to long-term climatic conditions

(Schwartz et al., 2002). Vegetation phenology, in particular, serves

as a key parameter for characterizing vegetation dynamics on land

surfaces. It is one of the most direct indicators of terrestrial

ecosystem responses to global climate change (Richardson et al.,

2013; Fu et al., 2015; Liu et al., 2022; Li et al., 2023; Xiong et al.,

2024; Zhang et al., 2025) modulating numerous feedback pathways

between terrestrial ecosystems and the climate system (Wang et al.,

2018; Piao et al., 2019; Yue et al., 2023) and influencing nearly all

aspects of ecology and biological evolution (Miller-Rushing and

Weltzin, 2009; Caparros-Santiago et al., 2021).Over the course of its

development, phenological science has established a range of

methods for observing and predicting vegetation phenology,

which can generally be categorized into three main types: ground-

based observations (including manual monitoring, phenocam

observations, and flux measurements), remote sensing

monitoring, and phenological modeling. Among these, remote

sensing has gained widespread application due to its large-scale

coverage and efficient data acquisition capabilities (Guan et al.,

2014; Mascolo et al., 2016; Steele-Dunne et al., 2017; Wang et al.,

2018). However, the extraction of crop phenology remains more

challenging, primarily due to the rapid and continuous changes in

vegetation indices during crop growth stages, which require high

temporal continuity. This challenge has attracted considerable

attention in the research community, prompting the development

of various time-series gap-filling methods.

Since the early work by Thompson (1980), who used Landsat

optical sensors to monitor wheat responses to water stress, optical

remote sensing has played a pivotal role in advancing crop

phenology research. With the continuous development of remote

sensing technology, both spatial and temporal resolution have

improved. However, high-resolution imagery remains difficult to

obtain consistently, while medium- to low-resolution data are prone

to mixed-pixel effects. Moreover, cloud cover and aerosols

frequently contaminate satellite-derived observations. Even

sensors with daily revisit capabilities, such as MODIS, often yield
02
limited usable data due to these constraints (Zhang et al., 2003;

Fraser et al., 2009; Xu et al., 2017).

To address these issues, several scholars have proposed methods

for data reconstruction. For instance, Hermance et al. used

harmonic models to perform linear fits to missing Landsat data,

enabling the prediction of land cover dynamics for arbitrary dates

(Hermance, 2007). Although such spatial interpolation techniques

are effective in noise reduction and smoothing, they often lack

accuracy and real data support for reconstructing missing

observations. In the context of multi-sensor time-series

reconstruction, Roy et al. utilized heterogeneous data from

Landsat-5 and Landsat-7 to generate dense NDVI time series over

six agricultural regions in the United States (Kovalskyy and Roy,

2013). Their research group also compared BRDF-corrected

reflectance and NDVI values between Sentinel-2A and Landsat-8

under various atmospheric and surface conditions, revealing

significant differences when data were not corrected (Zhang et al.,

2018). Onojeghuo et al (Onojeghuo et al., 2018). fused MODIS and

Landsat data to obtain high spatiotemporal resolution NDVI time

series (30 m spatial resolution at 8-day intervals), demonstrating

improved accuracy in rice phenology monitoring. Such data fusion

approaches have been validated as effective means to enhance crop

phenology detection by leveraging the complementary strengths of

different satellite systems. Studies employing harmonized Landsat

and Sentinel-2 data have also emerged in recent years, though the

spatial resolution remains limited to 30 m. Recent research has

shown that higher spatial resolution significantly improves

phenological detection accuracy (Song et al., 2024). Moreover,

high-frequency observations are more suitable for capturing rapid

changes in crop growth. However, a single sensor is often

insufficient for continuous monitoring, underscoring the need for

further exploration of multi-satellite, high-resolution phenological

monitoring strategies.With the rapid advancement of generative

image processing techniques, deep learning frameworks based on

Generative Adversarial Networks have achieved impressive results

in remote sensing image tasks. GANs offer powerful capabilities for

style transfer and resolution enhancement, enabling cross-sensor

resolution reconstruction and spectral harmonization—thereby

addressing the key limitations of interpolation and fusion
frontiersin.org
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methods that lack data support, as well as discrepancies in

resolution and spectral properties among heterogeneous sensors.

In this context, we propose a novel approach that employs a

GAN framework to unify spatial resolution and spectral

characteristics across heterogeneous satellite imagery. The method

generates a time series of remote sensing images at a consistent

spatial scale (10 m) and within the same spectral bands, facilitating

field-scale, high-resolution crop monitoring and accurate

phenological extraction. Our research includes two main

innovations: (1) firstly, this study proposes a lightweight

generative adversarial network model to train the network and

evaluate the quality of the generated images; (2) Secondly, the

spatial resolution and spectral range of the annual Landsat-8 image

data and the Sentinel-2 image data were unified by using the

proposed resolution reconstruction method, and dense time-series

data were generated and applied to crop phenological extraction,

and the performance of each extraction method was evaluated. The

results show that the optical time series data generated by the

proposed method has short interval revisit and 10-meter spatial

resolution, which significantly improves the accuracy of

phenological monitoring, so as to more accurately identify key

phenological transition nodes. In addition, this scheme provides a

flexible solution to enhance the spatial or temporal resolution of

time-series imagery without being limited by the initial data scale,

showing great potential for advancing satel l i te-based

phenological research.
2 Study area and data sources

2.1 Overview of the study area

The study area is located in the southern part of Liaoning

Province, near the estuary of the Liao River. The region experiences
Frontiers in Plant Science 03
a temperate, semi-humid monsoon climate, characterized by higher

precipitation during spring and summer, and relatively lower

rainfall in autumn and winter. The annual average precipitation is

approximately 650 mm, with a mean annual temperature of 8.5 °C.

The Liaohe Plain, where the study area is situated, is a key protected

zone of the northeastern black soil region. It is known as a major

agricultural production area in south-central Liaoning, one of

China’s most important grain-producing regions (Zhou et al.,

2016; Yu et al., 2024).

For the purposes of this study, extensive tracts of both paddy

fields and dryland croplands were selected as experimental sites for

phenological analysis. The study area is geographically situated

between 40°49′N and 42°05′N latitude and 121°25′E and 123°00′E
longitude. The dominant agricultural crops cultivated within this

region are rice, maize, and sorghum. A schematic representation of

the study area is provided in Figure 1.
2.2 Data description

2.2.1 Generation of super-resolution remote
sensing image data

a) Training Dataset for Super-Resolution Network.

To construct the base dataset for 4× super-resolution

reconstruction, we first selected 20 Sentinel-2 images acquired

during different seasons across the study area. These images were

downsampled to 40 m resolution using bicubic interpolation to

simulate low-resolution inputs for large-scale pretraining.

Additionally, a set of 79 paired images acquired on the same

dates by Sentinel-2 and Landsat-8 was included to form a

heterogeneous image dataset, Similarly, these Landsat-8 data are

downsampled from 30m to 40m, which is a 4 × resolution difference

from Sentinel-2 data, which was used to fine-tune the generative

neural network for improved performance on multi-source data.
FIGURE 1

Schematic map of the study area. (a) paddy fields, (b) dry fields.
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b) Super-Resolution Image Generation Method.

We designed a compact and lightweight model named PGT-

GAN (Progressive Generator Transformer GAN), as illustrated in

Figure 2, to meet the requirements of super-resolution

reconstruction for time-series remote sensing imagery. This

architecture balances generation quality comparable to state-of-

the-art networks with structural simplicity.The generator consists of

two main components: deep feature extraction and resolution

enhancement. The low-resolution input images (from step a) are

first passed through a series of residual blocks and Swin

Transformer modules to extract deep features (Liu, 2021). These

features are then progressively upsampled using multiple blocks

composed of convolutional layers, pixel normalization layers, and
Frontiers in Plant Science 04
Leaky ReLU (LReLU) activation functions.The discriminator

adopts the structure of the PGGAN framework (Karras et al.,

2018), performing progressive downsampling through

convolutional and LReLU layers. The output is then normalized,

and the loss is computed between the generated images and the

original high-resolution references to guide network

optimization.The network employs the Adam optimizer with a

learning rate set to 0.0003, a batch size of 4, and is trained for

200 epochs t o ach i e v e h i gh -qua l i t y r e con s t r u c t ed

images.Regarding the experimental environment, the network was

trained on a system equipped with an NVIDIA Quadro P5000 GPU

running Ubuntu 20.04, utilizing CUDA version 12.0 and

TensorFlow version 2.8.0.
FIGURE 2

Architecture of the PGT-GAN network.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1687246
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Han et al. 10.3389/fpls.2025.1687246
2.2.2 Acquisition of original time-series remote
sensing imagery

Sentinel-2 is a series of high-resolution multispectral imaging

satellites launched by the European Space Agency (ESA), consisting

of two satellites—Sentinel-2A and Sentinel-2B—launched in 2015

and 2017, respectively. Each satellite is equipped with a

Multispectral Instrument (MSI), capable of capturing data across

13 spectral bands ranging from the visible and near-infrared to the

shortwave infrared regions. The sensor has a swath width of up to

290 km, with spatial resolutions of 10 m, 20 m, and 60 m depending

on the spectral band. The orbital parameters of the Sentinel-2

satellites are summarized in Table 1.

Regarding the acquisition of original time-series imagery, this

study collected all cloud-free and noise-free Sentinel-2 images

captured in 2023 within the geographic coordinates of 40.84°N–

40.92°N and 121.98°E–122.07°E. These data were downloaded from

the Copernicus Open Access Hub (https://www.esa.int/) at Level-

1C processing. Radiometric and atmospheric corrections were

applied using the Sen2Cor plugin developed by the ESA, producing

Level-2A data. These corrected images served as the foundational

dataset for constructing the annual time series used in continuous

monitoring and phenological extraction. In the paddy field area, a

total of 57 valid time-series images were obtained, with an average

temporal resolution of 6.40 days. For the dryland cropland area, 55

valid images were collected, with an average temporal resolution of

6.64 days. Each image includes the four spectral bands essential for

phenological extraction: red, green, blue, and near-infrared (NIR).
2.3 Evaluation metrics and comparison
methods

2.3.1 Evaluation metrics for super-resolution
reconstruction

In the context of single-image super-resolution reconstruction

for remote sensing applications, two widely adopted evaluation

metrics were selected: the Peak Signal-to-Noise Ratio and the

Structural Similarity Index Measure (Hore and Ziou, 2010). PSNR

measures the ratio between the maximum attainable power of a

signal and the power of distorting noise that compromises the

fidelity of its representation. Mathematically, PSNR is defined by

Equation 1, where MAX denotes the maximum possible pixel value

in the image, and MSE represents the mean squared error.

PSNR = 10 · log10
MAX2

MSE

� �
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SSIM is another widely adopted metric for assessing image

quality, grounded in the hypothesis that the human visual system

perceives images by extracting structural information. It serves as a

quantitative measure of the similarity between two images. SSIM

evaluates image fidelity based on three comparative components:

luminance, contrast, and structure, as formulated in Equation 2:

SSIM(x,y) = ½l(x, y)a  · c(x, y)b  · s(x, y)g �
Where l(x, y) quantifies the luminance difference, c(x, y)

measures the contrast difference (represented by the standard

deviation of pixel intensities), and s(x, y) evaluates the structural

dissimilarity between images.

2.3.2 Comparison and evaluation of phenological
metrics

To demonstrate the effectiveness of the proposed method, we

compared the phenological metrics extracted using the super-

resolution time-series reconstruction approach with those obtained

from both interpolation-based gap-filling methods and the original

data, under various smoothing conditions. The smoothing models

employed in this study have been widely validated for their

effectiveness and include Moving Average Smoothing (Moving),

Locally Weighted Scatterplot Smoothing (LOWESS) (Cleveland,

1979), Robust LOWESS (RLOWESS) (Wilcox, ), and the Savitzky-

Golay (S-G) filter (Chen et al., 2004; Belda et al., 2020). Our objective

is to conduct a comprehensive evaluation of the proposed method

under different smoothing algorithms and assess its robustness across

varying conditions.Among the interpolation techniques commonly

used in current phenological studies, Gaussian Process Regression

(GPR) (Schulz et al., 2018) is considered one of the preferred methods

for filling gaps in time-series imagery. Notably, GPR is also one of the

few interpolation approaches capable of providing associated

uncertainty estimates. Therefore, GPR was adopted in this study as

a benchmark interpolation method to fill remaining gaps in the time

series, serving as a comparative reference.

For the accuracy assessment of the extracted phenological

metrics, this study employed the HLS dataset as the reference

standard. The HLS dataset, released by NASA, is based on

atmospherically corrected surface reflectance products from

Landsat 8–9 Level-1 and Sentinel-2 Level-1C data. It undergoes

multiple preprocessing steps, including atmospheric compensation,

view angle correction, and spectral harmonization, to generate a

globally consistent time-series product at 30 m spatial resolution.

Since its global release in April 2013, HLS data has been widely

applied in phenological extraction and validation studies (Claverie

et al., 2018; Bolton et al., 2020; Tran et al., 2023).
3 Phenology extraction experiment

3.1 Experimental workflow diagram

The experimental workflow adopted in this study, as

schematically illustrated in Figure 3, is systematically organized

into four main phases: data preprocessing, model training, time-
TABLE 1 Sentinel-2 A/B orbital parameters.

Parameter Indicator

Orbit type Sun-synchronous orbit

Orbit height 786km

Orbital inclination 98.5

Regression cycle 10 days
frontiersin.org

https://www.esa.int/
https://doi.org/10.3389/fpls.2025.1687246
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Han et al. 10.3389/fpls.2025.1687246
series reconstruction, and phenological parameter extraction.

During the data preprocessing stage, input–target pairs required

for model training are constructed, while test imagery from

heterogeneous satellite platforms is converted into a format

compatible with the network architecture. This is specifically

implemented by pairing the images and cropping them into

corresponding patches of 64×64 and 256×256 pixels, reflecting a

four-fold resolution relationship. In the subsequent phase, a

generative deep learning model is trained using the prepared

dataset, through which Landsat-8 imagery is processed by the

generative network and reconstructed into images with a spatial

resolution of 10 meters, exhibiting spectral characteristics that

closely align with Sentinel-2 observations. The reconstructed

images are then integrated chronologically with original Sentinel-

2 data to form an enhanced and more densely sampled time series.

In the final phenological parameter extraction stage, vegetation

indices are computed from the reconstructed imagery, and multiple

smoothing methods are applied to the time-series vegetation index

data to extract key phenological metrics, including Start of the

Season, End of the Season, Length, Max Day, and Amplitude,

thereby providing a foundation for comprehensive comparative

evaluation and in-depth analytical investigation.
3.2 Performance analysis of remote
sensing image super-resolution
reconstruction

This study validates the resolution reconstruction results of the

proposed method using heterogeneous image pairs consisting of
Frontiers in Plant Science 06
Sentinel-2 (10m resolution) and Landsat-8 (bicubic interpolated to

40m resolution) data acquired on November 4, 2023. Quantitative

comparisons presented in Table 2 demonstrate that the proposed

super-resolution reconstruction network exhibits marginal

superiority over current state-of-the-art super-resolution networks.

Figure 4 presents the detailed reconstruction results of the

proposed method. The results demonstrate that our approach

exhibits robust image restoration capability, generating

reconstructed images with rich textural details and minimal

chromatic aberration compared to the reference images.

To better evaluate the reconstruction performance across different

spectral bands and assess the spectral discrepancies between the

reconstructed and original data, we statistically analyzed the

maximum, minimum, and mean digital number (DN) values for

each band, as shown in Figure 5. The comparison reveals substantial

differences in DN values between Landsat-8 and Sentinel-2 across all

bands. However, after applying GAN-based super-resolution

reconstruction and spectral transfer, the reconstructed images

exhibit pixel values highly similar to those of the original Sentinel-2
FIGURE 3

Overall experimental technical roadmap.
TABLE 2 Quantitative comparison of super-resolution reconstruction
results.

Method SSIM PSNR RMSE

ESRGAN 0.819 27.17 0.377

pix2pix 0.813 27.5 0.36

SwinIR 0.83 28.56 0.363

PGT-GAN 0.834 ± 0.002 28.69 ± 0.05 0.355 ± 0.03
frontiersin.org

https://doi.org/10.3389/fpls.2025.1687246
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Han et al. 10.3389/fpls.2025.1687246
FIGURE 4

Comparison of results of super-resolution reconstruction methods. (a), (d) Landsat-8 images, (b), (e) reconstruction results of the proposed method,
(c), (f) Sentinel-2 images.
FIGURE 5

Comparison of the resolution reconstruction results across spectral bands with the original Landsat-8 and Sentinel-2 images.
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images, with mean DN values closely matching the originals. This

indicates that the reconstructed images maintain a high degree of

spectral fidelity to the original data, supporting their suitability for

subsequent heterogeneous remote sensing phenological extraction.
3.3 Phenology extraction experiment and
results

After reconstructing the images and filling gaps in the satellite

time-series data, four different smoothing methods were applied to

extract annual phenological metrics for paddy fields and drylands

using the NDVI index. These metrics included the start of season

(SOS), end of season (EOS), amplitude (the difference between the
Frontiers in Plant Science 08
maximum and mean values around seasonal minima), seasonal

integral (area under the curve between SOS and EOS), and Length

of Season (difference between SOS and EOS), in order to evaluate

the practical effectiveness of the proposed method. Figures 6, 7

present the extraction results for paddy fields using the Moving

Average smoothing method and Savitzky-Golay filter, respectively.

Figures 8, 9 show the results for drylands using the LOESS filter and

Savitzky-Golay filter, respectively.

As shown in Figures 6-9, under the same smoothing methods,

the reconstructed time-series data exhibit significant differences

from the original data in the mapping of various phenological

metrics. SOS and EOS extracted using the Moving Average and

Savitzky-Golay filtering methods reveal multiple discrepancies. The

largest difference is observed in the mapping of maximum date
FIGURE 6

Phenological indicators extracted by the Moving Smoothing method (from left to right, the results extracted from HLS-30m data, the results
extracted from Sentinel-2 raw data, and the results extracted after temporal reconstruction using this method).
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extracted by the Moving Average method, where the maximum

dates from the original data tend to be later. The reconstructed

images substantially reduce the occurrence of outlier points when

extracting SOS and EOS. In experiments using Savitzky-Golay

filtering, the extracted EOS dates are generally earlier, with

visually noticeable differences in the maximum date and

amplitude.High spatiotemporal resolution data demonstrate better

robustness, most clearly reflected in the Moving Average method

results shown in Figure 6. The HLS dataset exhibits considerable

noise in phenological metric extraction at the field scale, whereas

such noise is absent in the reconstructed data. Across all fields and

methods, phenological results extracted from both the original

Sentinel-2 images and the reconstructed images are more detailed

compared to those from HLS and MODIS data. Although MODIS
Frontiers in Plant Science 09
offers high temporal resolution, as illustrated in Figure 10, it is only

suitable for large-scale, broad-area detection. The 10 m resolution

reconstructed data capture detailed phenological variations between

fields more effectively than the 30 m resolution harmonized HLS

data, which is particularly critical for precise monitoring in

agricultural areas and further highlights the necessity of high-

resolution phenology extraction.

Table 3 and Table 4 presents the average SOS, EOS, Length of

Season, date of maximum value, maximum value, and amplitude

extracted by each method for the study area.

These calculations represent the mean values per pixel, even

minor numerical differences imply substantial variations across the

entire map. Quantitative comparisons reveal that, relative to

interpolation-based gap-filling methods, our proposed filling
FIGURE 7

Phenological indicators extracted by the Savitzky-Golay filter method (from left to right: results from HLS-30m data extraction, results from Sentinel-
2 raw data extraction, and results after temporal reconstruction using the method in this paper.)
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approach consistently shows some degree of difference from the

original results across all smoothing methods.

The differences in SOS and EOS fall within ±4 days and ±2 days,

respectively, while the Length of Season differs within ±2 days.This

study uses phenological metrics extracted from the HLS 30 m

dataset as the benchmark for accuracy evaluation. Compared to

the original data, the results extracted by our method show smaller

date discrepancies relative to HLS 30 m. For both experimental

sites, the differences in SOS and EOS extraction are within ±5 days.
4 Discussion

The accurate extraction of crop phenological stages represents a

critical prerequisite for a wide range of downstream applications in
Frontiers in Plant Science 10
satellite-based remote sensing (Rizos, 2025; Ruan et al., 2023). The

present analysis reveals that persistent temporal gaps in image time

series substantially compromise the reliability of phenological

parameter retrieval, with this effect being particularly pronounced

in high-resolution temporal datasets. Annual surface reflectance

time series are frequently characterized by extensive, consecutive,

and recurrent data voids during key crop growth phases,

predominantly attributable to persistent cloud cover and

precipitation events in estuarine regions. Such data gaps

considerably complicate the derivation of phenological metrics.

Specifically SOS and EOS parameters from original imagery

demonstrate substantial temporal discontinuities, while the

corresponding time-series profiles exhibit marked instability.

Although datasets such as MODIS and Harmonized Landsat

Sentinel datasets provide enhanced temporal resolution compared
FIGURE 8

Phenological indicators of dry land extracted using the LOESS filtering method (from left to right are the extraction results from HLS-30m data, the
extraction results from raw Sentinel-2 data, and the extraction results after time series reconstruction using the method proposed in this paper).
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FIGURE 9

Phenological indicators of dry land extracted using the Savitzky-Golay filtering method (from left to right: results extracted from HLS-30m data,
results extracted from raw Sentinel-2 data, and results extracted after temporal reconstruction using the method described in this article).
FIGURE 10

Schematic diagram of various phenological indicators extracted from MODIS data.
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TABLE 3 Comparison of the extraction results of phenological indicators in paddy field after image reconstruction.

Method Data SOS EOS Length Max day Amp

Moving

Original 169 296
128

221
0.455

Sentinel-2 (17-06-23) (23-10-23) (09-08-23)

After SR 168 294
126

201
0.449

reconstruction (16-06-23) (20-10-23) (20-07-23)

RLOWESS

Original 173 295
122

221
0.522

Sentinel-2 (21-06-23) (21-10-23) (09-08-23)

After SR 169 294
124

201
0.532

reconstruction (18-06-23) (20-10-23) (20-07-23)

LOWESS

Original 170 293
124

226
0.476

Sentinel-2 (18-06-23) (20-10-23) (14-08-23)

After SR 171 293
123

221
0.484

reconstruction (19-06-23) (20-10-23) (09-08-23)

GPR

Original 160 299
140

221
0.453

Sentinel-2 (08-06-23) (26-10-23) (09-08-23)

After SR 161 299
139

221
0.409

reconstruction (09-06-23) (26-10-23) (09-08-23)

Savitzky Golay

Original 167 293
126

221
0.455

Sentinel-2 (15-06-23) (20-10-23) (09-08-23)

After SR 170 293
123

221
0.499

reconstruction (18-06-23) (20-10-23) (09-08-23)

HLS
172 294

122
218

0.603
(20-06-23) (21-10-23) (16-08-23)
F
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TABLE 4 Comparison of the extraction results of phenological indicators in dry field after image reconstruction.

Method Data SOS EOS Length Max day Amp

Moving

Original 138 266
128

171
0.485

Sentinel-2 (05-06-23) (07-10-23) (05-07-23)

After SR 140 265
126

176
0.5

reconstruction (04-06-23) (07-10-23) (10-07-23)

RLOWESS

Original 140 275
135

171
0.516

Sentinel-2 (04-06-23) (17-10-23) (05-07-23)

After SR 141 269
129

176
0.533

reconstruction (05-06-23) (11-10-23) (10-07-23)

LOWESS

Original 141 269
128

171
0.531

Sentinel-2 (05-06-23) (11-10-23) (05-07-23)

After SR 141 266
125

186
0.535

reconstruction (05-06-23) (08-10-23) (20-07-23)

GPR Original 125 273 148 191 0.444

(Continued)
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to single-sensor products, they remain insufficient to meet the

exacting demands of precision phenological monitoring

applications.The application of super-resolution reconstruction

techniques has demonstrated considerable efficacy in addressing

these limitations. Our methodology successfully compensates for

missing high-resolution observations during crucial phenological

stages, thereby substantially improving the temporal continuity and

quantitative accuracy of derived crop growth parameters. This

advancement enables more robust monitoring of agricultural

phenology than conventional approaches reliant solely on original

sensor data.

Figure 11 depicts the reconstructed time-series values alongside

the phenological indicators extracted using the S-G smoothing

method, which demonstrated the greatest robustness among the

tested approaches. As illustrated by the time-series curves in

Figures 11b, d the proposed reconstruction method effectively

generates valid vegetation index data within the study area.

important for mitigating the lack of high-resolution satellite

imagery during key stages of crop development, which otherwise

constrains the accurate detection of phenological transitions.

Relative to the original time series, the reconstructed data exhibits

greater density, with the number of images per year for paddy fields

and drylands increasing from 57 and 55 to 64 and 62, respectively,

and the average revisit intervals reduced from 6.40 days and 6.63

days to 5.70 days and 5.88 days. At critical phenological transition

points (highlighted in red in the figures), the reconstruction method

successfully fills data gaps caused by cloud cover, noise, and other

factors, resulting in peak shifts, slope increases, and changes in

phenological dates. These findings align with the results shown in

Figures 6-9. Future work could extend this analysis to regions

characterized by more severe temporal data voids during critical

growth stages to further evaluate the applicability of the method for

phenological monitoring. It should also be noted that this study

primarily verifies the feasibility of single-image super-resolution

reconstruction for satellite image time-series reconstruction and

phenological extraction, while comparing the outputs against those

derived from the original imagery, the HLS 30-m dataset, and

MODIS products. The HLS 30-m dataset serves as a reference for

accuracy validation of the reconstructed imagery. Nevertheless,
Frontiers in Plant Science 13
more rigorous validation would require integration with ground-

based observations, such as PhenoCam data. In future research, we

will further verify the reliability of the reconstructed images and

derived phenological metrics using ground-truth data.
5 Conclusion

Phenology extraction technology plays a critical role in

agricultural monitoring and decision support systems. High

spatiotemporal resolution data enable precise identification of key

growth stages—such as emergence, heading, and maturation—

while facilitating early detection of crop developmental anomalies

and timely warnings of environmental stressors like drought and

frost. Moreover, this technology provides essential data support for

subsequent studies on carbon cycle dynamics and climate

change.This study introduces a novel framework for phenological

extraction that leverages generative remote sensing image

reconstruction techniques. The proposed approach is built upon a

GAN architecture, designed to simultaneously perform resolution

enhancement and spectral transformation of heterogeneous

imagery. effectively generating synthetic data to fill temporal gaps

in medium-resolution Sentinel-2 time series. A lightweight PGT-

GAN model was developed to extract multiple deep features,

thereby capturing both spectral and spatial characteristics

throughout the resolution reconstruction process. Quantitative

evaluation demonstrates the model’s superior performance in

both SSIM and PSNR metrics, highlighting its capacity to

reconstruct fine-scale textures and spatial details in regions of

missing data while preserving high fidelity to the original

imagery.Additionally, evaluations of spectral transfer consistency

across multiple bands confirm that the method largely maintains

spectral integrity throughout the reconstruction process.

Importantly, this framework enables high-accuracy resolution

reconstruction across an entire annual cycle within a single

training process and, unlike conventional spatiotemporal fusion

approaches, does not require the availability of precisely co-

registered high-resolution reference images. Experiments on real

Sentinel-2 and Landsat-8 datasets were conducted using the
TABLE 4 Continued

Method Data SOS EOS Length Max day Amp

Sentinel-2 (20-05-23) (15-10-23) (25-07-23)

After SR 124 274
150

191
0.438

reconstruction (19-05-23) (16-10-24) (25-07-23)

Savitzky Golay

Original 141 263
122

176
0.595

Sentinel-2 (05-06-23) (05-10-23) (10-07-23)

After SR 141 269
128

183
0.68

reconstruction (05-06-23) (11-10-23) (17-07-23)

HLS
146 273

126
205

0.758
(10-06-23) (15-10-23) (08-08-23)
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reconstructed time series, with results compared against phenology

extraction from the original data, GPR interpolation, HLS 30-m,

and MODIS datasets. The findings demonstrate robust

performance across all comparison groups, and validation against

the HLS-30m phenological indicators confirms the accuracy of our

extraction results.
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By integrating remote sensing image super-resolution with time

series reconstruction, the proposed framework provides a practical

and effective solution for generating high-quality surface

observations. The resultant denser reconstructed time series

enables precise detection of crop phenological transitions and

supports phenology extraction at enhanced spatiotemporal
FIGURE 11

Comparison of the time series curves of original data and reconstructed data (a) Original data in paddy field area (b) Reconstructed data in paddy
field area using the method in this paper (c) Original data in dry field area (d) Reconstructed data in dry field area using the method in this paper.
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resolutions, thereby advancing the capabilities for land surface

phenology monitoring. In practical applications, the utilization of

super-resolution reconstructed data with high spatiotemporal

resolution facilitates the establishment of quantitative

relationships between phenological stages and yield formation,

thereby significantly enhancing the accuracy of yield prediction.

Furthermore, phenological information provides a scientific basis

for optimizing agricultural practices—for instance, by enabling

variable-rate fertilization strategies tailored to specific growth

phases such as the tillering stage, or by triggering preventive

measures during frost-sensitive periods. The integration of these

applications further supports intelligent, data-driven management

across the entire agricultural production chain. In future research,

we plan to validate the proposed method using ground-based

datasets and multi-source remote sensing data such as

PlanetScope and the Gaofen series.
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