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Crop phenology is one of the most critical physiological attributes of agricultural
crops, serving as a direct indicator of growth status throughout the
developmental cycle. With the advancement of phenological research, satellite
remote sensing has emerged as a primary monitoring tool due to its large spatial
coverage and convenient data acquisition. However, high-resolution remote
sensing satellites, which are essential for precise phenological observations,
often have long revisit intervals. Additionally, adverse atmospheric conditions
such as cloud cover frequently compromise the usability of images on multiple
dates. As a result, high-resolution time-series data for crop phenology
monitoring are typically sparse, limiting the ability to capture rapid
phenological changes during the growing season.To address this challenge,
this study focuses on paddy and dryland fields as experimental sites and
proposes a novel method for filling temporal gaps in remote sensing data
using generative image processing techniques. Specifically, a lightweight
super-resolution Generative Adversarial Network (GAN) is developed for image
reconstruction. Using the reconstructed dataset, dense time-series monitoring
and phenological metric extraction were conducted throughout the crop
growing season.(1) The proposed super-resolution reconstruction method
achieves structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR)
values of 0.834 and 28.69, respectively, outperforming mainstream approaches
in reconstructing heterogeneous remote sensing data.(2) Following temporal
reconstruction, the revisit intervals of remote sensing imagery for the two test
sites improved from 6.40 and 6.63 days to 5.70 and 5.88 days, respectively. To
further analyze phenological metrics, four smoothing techniques were applied,
among which Savitzky—Golay filtering yielded the most accurate and robust
results. Although discrepancies were observed between the results obtained
using the reconstructed data and those based on the original datasets, the
proposed method demonstrated smaller deviations from benchmark datasets.
Compared with conventional interpolation-based gap-filling approaches, the
framework demonstrated marked improvements in the accuracy of phenological
extraction, while also delivering superior spatial resolution and robustness
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relative to the Harmonized Landsat and Sentinel (HLS) dataset. Experimental
results confirm that the proposed approach effectively fills temporal gaps in
satellite imagery, enhances data continuity, accurately captures key phenological
turning points, and enables precise crop phenology monitoring at high spatial
and temporal resolution.

KEYWORDS

phenology extraction, satellite remote sensing, super-resolution reconstruction, crop
phenology, generative adversarial network

1 Introduction

Phenology refers to the periodic biological events in organisms
that have evolved in response to long-term climatic conditions
(Schwartz et al., 2002). Vegetation phenology, in particular, serves
as a key parameter for characterizing vegetation dynamics on land
surfaces. It is one of the most direct indicators of terrestrial
ecosystem responses to global climate change (Richardson et al,
2013; Fu et al, 2015; Liu et al., 2022; Li et al,, 2023; Xiong et al.,
2024; Zhang et al., 2025) modulating numerous feedback pathways
between terrestrial ecosystems and the climate system (Wang et al,
2018; Piao et al,, 2019; Yue et al., 2023) and influencing nearly all
aspects of ecology and biological evolution (Miller-Rushing and
Weltzin, 2009; Caparros-Santiago et al., 2021).Over the course of its
development, phenological science has established a range of
methods for observing and predicting vegetation phenology,
which can generally be categorized into three main types: ground-
based observations (including manual monitoring, phenocam
observations, and flux measurements), remote sensing
monitoring, and phenological modeling. Among these, remote
sensing has gained widespread application due to its large-scale
coverage and efficient data acquisition capabilities (Guan et al,
2014; Mascolo et al., 2016; Steele-Dunne et al., 2017; Wang et al.,
2018). However, the extraction of crop phenology remains more
challenging, primarily due to the rapid and continuous changes in
vegetation indices during crop growth stages, which require high
temporal continuity. This challenge has attracted considerable
attention in the research community, prompting the development
of various time-series gap-filling methods.

Since the early work by Thompson (1980), who used Landsat
optical sensors to monitor wheat responses to water stress, optical
remote sensing has played a pivotal role in advancing crop
phenology research. With the continuous development of remote
sensing technology, both spatial and temporal resolution have
improved. However, high-resolution imagery remains difficult to
obtain consistently, while medium- to low-resolution data are prone
to mixed-pixel effects. Moreover, cloud cover and aerosols
frequently contaminate satellite-derived observations. Even
sensors with daily revisit capabilities, such as MODIS, often yield
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limited usable data due to these constraints (Zhang et al., 2003;
Fraser et al., 2009; Xu et al., 2017).

To address these issues, several scholars have proposed methods
for data reconstruction. For instance, Hermance et al. used
harmonic models to perform linear fits to missing Landsat data,
enabling the prediction of land cover dynamics for arbitrary dates
(Hermance, 2007). Although such spatial interpolation techniques
are effective in noise reduction and smoothing, they often lack
accuracy and real data support for reconstructing missing
observations. In the context of multi-sensor time-series
reconstruction, Roy et al. utilized heterogeneous data from
Landsat-5 and Landsat-7 to generate dense NDVI time series over
six agricultural regions in the United States (Kovalskyy and Roy,
2013). Their research group also compared BRDF-corrected
reflectance and NDVI values between Sentinel-2A and Landsat-8
under various atmospheric and surface conditions, revealing
significant differences when data were not corrected (Zhang et al.,
2018). Onojeghuo et al (Onojeghuo et al., 2018). fused MODIS and
Landsat data to obtain high spatiotemporal resolution NDVI time
series (30 m spatial resolution at 8-day intervals), demonstrating
improved accuracy in rice phenology monitoring. Such data fusion
approaches have been validated as effective means to enhance crop
phenology detection by leveraging the complementary strengths of
different satellite systems. Studies employing harmonized Landsat
and Sentinel-2 data have also emerged in recent years, though the
spatial resolution remains limited to 30 m. Recent research has
shown that higher spatial resolution significantly improves
phenological detection accuracy (Song et al., 2024). Moreover,
high-frequency observations are more suitable for capturing rapid
changes in crop growth. However, a single sensor is often
insufficient for continuous monitoring, underscoring the need for
further exploration of multi-satellite, high-resolution phenological
monitoring strategies.With the rapid advancement of generative
image processing techniques, deep learning frameworks based on
Generative Adversarial Networks have achieved impressive results
in remote sensing image tasks. GANs offer powerful capabilities for
style transfer and resolution enhancement, enabling cross-sensor
resolution reconstruction and spectral harmonization—thereby
addressing the key limitations of interpolation and fusion

frontiersin.org


https://doi.org/10.3389/fpls.2025.1687246
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Han et al.

methods that lack data support, as well as discrepancies in
resolution and spectral properties among heterogeneous sensors.

In this context, we propose a novel approach that employs a
GAN framework to unify spatial resolution and spectral
characteristics across heterogeneous satellite imagery. The method
generates a time series of remote sensing images at a consistent
spatial scale (10 m) and within the same spectral bands, facilitating
field-scale, high-resolution crop monitoring and accurate
phenological extraction. Our research includes two main
innovations: (1) firstly, this study proposes a lightweight
generative adversarial network model to train the network and
evaluate the quality of the generated images; (2) Secondly, the
spatial resolution and spectral range of the annual Landsat-8 image
data and the Sentinel-2 image data were unified by using the
proposed resolution reconstruction method, and dense time-series
data were generated and applied to crop phenological extraction,
and the performance of each extraction method was evaluated. The
results show that the optical time series data generated by the
proposed method has short interval revisit and 10-meter spatial
resolution, which significantly improves the accuracy of
phenological monitoring, so as to more accurately identify key
phenological transition nodes. In addition, this scheme provides a
flexible solution to enhance the spatial or temporal resolution of
time-series imagery without being limited by the initial data scale,
showing great potential for advancing satellite-based
phenological research.

2 Study area and data sources
2.1 Overview of the study area

The study area is located in the southern part of Liaoning
Province, near the estuary of the Liao River. The region experiences
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FIGURE 1
Schematic map of the study area. (a) paddy fields, (b) dry fields.
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a temperate, semi-humid monsoon climate, characterized by higher
precipitation during spring and summer, and relatively lower
rainfall in autumn and winter. The annual average precipitation is
approximately 650 mm, with a mean annual temperature of 8.5 °C.
The Liaohe Plain, where the study area is situated, is a key protected
zone of the northeastern black soil region. It is known as a major
agricultural production area in south-central Liaoning, one of
China’s most important grain-producing regions (Zhou et al,
2016; Yu et al., 2024).

For the purposes of this study, extensive tracts of both paddy
fields and dryland croplands were selected as experimental sites for
phenological analysis. The study area is geographically situated
between 40°49'N and 42°05'N latitude and 121°25’E and 123°00'E
longitude. The dominant agricultural crops cultivated within this
region are rice, maize, and sorghum. A schematic representation of
the study area is provided in Figure 1.

2.2 Data description

2.2.1 Generation of super-resolution remote
sensing image data

a) Training Dataset for Super-Resolution Network.

To construct the base dataset for 4x super-resolution
reconstruction, we first selected 20 Sentinel-2 images acquired
during different seasons across the study area. These images were
downsampled to 40 m resolution using bicubic interpolation to
simulate low-resolution inputs for large-scale pretraining.
Additionally, a set of 79 paired images acquired on the same
dates by Sentinel-2 and Landsat-8 was included to form a
heterogeneous image dataset, Similarly, these Landsat-8 data are
downsampled from 30m to 40m, which is a 4 x resolution difference
from Sentinel-2 data, which was used to fine-tune the generative
neural network for improved performance on multi-source data.
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b) Super-Resolution Image Generation Method.

We designed a compact and lightweight model named PGT-
GAN (Progressive Generator Transformer GAN), as illustrated in
Figure 2, to meet the requirements of super-resolution
reconstruction for time-series remote sensing imagery. This
architecture balances generation quality comparable to state-of-
the-art networks with structural simplicity. The generator consists of
two main components: deep feature extraction and resolution
enhancement. The low-resolution input images (from step a) are
first passed through a series of residual blocks and Swin
Transformer modules to extract deep features (Liu, 2021). These
features are then progressively upsampled using multiple blocks
composed of convolutional layers, pixel normalization layers, and

Input
(LR image)

<
«

10.3389/fpls.2025.1687246

Leaky ReLU (LReLU) activation functions.The discriminator
adopts the structure of the PGGAN framework (Karras et al,
2018), performing progressive downsampling through
convolutional and LReLU layers. The output is then normalized,
and the loss is computed between the generated images and the
original high-resolution references to guide network
optimization.The network employs the Adam optimizer with a
learning rate set to 0.0003, a batch size of 4, and is trained for
200 epochs to achieve high-quality reconstructed
images.Regarding the experimental environment, the network was
trained on a system equipped with an NVIDIA Quadro P5000 GPU
running Ubuntu 20.04, utilizing CUDA version 12.0 and
TensorFlow version 2.8.0.
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FIGURE 2
Architecture of the PGT-GAN network.
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2.2.2 Acquisition of original time-series remote
sensing imagery

Sentinel-2 is a series of high-resolution multispectral imaging
satellites launched by the European Space Agency (ESA), consisting
of two satellites—Sentinel-2A and Sentinel-2B—launched in 2015
and 2017, respectively. Each satellite is equipped with a
Multispectral Instrument (MSI), capable of capturing data across
13 spectral bands ranging from the visible and near-infrared to the
shortwave infrared regions. The sensor has a swath width of up to
290 km, with spatial resolutions of 10 m, 20 m, and 60 m depending
on the spectral band. The orbital parameters of the Sentinel-2
satellites are summarized in Table 1.

Regarding the acquisition of original time-series imagery, this
study collected all cloud-free and noise-free Sentinel-2 images
captured in 2023 within the geographic coordinates of 40.84°N-
40.92°N and 121.98°E-122.07°E. These data were downloaded from
the Copernicus Open Access Hub (https://www.esa.int/) at Level-
1C processing. Radiometric and atmospheric corrections were
applied using the Sen2Cor plugin developed by the ESA, producing
Level-2A data. These corrected images served as the foundational
dataset for constructing the annual time series used in continuous
monitoring and phenological extraction. In the paddy field area, a
total of 57 valid time-series images were obtained, with an average
temporal resolution of 6.40 days. For the dryland cropland area, 55
valid images were collected, with an average temporal resolution of
6.64 days. Each image includes the four spectral bands essential for
phenological extraction: red, green, blue, and near-infrared (NIR).

2.3 Evaluation metrics and comparison
methods

2.3.1 Evaluation metrics for super-resolution
reconstruction

In the context of single-image super-resolution reconstruction
for remote sensing applications, two widely adopted evaluation
metrics were selected: the Peak Signal-to-Noise Ratio and the
Structural Similarity Index Measure (Hore and Ziou, 2010). PSNR
measures the ratio between the maximum attainable power of a
signal and the power of distorting noise that compromises the
fidelity of its representation. Mathematically, PSNR is defined by
Equation 1, where MAX denotes the maximum possible pixel value
in the image, and MSE represents the mean squared error.

PSNR =10-1 MAX"
= 0810 MSE

TABLE 1 Sentinel-2 A/B orbital parameters.

Parameter Indicator

Orbit type Sun-synchronous orbit
Orbit height 786km
Orbital inclination 98.5
Regression cycle 10 days
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SSIM is another widely adopted metric for assessing image
quality, grounded in the hypothesis that the human visual system
perceives images by extracting structural information. It serves as a
quantitative measure of the similarity between two images. SSIM
evaluates image fidelity based on three comparative components:
luminance, contrast, and structure, as formulated in Equation 2:

SSIM(xy) = [I(x, y)* - c(x, )P - s(x, Y

Where I(x, y) quantifies the luminance difference, c(x, y)
measures the contrast difference (represented by the standard
deviation of pixel intensities), and s(x, y) evaluates the structural
dissimilarity between images.

2.3.2 Comparison and evaluation of phenological
metrics

To demonstrate the effectiveness of the proposed method, we
compared the phenological metrics extracted using the super-
resolution time-series reconstruction approach with those obtained
from both interpolation-based gap-filling methods and the original
data, under various smoothing conditions. The smoothing models
employed in this study have been widely validated for their
effectiveness and include Moving Average Smoothing (Moving),
Locally Weighted Scatterplot Smoothing (LOWESS) (Cleveland,
1979), Robust LOWESS (RLOWESS) (Wilcox, ), and the Savitzky-
Golay (S-G) filter (Chen et al., 2004; Belda et al., 2020). Our objective
is to conduct a comprehensive evaluation of the proposed method
under different smoothing algorithms and assess its robustness across
varying conditions.Among the interpolation techniques commonly
used in current phenological studies, Gaussian Process Regression
(GPR) (Schulz et al,, 2018) is considered one of the preferred methods
for filling gaps in time-series imagery. Notably, GPR is also one of the
few interpolation approaches capable of providing associated
uncertainty estimates. Therefore, GPR was adopted in this study as
a benchmark interpolation method to fill remaining gaps in the time
series, serving as a comparative reference.

For the accuracy assessment of the extracted phenological
metrics, this study employed the HLS dataset as the reference
standard. The HLS dataset, released by NASA, is based on
atmospherically corrected surface reflectance products from
Landsat 8-9 Level-1 and Sentinel-2 Level-1C data. It undergoes
multiple preprocessing steps, including atmospheric compensation,
view angle correction, and spectral harmonization, to generate a
globally consistent time-series product at 30 m spatial resolution.
Since its global release in April 2013, HLS data has been widely
applied in phenological extraction and validation studies (Claverie
et al., 2018; Bolton et al., 2020; Tran et al., 2023).

3 Phenology extraction experiment
3.1 Experimental workflow diagram
The experimental workflow adopted in this study, as

schematically illustrated in Figure 3, is systematically organized
into four main phases: data preprocessing, model training, time-
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FIGURE 3
Overall experimental technical roadmap.

series reconstruction, and phenological parameter extraction.
During the data preprocessing stage, input-target pairs required
for model training are constructed, while test imagery from
heterogeneous satellite platforms is converted into a format
compatible with the network architecture. This is specifically
implemented by pairing the images and cropping them into
corresponding patches of 64x64 and 256x256 pixels, reflecting a
four-fold resolution relationship. In the subsequent phase, a
generative deep learning model is trained using the prepared
dataset, through which Landsat-8 imagery is processed by the
generative network and reconstructed into images with a spatial
resolution of 10 meters, exhibiting spectral characteristics that
closely align with Sentinel-2 observations. The reconstructed
images are then integrated chronologically with original Sentinel-
2 data to form an enhanced and more densely sampled time series.
In the final phenological parameter extraction stage, vegetation
indices are computed from the reconstructed imagery, and multiple
smoothing methods are applied to the time-series vegetation index
data to extract key phenological metrics, including Start of the
Season, End of the Season, Length, Max Day, and Amplitude,
thereby providing a foundation for comprehensive comparative
evaluation and in-depth analytical investigation.

3.2 Performance analysis of remote
sensing image super-resolution
reconstruction

This study validates the resolution reconstruction results of the
proposed method using heterogeneous image pairs consisting of
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Sentinel-2 (10m resolution) and Landsat-8 (bicubic interpolated to
40m resolution) data acquired on November 4, 2023. Quantitative
comparisons presented in Table 2 demonstrate that the proposed
super-resolution reconstruction network exhibits marginal
superiority over current state-of-the-art super-resolution networks.

Figure 4 presents the detailed reconstruction results of the
proposed method. The results demonstrate that our approach
exhibits robust image restoration capability, generating
reconstructed images with rich textural details and minimal
chromatic aberration compared to the reference images.

To better evaluate the reconstruction performance across different
spectral bands and assess the spectral discrepancies between the
reconstructed and original data, we statistically analyzed the
maximum, minimum, and mean digital number (DN) values for
each band, as shown in Figure 5. The comparison reveals substantial
differences in DN values between Landsat-8 and Sentinel-2 across all
bands. However, after applying GAN-based super-resolution
reconstruction and spectral transfer, the reconstructed images
exhibit pixel values highly similar to those of the original Sentinel-2

TABLE 2 Quantitative comparison of super-resolution reconstruction
results.

Method SSIM PSNR RMSE

ESRGAN 0.819 27.17 0377
pix2pix 0.813 27.5 0.36
SwinIR 0.83 28.56 0363

PGT-GAN 0.834 + 0.002 28.69 + 0.05 0.355 + 0.03
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(d)

Comparison of results of super-resolution reconstruction methods. (a), (d) Landsat-8 images, (b), (e) reconstruction results of the proposed method,

FIGURE 4

(c). (f) Sentinel-2 images.
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FIGURE 5

Comparison of the resolution reconstruction results across spectral bands with the original Landsat-8 and Sentinel-2 images.
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images, with mean DN values closely matching the originals. This
indicates that the reconstructed images maintain a high degree of
spectral fidelity to the original data, supporting their suitability for
subsequent heterogeneous remote sensing phenological extraction.

3.3 Phenology extraction experiment and
results

After reconstructing the images and filling gaps in the satellite
time-series data, four different smoothing methods were applied to
extract annual phenological metrics for paddy fields and drylands
using the NDVT index. These metrics included the start of season
(SOS), end of season (EOS), amplitude (the difference between the

10.3389/fpls.2025.1687246

maximum and mean values around seasonal minima), seasonal
integral (area under the curve between SOS and EOS), and Length
of Season (difference between SOS and EOS), in order to evaluate
the practical effectiveness of the proposed method. Figures 6, 7
present the extraction results for paddy fields using the Moving
Average smoothing method and Savitzky-Golay filter, respectively.
Figures 8, 9 show the results for drylands using the LOESS filter and
Savitzky-Golay filter, respectively.

As shown in Figures 6-9, under the same smoothing methods,
the reconstructed time-series data exhibit significant differences
from the original data in the mapping of various phenological
metrics. SOS and EOS extracted using the Moving Average and
Savitzky-Golay filtering methods reveal multiple discrepancies. The
largest difference is observed in the mapping of maximum date

Phenological indicators extracted by the Moving Smoothing method (from left to right, the results extracted from HLS-30m data, the results
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Phenological indicators extracted by the Savitzky-Golay filter method (from left to right: results from HLS-30m data extraction, results from Sentinel-
2 raw data extraction, and results after temporal reconstruction using the method in this paper.)

extracted by the Moving Average method, where the maximum
dates from the original data tend to be later. The reconstructed
images substantially reduce the occurrence of outlier points when
extracting SOS and EOS. In experiments using Savitzky-Golay
filtering, the extracted EOS dates are generally earlier, with
visually noticeable differences in the maximum date and
amplitude. High spatiotemporal resolution data demonstrate better
robustness, most clearly reflected in the Moving Average method
results shown in Figure 6. The HLS dataset exhibits considerable
noise in phenological metric extraction at the field scale, whereas
such noise is absent in the reconstructed data. Across all fields and
methods, phenological results extracted from both the original
Sentinel-2 images and the reconstructed images are more detailed
compared to those from HLS and MODIS data. Although MODIS

Frontiers in Plant Science

offers high temporal resolution, as illustrated in Figure 10, it is only
suitable for large-scale, broad-area detection. The 10 m resolution
reconstructed data capture detailed phenological variations between
fields more effectively than the 30 m resolution harmonized HLS
data, which is particularly critical for precise monitoring in
agricultural areas and further highlights the necessity of high-
resolution phenology extraction.

Table 3 and Table 4 presents the average SOS, EOS, Length of
Season, date of maximum value, maximum value, and amplitude
extracted by each method for the study area.

These calculations represent the mean values per pixel, even
minor numerical differences imply substantial variations across the
entire map. Quantitative comparisons reveal that, relative to
interpolation-based gap-filling methods, our proposed filling
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FIGURE 8

Phenological indicators of dry land extracted using the LOESS filtering method (from left to right are the extraction results from HLS-30m data, the
extraction results from raw Sentinel-2 data, and the extraction results after time series reconstruction using the method proposed in this paper).

approach consistently shows some degree of difference from the
original results across all smoothing methods.

The differences in SOS and EOS fall within +4 days and +2 days,
respectively, while the Length of Season differs within +2 days.This
study uses phenological metrics extracted from the HLS 30 m
dataset as the benchmark for accuracy evaluation. Compared to
the original data, the results extracted by our method show smaller
date discrepancies relative to HLS 30 m. For both experimental
sites, the differences in SOS and EOS extraction are within +5 days.

4 Discussion

The accurate extraction of crop phenological stages represents a
critical prerequisite for a wide range of downstream applications in

Frontiers in Plant Science

satellite-based remote sensing (Rizos, 2025; Ruan et al., 2023). The
present analysis reveals that persistent temporal gaps in image time
series substantially compromise the reliability of phenological
parameter retrieval, with this effect being particularly pronounced
in high-resolution temporal datasets. Annual surface reflectance
time series are frequently characterized by extensive, consecutive,
and recurrent data voids during key crop growth phases,
predominantly attributable to persistent cloud cover and
precipitation events in estuarine regions. Such data gaps
considerably complicate the derivation of phenological metrics.
Specifically SOS and EOS parameters from original imagery
demonstrate substantial temporal discontinuities, while the
corresponding time-series profiles exhibit marked instability.
Although datasets such as MODIS and Harmonized Landsat
Sentinel datasets provide enhanced temporal resolution compared
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Phenological indicators of dry land extracted using the Savitzky-Golay filtering method (from left to right: results extracted from HLS-30m data,
results extracted from raw Sentinel-2 data, and results extracted after temporal reconstruction using the method described in this article).

Start of the season

s

10

i
5 10 15 20 2 0

FIGURE 10
Schematic diagram of various phenological indicators extracted from MODIS data.
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TABLE 3 Comparison of the extraction results of phenological indicators in paddy field after image reconstruction.

Method DEIE] SOS EOS Length Max day Amp
Original 169 296 221
128 0.455
Sentinel-2 (17-06-23) (23-10-23) (09-08-23)
Moving
After SR 168 294 201
126 0.449
reconstruction (16-06-23) (20-10-23) (20-07-23)
Original 173 295 221
122 0.522
Sentinel-2 (21-06-23) (21-10-23) (09-08-23)
RLOWESS
After SR 169 294 201
124 0.532
reconstruction (18-06-23) (20-10-23) (20-07-23)
Original 170 293 226
124 0.476
Sentinel-2 (18-06-23) (20-10-23) (14-08-23)
LOWESS
After SR 171 293 221
123 0.484
reconstruction (19-06-23) (20-10-23) (09-08-23)
Original 160 299 221
140 0.453
Sentinel-2 (08-06-23) (26-10-23) (09-08-23)
GPR
After SR 161 299 221
139 0.409
reconstruction (09-06-23) (26-10-23) (09-08-23)
Original 167 293 221
126 0.455
Sentinel-2 (15-06-23) (20-10-23) (09-08-23)
After SR 170 293 221
Savitzky Golay 123 0.499
reconstruction (18-06-23) (20-10-23) (09-08-23)
172 294 218
HLS 122 0.603
(20-06-23) (21-10-23) (16-08-23)

TABLE 4 Comparison of the extraction results of phenological indicators in dry field after image reconstruction.

Method Data SOS EOS Length Max day Amp
Original 138 266 171
128 0.485
Sentinel-2 (05-06-23) (07-10-23) (05-07-23)
Moving
After SR 140 265 176
126 0.5
reconstruction (04-06-23) (07-10-23) (10-07-23)
Original 140 275 171
135 0.516
Sentinel-2 (04-06-23) (17-10-23) (05-07-23)
RLOWESS
After SR 141 269 176
129 0.533
reconstruction (05-06-23) (11-10-23) (10-07-23)
Original 141 269 171
128 0.531
Sentinel-2 (05-06-23) (11-10-23) (05-07-23)
LOWESS
After SR 141 266 186
125 e — 0.535
reconstruction (05-06-23) (08-10-23) (20-07-23)
GPR Original 125 273 148 191 0.444
(Continued)
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TABLE 4 Continued

Method Data SOS EOS Length Max day Amp
Sentinel-2 (20-05-23) (15-10-23) (25-07-23)
After SR 124 274 191
150 0.438
reconstruction (19-05-23) (16-10-24) (25-07-23)
Original 141 263 176
122 0.595
Sentinel-2 (05-06-23) (05-10-23) (10-07-23)
After SR 141 269 183
Savitzky Golay 128 0.68
reconstruction (05-06-23) (11-10-23) (17-07-23)
146 273 205
HLS 126 0.758
(10-06-23) (15-10-23) (08-08-23)

to single-sensor products, they remain insufficient to meet the  more rigorous validation would require integration with ground-
exacting demands of precision phenological monitoring  based observations, such as PhenoCam data. In future research, we
applications.The application of super-resolution reconstruction  will further verify the reliability of the reconstructed images and
techniques has demonstrated considerable efficacy in addressing  derived phenological metrics using ground-truth data.
these limitations. Our methodology successfully compensates for
missing high-resolution observations during crucial phenological
stages, thereby substantially improving the temporal continuity and 5 Conclusion
quantitative accuracy of derived crop growth parameters. This
advancement enables more robust monitoring of agricultural Phenology extraction technology plays a critical role in
phenology than conventional approaches reliant solely on original ~ agricultural monitoring and decision support systems. High
sensor data. spatiotemporal resolution data enable precise identification of key
Figure 11 depicts the reconstructed time-series values alongside ~ growth stages—such as emergence, heading, and maturation—
the phenological indicators extracted using the S-G smoothing  while facilitating early detection of crop developmental anomalies
method, which demonstrated the greatest robustness among the  and timely warnings of environmental stressors like drought and
tested approaches. As illustrated by the time-series curves in  frost. Moreover, this technology provides essential data support for
Figures 11b, d the proposed reconstruction method effectively  subsequent studies on carbon cycle dynamics and climate
generates valid vegetation index data within the study area.  change.This study introduces a novel framework for phenological
important for mitigating the lack of high-resolution satellite  extraction that leverages generative remote sensing image
imagery during key stages of crop development, which otherwise  reconstruction techniques. The proposed approach is built upon a
constrains the accurate detection of phenological transitions. ~ GAN architecture, designed to simultaneously perform resolution
Relative to the original time series, the reconstructed data exhibits =~ enhancement and spectral transformation of heterogeneous
greater density, with the number of images per year for paddy fields ~ imagery. effectively generating synthetic data to fill temporal gaps
and drylands increasing from 57 and 55 to 64 and 62, respectively,  in medium-resolution Sentinel-2 time series. A lightweight PGT-
and the average revisit intervals reduced from 6.40 days and 6.63 ~ GAN model was developed to extract multiple deep features,
days to 5.70 days and 5.88 days. At critical phenological transition  thereby capturing both spectral and spatial characteristics
points (highlighted in red in the figures), the reconstruction method  throughout the resolution reconstruction process. Quantitative
successfully fills data gaps caused by cloud cover, noise, and other  evaluation demonstrates the model’s superior performance in
factors, resulting in peak shifts, slope increases, and changes in  both SSIM and PSNR metrics, highlighting its capacity to
phenological dates. These findings align with the results shown in  reconstruct fine-scale textures and spatial details in regions of
Figures 6-9. Future work could extend this analysis to regions missing data while preserving high fidelity to the original
characterized by more severe temporal data voids during critical ~— imagery.Additionally, evaluations of spectral transfer consistency
growth stages to further evaluate the applicability of the method for  across multiple bands confirm that the method largely maintains
phenological monitoring. It should also be noted that this study  spectral integrity throughout the reconstruction process.
primarily verifies the feasibility of single-image super-resolution = Importantly, this framework enables high-accuracy resolution
reconstruction for satellite image time-series reconstruction and  reconstruction across an entire annual cycle within a single
phenological extraction, while comparing the outputs against those  training process and, unlike conventional spatiotemporal fusion
derived from the original imagery, the HLS 30-m dataset, and  approaches, does not require the availability of precisely co-
MODIS products. The HLS 30-m dataset serves as a reference for  registered high-resolution reference images. Experiments on real
accuracy validation of the reconstructed imagery. Nevertheless,  Sentinel-2 and Landsat-8 datasets were conducted using the
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FIGURE 11

Comparison of the time series curves of original data and reconstructed data (a) Original data in paddy field area (b) Reconstructed data in paddy
field area using the method in this paper (c) Original data in dry field area (d) Reconstructed data in dry field area using the method in this paper.

reconstructed time series, with results compared against phenology
extraction from the original data, GPR interpolation, HLS 30-m,
and MODIS datasets. The findings demonstrate robust
performance across all comparison groups, and validation against
the HLS-30m phenological indicators confirms the accuracy of our

extraction results.
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By integrating remote sensing image super-resolution with time
series reconstruction, the proposed framework provides a practical
and effective solution for generating high-quality surface
observations. The resultant denser reconstructed time series
enables precise detection of crop phenological transitions and
supports phenology extraction at enhanced spatiotemporal
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resolutions, thereby advancing the capabilities for land surface
phenology monitoring. In practical applications, the utilization of
super-resolution reconstructed data with high spatiotemporal
resolution facilitates the establishment of quantitative
relationships between phenological stages and yield formation,
thereby significantly enhancing the accuracy of yield prediction.
Furthermore, phenological information provides a scientific basis
for optimizing agricultural practices—for instance, by enabling
variable-rate fertilization strategies tailored to specific growth
phases such as the tillering stage, or by triggering preventive
measures during frost-sensitive periods. The integration of these
applications further supports intelligent, data-driven management
across the entire agricultural production chain. In future research,
we plan to validate the proposed method using ground-based
datasets and multi-source remote sensing data such as
PlanetScope and the Gaofen series.
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