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Accurate, efficient, and economical detection of Litchi pests and diseases is
critical for sustainable orchard management, yet traditional manual methods
often fall short in these aspects. To address these limitations, an improved
YOLOvV5s model, named YOLOvV5s-SNV2-GSE, was proposed in this study for
real-time detection on embedded platforms. The backbone network was
modified by replacing conventional convolutional blocks with ShuffleNetV2,
leveraging channel shuffling and group convolution to reduce model
parameters and computational cost. In the detection head, standard
convolutional blocks and C3 modules were replaced with depthwise
convolutions (DWConv) and C3Ghost modules to further minimize model size.
Squeeze-and-Excitation (SE), Convolutional Block Attention Module (CBAM), and
Coordinate Attention (CoordAtt) mechanisms were incorporated into the
backbone network to enhance feature extraction. Additionally, the Efficient
Intersection over Union (EloU) loss function was adopted to improve
convergence speed and bounding box regression accuracy. The experimental
results demonstrated that the improved YOLOv5s-SNV2-GSE model achieved a
mean average precision (mAP) of 96.7%. Compared to the original YOLOV5s, the
proposed model reduced computational cost by 87.5%, number of parameters
by 86.7%, and model size by 55.6%. When deployed on a Raspberry Pi 4B, the
model achieved an average inference speed of 3.3 frames per second (FPS),
representing a 57.1% improvement and meeting real-time detection
requirements. These results indicate that the proposed model provides a
practical and efficient solution for real-time Litchi pests and diseases detection
in resource-constrained environments.
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1 Introduction

China is the world leader in both the planting area and yield of
Litchi, particularly in Guangdong Province, where Litchi cultivation
is not only a local specialty industry but also plays an important role
in the global market (Zhuang and Qiu, 2021; Xiang, 2020).
However, Litchi is highly vulnerable to pests and diseases stress
during growth, which can significantly reduce yield and fruit
quality, and in severe cases, lead to plant death (Huang, 2021).
Therefore, establishing an efficient and precise pests and diseases
monitoring and control system has become an urgent need for the
sustainable development of the Litchi industry. Traditional manual
inspection and visual diagnosis methods are limited by low
efficiency and strong subjectivity, which makes deep learning-
based intelligent detection technologies a research hotspot in the
field of agricultural engineering.

The rapid development of deep learning (DL) techniques,
particularly Convolutional Neural Networks (CNNs), has
provided new technological support for the intelligent detection
of crop pests and diseases (Xu et al., 2023; Guo et al,, 2025). In
recent years, significant progress has been made in deep learning
(DL)-based pests and diseases monitoring and diagnosis, with
extensive research conducted by both domestic and international
scholars (Zhou et al,, 2024; Li et al., 2024; Shoaib et al., 2025;
Rahman et al., 2020). Tan et al. (2024) developed a mobile real-time
citrus disease diagnosis system by integrating the Inceptionv3
backbone network with the CBAM, achieving an accuracy of
98.49%. Ai et al. (2020) designed a crop pests and diseases
recognition app based on the Inception-ResNet-v2 model, with an
overall recognition accuracy of 86.1%. Waheed et al. (2022) used
various DL models to detect ginger pests and diseases, finding that
the VGG-16 algorithm achieved an accuracy of 96%. Jelali (2024)
utilized CNN, Faster R-CNN, and YOLOv5s models for tomato pest
detection, with the CNN model achieving 90% accuracy. Yue et al.
(2024) introduced the SCYLLA-IOU loss function in the YOLOvS8s
model, improving pest detection accuracy to 97.4%, providing a
reference for optimizing small target detection models. Xie et al.
(2023) adopted G-GhostNet as the backbone network, introduced
the Centered Moment Pooling Attention (CMPA) mechanism, and
an improved loss function, and constructed the FCOS-FL model,
effectively achieving accurate detection of Litchi leaf pests and
diseases with an accuracy rate of 91.3%. Despite significant
advancements in deep learning for crop pests and diseases
detection, research specifically targeting Litchi remains relatively
limited. Existing studies have primarily focused on static image-
based recognition, with insufficient attention to real-time detection
capabilities and deployment on resource-constrained embedded
platforms. Traditional models such as Faster R-CNN and VGG-
16, for instance, generally incur substantial computational overhead
when processing high-dimensional data, rendering them less
adaptable to scenarios with stringent real-time requirements (Ren
etal, 2017; Simonyan and Zisserman, 2014). In contrast, YOLOv5s
distinguishes itself through its highly lightweight architecture. It not
only satisfies the deployment demands of embedded platforms but
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also maintains high detection accuracy. This unique balance of
efficiency and precision gives it a distinct competitive edge when
compared to other deep learning models such as YOLOv8s and
Faster R-CNN. Consequently, improving upon the YOLOvV5s
framework represents a feasible strategy for this study.

To address the challenges of limited accuracy, low efficiency,
and high deployment costs in Litchi pests and diseases detection,
this paper proposed an improved YOLOv5s model by integrating a
lightweight backbone network and attention mechanisms, thereby
developing an efficient and accurate detection model for
deployment on the Raspberry Pi 4B embedded platform. The
research result not only provides technical support for the green
pest control of Litchi but also offers theoretical and practical
references for the construction of intelligent monitoring systems
for other crop pests and diseases.

2 Materials and methods

2.1 Litchi pests and diseases dataset
acquisition

The dataset used in this study was collected in November 2024
from a Litchi orchard in Lianjiang City, Zhanjiang, Guangdong
Province. The temperature ranged from 22°C to 28°C, the weather
was clear, and the orchard received abundant natural sunlight. Data
collection took place during the daytime, between 9:00 and 15:00.
Each image depicts the natural condition of Litchi leaves, consistent
with real-world growing environments. The dataset includes five
categories of pests and diseases instances, Dasineura, Anthracnose,
Algal spot, Sooty mold, and Ulcer disease. These primarily consist of
pest infestations, fungal diseases, and algal diseases. The Dasineura
involves the female adult laying eggs on the underside or tips of
young leaves. Upon hatching, the larvae feed on the leaves,
stimulating abnormal cell proliferation, resulting in galls. Fungal
diseases such as Anthracnose, Ulcer disease, and Sooty mold
require specific temperature and humidity conditions, as well as
transmission vectors. Anthracnose mainly affects the leaves, flower
clusters, and fruit, causing brown lesions and rot. Sooty mold is
associated with pests such as scale insects and aphids, whose secreted
sugars provide a breeding substrate for fungi, forming a black mold
that impacts photosynthesis. Ulcer disease primarily targets the
branches and main trunk. The pathogens enter through wounds,
causing necrosis and cracking of the bark. The lesions turn from
reddish-brown to gray-brown with a central depression. Algal spot
disease, caused by parasitic algae, manifests on the leaf surface as
gray-green to yellow-brown spots, with spores being spread by
rainwater. To ensure the independence of the dataset, images
underwent preprocessing through selection and cropping. Images
with artifacts or occlusions by non-target objects were excluded, while
those with clear pests and diseases symptoms were retained. Large
background areas were cropped to focus on the affected leaf regions,
resulting in 545 images used to create the Litchi leaf pests and diseases
dataset. Samples of the five pests and diseases are shown in Figure 1.
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(A)

(B)

Litchi pests and diseases. (A) Dasineura (B) Anthracnose (C) Algal spot (D) Sooty mold (E) Ulcer disease.

FIGURE 1

2.2 Dataset construction

To improve the model’s generalization ability and robustness,
data augmentation was performed on the original dataset.
Techniques including mirroring, rotation, brightness adjustment,
and noise addition were applied, with at least two methods
randomly combined for each sample to enhance the size and
diversity of the training set. As a result, the dataset was expanded
from 545 to 2,180 images. The distribution of samples across disease
categories is presented in Table 1. The visual effects of the
augmentation are illustrated in Figure 2, where Figure 2A shows
an original image and Figure 2B shows the corresponding
augmented version.

Each image was annotated using the Labellmage tool (Version
1.2.2), with labels for Dasineura, Anthracnose, Algal spot, Sooty
mold, and Ulcer disease being “yeyingwen”, “tanjv”, “zaoban”,
“meiyan” and “kuiyang”, respectively. The generated target
information was stored in the corresponding TXT files. The
dataset was split into training, validation, and test sets in a 7:2:1
ratio, as shown in Table 2. The dataset structure was illustrated in
the folder hierarchy in Figure 3, with the “images” and “labels”
folders included in the dataset directory. The “images” folder
contains the images required for training and testing, while the
“labels” folder contains the annotation files and class names.

2.3 Models and training

2.3.1 Improved YOLOv5s model

The YOLO (You Only Look Once) algorithm, proposed by
Joseph Redmon and others in 2016, abandons the traditional multi-
stage process with its innovative regression approach, directly
predicting the class and spatial location of objects in images in an

TABLE 1 Litchi diseases and pests dataset.

©

end-to-end manner, making it a highly popular and efficient
algorithm in real-time object detection (Alhwaiti et al., 2025; Zhu
et al, 2023; Liu et al, 2023). YOLOv5s, as an important
evolutionary version of this series, has undergone various
optimizations in its model architecture and training strategies
(Wang et al,, 2022; Redmon et al., 2016; Redmon and Farhadi,
2018). Compared to previous versions, YOLOv5s adopts a more
lightweight network structure, fully considering the constraints of
computational resources. By optimizing computational load and
storage overhead, it reduces hardware requirements while
maintaining high-performance object detection. This makes
YOLOV5s suitable for deployment on embedded and mobile
devices, especially in scenarios with limited computational
resources. YOLOvV5s also incorporates techniques such as
adaptive learning rate adjustment and multi-scale training to
further improve the model’s training effectiveness. These
innovative data augmentation strategies and training techniques
enable YOLOV5s to achieve high accuracy and robustness in real-
time object detection tasks.

Although the YOLOv5s model demonstrates strong overall
performance in feature extraction and model size, it still faces the
challenge of insufficient computing power when deployed on
embedded devices. To address these limitations, this paper
proposed an improved version, the YOLOv5s-SNV2-GSE model,
to further optimize its computational efficiency while addressing
real-time requirements. The network structure is shown in Figure 4.

1. To address the issues of feature redundancy and
computational resource consumption in the YOLOvV5s
model, this paper introduced two lightweight
architectures, ShuffleNet V2 and MobileNetV3, to replace
the original convolution module and optimize the
backbone network structure.

Pests and diseases categories Dasineura Anthracnose Algal spot Sooty mold Ulcer disease
Original image/sheet 117 112 105 110 101
Enhanced image/sheet ‘ 351 336 ‘ 315 330 303
Total/sheet ‘ 468 448 ‘ 420 440 404
Frontiers in Plant Science 03 frontiersin.org
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FIGURE 2

Image enhancement. (A) Original image (B) Corresponding augmented version.

2. The detection head network was further optimized by
incorporating DWConv and the C3Ghost module for
lightweight processing. DWConv reduced parameters and
computational load compared to standard convolution,
making it commonly used for model simplification. The
C3Ghost module combined the structural advantages of the
C3 and Ghost modules, enabling further model lightweighting
without compromising representational capacity.

3. This paper adopted a hybrid attention integration strategy,
selecting appropriate attention mechanisms according to the
functional characteristics of different network layers. In the
shallow layers, the CoordAtt was employed to enhance spatial
feature representation. In the intermediate layers, the CBAM
was applied to jointly refine spatial and channel-wise features.
In the deep layers, the SE mechanism was utilized to
strengthen channel-wise feature recalibration. This layer-
adaptive approach enabled targeted enhancement of feature
representation across the network hierarchy.

4. To further optimize the model, this paper employed the EIoU
loss function to improve the accuracy of bounding box
regression. EIoU optimized the model’s regression accuracy
across targets of different scales and shapes, effectively avoiding
bounding box misalignment or localization errors that might
occur with traditional methods.

2.3.2 YOLOvV5s model optimization
2.3.2.1 Introduction of lightweight modules

To address issues such as feature redundancy and excessive
parameters in the YOLOv5s model, this paper introduced the

TABLE 2 Division of Litchi pests and diseases dataset.

lightweight ShuffleNetV2 and MobileNetV3 modules into the
YOLOv5s network architecture to reduce the model’s
computational intensity and build an efficient object detection
model suitable for mobile devices (Bochkovskiy et al., 2020). The
ShuffleNet series, proposed by Megvii Technology, aims to solve the
problem of limited computational power on mobile devices. Its
design philosophy involves reducing computation through channel
shuffle and group convolutions while maximizing the model’s
computational efficiency. ShuffleNetV2 reduces the computational
load of convolution operations, maintaining high expressive power
while lowering computational costs. MobileNetV3, a lightweight
network architecture proposed by Google, combines the advantages
of Neural Architecture Search (NAS) and manual design. By
introducing lightweight attention mechanisms and efficient
feature extraction modules, it effectively improves performance on
mobile devices.

2.3.2.2 Head network optimization

To further reduce the computational burden of the YOLOv5s
model, this paper optimized the detection head by incorporating
two lightweight modules—DWConv and the C3Ghost module—to
replace standard convolutional operations. DWConv, a widely
adopted operator in efficient neural networks, decouples spatial
and channel-wise feature extraction: it first applies depthwise
convolutions to filter each input channel independently, followed
by 1x1 pointwise convolutions to fuse the outputs across channels.
This factorized approach significantly reduced both the number of
parameters and computational cost (Zhang et al., 2017).

The C3Ghost module is constructed based on the Ghost
module, which consists of traditional convolution and DWConv,

Pests and diseases categories  Training set/sheet = Verification set/sheet Test set/sheet Total/sheet
Dasineura 328 93 47 468
Anthracnose 314 89 45 448
Algal spot 294 84 42 420
Sooty mold 308 88 44 440
Ulcer disease 283 81 40 404
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FIGURE 3
Folder hierarchy diagram.

combining the advantages of both the C3 module and the Ghost  the other hand, generates redundant feature maps through low-cost
module. As shown in Figure 5, the C3 module extracts features  operations, effectively reducing the computational burden.
through convolution layers with residual connections, offering  Therefore, by incorporating the Ghost module into the C3

strong feature representation capabilities. The Ghost module, on  module, the C3Ghost module retains the original feature
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FIGURE 4
Model network structure diagram.
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C3Ghost structural diagram.

extraction capabilities while further reducing computation and
parameter counts, thereby enhancing the model’s lightweight effect.

2.3.2.3 Attention mechanism

The attention module enables convolutional neural networks to
focus more on the key information in the data, reducing the
interference from irrelevant content and noise. By dynamically
calculating channel and spatial weights, it enhances the model’s
sensitivity to subtle features and small targets, thereby improving
detection accuracy and robustness, especially in complex scenarios,
effectively reducing false negatives (FN) and false positives (FP).
This paper introduced three attention mechanisms SE, CoordAtt,
and CBAM based on the differences in network depth and location,
adapting to the feature processing needs of different layers.

The SE attention mechanism is processed in three stages of
feature compression, weight prediction, and response calibration.
By modeling the nonlinear dependencies between feature channels,
it builds an adaptive weight distribution system. This module
dynamically generates the significance weights of each channel
through global feature aggregation and gated activation functions,
enhancing the important feature channels and suppressing the less
important ones (Zhao et al., 2025). Embedding the SE module into
the deep network enables the adjustment of global channel weights,
which highlights feature channels strongly correlated with pests and
diseases categories while suppressing background interference
channels. This provides more accurate feature support for
subsequent object detection tasks.

Frontiers in Plant Science

CoordAtt adopts a coordinate decomposition strategy by
processing the spatial position encoding of the channel dimension
in parallel, generating a direction-aware attention weight matrix,
and enhancing spatial-sensitive features through feature point
multiplication (Hu et al., 2019). The advantage of CoordAtt lies
in its ability to significantly reduce computational resources while
participating in large-scale modeling for mobile networks.
Integrating the CoordAtt module into the shallow layers enables
precise localization of fine-grained pests and diseases features
through direction-aware spatial weighting. Simultaneously, it
suppresses background interference from visually similar textures,
providing cleaner local feature representations for subsequent deep
feature extraction. Moreover, its inherently low computational
overhead avoids increasing the inference burden on the early
stages of the network, thereby preserving the model’s real-time
inference capability.

The CBAM attention mechanism consists of channel and
spatial attention modules. It integrates output features through
element-wise multiplication, generating enhanced features with
both channel and spatial adaptive filtering capabilities, as shown
in Figure 6. These features retain significant semantic information,
suppress redundant textures and environmental interference, and
improve the efficiency of extracting key features. The collaborative
optimization of both channel and spatial dimensions strengthens
the model’s ability to analyze complex scenarios (Woo et al., 2018).
Incorporating the CBAM into the middle network achieves the
selection of pest- and disease-related features and accurate

frontiersin.org
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CBAM structural diagram.

localization of their spatial ranges via the collaborative optimization
of channel and spatial dimensions. This not only balances the local
details from the shallow network but also lays a high-quality feature
foundation for subsequent deep feature fusion.

By embedding these three attention modules at different
network levels, this paper systematically enhanced the model’s
feature perception and utilization capabilities from the
perspectives of channel, spatial, and fusion dimensions, providing
a better feature processing solution for detection tasks in
complex scenarios.

2.3.2.4 Optimization of border loss function

The loss function is a key metric for evaluating the matching
degree between the predicted and ground truth bounding boxes. In
the field of object detection, most algorithms used the Intersection
over Union (IoU) as the standard performance measure for the loss
function (Hou et al, 2021). However, IoU only reflects the
proportion of the overlapping area between two bounding boxes.
When the ground truth and predicted boxes are partially or
completely non-overlapping, IoU fails to effectively quantify the
spatial consistency error and the normalized center distance
between them. This leads to ineffective gradient updates during
model training, hindering the convergence process. To address this
issue, the YOLOv5s model uses the Complete Intersection over
Union (CIoU) as the loss function, significantly improving the
model’s localization performance. The CIoU loss function
integrates three features: the Euclidean distance between the
center points of the target boxes, aspect ratio consistency, and
IoU, forming a multi-dimensional evaluation system for bounding
box matching (Yu et al, 2016). However, CloU does not fully
account for the nonlinear relationship between the bounding box
geometric dimensions and localization confidence. The EIoU loss
function further optimizes this issue by introducing a more detailed
multi-dimensional loss evaluation mechanism. It not only considers
the overlap of the bounding boxes but also enhances the fine-tuning
of the shape and position of the target boxes, resulting in more
stable and accurate model performance in complex scenarios
(Zhang et al., 2021).
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2.3.3 Model training platform and evaluation
2.3.3.1 Model training platform

The training platform used in this paper was configured as
follows: the hardware platform included an Intel Core i7 CPU and
an NVIDIA GeForce RTX 4090D GPU. The software platform ran
on the Ubuntu 20.04 operating system, with CUDA 11.3, Python
3.8, PyTorch 1.10.0, OpenCV 3.4, and Torch 1.6.0 installed.

2.3.3.2 Training parameters

Training parameters were set as follows: the default input image
size was 640x640, the batch size was 32, the initial learning rate was
set to 0.01, and the training ran for 200 iterations.

2.3.3.3 Evaluation indicators

Deep learning models such as Faster R-CNN and YOLOV5s are
commonly evaluated in object detection tasks using core
performance metrics including IoU, Precision (P), Recall (R),
Average Precision (AP), and mean Average Precision (mAP).
These metrics are used to measure the accuracy and completeness
of the model’s detection results. In contrast, the evaluation of model
lightweighting is generally reflected by indicators such as Floating
Point Operations (FLOPs), parameter count, and model storage
size, which reflect the model’s efficiency and resource consumption
in practical deployment. Based on this, this paper adopted mAP,
FLOPs, parameter count, and model storage size as the performance
evaluation metrics, with the calculation of mAP detailed in
Equation 1.

= TPT+PFP x 100 %

__1pr
R= TP+FN

AP = LS P(L)AR(L)

x 100 %

mAP =137 AP,

where, TP refers to the number of correctly identified samples
that belong to positive classes and match their actual categories. FP
is the quantity of false positive samples that are negative classes but
are mistakenly judged as positive classes. FN is the number of
missed samples that are positive classes but are incorrectly classified
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as negative classes. k denotes the number of pests and diseases  the computation and parameter count, resulting in the YOLOV5s-
categories, which is 5. M is the number of segments in the recall =~ SNV2-G model. However, as shown in the experimental results in
interval. Pi(L) stands for the average precision of the k-th category =~ Table 3, although model lightweighting effectively reduced
within the L-th recall interval. And AR(L) is the length of the L-th ~ computational complexity, it also led to a significant drop in
recall interval. detection accuracy. To address this issue, we enhanced spatial

information in shallow layers and channel information in deep

layers according to the network depth. For intermediate layers, a

3 Results and analysis hybrid enhancement strategy was employed to jointly strengthen

both spatial and channel representations, leading to the proposed
3.1 Comparison of lightweight network YOLOV5s-SNV2-GS model. In addition, we introduced the EIoU
model pe rformance loss function to further optimize the matching between the target

boxes and anchor boxes, leading to the YOLOvV5s-SNV2-GSE

The experimental results of the two models obtained after =~ model. The experimental results comparing the three models with
introducing two lightweight architectures are shown in Table 3.  YOLOv5s-SNV2 are presented in Table 4.
The YOLOvV5s-SNV2 improved model reduced FLOPs, model As seen in Table 4, the YOLOvV5s-SNV2-G model showed a
parameters, and model size by 88.1%, 87.9%, and 58.8%, decrease in FLOPs, parameter count, model size, and mAP, with
respectively. The corresponding reductions for the YOLOv5s-  reductions of 26.3%, 34.1%, 27%, and 3%, respectively, compared to
MNV3 improved model were 83.7%, 80.2%, and 30.6%. YOLOv5s-SNV2. However, the YOLOv5s-SNV2-GSE and
Comparison indicated that the YOLOv5s-SNV2 model had a ~ YOLOv5s-SNV2-GS models showed minimal changes in FLOPs,
greater advantage in terms of hardware resource optimization,  parameter count, and model size, while their mAP significantly
with a model size reduction 28.2% higher than that of YOLOv5s-  increased to 96.7%. The experimental results demonstrated that the
MNV3, while the precision loss was only a 2% difference. Although  introduction of the hybrid attention mechanism helped the model
model lightweighting could effectively reduce computational  capture essential features more effectively, improving both
complexity, it might to some extent weaken feature extraction  processing efficiency and accuracy. At the same time, the EloU
capability, potentially leading to a decrease in model accuracy. loss function effectively compensated for the discrepancies between
Experimental results demonstrated that the ShuffleNetV2-based  the CIoU loss function’s bounding box size and confidence,
structural optimization achieves higher efficiency in mobile = minimizing the difference between the target box and the anchor
deployment while preserving detection accuracy within an  box, which significantly enhanced model performance.
acceptable margin.

3.3 Comparison of ablation experiment
3.2 Model optimization based on performance
YOLOvV5s-SNV2
To evaluate the effectiveness of the proposed improvements and
Building upon the lightweight design of the backbone network,  their impact on model performance, this paper conducted ablation
this paper further lightweighted the head network by introducing  experiments, the results presented in Table 5. Experiment 1 is the
the DWConv and C3Ghost modules. This approach reduced both  original YOLOv5s model, which achieved an mAP of 98.5% for

TABLE 3 Comparison test results of YOLOv5s model lightweighting.

Model mAP/% FLOPs/G Parameters/*10° Model size/MB

YOLOvS5s 98.5 ‘ 16 7.03 16
YOLOv5s-SNV2 88.5 ‘ 1.9 0.85 6.59
YOLOv5s-MNV3 90.5 ‘ 2.6 1.39 11.1

TABLE 4 Performance of the improved model based on YOLOv5s-SNV2.

mAP/% FLOPs/G Parameters/*10° Model size/MB
YOLOV5s-SNV2 88.5 1.9 0.85 6.59
YOLOV5s-SNV2-G 85.8 ‘ 14 0.56 481
YOLOV5s-SNV2-GS 955 ‘ 2.0 0.93 7.1
YOLOV5s-SNV2-GSE 96.7 ‘ 2.0 0.93 7.1
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TABLE 5 Results of ablation experiment.

10.3389/fpls.2025.1686997

. DWCONV Fusion . 6
Experiment ShuffleNetV2 C3Ghost\ attention EloU mAP/% FLOPs/G Parameters/*10°> Size/MB
mechanism

2 v - - - 88.5 1.9 0.85 659
3 - v - - 94.3 155 6.73 143
4 v v - - 85.8 14 0.56 481
5 v v v - 95.5 20 0.93 7.1
6 v v - v 86.7 14 0.56 481
7 v v v v 96.7 20 0.93 7.1

Litchi pests and diseases detection, with a model size of 16 MB. In
Experiment 2, ShuffleNetV2 was used to replace the convolution
blocks in the backbone network of YOLOv5s. As a result, mAP
decreased to 88.5%, while the model’s FLOPs, parameter count, and
size were significantly reduced, with the model size decreasing by
58.8%. In Experiment 3, the standard convolutions in the head
network were replaced with DWConv, and the C3 modules were
substituted with C3Ghost blocks in the YOLOv5s model. This led to
a decrease in mAP to 94.3%, along with a reduction in FLOPs and
parameter count. Experiment 4 combined the improvements of
ShuffleNetV2, DWConv, and C3Ghost into the YOLOv5s model,
resulting in a reduction in FLOPs, parameter count, and model size
to 1.4 G, 0.56x10°% and 4.81 MB, respectively.

The results of Experiments 1-3 demonstrated that
lightweighting improvements could significantly reduce FLOPs,
parameter count, and model size, but this often comes at the cost
of reduced detection accuracy. In Experiment 5, CBAM, CoordAtt,
and SE attention mechanisms were introduced to the lightweight
model. Compared with Experiment 4, although the model size and

Recall

FLOPs (G) /0

FIGURE 7
Comparison of model performance.
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parameters had significantly increased, mAP had been improved,
indicating the positive impact of fusion attention mechanism on
detection performance. In Experiment 6, the EIoU loss function was
integrated into the lightweight model, resulting in a 0.9 percentage
point increase in mAP without changing FLOPs, parameter count,
or model size, while also accelerating model convergence and
improving accuracy. Finally, Experiment 7 integrated all four
improvements into the YOLOv5s model. This integrated model
achieved a significant reduction in FLOPs and parameter count
while preserving high detection accuracy, thereby delivering
superior overall performance compared to the original YOLOVS5s.

3.4 YOLOv5s-SNV2-GSE model
performance evaluation

To evaluate the overall performance of the models, this study
conducted comparative experiments on the lightweight algorithms
YOLOv5s, YOLOv5n, YOLOVSs, and the proposed YOLOVS5s-

= YOLOvSs
=== YOLOV5n
~— YOLOVSs
YOLOvVS5s-SNV2-GSE
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SNV2-GSE, with the results presented in Figure 7. Compared to the
original YOLOv5s model, YOLOv5s-SNV2-GSE exhibited only a
1.8% decrease in accuracy, while achieving a 55.6% reduction in
model size. Compared with the widely adopted lightweight
algorithm YOLOv5n, YOLOv5s-SNV2-GSE demonstrated
superior performance in both mAP and model size. While
YOLOV8s demonstrated better detection accuracy, its FLOPs and
parameter count were significantly higher than those of YOLOv5s-
SNV2-GSE, making it unsuitable for mobile deployment. In
conclusion, the YOLOv5s-SNV2-GSE model achieved effective
lightweight optimization while preserving high detection
accuracy, satisfying the computational and storage constraints of
mobile device deployments without compromising
detection performance.

10.3389/fpls.2025.1686997

Images representative of pests and diseases categories, were
selected for evaluation. The three aforementioned models, along
with the proposed YOLOv5s-SNV2-GSE, were tested for
comparative analysis, as illustrated in Figure 8. As could be
observed from the results, YOLOvV8s achieved relatively higher
detection accuracy and confidence scores. However, the
confidence of the YOLOvV5s-SNV2-GSE model was lower than
that of YOLOv8s and YOLOV5s. In the detection of Anthracnose,
misdetections occurred in all models except YOLOVSs, as the late-
stage Ulcer disease caused leaf wilting, which affected detection. In
the detection of Dasineura, the YOLOv5s-SNV2-GSE model
suffered from misclassification, where regions with low
background brightness were erroneously identified as Sooty mold.
Overall, the YOLOv5s-SNV2-GSE model exhibited good

Dasineura
N tanjv 056 N
\ ktcmv ? 4 j
Anthracnose : ‘ ‘\ \ B
o y
Algal spot
Sooty mold
Ulcer
disease
Original image YOLOVS8s
FIGURE 8

Comparison of model detection results.
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confidence in detecting Sooty mold, Algal spot, and Ulcer disease,
performing well in recognition tasks.

4 Design of Litchi diseases and pests
detection system

4.1 System construction

The Raspberry Pi main control unit was the core component of
the system, running the YOLO algorithm to detect and identify
Litchi diseases and pests from the video stream captured by the
camera. The Camera Serial Interface (CSI) camera module
connected via the Raspberry Pi’s CSI interface, enabling real-time
capture of video data from the camera. The system was powered by
an independent power source to ensure the portability of the entire
setup. For the algorithm, the YOLOv5s-SNV2-GSE model was first
trained on an AutoDL server and then transferred to the Raspberry
Pi for execution.

4.2 System introduction

The embedded main control board of this system used the
Raspberry Pi 4B, with the edge computing chip serving as the
upper-level control unit. The device was equipped with dual-band
WIFIL, Bluetooth 5.0, gigabit Ethernet, and USB 3.0 interfaces. It
supported 4K dual-screen display output and H.265 hardware video
decoding, while maintaining excellent expandability via the 40-pin
GPIO interface. Despite its compact size, similar to a credit card, the
Raspberry Pi 4B offered performance close to entry-level personal
computer (PC) and was widely used in fields such as the Internet of
Things, embedded development, and edge computing.

The recognition device used a CSI camera, with the trained
model deployed on the Raspberry Pi control board for
identification. The recognition data was monitored and analyzed
through the backend system. The CSI camera transmitted video
streams to the Raspberry Pi, enabling the detection of Litchi diseases

-

FIGURE 9
System hardware.

Frontiers in Plant Science

11

10.3389/fpls.2025.1686997

and pests. The CSI power supplied powers the Raspberry Pi
development board through the charging port, ensuring the
system operates normally. The system hardware is shown
in Figure 9.

4.3 System settings

The improved model in this paper was deployed on the
Raspberry Pi 4B. After the hardware setup was completed, the
operating system needed to be burned into the hardware. For this,
the Ubuntu 22.04 operating system was selected and burned into
the Raspberry Pi 4B, as shown in Figure 10. Once the system
installation was complete, system settings needed to be configured
to enable the camera. To did this, opened the terminal command
line and entered “sudo raspi-config” to access the system settings
interface. Then, selected the “Interface Options” and restarted the
Raspberry Pi to enable the camera. This step ensured that the GPU
firmware operates properly and that the GPU had allocated
sufficient memory space for the camera to function correctly.

4.4 Model deployment

Downloaded the YOLOvV5s code on the Raspberry Pi system
and configured the necessary environment. The “requirements.txt”
file specified the required versions of various dependencies. To set
up the environment, used the command “pip install -r
requirements.txt” in the terminal. Uploaded the trained model file
to the Raspberry Pi, adjusted the parameters to set the weight file
path, and configured the camera source to 0. Once the camera was
enabled, the system would begin capturing footage. Running the
program would initiate the YOLOvV5 model on the Raspberry Pi.

To evaluate the performance of the deployed models, both the
original YOLOV5s and the improved YOLOv5s-SNV2-GSE were
tested on the Raspberry Pi hardware. Four video segments, recorded
with a mobile phone in a Litchi orchard, were selected for testing.
The total video duration was 27 seconds, with a resolution of

monitor

power supply
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FIGURE 10
Raspberry Pi system installation.

3840x2160 pixels. The video was downsampled to 640x640 pixels
before being input into the model. The detection results of the video
are compared in Table 6.

The improved model offered a significant advantage in
detection speed compared to the original model. The frame rate
on the Raspberry Pi 4B increased from 2.1 frames per second (FPS)
to 3.3 FPS, an improvement of 57.1%. Figure 11 shows four frames
extracted from the detection video. After deploying the model on
the Raspberry Pi hardware, real-time detection of Litchi diseases
and pests could be achieved. As shown in Figure 11, the system
effectively identified pests and diseases, and the YOLOv5s-SNV2-

TABLE 6 Model deployment detection results.

10.3389/fpls.2025.1686997

GSE model offered low computational cost and memory usage,
making it suitable for application on resource-constrained
embedded devices.

5 Discussion and conclusion
5.1 Discussion

This paper proposed an improved YOLOv5s-SNV2-GSE
model, which was successfully deployed on embedded platforms
to address the issue of real-time detection of Litchi pests and
diseases. By incorporating optimization strategies such as
ShuffleNetV2, DWConv, and C3Ghost, the model significantly
reduced computational complexity and parameter size, enhancing
detection accuracy, especially on resource-constrained devices.
However, despite the promising results in specific scenarios, there
remain many avenues for exploration and further optimization. The
dataset was created using standardized Litchi leaf samples under
controlled lighting, overlooking real-world factors like weather,
dust, and overlapping foliage, which affect accuracy. Additionally,
the Raspberry Pi 4B’s passive cooling struggles in hot orchards,
causing thermal throttling that reduces system stability
and responsiveness.

Future optimization efforts will focus on exploring newer
versions of the YOLO series (e.g., YOLOV9, YOLOvV10) or other
typical two-stage object detection algorithms, with the aim of
enhancing both the accuracy and real-time performance of the

Model FLOPs/G Parameters/*10° Model size/MB Frame rate/FPS
YOLOVSs 16 7.03 16 2.1
YOLOV5s-SNV2-GSE 2 0.93 7.1 33
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tanjv 0.68tanjy 0.3C
L

FIGURE 11
Detection video image.
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Litchi pests and diseases detection system (Abulizi et al., 2025; Ye et
al., 2024). Furthermore, given the diversity in Litchi cultivation
regions and growth environments, optimizing transfer learning
strategies and model adaptability is critical to improving the
model’s generalization ability and robustness (Fu et al., 2025; Li et
al., 2025). Finally, considering the requirements for detection
accuracy and feedback efficiency, plans are in place to adopt more
powerful edge computing devices (such as Jetson Nano) to replace
the Raspberry Pi 4B, which is expected to further enhance the
overall performance of the system.

5.2 Conclusion

The advancement of modern agriculture necessitates more
efficient and scalable solutions for pests and diseases detection.
Traditional manual inspection methods are labor-intensive, time-
consuming, and often insufficient for real-time diagnosis. To
address these limitations, this paper proposed a deep learning-
based system for real-time detection of Litchi pests and diseases.

Central to this system was YOLOv5s-SNV2-GSE, a lightweight
and efficient enhanced version of YOLOV5s tailored for real-time
object detection in agricultural scenarios. Experimental results
showed that the YOLOv5s-SNV2-GSE model reduced
computational load and parameter count by 88.1% and 87.9%,
respectively, compared to the original YOLOv5s. With a compact
size of 7.1 MB and a high mAP of 96.7%, it achieved superior
performance over lightweight counterparts such as YOLOv5n and
YOLOVSs, striking a better balance between accuracy and
computational efficiency. Additionally, deployed on a Raspberry
Pi 4B, the detection system achieved an inference frame rate of 3.3
FPS, which was 57.1% higher than that of the original YOLOV5s.

For future research, efforts will focus on enhancing the system’s
robustness under challenging field conditions, optimizing hardware
for improved energy efficiency to support large-scale deployment.
these measures are expected to further improve detection accuracy
and narrow the performance gap between laboratory tests and real-
world agricultural applications.
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