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1School of Mechatronic Engineering, Lingnan Normal University, Zhanjiang, China, 2Shanwei Academy
of Agricultural Sciences, Shanwei, China
Accurate, efficient, and economical detection of Litchi pests and diseases is

critical for sustainable orchard management, yet traditional manual methods

often fall short in these aspects. To address these limitations, an improved

YOLOv5s model, named YOLOv5s-SNV2-GSE, was proposed in this study for

real-time detection on embedded platforms. The backbone network was

modified by replacing conventional convolutional blocks with ShuffleNetV2,

leveraging channel shuffling and group convolution to reduce model

parameters and computational cost. In the detection head, standard

convolutional blocks and C3 modules were replaced with depthwise

convolutions (DWConv) and C3Ghost modules to further minimize model size.

Squeeze-and-Excitation (SE), Convolutional Block AttentionModule (CBAM), and

Coordinate Attention (CoordAtt) mechanisms were incorporated into the

backbone network to enhance feature extraction. Additionally, the Efficient

Intersection over Union (EIoU) loss function was adopted to improve

convergence speed and bounding box regression accuracy. The experimental

results demonstrated that the improved YOLOv5s-SNV2-GSE model achieved a

mean average precision (mAP) of 96.7%. Compared to the original YOLOv5s, the

proposed model reduced computational cost by 87.5%, number of parameters

by 86.7%, and model size by 55.6%. When deployed on a Raspberry Pi 4B, the

model achieved an average inference speed of 3.3 frames per second (FPS),

representing a 57.1% improvement and meeting real-time detection

requirements. These results indicate that the proposed model provides a

practical and efficient solution for real-time Litchi pests and diseases detection

in resource-constrained environments.
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1 Introduction

China is the world leader in both the planting area and yield of

Litchi, particularly in Guangdong Province, where Litchi cultivation

is not only a local specialty industry but also plays an important role

in the global market (Zhuang and Qiu, 2021; Xiang, 2020).

However, Litchi is highly vulnerable to pests and diseases stress

during growth, which can significantly reduce yield and fruit

quality, and in severe cases, lead to plant death (Huang, 2021).

Therefore, establishing an efficient and precise pests and diseases

monitoring and control system has become an urgent need for the

sustainable development of the Litchi industry. Traditional manual

inspection and visual diagnosis methods are limited by low

efficiency and strong subjectivity, which makes deep learning-

based intelligent detection technologies a research hotspot in the

field of agricultural engineering.

The rapid development of deep learning (DL) techniques,

particularly Convolutional Neural Networks (CNNs), has

provided new technological support for the intelligent detection

of crop pests and diseases (Xu et al., 2023; Guo et al., 2025). In

recent years, significant progress has been made in deep learning

(DL)-based pests and diseases monitoring and diagnosis, with

extensive research conducted by both domestic and international

scholars (Zhou et al., 2024; Li et al., 2024; Shoaib et al., 2025;

Rahman et al., 2020). Tan et al. (2024) developed a mobile real-time

citrus disease diagnosis system by integrating the Inceptionv3

backbone network with the CBAM, achieving an accuracy of

98.49%. Ai et al. (2020) designed a crop pests and diseases

recognition app based on the Inception-ResNet-v2 model, with an

overall recognition accuracy of 86.1%. Waheed et al. (2022) used

various DL models to detect ginger pests and diseases, finding that

the VGG-16 algorithm achieved an accuracy of 96%. Jelali (2024)

utilized CNN, Faster R-CNN, and YOLOv5s models for tomato pest

detection, with the CNN model achieving 90% accuracy. Yue et al.

(2024) introduced the SCYLLA-IOU loss function in the YOLOv8s

model, improving pest detection accuracy to 97.4%, providing a

reference for optimizing small target detection models. Xie et al.

(2023) adopted G-GhostNet as the backbone network, introduced

the Centered Moment Pooling Attention (CMPA) mechanism, and

an improved loss function, and constructed the FCOS-FL model,

effectively achieving accurate detection of Litchi leaf pests and

diseases with an accuracy rate of 91.3%. Despite significant

advancements in deep learning for crop pests and diseases

detection, research specifically targeting Litchi remains relatively

limited. Existing studies have primarily focused on static image-

based recognition, with insufficient attention to real-time detection

capabilities and deployment on resource-constrained embedded

platforms. Traditional models such as Faster R-CNN and VGG-

16, for instance, generally incur substantial computational overhead

when processing high-dimensional data, rendering them less

adaptable to scenarios with stringent real-time requirements (Ren

et al., 2017; Simonyan and Zisserman, 2014). In contrast, YOLOv5s

distinguishes itself through its highly lightweight architecture. It not

only satisfies the deployment demands of embedded platforms but
Frontiers in Plant Science
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also maintains high detection accuracy. This unique balance of

efficiency and precision gives it a distinct competitive edge when

compared to other deep learning models such as YOLOv8s and

Faster R-CNN. Consequently, improving upon the YOLOv5s

framework represents a feasible strategy for this study.

To address the challenges of limited accuracy, low efficiency,

and high deployment costs in Litchi pests and diseases detection,

this paper proposed an improved YOLOv5s model by integrating a

lightweight backbone network and attention mechanisms, thereby

developing an efficient and accurate detection model for

deployment on the Raspberry Pi 4B embedded platform. The

research result not only provides technical support for the green

pest control of Litchi but also offers theoretical and practical

references for the construction of intelligent monitoring systems

for other crop pests and diseases.
2 Materials and methods

2.1 Litchi pests and diseases dataset
acquisition

The dataset used in this study was collected in November 2024

from a Litchi orchard in Lianjiang City, Zhanjiang, Guangdong

Province. The temperature ranged from 22°C to 28°C, the weather

was clear, and the orchard received abundant natural sunlight. Data

collection took place during the daytime, between 9:00 and 15:00.

Each image depicts the natural condition of Litchi leaves, consistent

with real-world growing environments. The dataset includes five

categories of pests and diseases instances, Dasineura, Anthracnose,

Algal spot, Sooty mold, and Ulcer disease. These primarily consist of

pest infestations, fungal diseases, and algal diseases. The Dasineura

involves the female adult laying eggs on the underside or tips of

young leaves. Upon hatching, the larvae feed on the leaves,

stimulating abnormal cell proliferation, resulting in galls. Fungal

diseases such as Anthracnose, Ulcer disease, and Sooty mold

require specific temperature and humidity conditions, as well as

transmission vectors. Anthracnose mainly affects the leaves, flower

clusters, and fruit, causing brown lesions and rot. Sooty mold is

associated with pests such as scale insects and aphids, whose secreted

sugars provide a breeding substrate for fungi, forming a black mold

that impacts photosynthesis. Ulcer disease primarily targets the

branches and main trunk. The pathogens enter through wounds,

causing necrosis and cracking of the bark. The lesions turn from

reddish-brown to gray-brown with a central depression. Algal spot

disease, caused by parasitic algae, manifests on the leaf surface as

gray-green to yellow-brown spots, with spores being spread by

rainwater. To ensure the independence of the dataset, images

underwent preprocessing through selection and cropping. Images

with artifacts or occlusions by non-target objects were excluded, while

those with clear pests and diseases symptoms were retained. Large

background areas were cropped to focus on the affected leaf regions,

resulting in 545 images used to create the Litchi leaf pests and diseases

dataset. Samples of the five pests and diseases are shown in Figure 1.
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2.2 Dataset construction

To improve the model’s generalization ability and robustness,

data augmentation was performed on the original dataset.

Techniques including mirroring, rotation, brightness adjustment,

and noise addition were applied, with at least two methods

randomly combined for each sample to enhance the size and

diversity of the training set. As a result, the dataset was expanded

from 545 to 2,180 images. The distribution of samples across disease

categories is presented in Table 1. The visual effects of the

augmentation are illustrated in Figure 2, where Figure 2A shows

an original image and Figure 2B shows the corresponding

augmented version.

Each image was annotated using the LabelImage tool (Version

1.2.2), with labels for Dasineura, Anthracnose, Algal spot, Sooty

mold, and Ulcer disease being “yeyingwen”, “tanjv”, “zaoban”,

“meiyan” and “kuiyang”, respectively. The generated target

information was stored in the corresponding TXT files. The

dataset was split into training, validation, and test sets in a 7:2:1

ratio, as shown in Table 2. The dataset structure was illustrated in

the folder hierarchy in Figure 3, with the “images” and “labels”

folders included in the dataset directory. The “images” folder

contains the images required for training and testing, while the

“labels” folder contains the annotation files and class names.
2.3 Models and training

2.3.1 Improved YOLOv5s model
The YOLO (You Only Look Once) algorithm, proposed by

Joseph Redmon and others in 2016, abandons the traditional multi-

stage process with its innovative regression approach, directly

predicting the class and spatial location of objects in images in an
Frontiers in Plant Science 03
end-to-end manner, making it a highly popular and efficient

algorithm in real-time object detection (Alhwaiti et al., 2025; Zhu

et al., 2023; Liu et al., 2023). YOLOv5s, as an important

evolutionary version of this series, has undergone various

optimizations in its model architecture and training strategies

(Wang et al., 2022; Redmon et al., 2016; Redmon and Farhadi,

2018). Compared to previous versions, YOLOv5s adopts a more

lightweight network structure, fully considering the constraints of

computational resources. By optimizing computational load and

storage overhead, it reduces hardware requirements while

maintaining high-performance object detection. This makes

YOLOv5s suitable for deployment on embedded and mobile

devices, especially in scenarios with limited computational

resources. YOLOv5s also incorporates techniques such as

adaptive learning rate adjustment and multi-scale training to

further improve the model’s training effectiveness. These

innovative data augmentation strategies and training techniques

enable YOLOv5s to achieve high accuracy and robustness in real-

time object detection tasks.

Although the YOLOv5s model demonstrates strong overall

performance in feature extraction and model size, it still faces the

challenge of insufficient computing power when deployed on

embedded devices. To address these limitations, this paper

proposed an improved version, the YOLOv5s-SNV2-GSE model,

to further optimize its computational efficiency while addressing

real-time requirements. The network structure is shown in Figure 4.
1. To address the issues of feature redundancy and

computational resource consumption in the YOLOv5s

model , this paper introduced two l ightweight

architectures, ShuffleNet V2 and MobileNetV3, to replace

the original convolution module and optimize the

backbone network structure.
TABLE 1 Litchi diseases and pests dataset.

Pests and diseases categories Dasineura Anthracnose Algal spot Sooty mold Ulcer disease

Original image/sheet 117 112 105 110 101

Enhanced image/sheet 351 336 315 330 303

Total/sheet 468 448 420 440 404
FIGURE 1

Litchi pests and diseases. (A) Dasineura (B) Anthracnose (C) Algal spot (D) Sooty mold (E) Ulcer disease.
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Fron
2. The detection head network was further optimized by

incorporating DWConv and the C3Ghost module for

lightweight processing. DWConv reduced parameters and

computational load compared to standard convolution,

making it commonly used for model simplification. The

C3Ghost module combined the structural advantages of the

C3 andGhost modules, enabling furthermodel lightweighting

without compromising representational capacity.

3. This paper adopted a hybrid attention integration strategy,

selecting appropriate attention mechanisms according to the

functional characteristics of different network layers. In the

shallow layers, the CoordAtt was employed to enhance spatial

feature representation. In the intermediate layers, the CBAM

was applied to jointly refine spatial and channel-wise features.

In the deep layers, the SE mechanism was utilized to

strengthen channel-wise feature recalibration. This layer-

adaptive approach enabled targeted enhancement of feature

representation across the network hierarchy.

4. To further optimize the model, this paper employed the EIoU

loss function to improve the accuracy of bounding box

regression. EIoU optimized the model’s regression accuracy

across targets of different scales and shapes, effectively avoiding

bounding box misalignment or localization errors that might

occur with traditional methods.
2.3.2 YOLOv5s model optimization
2.3.2.1 Introduction of lightweight modules

To address issues such as feature redundancy and excessive

parameters in the YOLOv5s model, this paper introduced the
tiers in Plant Science 04
lightweight ShuffleNetV2 and MobileNetV3 modules into the

YOLOv5s network architecture to reduce the model ’s

computational intensity and build an efficient object detection

model suitable for mobile devices (Bochkovskiy et al., 2020). The

ShuffleNet series, proposed by Megvii Technology, aims to solve the

problem of limited computational power on mobile devices. Its

design philosophy involves reducing computation through channel

shuffle and group convolutions while maximizing the model’s

computational efficiency. ShuffleNetV2 reduces the computational

load of convolution operations, maintaining high expressive power

while lowering computational costs. MobileNetV3, a lightweight

network architecture proposed by Google, combines the advantages

of Neural Architecture Search (NAS) and manual design. By

introducing lightweight attention mechanisms and efficient

feature extraction modules, it effectively improves performance on

mobile devices.

2.3.2.2 Head network optimization

To further reduce the computational burden of the YOLOv5s

model, this paper optimized the detection head by incorporating

two lightweight modules—DWConv and the C3Ghost module—to

replace standard convolutional operations. DWConv, a widely

adopted operator in efficient neural networks, decouples spatial

and channel-wise feature extraction: it first applies depthwise

convolutions to filter each input channel independently, followed

by 1×1 pointwise convolutions to fuse the outputs across channels.

This factorized approach significantly reduced both the number of

parameters and computational cost (Zhang et al., 2017).

The C3Ghost module is constructed based on the Ghost

module, which consists of traditional convolution and DWConv,
TABLE 2 Division of Litchi pests and diseases dataset.

Pests and diseases categories Training set/sheet Verification set/sheet Test set/sheet Total/sheet

Dasineura 328 93 47 468

Anthracnose 314 89 45 448

Algal spot 294 84 42 420

Sooty mold 308 88 44 440

Ulcer disease 283 81 40 404
FIGURE 2

Image enhancement. (A) Original image (B) Corresponding augmented version.
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combining the advantages of both the C3 module and the Ghost

module. As shown in Figure 5, the C3 module extracts features

through convolution layers with residual connections, offering

strong feature representation capabilities. The Ghost module, on
Frontiers in Plant Science 05
the other hand, generates redundant feature maps through low-cost

operations, effectively reducing the computational burden.

Therefore, by incorporating the Ghost module into the C3

module, the C3Ghost module retains the original feature
FIGURE 4

Model network structure diagram.
FIGURE 3

Folder hierarchy diagram.
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extraction capabilities while further reducing computation and

parameter counts, thereby enhancing the model’s lightweight effect.

2.3.2.3 Attention mechanism

The attention module enables convolutional neural networks to

focus more on the key information in the data, reducing the

interference from irrelevant content and noise. By dynamically

calculating channel and spatial weights, it enhances the model’s

sensitivity to subtle features and small targets, thereby improving

detection accuracy and robustness, especially in complex scenarios,

effectively reducing false negatives (FN) and false positives (FP).

This paper introduced three attention mechanisms SE, CoordAtt,

and CBAM based on the differences in network depth and location,

adapting to the feature processing needs of different layers.

The SE attention mechanism is processed in three stages of

feature compression, weight prediction, and response calibration.

By modeling the nonlinear dependencies between feature channels,

it builds an adaptive weight distribution system. This module

dynamically generates the significance weights of each channel

through global feature aggregation and gated activation functions,

enhancing the important feature channels and suppressing the less

important ones (Zhao et al., 2025). Embedding the SE module into

the deep network enables the adjustment of global channel weights,

which highlights feature channels strongly correlated with pests and

diseases categories while suppressing background interference

channels. This provides more accurate feature support for

subsequent object detection tasks.
Frontiers in Plant Science 06
CoordAtt adopts a coordinate decomposition strategy by

processing the spatial position encoding of the channel dimension

in parallel, generating a direction-aware attention weight matrix,

and enhancing spatial-sensitive features through feature point

multiplication (Hu et al., 2019). The advantage of CoordAtt lies

in its ability to significantly reduce computational resources while

participating in large-scale modeling for mobile networks.

Integrating the CoordAtt module into the shallow layers enables

precise localization of fine-grained pests and diseases features

through direction-aware spatial weighting. Simultaneously, it

suppresses background interference from visually similar textures,

providing cleaner local feature representations for subsequent deep

feature extraction. Moreover, its inherently low computational

overhead avoids increasing the inference burden on the early

stages of the network, thereby preserving the model’s real-time

inference capability.

The CBAM attention mechanism consists of channel and

spatial attention modules. It integrates output features through

element-wise multiplication, generating enhanced features with

both channel and spatial adaptive filtering capabilities, as shown

in Figure 6. These features retain significant semantic information,

suppress redundant textures and environmental interference, and

improve the efficiency of extracting key features. The collaborative

optimization of both channel and spatial dimensions strengthens

the model’s ability to analyze complex scenarios (Woo et al., 2018).

Incorporating the CBAM into the middle network achieves the

selection of pest- and disease-related features and accurate
FIGURE 5

C3Ghost structural diagram.
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localization of their spatial ranges via the collaborative optimization

of channel and spatial dimensions. This not only balances the local

details from the shallow network but also lays a high-quality feature

foundation for subsequent deep feature fusion.

By embedding these three attention modules at different

network levels, this paper systematically enhanced the model’s

feature perception and utilization capabilities from the

perspectives of channel, spatial, and fusion dimensions, providing

a better feature processing solution for detection tasks in

complex scenarios.
2.3.2.4 Optimization of border loss function

The loss function is a key metric for evaluating the matching

degree between the predicted and ground truth bounding boxes. In

the field of object detection, most algorithms used the Intersection

over Union (IoU) as the standard performance measure for the loss

function (Hou et al., 2021). However, IoU only reflects the

proportion of the overlapping area between two bounding boxes.

When the ground truth and predicted boxes are partially or

completely non-overlapping, IoU fails to effectively quantify the

spatial consistency error and the normalized center distance

between them. This leads to ineffective gradient updates during

model training, hindering the convergence process. To address this

issue, the YOLOv5s model uses the Complete Intersection over

Union (CIoU) as the loss function, significantly improving the

model’s localization performance. The CIoU loss function

integrates three features: the Euclidean distance between the

center points of the target boxes, aspect ratio consistency, and

IoU, forming a multi-dimensional evaluation system for bounding

box matching (Yu et al., 2016). However, CIoU does not fully

account for the nonlinear relationship between the bounding box

geometric dimensions and localization confidence. The EIoU loss

function further optimizes this issue by introducing a more detailed

multi-dimensional loss evaluation mechanism. It not only considers

the overlap of the bounding boxes but also enhances the fine-tuning

of the shape and position of the target boxes, resulting in more

stable and accurate model performance in complex scenarios

(Zhang et al., 2021).
Frontiers in Plant Science 07
2.3.3 Model training platform and evaluation
2.3.3.1 Model training platform

The training platform used in this paper was configured as

follows: the hardware platform included an Intel Core i7 CPU and

an NVIDIA GeForce RTX 4090D GPU. The software platform ran

on the Ubuntu 20.04 operating system, with CUDA 11.3, Python

3.8, PyTorch 1.10.0, OpenCV 3.4, and Torch 1.6.0 installed.

2.3.3.2 Training parameters

Training parameters were set as follows: the default input image

size was 640×640, the batch size was 32, the initial learning rate was

set to 0.01, and the training ran for 200 iterations.

2.3.3.3 Evaluation indicators

Deep learning models such as Faster R-CNN and YOLOv5s are

commonly evaluated in object detection tasks using core

performance metrics including IoU, Precision (P), Recall (R),

Average Precision (AP), and mean Average Precision (mAP).

These metrics are used to measure the accuracy and completeness

of the model’s detection results. In contrast, the evaluation of model

lightweighting is generally reflected by indicators such as Floating

Point Operations (FLOPs), parameter count, and model storage

size, which reflect the model’s efficiency and resource consumption

in practical deployment. Based on this, this paper adopted mAP,

FLOPs, parameter count, and model storage size as the performance

evaluation metrics, with the calculation of mAP detailed in

Equation 1.

P = TP
TP+FP � 100%

R = TP
TP+FN � 100%

APk =
1
MoM

L=1Pk(L)DR(L)

mAP = 1
ko5

k=1APk

8>>>>><
>>>>>:

(1)

where, TP refers to the number of correctly identified samples

that belong to positive classes and match their actual categories. FP

is the quantity of false positive samples that are negative classes but

are mistakenly judged as positive classes. FN is the number of

missed samples that are positive classes but are incorrectly classified
FIGURE 6

CBAM structural diagram.
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as negative classes. k denotes the number of pests and diseases

categories, which is 5. M is the number of segments in the recall

interval. Pk(L) stands for the average precision of the k-th category

within the L-th recall interval. And DR(L) is the length of the L-th

recall interval.
3 Results and analysis

3.1 Comparison of lightweight network
model performance

The experimental results of the two models obtained after

introducing two lightweight architectures are shown in Table 3.

The YOLOv5s-SNV2 improved model reduced FLOPs, model

parameters, and model size by 88.1%, 87.9%, and 58.8%,

respectively. The corresponding reductions for the YOLOv5s-

MNV3 improved model were 83.7%, 80.2%, and 30.6%.

Comparison indicated that the YOLOv5s-SNV2 model had a

greater advantage in terms of hardware resource optimization,

with a model size reduction 28.2% higher than that of YOLOv5s-

MNV3, while the precision loss was only a 2% difference. Although

model lightweighting could effectively reduce computational

complexity, it might to some extent weaken feature extraction

capability, potentially leading to a decrease in model accuracy.

Experimental results demonstrated that the ShuffleNetV2-based

structural optimization achieves higher efficiency in mobile

deployment while preserving detection accuracy within an

acceptable margin.
3.2 Model optimization based on
YOLOv5s-SNV2

Building upon the lightweight design of the backbone network,

this paper further lightweighted the head network by introducing

the DWConv and C3Ghost modules. This approach reduced both
Frontiers in Plant Science 08
the computation and parameter count, resulting in the YOLOv5s-

SNV2-G model. However, as shown in the experimental results in

Table 3, although model lightweighting effectively reduced

computational complexity, it also led to a significant drop in

detection accuracy. To address this issue, we enhanced spatial

information in shallow layers and channel information in deep

layers according to the network depth. For intermediate layers, a

hybrid enhancement strategy was employed to jointly strengthen

both spatial and channel representations, leading to the proposed

YOLOv5s-SNV2-GS model. In addition, we introduced the EIoU

loss function to further optimize the matching between the target

boxes and anchor boxes, leading to the YOLOv5s-SNV2-GSE

model. The experimental results comparing the three models with

YOLOv5s-SNV2 are presented in Table 4.

As seen in Table 4, the YOLOv5s-SNV2-G model showed a

decrease in FLOPs, parameter count, model size, and mAP, with

reductions of 26.3%, 34.1%, 27%, and 3%, respectively, compared to

YOLOv5s-SNV2. However, the YOLOv5s-SNV2-GSE and

YOLOv5s-SNV2-GS models showed minimal changes in FLOPs,

parameter count, and model size, while their mAP significantly

increased to 96.7%. The experimental results demonstrated that the

introduction of the hybrid attention mechanism helped the model

capture essential features more effectively, improving both

processing efficiency and accuracy. At the same time, the EIoU

loss function effectively compensated for the discrepancies between

the CIoU loss function’s bounding box size and confidence,

minimizing the difference between the target box and the anchor

box, which significantly enhanced model performance.
3.3 Comparison of ablation experiment
performance

To evaluate the effectiveness of the proposed improvements and

their impact on model performance, this paper conducted ablation

experiments, the results presented in Table 5. Experiment 1 is the

original YOLOv5s model, which achieved an mAP of 98.5% for
TABLE 3 Comparison test results of YOLOv5s model lightweighting.

Model mAP/% FLOPs/G Parameters/*106 Model size/MB

YOLOv5s 98.5 16 7.03 16

YOLOv5s-SNV2 88.5 1.9 0.85 6.59

YOLOv5s-MNV3 90.5 2.6 1.39 11.1
TABLE 4 Performance of the improved model based on YOLOv5s-SNV2.

Model mAP/% FLOPs/G Parameters/*106 Model size/MB

YOLOv5s-SNV2 88.5 1.9 0.85 6.59

YOLOv5s-SNV2-G 85.8 1.4 0.56 4.81

YOLOv5s-SNV2-GS 95.5 2.0 0.93 7.1

YOLOv5s-SNV2-GSE 96.7 2.0 0.93 7.1
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Litchi pests and diseases detection, with a model size of 16 MB. In

Experiment 2, ShuffleNetV2 was used to replace the convolution

blocks in the backbone network of YOLOv5s. As a result, mAP

decreased to 88.5%, while the model’s FLOPs, parameter count, and

size were significantly reduced, with the model size decreasing by

58.8%. In Experiment 3, the standard convolutions in the head

network were replaced with DWConv, and the C3 modules were

substituted with C3Ghost blocks in the YOLOv5s model. This led to

a decrease in mAP to 94.3%, along with a reduction in FLOPs and

parameter count. Experiment 4 combined the improvements of

ShuffleNetV2, DWConv, and C3Ghost into the YOLOv5s model,

resulting in a reduction in FLOPs, parameter count, and model size

to 1.4 G, 0.56×106, and 4.81 MB, respectively.

The results of Experiments 1–3 demonstrated that

lightweighting improvements could significantly reduce FLOPs,

parameter count, and model size, but this often comes at the cost

of reduced detection accuracy. In Experiment 5, CBAM, CoordAtt,

and SE attention mechanisms were introduced to the lightweight

model. Compared with Experiment 4, although the model size and
Frontiers in Plant Science 09
parameters had significantly increased, mAP had been improved,

indicating the positive impact of fusion attention mechanism on

detection performance. In Experiment 6, the EIoU loss function was

integrated into the lightweight model, resulting in a 0.9 percentage

point increase in mAP without changing FLOPs, parameter count,

or model size, while also accelerating model convergence and

improving accuracy. Finally, Experiment 7 integrated all four

improvements into the YOLOv5s model. This integrated model

achieved a significant reduction in FLOPs and parameter count

while preserving high detection accuracy, thereby delivering

superior overall performance compared to the original YOLOv5s.
3.4 YOLOv5s-SNV2-GSE model
performance evaluation

To evaluate the overall performance of the models, this study

conducted comparative experiments on the lightweight algorithms

YOLOv5s, YOLOv5n, YOLOv8s, and the proposed YOLOv5s-
TABLE 5 Results of ablation experiment.

Experiment ShuffleNetV2
DWCONV、
C3Ghost

Fusion
attention

mechanism
EIoU mAP/% FLOPs/G Parameters/*106 Size/MB

1 – – – – 98.5 16 7.03 16

2 ✓ – – – 88.5 1.9 0.85 6.59

3 – ✓ – – 94.3 15.5 6.73 14.3

4 ✓ ✓ – – 85.8 1.4 0.56 4.81

5 ✓ ✓ ✓ – 95.5 2.0 0.93 7.1

6 ✓ ✓ – ✓ 86.7 1.4 0.56 4.81

7 ✓ ✓ ✓ ✓ 96.7 2.0 0.93 7.1
fr
FIGURE 7

Comparison of model performance.
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SNV2-GSE, with the results presented in Figure 7. Compared to the

original YOLOv5s model, YOLOv5s-SNV2-GSE exhibited only a

1.8% decrease in accuracy, while achieving a 55.6% reduction in

model size. Compared with the widely adopted lightweight

algorithm YOLOv5n, YOLOv5s-SNV2-GSE demonstrated

superior performance in both mAP and model size. While

YOLOv8s demonstrated better detection accuracy, its FLOPs and

parameter count were significantly higher than those of YOLOv5s-

SNV2-GSE, making it unsuitable for mobile deployment. In

conclusion, the YOLOv5s-SNV2-GSE model achieved effective

lightweight optimization while preserving high detection

accuracy, satisfying the computational and storage constraints of

mobi l e d ev i c e dep loyment s w i thou t compromi s ing

detection performance.
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Images representative of pests and diseases categories, were

selected for evaluation. The three aforementioned models, along

with the proposed YOLOv5s-SNV2-GSE, were tested for

comparative analysis, as illustrated in Figure 8. As could be

observed from the results, YOLOv8s achieved relatively higher

detection accuracy and confidence scores. However, the

confidence of the YOLOv5s-SNV2-GSE model was lower than

that of YOLOv8s and YOLOv5s. In the detection of Anthracnose,

misdetections occurred in all models except YOLOv8s, as the late-

stage Ulcer disease caused leaf wilting, which affected detection. In

the detection of Dasineura, the YOLOv5s-SNV2-GSE model

suffered from misclassification, where regions with low

background brightness were erroneously identified as Sooty mold.

Overall, the YOLOv5s-SNV2-GSE model exhibited good
FIGURE 8

Comparison of model detection results.
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confidence in detecting Sooty mold, Algal spot, and Ulcer disease,

performing well in recognition tasks.
4 Design of Litchi diseases and pests
detection system

4.1 System construction

The Raspberry Pi main control unit was the core component of

the system, running the YOLO algorithm to detect and identify

Litchi diseases and pests from the video stream captured by the

camera. The Camera Serial Interface (CSI) camera module

connected via the Raspberry Pi’s CSI interface, enabling real-time

capture of video data from the camera. The system was powered by

an independent power source to ensure the portability of the entire

setup. For the algorithm, the YOLOv5s-SNV2-GSE model was first

trained on an AutoDL server and then transferred to the Raspberry

Pi for execution.
4.2 System introduction

The embedded main control board of this system used the

Raspberry Pi 4B, with the edge computing chip serving as the

upper-level control unit. The device was equipped with dual-band

WIFI, Bluetooth 5.0, gigabit Ethernet, and USB 3.0 interfaces. It

supported 4K dual-screen display output and H.265 hardware video

decoding, while maintaining excellent expandability via the 40-pin

GPIO interface. Despite its compact size, similar to a credit card, the

Raspberry Pi 4B offered performance close to entry-level personal

computer (PC) and was widely used in fields such as the Internet of

Things, embedded development, and edge computing.

The recognition device used a CSI camera, with the trained

model deployed on the Raspberry Pi control board for

identification. The recognition data was monitored and analyzed

through the backend system. The CSI camera transmitted video

streams to the Raspberry Pi, enabling the detection of Litchi diseases
Frontiers in Plant Science 11
and pests. The CSI power supplied powers the Raspberry Pi

development board through the charging port, ensuring the

system operates normally. The system hardware is shown

in Figure 9.
4.3 System settings

The improved model in this paper was deployed on the

Raspberry Pi 4B. After the hardware setup was completed, the

operating system needed to be burned into the hardware. For this,

the Ubuntu 22.04 operating system was selected and burned into

the Raspberry Pi 4B, as shown in Figure 10. Once the system

installation was complete, system settings needed to be configured

to enable the camera. To did this, opened the terminal command

line and entered “sudo raspi-config” to access the system settings

interface. Then, selected the “Interface Options” and restarted the

Raspberry Pi to enable the camera. This step ensured that the GPU

firmware operates properly and that the GPU had allocated

sufficient memory space for the camera to function correctly.
4.4 Model deployment

Downloaded the YOLOv5s code on the Raspberry Pi system

and configured the necessary environment. The “requirements.txt”

file specified the required versions of various dependencies. To set

up the environment, used the command “pip install -r

requirements.txt” in the terminal. Uploaded the trained model file

to the Raspberry Pi, adjusted the parameters to set the weight file

path, and configured the camera source to 0. Once the camera was

enabled, the system would begin capturing footage. Running the

program would initiate the YOLOv5 model on the Raspberry Pi.

To evaluate the performance of the deployed models, both the

original YOLOv5s and the improved YOLOv5s-SNV2-GSE were

tested on the Raspberry Pi hardware. Four video segments, recorded

with a mobile phone in a Litchi orchard, were selected for testing.

The total video duration was 27 seconds, with a resolution of
FIGURE 9

System hardware.
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3840x2160 pixels. The video was downsampled to 640×640 pixels

before being input into the model. The detection results of the video

are compared in Table 6.

The improved model offered a significant advantage in

detection speed compared to the original model. The frame rate

on the Raspberry Pi 4B increased from 2.1 frames per second (FPS)

to 3.3 FPS, an improvement of 57.1%. Figure 11 shows four frames

extracted from the detection video. After deploying the model on

the Raspberry Pi hardware, real-time detection of Litchi diseases

and pests could be achieved. As shown in Figure 11, the system

effectively identified pests and diseases, and the YOLOv5s-SNV2-
Frontiers in Plant Science 12
GSE model offered low computational cost and memory usage,

making it suitable for application on resource-constrained

embedded devices.
5 Discussion and conclusion

5.1 Discussion

This paper proposed an improved YOLOv5s-SNV2-GSE

model, which was successfully deployed on embedded platforms

to address the issue of real-time detection of Litchi pests and

diseases. By incorporating optimization strategies such as

ShuffleNetV2, DWConv, and C3Ghost, the model significantly

reduced computational complexity and parameter size, enhancing

detection accuracy, especially on resource-constrained devices.

However, despite the promising results in specific scenarios, there

remain many avenues for exploration and further optimization. The

dataset was created using standardized Litchi leaf samples under

controlled lighting, overlooking real-world factors like weather,

dust, and overlapping foliage, which affect accuracy. Additionally,

the Raspberry Pi 4B’s passive cooling struggles in hot orchards,

causing thermal throttling that reduces system stability

and responsiveness.

Future optimization efforts will focus on exploring newer

versions of the YOLO series (e.g., YOLOv9, YOLOv10) or other

typical two-stage object detection algorithms, with the aim of

enhancing both the accuracy and real-time performance of the
TABLE 6 Model deployment detection results.

Model FLOPs/G Parameters/*106 Model size/MB Frame rate/FPS

YOLOv5s 16 7.03 16 2.1

YOLOv5s-SNV2-GSE 2 0.93 7.1 3.3
FIGURE 11

Detection video image.
FIGURE 10

Raspberry Pi system installation.
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Litchi pests and diseases detection system (Abulizi et al., 2025; Ye et

al., 2024). Furthermore, given the diversity in Litchi cultivation

regions and growth environments, optimizing transfer learning

strategies and model adaptability is critical to improving the

model’s generalization ability and robustness (Fu et al., 2025; Li et

al., 2025). Finally, considering the requirements for detection

accuracy and feedback efficiency, plans are in place to adopt more

powerful edge computing devices (such as Jetson Nano) to replace

the Raspberry Pi 4B, which is expected to further enhance the

overall performance of the system.
5.2 Conclusion

The advancement of modern agriculture necessitates more

efficient and scalable solutions for pests and diseases detection.

Traditional manual inspection methods are labor-intensive, time-

consuming, and often insufficient for real-time diagnosis. To

address these limitations, this paper proposed a deep learning-

based system for real-time detection of Litchi pests and diseases.

Central to this system was YOLOv5s-SNV2-GSE, a lightweight

and efficient enhanced version of YOLOv5s tailored for real-time

object detection in agricultural scenarios. Experimental results

showed that the YOLOv5s-SNV2-GSE model reduced

computational load and parameter count by 88.1% and 87.9%,

respectively, compared to the original YOLOv5s. With a compact

size of 7.1 MB and a high mAP of 96.7%, it achieved superior

performance over lightweight counterparts such as YOLOv5n and

YOLOv8s, striking a better balance between accuracy and

computational efficiency. Additionally, deployed on a Raspberry

Pi 4B, the detection system achieved an inference frame rate of 3.3

FPS, which was 57.1% higher than that of the original YOLOv5s.

For future research, efforts will focus on enhancing the system’s

robustness under challenging field conditions, optimizing hardware

for improved energy efficiency to support large-scale deployment.

these measures are expected to further improve detection accuracy

and narrow the performance gap between laboratory tests and real-

world agricultural applications.
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