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Introduction: Dendrobium flexicaule, an orchid endemic to China, is valued in

Traditional Chinese Medicine; however, its conservation and sustainable use lack

spatial guidance.

Methods: This study employed the MaxEnt model to predict suitable habitats

for D. flexicaule under varying climatic conditions. Building upon the high-

suitability areas identified by MaxEnt, we further utilized the InVEST model to

delineate high-quality habitat zones as key areas for conservation and

development planning.

Results: Results revealed that D. flexicaule is primarily found in Sichuan,

Chongqing, Guizhou, Henan, and Hubei. Future scenarios suggest an

expansion of suitable habitats, with precipitation, temperature, and slope

emerging as the dominant environmental drivers. Priority conservation zones

cluster along the southern and the eastern edge of the Qinba Mountains,

whereas priority development areas concentrate in the northern foothills of

the Qinba Mountains.

Discussion: Our analysis highlighted the critical influence of precipitation and

temperature on the species’ distribution, ultimately identifying priority

conservation areas. This integrated approach provides a scientific foundation

for the sustainable development of D. flexicaule.
KEYWORDS
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1 Introduction

In China, a total of 74 species and two varieties of Dendrobium

are recorded, primarily distributed in the Qinling Mountains, the

Yangtze River Basin, and adjacent southern regions. These taxa

typically occupy areas between 15°30′ and 25°12′ N, gradually

extending northward with a concomitant decline in species

diversity. Compared with other Dendrobium species, D. flexicaule

inhabits notably higher latitudes. Its core distribution is centered in

the Qinba Mountains, extending southward along the Hengduan

Mountains to Binchuan (Dali, Yunnan, China). The species is a

habitat specialist, growing as a lithophyte on north-facing cliff faces

(Zhang, 1995; Zhang, 2016). It is among the key original plant

sources of the Chinese medicinal material “D. flexicaule,” valued not

only for its ornamental potential but also for its substantial

medicinal properties (Editorial Committee of the Flora of China,

Chinese Academy of Sciences, 1999). The stems of D. flexicaule,

renowned for their cold nature and sweet taste, are said to nourish

yin and yang, rejuvenate the liver and kidneys, and are traditionally

consumed to promote longevity. Folk medicine further employs

these stems to treat infantile convulsions. Chemical analyses have

revealed numerous alkaloids, polysaccharides, and 17 free amino

acids in the plant. When boiled, it yields a fragrant, sweet broth

described as “delicious.” As early as the Shennong Bencao Jing, D.

flexicaule was classified as a top-grade herb. However, this species is

increasingly threatened by habitat specificity, limited distribution,

slow growth rates, and excessive long-term harvesting. In 2021, it

was officially recognized as a national first-class protected plant in

China (http://www.forestry.gov.cn/main/5461/20210908/

162515850572900.html) and is also listed as endangered by the

IUCN (https://www.iucnredlist.org). Endemic plants are typically

confined to narrow geographical areas and are often rare or

endangered (Zhu and Sheng, 2019). Their distribution patterns

are crucial for floristic regionalization and vegetation zoning, and

understanding the characteristics, origin, formation, and evolution

of flora (Wu, 1991; Brooks et al., 2006; Lamoreux et al., 2006). As a

biodiversity hotspot, the Qinba Mountains' conservation priority is

partly determined by its number of endemic species.Research on the

distribution of D. flexicaule, an endangered and endemic plant in

China, not only aids in its protection but also offers theoretical and

decision-making support for the Qinba Mountain region's

biodiversity conservation strategy. This ensures the protection of

endemic species and promotes the sustainable development

of biodiversity.

Species distributions emerge from complex interactions among

evolutionary processes, human interventions, and a spectrum of

environmental parameters—encompassing climate, terrain, soil

characteristics, biotic factors, and migration histories. These

distributions reflect the evolutionary trajectory, population

dynamics, and ecological adaptability of species (Soberon and

Peterson, 2005). Among environmental influences, climate

variables such as precipitation and temperature crucially shape

plant growth, development, and distribution (Bertrand et al.,

2011; Lenoir et al., 2008). Current greenhouse gas emissions have

led to global warming, an escalating environmental challenge
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particularly for plant species whose already restricted habitats

may contract further, intensifying their risk of endangerment

(Ashraf et al., 2016; Chichorro et al., 2019; Fitzpatrick et al.,

2008). In response to rising temperatures, certain species migrate

to higher latitudes or elevations (Bertrand et al., 2011; Root et al.,

2003), although these shifts manifest differently across taxa.

Consequently, understanding species-specific climate-change

responses is critical to biodiversity conservation efforts. In recent

decades, Ecological niche models (ENMs), commonly termed

species distribution models (SDMs), have been extensively

employed to predict suitable habitats (Raes, 2012). Of these, the

MaxEnt model has gained particular prominence due to its robust

predictive power and high spatial consistency (Liu et al., 2019;

Phillips and Dudı ́k, 2008). Compared with other models,

MaxEnt requires limited occurrence data (n ≥ 5), is cost-efficient,

easy to use, runs quickly, and generally offers superior results

(Liu Ran et al., 2018; Pearson et al., 2007). Researchers

have increasingly adopted MaxEnt to map suitable regions for

medicinal plants and to analyze how these species respond to

climate change, even under conditions of limited data (Li et al.,

2020a; Liu et al., 2021).

Amid ongoing global habitat loss (Field and Barros, 2014;

Newbold et al., 2015), identification of priority conservation and

development areas remains a key strategy for enhancing nature

reserve management and achieving biodiversity objectives (Brooks

et al., 2006; Ma et al., 2021). The InVEST model, which requires

relatively minimal data yet yields high assessment accuracy, has

become a popular tool for habitat quality evaluation (Wang et al.,

2024). Scholars have employed it at diverse spatial scales—ranging

from nature reserves (Gu et al., 2019) and counties (Luan et al.,

2023) to urban agglomerations (Wu et al., 2015) and river basins

(Xu et al., 2023a). Because land-use patterns greatly impact habitat

quality, integrating the InVEST model with land-use analyses can

effectively delineate priority conservation and development zones,

demonstrating strong operational feasibility.

Against this backdrop, the aims of the present study are

threefold: (1) Analyze the distribution of suitable areas for D.

flexicaule under different climate scenarios and evaluate their

temporal dynamics; (2) Identify key factors that affect its

distribution; and (3) integrate MaxEnt projections with the

InVEST model to define priority conservation and development

regions for this species. These findings will not only augment our

understanding of how D. flexicaulemay respond to extreme climate

events and other environmental pressures but also provide a

foundational reference for future studies on biodiversity, species

differentiation, and the broader conservation of this medically and

ecologically significant orchid.
2 Data and models

2.1 Research framework

We developed an integrated modeling workflow by coupling

species habitat suitability predictions (MaxEnt) with Habitat quality
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assessment (InVEST). This framework enabled spatially explicit

mapping ofD. flexicaule ‘s potential range under current bioclimatic

conditions and future scenarios, explored the priority conservation

and development areas of this species (Figure 1).
2.2 Data processing

2.2.1 Data and distribution point processing of D.
flexicaule with curved stem

The distribution data for D. flexicaule were gathered during

field surveys by the project team using handheld GPS devices,

yielding a total of 46 data points. To minimize clustering effects that

might skew the MaxEnt model’s results, the ENMtools package in R

was employed for data screening. As a result, 18 final distribution

points were retained for D. flexicaule (Figure 2).

2.2.2 Data source processing
This research incorporated 36 environmental parameters,

leveraging climatic datasets from the WorldClim platform (https://

worldclim.org). The analysis encompassed bioclimatic indicators

for the historical period (1970–2000) and projected future periods
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(2041–2060, 2061–2080) under multiple scenarios at a 30-second

(~1 km) resolution. The 19 standard bioclimatic variables are

labeled bio1–bio19. The climate projections used in this study

were obtained from the Beijing Climate Center’s medium-

resolution Climate System Model (BCC-CSM2-MR) (Tan et al.,

2022), which is part of CMIP6. This model, recommended for use in

China, encompasses three Shared Socioeconomic Pathways (SSPs)

—SSP126, SSP245, and SSP585 (Zhou et al., 2019). Three

topographic variables—elevation, slope, and aspect—were

obtained from the Geospatial Data Cloud at a 90 m resolution,

while 14 soil factors originated from the Harmonized World Soil

Database (HWSD) at approximately 1 km resolution (https://

www.fao.org/soils-portal/en/). The vector boundaries of Chinese

administrative divisions (2020s) and 30-meter resolution land use

classification data (2021s) were acquired from the Resource and

Environmental Science and Data Center (RESDC), a leading

repository for geospatial datasets in China. All datasets were

reprojected to the WGS84 coordinate system and resampled to a

uniform 1-km resolution to ensure consistency with our regional

analytical framework. The administrative division data were

sourced from the China Administrative Map database hosted by

the Resource and Environment Science and Data Center (https://
FIGURE 1

Image summary.
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www.resdc.cn/). The copyright belongs to the platform and is

provided under the license number GS (2024) 0650. All

cartographic outputs were generated using Esri’s ArcMap

platform (version 10.8.0).
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Because spatial autocorrelation among the 36 environmental

factors (especially the 19 bioclimatic and 14 soil variables) could

lead to overfitting (Sillero, 2011), a screening process was

implemented to reduce multicollinearity. This involved a
FIGURE 3

Spearman correlation analysis, Correlation analysis of Bioclimatic factors (A), Correlation analysis of Soil factors (B).
FIGURE 2

Geographical distribution points of D.flexicaule. Map creation using ArcMap 10.8.0 (URL: https://www.arcgis.com/index.html). China Administrative
Map from Resource and Environmental Science Data Platform (https://www.resdc.cn/). GS (2024)0650.
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jackknife test and Spearman correlation analysis (Figure 3).

Variables demonstrating inter-correlation values surpassing 0.8

were classified as exhibiting significant multicollinearity based on

variance inflation criteria (Chhogyel et al., 2020). Through manual

evaluation, factors with a 0% contribution in the jackknife test were

eliminated, and where two variables correlated above 0.8, choose to

remove variables with lower contribution rates. The final result is a

set of four bioclimatic factors, six soil factors, and three terrain

factors, with a total of 13 selected environmental variables (Table 1).
2.3 Establishment and optimization of
MaxEnt model

The MaxEnt model is a species distribution prediction method

based on the principle of maximum entropy. It utilizes known species

occurrence records and environmental variables as input data to

estimate the probability of species occurrence under varying

environmental conditions by maximizing entropy (Merow et al.,

2013). MaxEnt modeling analysis was performed by importing the

filtered set of 18 distribution points and 13 environmental factors in

ACS format into the model. To characterize the available environmental

space, we randomly generated 10,000 background points within the

defined study area. The model was then run with 10 replicates, setting

the maximum number of iterations to 10,000 to ensure full algorithm

convergence (Chen et al., 2024). For each iteration of the experiment, a

random subset comprising three-quarters of the data samples was

allocated to model training, with the remainder designated as the

evaluation set (Yuan et al., 2021). Model efficacy was assessed through

analysis of receiver operating characteristic curves, where the area under

the curve (AUC) served as the primary metric for quantifying predictive

performance (Jiménez-Valverde, 2012). An AUC value of 1 signifies a

perfect predictive capacity, whereas 0.5 implies a random prediction
Frontiers in Plant Science 05
(Swets, 1988). For optimal performance, an AUC value above 0.9 is

recommended (Sun et al., 2020). In addition, the Kappa coefficient (K)

and True Skill Statistics (TSS) were employed to evaluate the predictive

performance of the Maxent model (Cohen, 1960). A TSS value below

0.4 implies prediction failure. When the TSS value ranges from 0.4 to

0.55, it indicates fair predictive ability; values from 0.55 to 0.7 suggest

moderate performance; those between 0.7 and 0.85 are regarded as

good; Exceeding 0.85 indicates excellent performance (Allouche et al.,

2006; Roberts et al., 2017). Likewise, for Kappa values, a value below 0.2

represents prediction failure. When the Kappa value is between 0.2-0.4,

it indicates good performance; 0.4-0.6 is moderate; 0.6-0.8 is considered

good; Exceeding 0.8 indicates excellence (Allouche et al., 2006; Roberts

et al., 2017).

To assess the contribution of each environmental factor, the

jackknife test in MaxEnt was employed (Shcheglovitova and

Anderson, 2013). In MaxEnt, feature classes (FC) and the

regularization multiplier (RM) are pivotal parameters that strongly

influence prediction accuracy. Appropriate parameter calibration can

markedly enhance the model’s overall performance (Radosavljevic and

Anderson, 2014). We employed the ENMeval package in R for model

calibration (Phillips and Dudıḱ, 2008). Here, the RM was initialized at

0.5 and incremented in steps of 0.5 up to 5.0, yielding 10 iterations. We

also tested various feature class combinations (L, LQ, H, LQH, LQHP,

LQHPT), generating 60 parameter configurations in total. The model

was then optimized based on these trials. The Akaike Information

Criterion corrected for small sample sizes (AICc) is employed to

evaluate model complexity and predictive performance. The model

with theminimumAICc value (DAICc = 0) is generally identified as the

most appropriate (Wen et al., 2024).
2.4 Suitable distribution areas of
D.flexicaule with curved stems

To visualize the MaxEnt model’s predictive outcomes within the

ArcGIS 10.8.0 platform, we implemented a four-tier classification

system for D. flexicaule habitat suitability analysis. Based on the

species’ stringent ecological requirements, suitability indices were

partitioned as follows: unsuitable area (< 0.3), low suitable area (0.3-

0.6), middle suitable area (0.6-0.8), and high suitable area (> 0.8).

Habitat suitability changes under current and future climatic

conditions were assessed through spatial analyses conducted using

SDMToolbox v2.5 (integrated within ArcGIS). This included

quantification of suitable habitat area dynamics and centroid

position shifts. The Geosphere package in R was subsequently

employed to calculate centroid displacement distances between

scenarios (Wang et al., 2023; Zhang et al., 2024).
2.5 Multivariate environmental similarity
surface and most dissimilar variables
analysis

Using the current climate layers as a reference (with

approximate suitable areas delineated in ArcGIS), we applied the
TABLE 1 Selected environmental factors.

Type Abbreviation Describe

Bioclimatic Bio4 Temperature Seasonality

Bio9
Mean Temperature of Driest
Quarter

Bio12 Annual Precipitation

Bio14 Precipitation of Driest Month

Soil AWC_CLASS Available water capacity class

T_REF_BULK
Topsoil Reference Bulk
Density

T_OC Topsoil Organic Carbon

T_CACO3 Topsoil Calcium Carbonate

T_ESP
Topsoil Exchangeable sodium
percentage

Topographic Elevation Elevation

SLOPE SLOPE

Aspect Slope orientation
frontiersin.org

https://doi.org/10.3389/fpls.2025.1686507
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lin et al. 10.3389/fpls.2025.1686507
multivariate environmental similarity surface (MESS) approach to

evaluate how future climate scenarios might alter D. flexicaule

habitat suitability. MESS quantifies the degree of similarity (S)

between current and future cl imate scenarios across

corresponding regions. We identified the most dissimilar variables

(MOD) to clarify key drivers of any projected distributional shifts.

MESS values range from 0 to 100, where S = 100 indicates future

climate scenarios equivalent to the reference (i.e., no climatic

discrepancy). Values between 0 and 100 signify varying degrees of

divergence, while S<0 implies at least one bioclimatic variable lies

beyond the reference range, marking a climate anomaly. We

processed the results using MaxEnt Density and Novel tools

(Elith et al., 2010; Li et al., 2016).
2.6 Conservation and development area of
D.flexicaule with curved stems

Habitat quality refers to an environment’s capacity to support

viable populations and stable communities over time. Fluctuations

in habitat quality stem from factors such as location, topography,

climate, and human activities (Mohan and Kandya, 2015).

Evaluating habitat quality can thus indicate local biodiversity

(Hillard et al., 2017) as well as gauge overall environmental

integrity or degradation. The InVEST model, created through

collaborative efforts between Stanford University, The Nature

Conservancy (TNC), and the World Wildlife Fund (WWF), has

become a widely utilized framework for evaluating ecological

habitat quality in diverse land management scenarios. It accounts

for vulnerability to threats, intensity of external pressures, and

proximity-based spatial effects (Xu et al., 2023b).

Qxj = Hj 1 − (
Dz
xj

Dz
xj + k2

)

" #

The Qxj variable represents the quality of the habitat in grid z

within habitat type j, with a value range of 0 to 1. A value close to 1

indicates a high-quality habitat with low maintenance costs and

high biodiversity. The Hj variable represents habitat suitability,

while z represents the normalisation constant. The K variable
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represents the semi-saturation parameter, and the Dxj variable

represents the degree of habitat degradation.

Based on the InVEST user manual and related research (Bao

et al., 2015; Hu et al., 2022; Xu et al., 2021). Threat factors quantify

the disturbance intensity of land-use types on surrounding habitats;

their weight values (range: [0,1]) reflect the destructive potential of

the land-use type on habitats, with higher values indicating greater

disruption. Sensitivity values (range: [0,1]) characterize the

response level of land-use types to ecological threats, where values

approaching 1 denote heightened sensitivity (Wu et al., 2020). We

selected paddy fields, drylands, and urban land, among others, as

threat factors, and we identified the most common threats to rice

production, the weights of threat factors, the maximum influence

distance and the attenuation type are assigned (Tables 2, 3).

Finally, we integrated the InVEST model with the MaxEnt-

derived suitability analysis, focusing on the most extensive and

concentrated high-suitability regions of D. flexicaule. For better

polygonal integrity and feasible subsequent analyses, we also

included sections of moderate- and low-suitability areas. Such an

approach effectively pinpoints priority conservation zones for D.

flexicaule using limited resources while simultaneously designating

practical development areas for industries tied to this

medicinal species.
3 Result

3.1 MaxEnt model optimization results

Under the default parameters, 10 replicate training runs yielded

a mean AUC of 0.964. Based on the ENMeval package results (Chen

et al., 2024), the optimal model was obtained when the feature class

(FC) was set to LQ and the regularization multiplier (RM) was 1.5

(DAICc = 0). Under these conditions, the mean AUC across 10

replicate training runs was 0.976 (Figure 4), the Kappa coefficient

(K) was 0.4379, and the True Skill Statistic (TSS) was 0.8522,

indicating excellent predictive accuracy.
3.2 Current climate suitable area for
D.flexicaule

Maxent’s predictions are visualized in ArcGIS to show the

distribution of suitability for D.flexicaule current climate (Figure 5).

Under present climate scenarios, D. flexicaule is mainly distributed in

central China, including Sichuan, Chongqing, Henan and Hubei

provinces. The total suitable area is around 64.3 × 10^4 km², which

constitutes approximately 6.68% of China’s land area. Among these,

the high-suitability zone measures about 2.4 × 10^4 km² (0.26% of

China’s total land area), concentrated largely at the intersection of

Sichuan, Shaanxi, and Hubei provinces, as well as in southeastern

Tibet. In general, suitable distribution areas are mainly concentrated

in the mountains around Sichuan Basin. MaxEnt predictions align

well with the known geographic range of D. flexicaule, suggesting a

reliable model.
TABLE 2 Threat factor weight of study area.

Threat
factor

Maximum impact
distance(km)

Weight
Decay
type

Paddyfield 4 0.7 linear

Dryland 3 0.5 linear

Urban 8 1 exponential

Village 5 0.6 exponential

other
construction

land
8 0.4 exponential

Unusedland 6 0.5 linear
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TABLE 3 Sensitivity of land scape types to threat factors.

Land type Habitat Paddyfield Dryland Urban Village Other Unusedland

Paddyfield 0.3 0 0.3 0.6 0.5 0.4 0.4

Dryland 0.3 1 0 0.6 0.5 0.5 0.4

Woodland 0.9 0.6 0.5 0.7 0.6 0.7 0.2

Shrub 1 0.6 0.6 0.8 0.7 0.7 0.2

Sparsewood 0.85 0.9 0.7 0.9 0.8 0.8 0.2

Other forest land 0.9 0.7 0.7 1 0.9 0.8 0.2

High coverage grassland 0.85 0.8 0.7 0.6 0.55 0.6 0.6

Medium coverage grassland 0.75 0.7 0.7 0.7 0.6 0.7 0.7

Low coverage grassland 0.7 0.6 0.7 0.8 0.7 0.8 0.8

Graff 1 0.8 0.65 0.85 0.7 0.5 0.3

Lake 0.9 0.3 0.3 0.75 0.6 0.6 0.3

Reservoir 0.7 0.7 0.7 0.85 0.7 0.5 0.3

Shoal 0.8 0.5 0.7 0.7 0.2 0.5 0.3

Urban 0 0 0.1 0 0 0 0

Village 0 0 0.1 0 0.5 0 0.1

Other 0 0 0 0.2 0.1 0 0

Swamp land 0.5 0.5 0.5 0.6 0.3 0.3 0.2

Unusedland 0 0 0 0 0 0 0
F
rontiers in Plant Science
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FIGURE 4

The mean ROC curve from 10 replicate training runs.
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3.3 Future climate suitable areas for
D.flexicaule

We further generated future suitability maps for D. flexicaule in

ArcGIS 10.2 (Figure 6). Future climate predictions indicate that the

suitable areas for D. flexicaule will significantly expand (Table 4).

The most pronounced expansion occurs under SSP585 in 2061–

2080, where suitability grows from 64.3 × 10^4 km² to 159.04 ×

10^4 km², an increase of 94.74 × 10^4 km² (147.34%). The smallest

expansion appears under SSP1–2.6 in 2041–2060, yielding a total of

128.11 × 10^4 km², which is 63.81 × 10^4 km² (99.24%) larger than

under current conditions.

Under all scenarios, the total extent of low-, moderate-, and

high-suitability zones rises. Under SSP585 in 2061–2080, low- and

moderate-suitability areas exhibit the most robust growth, whereas

high-suitability zones expand most under SSP126 in 2061–2080.

These findings imply that D. flexicaule habitat is highly responsive

to climatic shifts, regardless of the scenario.
3.4 Dynamic changes of suitable areas for
D. flexicaule in different periods

Compared with current conditions, D. flexicaule’s suitable

distribution areas vary across climate scenarios and time periods

(Table 5; Figure 7). Under SSP245 for 2041–2060, the smallest

decline in suitable area is observed: a reduction of 0.17 × 10^4 km²

(0.26%). The largest decrease occurs under SSP585 for 2041–2060,

amounting to 1.72 × 10^4 km² (2.67%). By contrast, the most

pronounced increase occurs under SSP585 for 2061–2080, with a

96.24 × 10^4 km² (149.67%) expansion, while the smallest rise takes

place under SSP126 for 2041–2060, totaling 64.73 × 10^4

km² (100.67%).
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As shown in Figure 7, unchanged areas are predominantly

located in Sichuan, Chongqing, Shaanxi, Hubei, and Shandong,

whereas regions exhibiting decreases are concentrated in Anhui and

Hubei. Areas displaying increases are primarily found in Shandong,

Shanxi, Taiwan, Hebei, Yunnan, and Tibet. Overall, D. flexicaule’s

habitat suitability responds markedly to climate change, with

broadly consistent patterns across similar climate scenarios in

different periods. Although all future scenarios point to an overall

expansion of suitable habitat, the magnitude of change varies

among them.

From a spatial perspective (Figure 8), the centroid of D.

flexicaule’s suitable habitat shifts in multiple directions but trends

northwestward overall. Under current conditions, the centroid is

located near Yujia Town in Wanzhou District, Chongqing (E 107°

57′38.82″, N 30°46′28.18″). Under SSP245 for 2041–2060, it moves

137.83 km to the southwest, landing in Wanyuan City, Dazhou,

Sichuan (E 107°44′41.68″, N 31°59′55.84″). Under SSP585 for

2061–2080, it shifts 282.29 km to the northwest, reaching

Chaotian District, Guangyuan, Sichuan (E 105°46′46.80″, N 32°

30′5.69″). The results indicate that future changes in precipitation

and temperature will push the suitable habitat center of D. flexicaule

towards the northwest to adapt to the impacts of future climate.
3.5 Multivariate environmental similarity
surface and most dissimilar variable
analysis

Relative to current conditions, the mean multivariate similarity

across future climate scenarios ranges from 11.53 to 12.29,

indicating an overall positive environmental similarity. During

2061–2080, SSP245 displays the highest multivariate similarity

and the lowest degree of climatic anomaly, whereas SSP585 shows
FIGURE 5

Current prediction of suitable areas for D. flexicaule. Map creation using ArcMap10.8.0 (URL: https://www.arcgis.com/index.html). China
Administrative Map from Resource and Environmental Science Data Platform (https://www.resdc.cn/). GS (2024)0650.
frontiersin.org
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the lowest similarity and thus the greatest climate deviation

(Figure 9). The variables most responsible for changes in suitable

regions are annual precipitation, elevation, and precipitation in the

driest month (Figure 10). Substantial changes in the mean

temperature of the driest quarter appear mainly under SSP126

and SSP585 (2041–2060) and SSP245 (2061–2080). Overall,

precipitation factors exert the strongest influence, followed by

topography and temperature, while soil variables are sparse and

contribute the least.
3.6 The main environmental factors
affecting the distribution of D.flexicaule

According to MaxEnt projections, the five leading determinants

of D. flexicaule distribution are the mean temperature of the driest

quarter (43.7%), slope (26.4%), annual precipitation (11.5%),

elevation (7.4%), and precipitation in the driest month (7.0%). In

the jackknife test (Figure 11), the mean temperature of the driest
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quarter exhibits the highest normalized training gain when used

alone, implying it holds the most predictive information, followed

by slope and annual precipitation. Notably, excluding the driest-

quarter temperature from the model yields the lowest training gain,

underscoring its unique importance. Hence, the driest-quarter

temperature emerges as the critical driver behind the distribution

of D. flexicaule.

Response curves for these five key variables (Figure 12) show

that when each factor’s survival probability surpasses 0.5, the

corresponding range is suitable for growth. Specifically, D.

flexicaule has a survival probability under 0.1 at driest-quarter

temperatures below -7.5°C, rising steadily to its peak near 1.5°C,

then declining again as temperatures exceed that point. A

probability above 0.5 persists between roughly -2.5°C and 5.0°C.

Under current conditions, the model deems the following ranges

suitable: a driest-quarter mean temperature of -2.5°C to 5.0°C,

slopes steeper than 22°, annual precipitation between 780 mm and

1,900 mm, elevations of 600–2,800 m, and driest-month

precipitation of 8–35 mm.
FIGURE 6

Prediction of suitable areas for D. flexicaule in the future [2041-2060: SSP126 (A), 2041-2060: SSP245 (C), 2041-2060: SSP585 (E), 2061-2080:
SSP126 (B), 2061-2080: SSP245 (D) and 2061-2080: SSP585 (F)]. Map creation using ArcMap10.8.0 (URL: https://www.arcgis.com/index.html). China
Administrative Map from Resource and Environmental Science Data Platform (https://www.resdc.cn/). GS (2024)0650.
frontiersin.org
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3.7 Priority protection and development
areas for D.flexicaule with curved stems

Using the InVEST model to calculate habitat quality in some

suitable areas for D.flexicaule, the results were imported into

ArcGIS, and the habitat quality was classified into five grades

using the natural breaks classification method (Figure 13): poor

(P < 0.475), suboptimal (0.475 ≤ P < 0.702), moderate (0.702 ≤ P <

0.848), good (0.848 ≤ P < 0.922), and excellent (P ≥ 0.922). In

general, the better the habitat quality and the greater the

biodiversity, the better the ecological suitability of the area.

Therefore, applying limited conservation resources to the most

valuable areas can achieve optimal conservation outcomes. This

study designates areas with excellent habitat quality as priority

conservation areas. Considering the need for industrial

development, especially in recent years with increasing demand

for product quality, authenticity, and rural revitalization, areas with

moderate and good habitat quality are designated as priority

development areas. On the one hand, high habitat quality can

ensure product quality. On the other hand, the construction of

ecological industrial bases, combined with the ornamental value of

D.flexicaule, can promote the development of ecological tourism in

these areas. As shown in the Figure 13, the priority conservation

areas for D.flexicaule are primarily concentrated in the southern
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foothills and the eastern end of the Qinba Mountains, including

locations such as Wanyuan City and Xuanhan County in Sichuan

Province, Chengkou County in Chongqing, and Fangxian County.

The priority development areas for D.flexicaule are mainly located

in the northern foothills of the Qinba Mountains in Chengkou

County, Chongqing, as well as in Xingshan County, Hubei

Province, and Zhenping County, Shaanxi Province. The results of

this study align with the conservation and development areas for

D.flexicaule in the Qinba Mountain region. Moreover, both the

priority conservation and development areas are relatively

concentrated, which is beneficial for both species conservation

and the development of industries related to the species.
4 Discussion

4.1 MaxEnt model evaluation

This study used the Maxent model for modeling, which

predicted species distribution based on species formation records

and environmental factors. While most researchers use the default

parameters for modeling with MaxEnt, some have noted that the

default parameters may lead to overly complex models, making the

results difficult to interpret and not always suitable for species
TABLE 4 Suitable area under different climatic scenarios.

Period
Climate
scenario

Low
(x 104km2)

Moderately
(x 104km2)

Highly
(x 104km2)

Total
(x 104km2)

Change rate
(%)

1970-2000 Current 47.65 14.19 2.46 64.3

2041-2060

SSP126 79.88 31.69 16.54 128.11 99.24

SSP245 93.03 32.66 25.79 157.38 144.76

SSP585 85.11 32.25 17.74 135.5 110.73

2061-2080

SSP126 75.78 40.24 30.04 146.06 127.15

SSP245 83.65 31.92 18.23 133.8 108.09

SSP585 98.36 40.29 20.39 159.04 147.34
TABLE 5 Current and future changes in suitable areas for D. flexicaule.

Period Climate
scenario

Habitat area
(x 104km2)

Decrease
(x 104km2)

Stable
(x 104km2)

Increase
(x 104km2)

Parentage
low(%)

Parentage
gain(%)

Current 64.3

2041-
2060

SSP126 128.11 0.92 63.38 64.73 1.43 100.67

SSP245 157.38 0.17 64.13 93.25 0.26 145.02

SSP585 135.5 1.72 62.58 72.92 2.67 113.41

2061-
2080

SSP126 146.06 0.5 63.8 82.26 0.78 127.93

SSP245 133.8 0.59 63.71 70.09 0.92 109.00

SSP585 159.04 1.5 62.8 96.24 2.33 149.67
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distribution modeling (Merow et al., 2013; Radosavljevic and

Anderson, 2014). Aiming at the overfitting problem of the model,

this study uses the “ENMeval” package in R to optimize the default

parameters of the model. The “kuenm” package in R (http://

github.com/marlonebos/kuenm) offers similar functionality by

integrating with the MaxEnt model to automate the modeling
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workflow. It systematically simulates various combinations of

feature classes (FC) and regularization multipliers (RM),

generating and evaluating multiple candidate models to identify

the optimal parameter settings (Cobos et al., 2019; Yao et al., 2024).

Considering the potential spatial autocorrelation among

distribution points, this study utilized the ENM Tools package in
FIGURE 7

Dynamic changes of D. flexicaule under future climate conditions [2041-2060: SSP126 (A), 2041-2060: SSP245 (C), 2041-2060: SSP585 (E), 2061-
2080: SSP126 (B), 2061-2080: SSP245 (D) and 2061-2080: SSP585 (F)]. Map creation using ArcMap10.8.0 (URL: https://www.arcgis.com/index.html).
China Administrative Map from Resource and Environmental Science Data Platform (https://www.resdc.cn/). GS (2024)0650.
frontiersin.org
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R to filter the points. The software package stochastically removes

duplicate points within identical grid cells based on the spatial

resolution of climatic factors, ensuring that each grid cell retains a

singular representative data point. Other researchers (Liu et al.,

2021; Yang et al., 2022) also utilized proximity analysis within GIS

geospatial processing tools to retain distribution points closest to

each grid centroid, achieving favorable outcomes.

Contemporary ecological modeling increasingly incorporates

multidimensional environmental variables such as bioclimatic,

topographic, and soil factors, which have demonstrated enhanced

predictive performance in species distribution analyses (Jing et al.,

2020; Wei et al., 2020). However, strong correlations among these

variables, particularly in biological and soil datasets, can affect

modeling results. Accordingly, we employed a jackknife test and

Spearman correlation analysis to identify the most relevant

variables, thereby enhancing the model’s accuracy. Though

MaxEnt offers advantages over other species distribution models,

it has limitations (Che, 2022). First, the model forecasts a

species’ maximum potential distribution, which may not fully

coincide with the species’ observed range (Ta et al., 2021).

Second, the niche-based foundation of MaxEnt presupposes

unlimited expansion under ideal conditions, whereas in reality,

species distributions are constrained by various factors beyond the

model’s scope.
4.2 Important variables of D.flexicaule

Understanding how a species’ geographic distribution correlates

with environmental variables is a critical first step in conservation

(Harapan et al., 2022). Climate change often affects the
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physiological and biochemical characteristics of plants in complex

ways, often leading to changes in their suitable habitats (Cao et al.,

2016; Li et al., 2020b). Under the current climate scenario,

temperature, slope and precipitation are the main factors affecting

D. flexicaule distribution was the main variable, while the influence

of soil factors was relatively small. The temperature exerts a

paramount regulatory influence on the growth, physiological

development, and metabolic processes of Dendrobium species

(Orchidaceae). (Taticharoen et al., 2023). Studies have indicated

that the normal growth and fruiting of D. flexicaule require an

average annual temperature ranging from 8 to 15°C, along with

substantial water availability. In particular, the Funiu Mountain

area receives approximately 900 mm of average annual rainfall

(Zhang et al., 1999). According to the response curves of each factor

predicted by the MaxEnt model, the optimal range for D.flexicaule

is a mean temperature of 2°C during the driest quarter, a steep

slope, and annual precipitation of 1350 mm. This aligns with the

species’ biological preference for warm, steep, and humid regions

(Zhang, 2016). The distribution models of orchids revealed that

Bio17, Bio12, and Bio4 were the key climatic determinants. This

indicates that these parameters significantly shape the spatial

patterns of orchid habitats, with closely related species

demonstrating analogous adaptation thresholds to bioclimatic

constraints (Zheng et al., 2023).
4.3 Regional distribution of suitability of
D.flexicaule

Species’ responses to climate change often hinge on the

interplay between habitat suitability and geographic shifts (Davis,
FIGURE 8

Geographical changes of the central particle in D. flexicaule under different climatic scenarios and periods [(B) is an enlargement of the part of (A)].
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2001). Many taxa are anticipated to move toward higher latitudes

and elevations in response to warming, though the extent and

direction of these relocations vary markedly across species (Chen

et al., 2011). Studies aimed at pinpointing orchid-rich zones for

conservation—such as southeastern Tibet, western Yunnan, and

central Yunnan—demonstrate partial overlap with the distribution

of D. flexicaule (Zhan et al., 2024), and modeling efforts similarly

highlight that suitable areas for D. flexicaule cluster in Sichuan,

Chongqing, Henan, Hubei, Tibet, and Yunnan (Sun et al., 2020).

However, its high suitability area is extremely limited, covering only

2.46 × 10^4 km². D. flexicaule exhibits stringent microclimatic

requirements: it is confined to near-vertical, moss-covered
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limestone cliffs or rock crevices that are simultaneously warm-

cool, persistently moist yet free of standing water, irradiated by

diffuse light but shielded from direct insolation, and subject to

continuous gentle ventilation without mechanical wind stress; these

microhabitats are typically characterised by the audible presence of

running water while surface water remains absent (Zhang, 2016).

Such stringent microclimatic requirements explain the extremely

limited extent of climatically suitable habitat predicted by

niche models.

In parallel, our projections for D. flexicaule reveal considerable

habitat changes under future warming, with all levels of suitability

expanding; high-suitability areas show the largest increase, while
FIGURE 9

Multivariate environmental similarities of D. flexicaule [2041-2060: SSP126 (A), 2041-2060: SSP245 (C), 2041-2060: SSP585 (E), 2061-2080: SSP126
(B), 2061-2080: SSP245 (D) and 2061-2080: SSP585 (F)]. Map creation using ArcMap 10.8.0 (URL: https://www.arcgis.com/index.html). China
Administrative Map from Resource and Environmental Science Data Platform (https://www.resdc.cn/). GS (2024)0650.
frontiersin.org
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lower-suitability areas show the smallest. This pattern underscores

D. flexicaule’s strong sensitivity to global temperature rises.

Spatially, D. flexicaule habitat consistently broadens in response

to warming. Mycorrhizal fungi play a crucial role in buffering the

extinction risk of plant hosts. They can either promote or hinder the
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dispersal success of plant migration from harsh environments, and

by buffering host plants, they help reduce extinction risk and

facilitate adaptation to new climates (Bennett and Classen, 2020).

Fernandez et al. (2023) found that warming and reduced

rainfall significantly altered the community composition of
FIGURE 10

Most Dissimilar Variables of D. flexicaule [2041-2060: SSP126 (A), 2041-2060: SSP245 (C), 2041-2060: SSP585 (E), 2061-2080: SSP126 (B), 2061-
2080: SSP245 (D) and 2061-2080: SSP585 (F)]. Map creation using ArcMap10.8.0 (URL: https://www.arcgis.com/index.html). China Administrative
Map from Resource and Environmental Science Data Platform (https://www.resdc.cn/). GS (2024)0650.
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ectomycorrhizal fungi (EMF), while Wu et al. (2023) reported that

warming significantly enhanced the photosynthetic rate and growth

of plants associated with endophytic mycorrhizal fungi. Therefore,

we hypothesize that future temperature changes may influence

mycorrhizal fungi, thereby affecting the germination rate of D.

flexicaule (Royal Botanic Gardens, Kew, 2025, internal report).

Multivariate environmental similarity analyses suggest that future

climate anomalies shift to lower and higher latitudes, driven

primarily by precipitation variables (e.g., total annual

precipitation, precipitation in the driest month). Meanwhile,

scenarios with the most pronounced expansions in suitable

habitat also exhibit the largest changes in the mean temperature

of the driest quarter, identified here as the most critical limiting

factor. D. flexicaule thrives in warm, humid conditions; thus, rising

temperatures make additional regions habitable. Overall, the

marked increase in suitable habitat indicates that D. flexicaule

could be cultivated in its current range without extensive damage

from future climate change.

Nevertheless, China’s warming rate already exceeds the global

average (Center), and escalating temperatures are projected to intensify

the frequency of extreme weather events (Wang et al., 2017). Such

events—including heatwaves, cold snaps, and erratic rainfall—have

substantially affected natural ecosystems (Yu et al., 2023; Piao et al.,

2019). As a core component of terrestrial ecosystems, vegetation is

especially vulnerable to these phenomena (Liu et al., 2023). Plants

typically occupy narrow climate envelopes conducive to their growth;

when these thresholds are exceeded, growth rates diminish (Schlenker

and Roberts, 2009; Hoffman et al., 2018) or, in severe cases,

populations may perish (Luo, 2011). In the context of global change,

epiphytic plants appear to be particularly sensitive and more

vulnerable than other terrestrial plants (Gentry and Dodson, 1987;
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Kreft et al., 2004). While model results suggest D. flexicaule could

benefit overall from a warmer climate, the surge in extreme weather—

particularly harmful for this climate-sensitive and endangered species

—cannot be ignored. Indeed, sudden cold snaps can severely damage

D. flexicaule, and temperatures below -10°C for extended periods can

cause varying degrees of frost injury (Zhang, 2016). Moreover,

cultivated plants frequently exhibit lower stress tolerance, placing

them at higher risk of large-scale mortality under extreme conditions.

A variety of approaches exist for classifying suitable areas,

including manual classification (Yan et al., 2021), the IPCC’s

probability thresholds (Manning, 2006), intervals derived from

top 80% and bottom 20% values (Zhu et al., 2023), and the

widely used natural breaks method in ArcGIS (Wang et al., 2023;

Ho and Umitsu, 2011). However, we found the results from the

natural breaks method differed substantially from observed realities.

Consequently, manual classification was ultimately selected to

delineate D. flexicaule’s suitable habitat in a manner better aligned

with its actual distribution (Wang et al., 2023).
4.4 Priority protection and development
areas for D.flexicaule with curved stems

Land-use changes substantially impact species distributions

(Cardinale et al., 2012). Many studies relying on MaxEnt limit

environmental factors to bioclimatic, soil, and topographic data,

often overlooking land-use types. Yet habitat quality is especially

critical for species like D. flexicaule, which have precise

environmental needs. While some researchers (Chao et al., 2021)

incorporate land-use factors, these variables are sometimes

excluded or underrepresented during variable selection.
FIGURE 11

Regularized training gain (Green represents without variable, blue represents without only variable, and red represents all variables).
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Conservation efforts aim to preserve biodiversity—particularly for

endangered plants—and ensure its sustainable use (Adhikari et al.,

2019). Habitat loss is a principal driver of biodiversity decline, making

habitat protection vital (Françoso et al., 2015). By integrating the

MaxEnt and InVEST models, our study identifies key areas for D.

flexicaule conservation and development. Our findings reveal that

priority conservation zones are concentrated in Wanyuan City and

Xuanhan County (Sichuan), Chengkou County (Chongqing), and
Frontiers in Plant Science 16
Fang County and the Shennongjia Forestry District (Hubei). Priority

development areas lie mainly in Chengkou County (Chongqing),

Xingshan County (Hubei), and Zhenping County (Shaanxi). These

counties sit in the Qinba Mountains, a region with varied landforms

and one of China’s major biodiversity hotspots (Qiao et al., 2016). The

Qinba Mountains, in particular, feature mild climates, ample sunlight,

abundant rainfall, and sufficient heat—conditions that favor

cultivating medicinal plants (Zhang et al., 2008).
FIGURE 12

Single factor response curve of the current climate [(A) bio 9, (B) slop, (C) bio 12, (D) altitude, (E) bio 14].
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Based on the research findings, the following integrated

recommendations are proposed to enhance practical application

and policy relevance: In priority conservation areas characterized by

excellent habitat quality (e.g., the southern foothills and eastern

Qinba Mountains, including specific locations such as Wanyuan

City, Chengkou County, and Fangxian County), these zones should

be formally incorporated into ecological protection redlines, with

strict restrictions on large-scale infrastructure and mining activities,

supported by eco-compensation mechanisms to balance

conservation objectives and local livelihoods. In priority

development areas with moderate to good habitat quality (e.g.,

northern Chengkou County, Xingshan County, and Zhenping

County), community-led initiatives such as sustainable cultivation

of D. flexicaule and eco-certification programs should be promoted,

capitalizing on the species’ ornamental value to develop ecological

tourism and support rural revitalization. Furthermore, a dynamic

monitoring system integrating GIS and remote sensing technologies

is recommended to regularly track habitat changes in both types of

zones, enabling adaptive management and coordinated

conservation-development outcomes.
4.5 Limitation

Plants’ adaptation to the environment and their dispersal

capabilities often determine their distribution patterns, while both

biotic and abiotic factors can also influence these patterns. Although

water and temperature conditions primarily define D. flexicaule

habitat suitability, unaccounted-for soil and biotic interactions may

also play roles. As an epiphytic plant, the growth of D.flexicaule is
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also influenced by the specific characteristics of its host epiphytes

(Wang, 2024). The absence of future soil and topographic changes

in our projections could therefore introduce some bias into

the results.

Therefore, to formally incorporate an assessment of these

potential biases into our discussion, we acknowledge key

uncertainties stemming from our model’s static treatment of soil

properties and future land-use patterns. Soil characteristics

influence epiphyte microhabitats by affecting host tree bark

chemistry (Tatsumi et al., 2023), and their constancy in

projections may introduce inaccuracies. Similarly, by omitting

dynamic land-use change (e.g., deforestation), our model fails to

account for potential habitat fragmentation and loss that could

directly impact the availability of host trees, irrespective of climatic

suitability (Jantz et al., 2014).

To quantify these potential biases, we recommend future studies

employ sensitivity analysis (e.g., Sobol’ indices) to partition the

variance contributed by these uncertainties (Pianosi et al., 2016).

As a key mitigation strategy, integrating dynamic land-use

models (Meentemeyer et al., 2013) with our projections would

identify areas that are both climatically suitable and likely to

remain forested. Approximating future soil conditions using

pedotransfer functions could further reduce this uncertainty

(Smith et al., 2020). This transparent framework aims to advance

the predictive accuracy of SDMs for epiphytic species. Orchid seeds

are universally minute, contain an undifferentiated embryo, are

enclosed by a transparent testa, and lack endosperm; consequently,

natural germination is negligible unless colonised by compatible

mycorrhizal fungi (Liu et al., 2021; Rasmussen et al., 2015).

Field and experimental data confirm that D. flexicaule follows this
FIGURE 13

Habitat quality in some highly suitable areas [(B) is an enlargement of the part of (A)]. Map creation using ArcMap10.8.0 (URL: https://www.arcgis.com/
index.html). China Administrative Map from Resource and Environmental Science Data Platform (https://www.resdc.cn/). GS (2024)0650.
frontiersin.org
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rule, exhibiting almost zero recruitment without fungal partners.

Mycorrhizal fungi can either facilitate or constrain plant migration

by buffering physiological stress and moderating extinction risk

(Bennett and Classen, 2020). Warming and reduced precipitation

have been shown to reshape ectomycorrhizal communities

(Fernandez et al., 2023) and to enhance the performance of

endophytic associations (Wu et al., 2023). Mediterranean work

further demonstrates that even minor temperature increases can

markedly alter mycorrhizal composition and function (Royal,

2025). These findings underscore that plant microbiomes may

mediate, but not guarantee, persistence under climate change

(Afkhami et al., 2025). Spatially, D. flexicaule habitat consistently

broadens in response to warming. An analogous "symbiotic

mismatch" could unfold for D. flexicaule in the Qinba Mountains:

rising temperatures and altered precipitation may reduce the

abundance or compatibility of requisite fungal taxa, thereby

depressing seedling recruitment despite climatic suitability. This

biotic filter represents an ecologically plausible, yet unmeasured,

process that could further constrict the species’ realised niche

beyond the abiotic projections presented here. Integrating high-

resolution data on the distribution and ecological tolerances of key

mycorrhizal symbionts is therefore essential to refine conservation

strategies for D. flexicaule under continued climate change.
5 Conclusion

MaxEnt projections under divergent climate scenarios indicate

that suitable habitat for the medicinally important orchid D.

flexicaule will expand markedly across Sichuan, Chongqing,

Guizhou, Henan and Hubei, with temperature, slope and

precipitation acting as the primary environmental drivers.

Overlaying these projections with InVEST-derived habitat quality

allowed us to delimit two functional zonings. (1) Priority-

conservation area, concentrated in Chengkou County

(Chongqing), Fangxian County and the Shennongjia Forest

District (Hubei), all located on the southern Daba foothills and

eastern Qinling Mountains,should be gazetted as ecological-red-line

zones where large-scale infrastructure and mining are banned; eco-

compensation schemes and community-based initiatives will

reconcile protection with local livelihoods while safeguarding

primary habitats. (2) Priority-development areas, centred in

Xingshan County (Hubei) and Zhenping County (Shaanxi),

should foster community-led, sustainable cultivation coupled with

third-party eco-certification and orchid-themed ecotourism to

advance rural revitalisation without encroaching on wild

populations. An annual GIS-/remote-sensing monitoring platform

is recommended to track habitat dynamics in both zone types,

enabling adaptive governance of conservation–development trade-

offs. This integrated modelling-management framework provides

theoretical support for balancing in-situ conservation and regulated

utilisation of D. flexicaule under future climates.
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