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Introduction: Dendrobium flexicaule, an orchid endemic to China, is valued in
Traditional Chinese Medicine; however, its conservation and sustainable use lack
spatial guidance.

Methods: This study employed the MaxEnt model to predict suitable habitats
for D. flexicaule under varying climatic conditions. Building upon the high-
suitability areas identified by MaxEnt, we further utilized the InVEST model to
delineate high-quality habitat zones as key areas for conservation and
development planning.

Results: Results revealed that D. flexicaule is primarily found in Sichuan,
Chongqing, Guizhou, Henan, and Hubei. Future scenarios suggest an
expansion of suitable habitats, with precipitation, temperature, and slope
emerging as the dominant environmental drivers. Priority conservation zones
cluster along the southern and the eastern edge of the Qinba Mountains,
whereas priority development areas concentrate in the northern foothills of
the Qinba Mountains.

Discussion: Our analysis highlighted the critical influence of precipitation and
temperature on the species’ distribution, ultimately identifying priority
conservation areas. This integrated approach provides a scientific foundation
for the sustainable development of D. flexicaule.
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1 Introduction

In China, a total of 74 species and two varieties of Dendrobium
are recorded, primarily distributed in the Qinling Mountains, the
Yangtze River Basin, and adjacent southern regions. These taxa
typically occupy areas between 15°30" and 25°12’ N, gradually
extending northward with a concomitant decline in species
diversity. Compared with other Dendrobium species, D. flexicaule
inhabits notably higher latitudes. Its core distribution is centered in
the Qinba Mountains, extending southward along the Hengduan
Mountains to Binchuan (Dali, Yunnan, China). The species is a
habitat specialist, growing as a lithophyte on north-facing cliff faces
(Zhang, 1995; Zhang, 2016). It is among the key original plant
sources of the Chinese medicinal material “D. flexicaule,” valued not
only for its ornamental potential but also for its substantial
medicinal properties (Editorial Committee of the Flora of China,
Chinese Academy of Sciences, 1999). The stems of D. flexicaule,
renowned for their cold nature and sweet taste, are said to nourish
yin and yang, rejuvenate the liver and kidneys, and are traditionally
consumed to promote longevity. Folk medicine further employs
these stems to treat infantile convulsions. Chemical analyses have
revealed numerous alkaloids, polysaccharides, and 17 free amino
acids in the plant. When boiled, it yields a fragrant, sweet broth
described as “delicious.” As early as the Shennong Bencao Jing, D.
flexicaule was classified as a top-grade herb. However, this species is
increasingly threatened by habitat specificity, limited distribution,
slow growth rates, and excessive long-term harvesting. In 2021, it
was officially recognized as a national first-class protected plant in
China (http://www.forestry.gov.cn/main/5461/20210908/
162515850572900.html) and is also listed as endangered by the
IUCN (https://www.incnredlist.org). Endemic plants are typically
confined to narrow geographical areas and are often rare or
endangered (Zhu and Sheng, 2019). Their distribution patterns
are crucial for floristic regionalization and vegetation zoning, and
understanding the characteristics, origin, formation, and evolution
of flora (Wu, 1991; Brooks et al., 2006; Lamoreux et al., 2006). As a
biodiversity hotspot, the Qinba Mountains' conservation priority is
partly determined by its number of endemic species.Research on the
distribution of D. flexicaule, an endangered and endemic plant in
China, not only aids in its protection but also offers theoretical and
decision-making support for the Qinba Mountain region's
biodiversity conservation strategy. This ensures the protection of
endemic species and promotes the sustainable development
of biodiversity.

Species distributions emerge from complex interactions among
evolutionary processes, human interventions, and a spectrum of
environmental parameters—encompassing climate, terrain, soil
characteristics, biotic factors, and migration histories. These
distributions reflect the evolutionary trajectory, population
dynamics, and ecological adaptability of species (Soberon and
Peterson, 2005). Among environmental influences, climate
variables such as precipitation and temperature crucially shape
plant growth, development, and distribution (Bertrand et al,
2011; Lenoir et al., 2008). Current greenhouse gas emissions have
led to global warming, an escalating environmental challenge
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particularly for plant species whose already restricted habitats
may contract further, intensifying their risk of endangerment
(Ashraf et al., 2016; Chichorro et al., 2019; Fitzpatrick et al,
2008). In response to rising temperatures, certain species migrate
to higher latitudes or elevations (Bertrand et al., 2011; Root et al,
2003), although these shifts manifest differently across taxa.
Consequently, understanding species-specific climate-change
responses is critical to biodiversity conservation efforts. In recent
decades, Ecological niche models (ENMs), commonly termed
species distribution models (SDMs), have been extensively
employed to predict suitable habitats (Raes, 2012). Of these, the
MaxEnt model has gained particular prominence due to its robust
predictive power and high spatial consistency (Liu et al., 2019;
Phillips and Dudik, 2008). Compared with other models,
MaxEnt requires limited occurrence data (n > 5), is cost-efficient,
easy to use, runs quickly, and generally offers superior results
(Liu Ran et al., 2018; Pearson et al.,, 2007). Researchers
have increasingly adopted MaxEnt to map suitable regions for
medicinal plants and to analyze how these species respond to
climate change, even under conditions of limited data (Li et al.,
2020a; Liu et al., 2021).

Amid ongoing global habitat loss (Field and Barros, 2014;
Newbold et al., 2015), identification of priority conservation and
development areas remains a key strategy for enhancing nature
reserve management and achieving biodiversity objectives (Brooks
et al,, 2006; Ma et al,, 2021). The InVEST model, which requires
relatively minimal data yet yields high assessment accuracy, has
become a popular tool for habitat quality evaluation (Wang et al.,
2024). Scholars have employed it at diverse spatial scales—ranging
from nature reserves (Gu et al., 2019) and counties (Luan et al.,
2023) to urban agglomerations (Wu et al., 2015) and river basins
(Xu et al,, 2023a). Because land-use patterns greatly impact habitat
quality, integrating the InVEST model with land-use analyses can
effectively delineate priority conservation and development zones,
demonstrating strong operational feasibility.

Against this backdrop, the aims of the present study are
threefold: (1) Analyze the distribution of suitable areas for D.
flexicaule under different climate scenarios and evaluate their
temporal dynamics; (2) Identify key factors that affect its
distribution; and (3) integrate MaxEnt projections with the
InVEST model to define priority conservation and development
regions for this species. These findings will not only augment our
understanding of how D. flexicaule may respond to extreme climate
events and other environmental pressures but also provide a
foundational reference for future studies on biodiversity, species
differentiation, and the broader conservation of this medically and
ecologically significant orchid.

2 Data and models
2.1 Research framework

We developed an integrated modeling workflow by coupling
species habitat suitability predictions (MaxEnt) with Habitat quality
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assessment (InVEST). This framework enabled spatially explicit
mapping of D. flexicaule ‘s potential range under current bioclimatic
conditions and future scenarios, explored the priority conservation
and development areas of this species (Figure 1).

2.2 Data processing

2.2.1 Data and distribution point processing of D.
flexicaule with curved stem

The distribution data for D. flexicaule were gathered during
field surveys by the project team using handheld GPS devices,
yielding a total of 46 data points. To minimize clustering effects that
might skew the MaxEnt model’s results, the ENMtools package in R
was employed for data screening. As a result, 18 final distribution
points were retained for D. flexicaule (Figure 2).

2.2.2 Data source processing

This research incorporated 36 environmental parameters,
leveraging climatic datasets from the WorldClim platform (https://
worldclim.org). The analysis encompassed bioclimatic indicators
for the historical period (1970-2000) and projected future periods

10.3389/fpls.2025.1686507

(2041-2060, 2061-2080) under multiple scenarios at a 30-second
(~1 km) resolution. The 19 standard bioclimatic variables are
labeled biol-biol9. The climate projections used in this study
were obtained from the Beijing Climate Center’s medium-
resolution Climate System Model (BCC-CSM2-MR) (Tan et al,
2022), which is part of CMIP6. This model, recommended for use in
China, encompasses three Shared Socioeconomic Pathways (SSPs)
—SSP126, SSP245, and SSP585 (Zhou et al., 2019). Three
topographic variables—elevation, slope, and aspect—were
obtained from the Geospatial Data Cloud at a 90 m resolution,
while 14 soil factors originated from the Harmonized World Soil
Database (HWSD) at approximately 1 km resolution (https://
www.fao.org/soils-portal/en/). The vector boundaries of Chinese
administrative divisions (2020s) and 30-meter resolution land use
classification data (2021s) were acquired from the Resource and
Environmental Science and Data Center (RESDC), a leading
repository for geospatial datasets in China. All datasets were
reprojected to the WGS84 coordinate system and resampled to a
uniform 1-km resolution to ensure consistency with our regional
analytical framework. The administrative division data were
sourced from the China Administrative Map database hosted by
the Resource and Environment Science and Data Center (https://

Data Collection

Field investigation

Environment factors :

1[ Climate ]( Soil ][Topography ]E

Current suitable area

FIGURE 1
Image summary.
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Geographical distribution points of D.flexicaule. Map creation using ArcMap 10.8.0 (URL: https://www.arcgis.com/index.html). China Administrative
Map from Resource and Environmental Science Data Platform (https://www.resdc.cn/). GS (2024)0650.

www.resdc.cn/). The copyright belongs to the platform and is
provided under the license number GS (2024) 0650. All
cartographic outputs were generated using Esri’s ArcMap

platform (version 10.8.0).
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of Bioclimatic factors

Because spatial autocorrelation among the 36 environmental
factors (especially the 19 bioclimatic and 14 soil variables) could

lead to overfitting (Sillero, 2011), a screening process was

implemented to reduce multicollinearity. This involved a
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TABLE 1 Selected environmental factors.

Type Abbreviation Describe
Bioclimatic Bio4 Temperature Seasonality
X Mean Temperature of Driest
Bio9
Quarter
Biol2 Annual Precipitation
Biol4 Precipitation of Driest Month
Soil AWC_CLASS Available water capacity class
Topsoil Reference Bulk
T_REF_BULK .
Density
T_OC Topsoil Organic Carbon
T_CACO3 Topsoil Calcium Carbonate
T ESP Topsoil Exchangeable sodium
percentage
Topographic Elevation Elevation
SLOPE SLOPE
Aspect Slope orientation

jackknife test and Spearman correlation analysis (Figure 3).
Variables demonstrating inter-correlation values surpassing 0.8
were classified as exhibiting significant multicollinearity based on
variance inflation criteria (Chhogyel et al., 2020). Through manual
evaluation, factors with a 0% contribution in the jackknife test were
eliminated, and where two variables correlated above 0.8, choose to
remove variables with lower contribution rates. The final result is a
set of four bioclimatic factors, six soil factors, and three terrain
factors, with a total of 13 selected environmental variables (Table 1).

2.3 Establishment and optimization of
MaxEnt model

The MaxEnt model is a species distribution prediction method
based on the principle of maximum entropy. It utilizes known species
occurrence records and environmental variables as input data to
estimate the probability of species occurrence under varying
environmental conditions by maximizing entropy (Merow et al,
2013). MaxEnt modeling analysis was performed by importing the
filtered set of 18 distribution points and 13 environmental factors in
ACS format into the model. To characterize the available environmental
space, we randomly generated 10,000 background points within the
defined study area. The model was then run with 10 replicates, setting
the maximum number of iterations to 10,000 to ensure full algorithm
convergence (Chen et al,, 2024). For each iteration of the experiment, a
random subset comprising three-quarters of the data samples was
allocated to model training, with the remainder designated as the
evaluation set (Yuan et al,, 2021). Model efficacy was assessed through
analysis of receiver operating characteristic curves, where the area under
the curve (AUC) served as the primary metric for quantifying predictive
performance (Jimenez-Valverde, 2012). An AUC value of 1 signifies a
perfect predictive capacity, whereas 0.5 implies a random prediction
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(Swets, 1988). For optimal performance, an AUC value above 0.9 is
recommended (Sun et al., 2020). In addition, the Kappa coefficient (K)
and True Skill Statistics (TSS) were employed to evaluate the predictive
performance of the Maxent model (Cohen, 1960). A TSS value below
0.4 implies prediction failure. When the TSS value ranges from 0.4 to
0.55, it indicates fair predictive ability; values from 0.55 to 0.7 suggest
moderate performance; those between 0.7 and 0.85 are regarded as
good; Exceeding 0.85 indicates excellent performance (Allouche et al,
2006; Roberts et al., 2017). Likewise, for Kappa values, a value below 0.2
represents prediction failure. When the Kappa value is between 0.2-0.4,
it indicates good performance; 0.4-0.6 is moderate; 0.6-0.8 is considered
good; Exceeding 0.8 indicates excellence (Allouche et al., 2006; Roberts
et al., 2017).

To assess the contribution of each environmental factor, the
jackknife test in MaxEnt was employed (Shcheglovitova and
Anderson, 2013). In MaxEnt, feature classes (FC) and the
regularization multiplier (RM) are pivotal parameters that strongly
influence prediction accuracy. Appropriate parameter calibration can
markedly enhance the model’s overall performance (Radosavljevic and
Anderson, 2014). We employed the ENMeval package in R for model
calibration (Phillips and Dudik, 2008). Here, the RM was initialized at
0.5 and incremented in steps of 0.5 up to 5.0, yielding 10 iterations. We
also tested various feature class combinations (L, LQ, H, LQH, LQHP,
LQHPT), generating 60 parameter configurations in total. The model
was then optimized based on these trials. The Akaike Information
Criterion corrected for small sample sizes (AICc) is employed to
evaluate model complexity and predictive performance. The model
with the minimum AICc value (DAICc = 0) is generally identified as the
most appropriate (Wen et al., 2024).

2.4 Suitable distribution areas of
D.flexicaule with curved stems

To visualize the MaxEnt model’s predictive outcomes within the
ArcGIS 10.8.0 platform, we implemented a four-tier classification
system for D. flexicaule habitat suitability analysis. Based on the
species’ stringent ecological requirements, suitability indices were
partitioned as follows: unsuitable area (< 0.3), low suitable area (0.3-
0.6), middle suitable area (0.6-0.8), and high suitable area (> 0.8).

Habitat suitability changes under current and future climatic
conditions were assessed through spatial analyses conducted using
SDMToolbox v2.5 (integrated within ArcGIS). This included
quantification of suitable habitat area dynamics and centroid
position shifts. The Geosphere package in R was subsequently
employed to calculate centroid displacement distances between
scenarios (Wang et al., 2023; Zhang et al., 2024).

2.5 Multivariate environmental similarity
surface and most dissimilar variables
analysis

Using the current climate layers as a reference (with
approximate suitable areas delineated in ArcGIS), we applied the
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multivariate environmental similarity surface (MESS) approach to
evaluate how future climate scenarios might alter D. flexicaule
habitat suitability. MESS quantifies the degree of similarity (S)
between current and future climate scenarios across
corresponding regions. We identified the most dissimilar variables
(MOD) to clarify key drivers of any projected distributional shifts.

MESS values range from 0 to 100, where S = 100 indicates future
climate scenarios equivalent to the reference (i.e., no climatic
discrepancy). Values between 0 and 100 signify varying degrees of
divergence, while S<0 implies at least one bioclimatic variable lies
beyond the reference range, marking a climate anomaly. We
processed the results using MaxEnt Density and Novel tools
(Elith et al., 2010; Li et al., 2016).

2.6 Conservation and development area of
D.flexicaule with curved stems

Habitat quality refers to an environment’s capacity to support
viable populations and stable communities over time. Fluctuations
in habitat quality stem from factors such as location, topography,
climate, and human activities (Mohan and Kandya, 2015).
Evaluating habitat quality can thus indicate local biodiversity
(Hillard et al., 2017) as well as gauge overall environmental
integrity or degradation. The InVEST model, created through
collaborative efforts between Stanford University, The Nature
Conservancy (TNC), and the World Wildlife Fund (WWE), has
become a widely utilized framework for evaluating ecological
habitat quality in diverse land management scenarios. It accounts
for vulnerability to threats, intensity of external pressures, and
proximity-based spatial effects (Xu et al., 2023b).

Dy
)
D+ k2

ij:I_Ij|:1_(

The Q,; variable represents the quality of the habitat in grid z
within habitat type j, with a value range of 0 to 1. A value close to 1
indicates a high-quality habitat with low maintenance costs and
high biodiversity. The H; variable represents habitat suitability,
while z represents the normalisation constant. The K variable

TABLE 2 Threat factor weight of study area.

Threat Maximum impact Wei Decay
. eight
factor distance(km) type
Paddyfield 4 0.7 linear
Dryland 3 0.5 linear
Urban 8 1 exponential
Village 5 0.6 exponential
other
construction 8 0.4 exponential
land
Unusedland 6 0.5 linear
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represents the semi-saturation parameter, and the D,; variable
represents the degree of habitat degradation.

Based on the InVEST user manual and related research (Bao
etal, 2015; Hu et al., 2022; Xu et al., 2021). Threat factors quantify
the disturbance intensity of land-use types on surrounding habitats;
their weight values (range: [0,1]) reflect the destructive potential of
the land-use type on habitats, with higher values indicating greater
disruption. Sensitivity values (range: [0,1]) characterize the
response level of land-use types to ecological threats, where values
approaching 1 denote heightened sensitivity (Wu et al., 2020). We
selected paddy fields, drylands, and urban land, among others, as
threat factors, and we identified the most common threats to rice
production, the weights of threat factors, the maximum influence
distance and the attenuation type are assigned (Tables 2, 3).

Finally, we integrated the InVEST model with the MaxEnt-
derived suitability analysis, focusing on the most extensive and
concentrated high-suitability regions of D. flexicaule. For better
polygonal integrity and feasible subsequent analyses, we also
included sections of moderate- and low-suitability areas. Such an
approach effectively pinpoints priority conservation zones for D.
flexicaule using limited resources while simultaneously designating
practical development areas for industries tied to this
medicinal species.

3 Result
3.1 MaxEnt model optimization results

Under the default parameters, 10 replicate training runs yielded
amean AUC of 0.964. Based on the ENMeval package results (Chen
et al., 2024), the optimal model was obtained when the feature class
(FC) was set to LQ and the regularization multiplier (RM) was 1.5
(DAICc = 0). Under these conditions, the mean AUC across 10
replicate training runs was 0.976 (Figure 4), the Kappa coefficient
(K) was 0.4379, and the True Skill Statistic (TSS) was 0.8522,
indicating excellent predictive accuracy.

3.2 Current climate suitable area for
D.flexicaule

Maxent’s predictions are visualized in ArcGIS to show the
distribution of suitability for D.flexicaule current climate (Figure 5).
Under present climate scenarios, D. flexicaule is mainly distributed in
central China, including Sichuan, Chongqing, Henan and Hubei
provinces. The total suitable area is around 64.3 x 10A4 km?, which
constitutes approximately 6.68% of China’s land area. Among these,
the high-suitability zone measures about 2.4 x 10A4 km? (0.26% of
China’s total land area), concentrated largely at the intersection of
Sichuan, Shaanxi, and Hubei provinces, as well as in southeastern
Tibet. In general, suitable distribution areas are mainly concentrated
in the mountains around Sichuan Basin. MaxEnt predictions align
well with the known geographic range of D. flexicaule, suggesting a
reliable model.
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TABLE 3 Sensitivity of land scape types to threat factors.

Land type Habitat  Paddyfield Dryland Urban Village Other Unusedland
Paddyfield 0.3 0 0.3 0.6 0.5 0.4 0.4
Dryland 0.3 1 0 0.6 0.5 0.5 0.4
Woodland 0.9 0.6 0.5 0.7 0.6 0.7 0.2
Shrub 1 0.6 0.6 0.8 0.7 0.7 0.2
Sparsewood 0.85 0.9 0.7 0.9 0.8 0.8 0.2
Other forest land 0.9 0.7 0.7 1 0.9 0.8 0.2
High coverage grassland 0.85 0.8 0.7 0.6 0.55 0.6 0.6
Medium coverage grassland 0.75 0.7 0.7 0.7 0.6 0.7 0.7
Low coverage grassland 0.7 0.6 0.7 0.8 0.7 0.8 0.8
Graff 1 0.8 0.65 0.85 0.7 0.5 0.3
Lake 0.9 0.3 0.3 0.75 0.6 0.6 0.3
Reservoir 0.7 0.7 0.7 0.85 0.7 0.5 0.3
Shoal 0.8 0.5 0.7 0.7 0.2 0.5 0.3
Urban 0 0 0.1 0 0 0 0
Village 0 0 0.1 0 0.5 0 0.1
Other 0 0 0 0.2 0.1 0 0
Swamp land 0.5 0.5 0.5 0.6 0.3 0.3 0.2
Unusedland 0 0 0 0 0 0 0
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3.3 Future climate suitable areas for
D.flexicaule

We further generated future suitability maps for D. flexicaule in
ArcGIS 10.2 (Figure 6). Future climate predictions indicate that the
suitable areas for D. flexicaule will significantly expand (Table 4).
The most pronounced expansion occurs under SSP585 in 2061-
2080, where suitability grows from 64.3 x 1024 km? to 159.04 x
1074 km?, an increase of 94.74 x 1074 km? (147.34%). The smallest
expansion appears under SSP1-2.6 in 2041-2060, yielding a total of
128.11 x 1074 km?, which is 63.81 x 10A4 km? (99.24%) larger than
under current conditions.

Under all scenarios, the total extent of low-, moderate-, and
high-suitability zones rises. Under SSP585 in 2061-2080, low- and
moderate-suitability areas exhibit the most robust growth, whereas
high-suitability zones expand most under SSP126 in 2061-2080.
These findings imply that D. flexicaule habitat is highly responsive
to climatic shifts, regardless of the scenario.

3.4 Dynamic changes of suitable areas for
D. flexicaule in different periods

Compared with current conditions, D. flexicaule’s suitable
distribution areas vary across climate scenarios and time periods
(Table 5; Figure 7). Under SSP245 for 2041-2060, the smallest
decline in suitable area is observed: a reduction of 0.17 x 10A4 km®
(0.26%). The largest decrease occurs under SSP585 for 2041-2060,
amounting to 1.72 x 1074 km® (2.67%). By contrast, the most
pronounced increase occurs under SSP585 for 2061-2080, with a
96.24 x 1074 km? (149.67%) expansion, while the smallest rise takes
place under SSP126 for 2041-2060, totaling 64.73 x 1074
km? (100.67%).
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As shown in Figure 7, unchanged areas are predominantly
located in Sichuan, Chonggqing, Shaanxi, Hubei, and Shandong,
whereas regions exhibiting decreases are concentrated in Anhui and
Hubei. Areas displaying increases are primarily found in Shandong,
Shanxi, Taiwan, Hebei, Yunnan, and Tibet. Overall, D. flexicaule’s
habitat suitability responds markedly to climate change, with
broadly consistent patterns across similar climate scenarios in
different periods. Although all future scenarios point to an overall
expansion of suitable habitat, the magnitude of change varies
among them.

From a spatial perspective (Figure 8), the centroid of D.
flexicaule’s suitable habitat shifts in multiple directions but trends
northwestward overall. Under current conditions, the centroid is
located near Yujia Town in Wanzhou District, Chongging (E 107°
57'38.82", N 30°46'28.18"). Under SSP245 for 2041-2060, it moves
137.83 km to the southwest, landing in Wanyuan City, Dazhou,
Sichuan (E 107°44'41.68”, N 31°59’'55.84"”). Under SSP585 for
2061-2080, it shifts 282.29 km to the northwest, reaching
Chaotian District, Guangyuan, Sichuan (E 105°46'46.80", N 32°
30'5.69"). The results indicate that future changes in precipitation
and temperature will push the suitable habitat center of D. flexicaule
towards the northwest to adapt to the impacts of future climate.

3.5 Multivariate environmental similarity
surface and most dissimilar variable
analysis

Relative to current conditions, the mean multivariate similarity
across future climate scenarios ranges from 11.53 to 12.29,
indicating an overall positive environmental similarity. During
2061-2080, SSP245 displays the highest multivariate similarity
and the lowest degree of climatic anomaly, whereas SSP585 shows
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the lowest similarity and thus the greatest climate deviation
(Figure 9). The variables most responsible for changes in suitable
regions are annual precipitation, elevation, and precipitation in the
driest month (Figure 10). Substantial changes in the mean
temperature of the driest quarter appear mainly under SSP126
and SSP585 (2041-2060) and SSP245 (2061-2080). Overall,
precipitation factors exert the strongest influence, followed by
topography and temperature, while soil variables are sparse and
contribute the least.

3.6 The main environmental factors
affecting the distribution of D.flexicaule

According to MaxEnt projections, the five leading determinants
of D. flexicaule distribution are the mean temperature of the driest
quarter (43.7%), slope (26.4%), annual precipitation (11.5%),
elevation (7.4%), and precipitation in the driest month (7.0%). In
the jackknife test (Figure 11), the mean temperature of the driest
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quarter exhibits the highest normalized training gain when used
alone, implying it holds the most predictive information, followed
by slope and annual precipitation. Notably, excluding the driest-
quarter temperature from the model yields the lowest training gain,
underscoring its unique importance. Hence, the driest-quarter
temperature emerges as the critical driver behind the distribution
of D. flexicaule.

Response curves for these five key variables (Figure 12) show
that when each factor’s survival probability surpasses 0.5, the
corresponding range is suitable for growth. Specifically, D.
flexicaule has a survival probability under 0.1 at driest-quarter
temperatures below -7.5°C, rising steadily to its peak near 1.5°C,
then declining again as temperatures exceed that point. A
probability above 0.5 persists between roughly -2.5°C and 5.0°C.
Under current conditions, the model deems the following ranges
suitable: a driest-quarter mean temperature of -2.5°C to 5.0°C,
slopes steeper than 22°, annual precipitation between 780 mm and
1,900 mm, elevations of 600-2,800 m, and driest-month
precipitation of 8-35 mm.
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TABLE 4 Suitable area under different climatic scenarios.

Climate Low Moderately Highly Total Change rate
scenario (x 10*km?) (x 10%km?) (x 10*km?) (x 10*km?) (%)
1970-2000 Current 47.65 14.19 2.46 64.3
SSP126 79.88 31.69 1654 128.11 99.24
2041-2060 SSP245 93.03 32.66 25.79 157.38 144.76
SSP585 85.11 3225 17.74 1355 110.73
SSP126 75.78 40.24 30.04 146.06 127.15
2061-2080 SSP245 83.65 31.92 18.23 133.8 108.09
SSP585 98.36 40.29 20.39 159.04 147.34
3.7 Priority protection and deve[opment foothills and the eastern end of the Qinba Mountains, including
areas for D.flexicaule with curved stems locations such as Wanyuan City and Xuanhan County in Sichuan

Province, Chengkou County in Chongging, and Fangxian County.

Using the InVEST model to calculate habitat quality in some ~ The priority development areas for D.flexicaule are mainly located
suitable areas for D.flexicaule, the results were imported into  in the northern foothills of the Qinba Mountains in Chengkou
ArcGIS, and the habitat quality was classified into five grades ~ County, Chongging, as well as in Xingshan County, Hubei
using the natural breaks classification method (Figure 13): poor ~ Province, and Zhenping County, Shaanxi Province. The results of
(P < 0.475), suboptimal (0.475 < P < 0.702), moderate (0.702 < P < this study align with the conservation and development areas for
0.848), good (0.848 < P < 0.922), and excellent (P > 0.922). In D.flexicaule in the Qinba Mountain region. Moreover, both the
general, the better the habitat quality and the greater the  priority conservation and development areas are relatively
biodiversity, the better the ecological suitability of the area.  concentrated, which is beneficial for both species conservation
Therefore, applying limited conservation resources to the most ~ and the development of industries related to the species.
valuable areas can achieve optimal conservation outcomes. This
study designates areas with excellent habitat quality as priority
conservation areas. Considering the need for industrial 4 Discussion
development, especially in recent years with increasing demand
for product quality, authenticity, and rural revitalization, areas with 4.1 MaxEnt model evaluation
moderate and good habitat quality are designated as priority
development areas. On the one hand, high habitat quality can This study used the Maxent model for modeling, which
ensure product quality. On the other hand, the construction of  predicted species distribution based on species formation records
ecological industrial bases, combined with the ornamental value of  and environmental factors. While most researchers use the default
D.flexicaule, can promote the development of ecological tourism in ~ parameters for modeling with MaxEnt, some have noted that the
these areas. As shown in the Figure 13, the priority conservation  default parameters may lead to overly complex models, making the
areas for D.flexicaule are primarily concentrated in the southern  results difficult to interpret and not always suitable for species

TABLE 5 Current and future changes in suitable areas for D. flexicaule.

Period Climate Habitat area Decrease Stable Increase Parentage Parentage
scenario (x 10%km?) (x 10*km?) (x 10*km?) (x 10*km?) low(%) gain(%)
Current 64.3
SSP126 128.11 0.92 63.38 64.73 1.43 100.67
2041 SSP245 157.38 0.17 64.13 93.25 0.26 145.02
2060 : ) : ’ ) ‘
SSP585 1355 1.72 62.58 72.92 2.67 113.41
SSP126 146.06 0.5 63.8 82.26 0.78 127.93
2061-
SSP245 133.8 0.59 63.71 70.09 0.92 109.00
2080
SSP585 159.04 15 62.8 96.24 233 149.67
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distribution modeling (Merow et al., 2013; Radosavljevic and
Anderson, 2014). Aiming at the overfitting problem of the model,
this study uses the “ENMeval” package in R to optimize the default
parameters of the model. The “kuenm” package in R (http://
github.com/marlonebos/kuenm) offers similar functionality by
integrating with the MaxEnt model to automate the modeling
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workflow. It systematically simulates various combinations of
feature classes (FC) and regularization multipliers (RM),
generating and evaluating multiple candidate models to identify
the optimal parameter settings (Cobos et al., 2019; Yao et al., 2024).
Considering the potential spatial autocorrelation among
distribution points, this study utilized the ENM Tools package in
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R to filter the points. The software package stochastically removes
duplicate points within identical grid cells based on the spatial
resolution of climatic factors, ensuring that each grid cell retains a
singular representative data point. Other researchers (Liu et al,
2021; Yang et al.,, 2022) also utilized proximity analysis within GIS
geospatial processing tools to retain distribution points closest to
each grid centroid, achieving favorable outcomes.

Contemporary ecological modeling increasingly incorporates
multidimensional environmental variables such as bioclimatic,
topographic, and soil factors, which have demonstrated enhanced
predictive performance in species distribution analyses (Jing et al.,
2020; Wei et al., 2020). However, strong correlations among these
variables, particularly in biological and soil datasets, can affect
modeling results. Accordingly, we employed a jackknife test and
Spearman correlation analysis to identify the most relevant
variables, thereby enhancing the model’s accuracy. Though
MaxEnt offers advantages over other species distribution models,
it has limitations (Che, 2022). First, the model forecasts a
species’ maximum potential distribution, which may not fully
coincide with the species’ observed range (Ta et al, 2021).
Second, the niche-based foundation of MaxEnt presupposes
unlimited expansion under ideal conditions, whereas in reality,
species distributions are constrained by various factors beyond the
model’s scope.

4.2 Important variables of D.flexicaule
Understanding how a species’ geographic distribution correlates

with environmental variables is a critical first step in conservation
(Harapan et al., 2022). Climate change often affects the
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physiological and biochemical characteristics of plants in complex
ways, often leading to changes in their suitable habitats (Cao et al.,
2016; Li et al., 2020b). Under the current climate scenario,
temperature, slope and precipitation are the main factors affecting
D. flexicaule distribution was the main variable, while the influence
of soil factors was relatively small. The temperature exerts a
paramount regulatory influence on the growth, physiological
development, and metabolic processes of Dendrobium species
(Orchidaceae). (Taticharoen et al., 2023). Studies have indicated
that the normal growth and fruiting of D. flexicaule require an
average annual temperature ranging from 8 to 15°C, along with
substantial water availability. In particular, the Funiu Mountain
area receives approximately 900 mm of average annual rainfall
(Zhang et al., 1999). According to the response curves of each factor
predicted by the MaxEnt model, the optimal range for D.flexicaule
is a mean temperature of 2°C during the driest quarter, a steep
slope, and annual precipitation of 1350 mm. This aligns with the
species’ biological preference for warm, steep, and humid regions
(Zhang, 2016). The distribution models of orchids revealed that
Biol7, Biol2, and Bio4 were the key climatic determinants. This
indicates that these parameters significantly shape the spatial
patterns of orchid habitats, with closely related species
demonstrating analogous adaptation thresholds to bioclimatic
constraints (Zheng et al., 2023).

4.3 Regional distribution of suitability of
D.flexicaule

Species’ responses to climate change often hinge on the
interplay between habitat suitability and geographic shifts (Davis,
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2001). Many taxa are anticipated to move toward higher latitudes
and elevations in response to warming, though the extent and
direction of these relocations vary markedly across species (Chen
et al,, 2011). Studies aimed at pinpointing orchid-rich zones for
conservation—such as southeastern Tibet, western Yunnan, and
central Yunnan—demonstrate partial overlap with the distribution
of D. flexicaule (Zhan et al., 2024), and modeling efforts similarly
highlight that suitable areas for D. flexicaule cluster in Sichuan,
Chongging, Henan, Hubei, Tibet, and Yunnan (Sun et al., 2020).
However, its high suitability area is extremely limited, covering only
246 x 10r4 km®. D. flexicaule exhibits stringent microclimatic
requirements: it is confined to near-vertical, moss-covered
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limestone cliffs or rock crevices that are simultaneously warm-
cool, persistently moist yet free of standing water, irradiated by
diffuse light but shielded from direct insolation, and subject to
continuous gentle ventilation without mechanical wind stress; these
microhabitats are typically characterised by the audible presence of
running water while surface water remains absent (Zhang, 2016).
Such stringent microclimatic requirements explain the extremely
limited extent of climatically suitable habitat predicted by
niche models.

In parallel, our projections for D. flexicaule reveal considerable
habitat changes under future warming, with all levels of suitability
expanding; high-suitability areas show the largest increase, while
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lower-suitability areas show the smallest. This pattern underscores  dispersal success of plant migration from harsh environments, and
D. flexicaule’s strong sensitivity to global temperature rises. by buffering host plants, they help reduce extinction risk and
Spatially, D. flexicaule habitat consistently broadens in response  facilitate adaptation to new climates (Bennett and Classen, 2020).
to warming. Mycorrhizal fungi play a crucial role in buffering the = Fernandez et al. (2023) found that warming and reduced
extinction risk of plant hosts. They can either promote or hinder the =~ rainfall significantly altered the community composition of
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ectomycorrhizal fungi (EMF), while Wu et al. (2023) reported that
warming significantly enhanced the photosynthetic rate and growth
of plants associated with endophytic mycorrhizal fungi. Therefore,
we hypothesize that future temperature changes may influence
mycorrhizal fungi, thereby affecting the germination rate of D.
flexicaule (Royal Botanic Gardens, Kew, 2025, internal report).
Multivariate environmental similarity analyses suggest that future
climate anomalies shift to lower and higher latitudes, driven
primarily by precipitation variables (e.g., total annual
precipitation, precipitation in the driest month). Meanwhile,
scenarios with the most pronounced expansions in suitable
habitat also exhibit the largest changes in the mean temperature
of the driest quarter, identified here as the most critical limiting
factor. D. flexicaule thrives in warm, humid conditions; thus, rising
temperatures make additional regions habitable. Overall, the
marked increase in suitable habitat indicates that D. flexicaule
could be cultivated in its current range without extensive damage
from future climate change.

Nevertheless, China’s warming rate already exceeds the global
average (Center), and escalating temperatures are projected to intensify
the frequency of extreme weather events (Wang et al, 2017). Such
events—including heatwaves, cold snaps, and erratic rainfall—have
substantially affected natural ecosystems (Yu et al,, 2023; Piao et al,
2019). As a core component of terrestrial ecosystems, vegetation is
especially vulnerable to these phenomena (Liu et al, 2023). Plants
typically occupy narrow climate envelopes conducive to their growth;
when these thresholds are exceeded, growth rates diminish (Schlenker
and Roberts, 2009; Hoffman et al., 2018) or, in severe cases,
populations may perish (Luo, 2011). In the context of global change,
epiphytic plants appear to be particularly sensitive and more
vulnerable than other terrestrial plants (Gentry and Dodson, 1987;

Frontiers in Plant Science

15

15 2.0

Kreft et al, 2004). While model results suggest D. flexicaule could
benefit overall from a warmer climate, the surge in extreme weather—
particularly harmful for this climate-sensitive and endangered species
—cannot be ignored. Indeed, sudden cold snaps can severely damage
D. flexicaule, and temperatures below -10°C for extended periods can
cause varying degrees of frost injury (Zhang, 2016). Moreover,
cultivated plants frequently exhibit lower stress tolerance, placing
them at higher risk of large-scale mortality under extreme conditions.

A variety of approaches exist for classifying suitable areas,
including manual classification (Yan et al, 2021), the IPCC’s
probability thresholds (Manning, 2006), intervals derived from
top 80% and bottom 20% values (Zhu et al., 2023), and the
widely used natural breaks method in ArcGIS (Wang et al., 2023;
Ho and Umitsu, 2011). However, we found the results from the
natural breaks method differed substantially from observed realities.
Consequently, manual classification was ultimately selected to
delineate D. flexicaule’s suitable habitat in a manner better aligned
with its actual distribution (Wang et al.,, 2023).

4.4 Priority protection and development
areas for D.flexicaule with curved stems

Land-use changes substantially impact species distributions
(Cardinale et al, 2012). Many studies relying on MaxEnt limit
environmental factors to bioclimatic, soil, and topographic data,
often overlooking land-use types. Yet habitat quality is especially
critical for species like D. flexicaule, which have precise
environmental needs. While some researchers (Chao et al., 2021)
incorporate land-use factors, these variables are sometimes
excluded or underrepresented during variable selection.
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Conservation efforts aim to preserve biodiversity—particularly for
endangered plants—and ensure its sustainable use (Adhikari et al,
2019). Habitat loss is a principal driver of biodiversity decline, making
habitat protection vital (Francoso et al., 2015). By integrating the
MaxEnt and InVEST models, our study identifies key areas for D.
flexicaule conservation and development. Our findings reveal that
priority conservation zones are concentrated in Wanyuan City and
Xuanhan County (Sichuan), Chengkou County (Chongqing), and
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Fang County and the Shennongjia Forestry District (Hubei). Priority
development areas lie mainly in Chengkou County (Chongqing),
Xingshan County (Hubei), and Zhenping County (Shaanxi). These
counties sit in the Qinba Mountains, a region with varied landforms
and one of China’s major biodiversity hotspots (Qiao et al., 2016). The
Qinba Mountains, in particular, feature mild climates, ample sunlight,
abundant rainfall, and sufficient heat—conditions that favor
cultivating medicinal plants (Zhang et al., 2008).
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Based on the research findings, the following integrated
recommendations are proposed to enhance practical application
and policy relevance: In priority conservation areas characterized by
excellent habitat quality (e.g., the southern foothills and eastern
Qinba Mountains, including specific locations such as Wanyuan
City, Chengkou County, and Fangxian County), these zones should
be formally incorporated into ecological protection redlines, with
strict restrictions on large-scale infrastructure and mining activities,
supported by eco-compensation mechanisms to balance
conservation objectives and local livelihoods. In priority
development areas with moderate to good habitat quality (e.g.,
northern Chengkou County, Xingshan County, and Zhenping
County), community-led initiatives such as sustainable cultivation
of D. flexicaule and eco-certification programs should be promoted,
capitalizing on the species’ ornamental value to develop ecological
tourism and support rural revitalization. Furthermore, a dynamic
monitoring system integrating GIS and remote sensing technologies
is recommended to regularly track habitat changes in both types of
zones, enabling adaptive management and coordinated
conservation-development outcomes.

4.5 Limitation

Plants’ adaptation to the environment and their dispersal
capabilities often determine their distribution patterns, while both
biotic and abiotic factors can also influence these patterns. Although
water and temperature conditions primarily define D. flexicaule
habitat suitability, unaccounted-for soil and biotic interactions may
also play roles. As an epiphytic plant, the growth of D.flexicaule is
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also influenced by the specific characteristics of its host epiphytes
(Wang, 2024). The absence of future soil and topographic changes
in our projections could therefore introduce some bias into
the results.

Therefore, to formally incorporate an assessment of these
potential biases into our discussion, we acknowledge key
uncertainties stemming from our model’s static treatment of soil
properties and future land-use patterns. Soil characteristics
influence epiphyte microhabitats by affecting host tree bark
chemistry (Tatsumi et al., 2023), and their constancy in
projections may introduce inaccuracies. Similarly, by omitting
dynamic land-use change (e.g., deforestation), our model fails to
account for potential habitat fragmentation and loss that could
directly impact the availability of host trees, irrespective of climatic
suitability (Jantz et al.,, 2014).

To quantify these potential biases, we recommend future studies
employ sensitivity analysis (e.g., Sobol” indices) to partition the
variance contributed by these uncertainties (Pianosi et al., 2016).
As a key mitigation strategy, integrating dynamic land-use
models (Meentemeyer et al., 2013) with our projections would
identify areas that are both climatically suitable and likely to
remain forested. Approximating future soil conditions using
pedotransfer functions could further reduce this uncertainty
(Smith et al., 2020). This transparent framework aims to advance
the predictive accuracy of SDMs for epiphytic species. Orchid seeds
are universally minute, contain an undifferentiated embryo, are
enclosed by a transparent testa, and lack endosperm; consequently,
natural germination is negligible unless colonised by compatible
mycorrhizal fungi (Liu et al, 2021; Rasmussen et al., 2015).
Field and experimental data confirm that D. flexicaule follows this
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rule, exhibiting almost zero recruitment without fungal partners.
Mycorrhizal fungi can either facilitate or constrain plant migration
by buffering physiological stress and moderating extinction risk
(Bennett and Classen, 2020). Warming and reduced precipitation
have been shown to reshape ectomycorrhizal communities
(Fernandez et al., 2023) and to enhance the performance of
endophytic associations (Wu et al., 2023). Mediterranean work
further demonstrates that even minor temperature increases can
markedly alter mycorrhizal composition and function (Royal,
2025). These findings underscore that plant microbiomes may
mediate, but not guarantee, persistence under climate change
(Afkhami et al., 2025). Spatially, D. flexicaule habitat consistently
broadens in response to warming. An analogous "symbiotic
mismatch" could unfold for D. flexicaule in the Qinba Mountains:
rising temperatures and altered precipitation may reduce the
abundance or compatibility of requisite fungal taxa, thereby
depressing seedling recruitment despite climatic suitability. This
biotic filter represents an ecologically plausible, yet unmeasured,
process that could further constrict the species’ realised niche
beyond the abiotic projections presented here. Integrating high-
resolution data on the distribution and ecological tolerances of key
mycorrhizal symbionts is therefore essential to refine conservation
strategies for D. flexicaule under continued climate change.

5 Conclusion

MaxEnt projections under divergent climate scenarios indicate
that suitable habitat for the medicinally important orchid D.
flexicaule will expand markedly across Sichuan, Chongqing,
Guizhou, Henan and Hubei, with temperature, slope and
precipitation acting as the primary environmental drivers.
Overlaying these projections with InVEST-derived habitat quality
allowed us to delimit two functional zonings. (1) Priority-
conservation area, concentrated in Chengkou County
(Chongqing), Fangxian County and the Shennongjia Forest
District (Hubei), all located on the southern Daba foothills and
eastern Qinling Mountains,should be gazetted as ecological-red-line
zones where large-scale infrastructure and mining are banned; eco-
compensation schemes and community-based initiatives will
reconcile protection with local livelihoods while safeguarding
primary habitats. (2) Priority-development areas, centred in
Xingshan County (Hubei) and Zhenping County (Shaanxi),
should foster community-led, sustainable cultivation coupled with
third-party eco-certification and orchid-themed ecotourism to
advance rural revitalisation without encroaching on wild
populations. An annual GIS-/remote-sensing monitoring platform
is recommended to track habitat dynamics in both zone types,
enabling adaptive governance of conservation-development trade-
offs. This integrated modelling-management framework provides
theoretical support for balancing in-situ conservation and regulated
utilisation of D. flexicaule under future climates.
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